the behavior of the tapeer-‐brain algorithm over tropical oceans

1
The behavior of the TAPEERBRAIN algorithm over Tropical Oceans Philippe Chambon 1 , Jérémie Aublanc 2 and Rémy Roca 2 1. Current affilia.on: NASA GSFC, Greenbelt MD USA ([email protected] ) 2. OMP/LEGOS, Toulouse, France 1. IntroducAon 3.1 General funcAoning of the algorithm 3.2 Error variance modeling strategy 3.3 A simple sampling error model for satellite esAmates 2. The TAPEERBRAIN algorithm for MeghaTropiques 3.3 Error propagaAon from instantaneous to accumulated rainfall 3.4 The TAPEERBRAIN product 3. Intercomparison of TAPEERBRAIN and TMPA V7 4. Toward the use of TAPEERBRAIN error bar for verificaAon of ensemble forecasts 5. Conclusion and perspecAves 6. References The TAPEERBRAIN approach aims to associate an error to 1°/1day rain accumulaDons, by deriving an esDmate of each of the three error terms considered Rainfall accumulaAon esAmaAon of TAPEERBRAIN AdaptaDon of the UAGPI technique (Xu et al., 1999) BRAIN algorithm (Viltard et al., 2006) provides rain rates from PMW Instantaneous rain product errors + MulDple data merging method errors Orbit and instrument characterisDcs S 2 ≈S 2 CalibraAon +S 2 Algorithm +S 2 Sampling CalibraDon / intercalibraDon of instruments σ X : standard deviaDon of the samples (X) used to build the rain accumulaDon Number of independent samples σ X 2 N ind S 2 Sampling = Uncertainty on the mean of a sampled random variable (Roca et al.,2010), over a surface A and period T : In space : independent samples N ind = . A T d 2 τ In Dme : independent samples T/τ A/d 2 Ex : [12°N – 17°N ; 3°W – 3°E] d ≈ 61 km τ ≈ 1.2 h ComputaAon of N ind : variogram analysis Variograms are computed over the high resoluDon intermediate rain fields (Eq. 1) and aggregated over 5°x5° areas and 10day periods (Eq. 2) before fibng exponenDal models to derive d and τ from staDsDcally robust variograms. (Eq. 1) (Eq. 2) Local characteriza-on of d et τ, updated every 10 days to catch the intraseasonal variability of N ind (Chambon et al., 2012) The magnitude of the two terms S 2 Algorithm and S 2 CalibraDon is related to errors at the instantaneous scale which propagate at the accumulated scale. Figure 5: Distribu.on of differences between TAPEER accumula.ons aSer systema.c errors propagated on BRAIN rain rates of medium intensity ( 2 mm.h 1 à 10 mm.h 1 ) and a control run +100 % +80 % +60 % +40 % +20 % Rel. difference (%) Rel. difference (%) Rel. difference (%) Rel. difference (%) Rel. difference (%) PropagaDon of idealized errors : o random errors on the instantaneous rain rates o systemaDc errors on the instantaneous rain rates o random errors on GEO IR data A new algorithm for rainfall esDmaDon from satellite data has been developed in the framework of the MeghaTropiques mission. It aims to provide daily quanDtaDve precipitaDon esDmaDons at onedegree resoluDon over the whole Tropical belt. The TAPEERBBRAIN (Tropical Amount of PrecipitaDon with an EsDmate of ERrors) algorithm is based on a merging approach of passive microwave instantaneous rain retrievals and observaDons from geostaDonary cloud top sensiDve Infrared channels. A dedicated error model involving rainfall autocorrelaDon calculaDons is then used to characterize the associated sampling uncertainDes. The algorithm error term of the error budget is derived from the microwave retrieval uncertainty analysis. A descripDon of the TAPEERBRAIN algorithm is provided in SecDon 2. The TAPEERBRAIN algorithm is applied for the summer 2009 and the winter 2011 using available conical scanning microwave imagers (TMI, SSMI, AMSRE for 2009). The distribuDon of rainfall esDmates (including the associated errors) is first presented. This dataset is then compared in SecDon 3 with the recently released TRMM3B42 V7 over the Tropical Oceans. Regions with consistencies/discrepancies are highlighted for future research. In SecDon 4, we discuss an ongoing effort to set up a verificaDon method of ensemble rain forecasts using TAPEERBRAIN error bars. Figure1: General flow diagram of the TAPEERBRAIN product Assuming the various error sources to be independent, the error budget of rain accumulaDon can be wrijen as: The methodology to esDmate the errors variance involves modeling the sampling error term and esDmaDng the remaining terms of the error budget with a forward error propagaAon method. Indeed, these remaining terms are related to errors on the PM instantaneous rain retrievals and calibraDon of Level 1 datasets. Figure 2: Time empirical variogram (diamonds) and space empirical variograms (crosses) for a 5x5degrees area in Western Africa and a 10day period in Summer 2009 Figure 3: Space variability of d for the first 10day period of July 2009 (bojom panel). Ten day TAPEER rain accumulaDon for the tenday period (top panel) Figure 4: Time variability of d and τ for summer 2009 over a 5×5degrees window [7 – 12E; 12 – 17N] The dominant errors propaga-ng at the accumulated scale in the TAPEERBRAIN algorithm are systema-c errors on BRAIN medium rain rates (2 to 10mm/h) A qualitaDve preview of the total error magnitude for the TAPEERBRAIN esDmaDons was built from the error propagaDon results and the sampling error model. A bestcase scenario of +20% bias and a worstcase scenario of +60% bias on medium rain rates were selected; for both of them, small and high rain rates are assumed to have low biases. Figure 7 on the right are previews of the corresponding best and worst total error maps of TAPEERBRAIN. Figure 7: Maps of TAPEERBRAIN of accumulated rain and associated errors for July 30 th , 2009 UnderesDmaDon of mean rain along coast lines OveresDmaDon of mean rain over Bay of Bengal, China and Philippines Seas Mean Season Rain (mm) OveresDmaDon over mountains June to September 2009 Number of Rainy Days (0 mm rain/norain threshold) (1 mm rain/norain threshold) Lower number of rainy days with low rain amount (0 to 1mm) Lower number of rainy days along coast lines but bejer agreement over the tropical belt October to December 2011 Mean Season Rain (mm) Number of Rainy Days (0 mm rain/norain threshold) (1 mm rain/norain threshold) UnderesDmaDon over most of the oceanic area and overesDmaDon over land The sampling error model presented above was applied to TMPA V7 and compared with TAPEERBRAIN taken their sampling errors into account (see Roca et al., 2010 for a full explanaDon of the comparison method) This comparison between TMPA V7 and TAPEERBRAIN over two seasons shows that (i) the main discrepancies between the two products in terms of mean seasonal rain are located along the coast lines, (ii) occurrences of small rain accumulaDons (0 to 1mm) are large over all oceans for TMPA V7, (iii) occurrences of rain accumulaDons larger than 1mm are in good agreement over all ocean. Over the four oceanic regions depicted above, Bias and RMS of the regression are variable from the summer season to the winter season, the Indian ocean box presenDng the smallest RMSreg for both periods. All comparisons lead to a FEBO (Frequency of Error Bar Ovelaping) greater than 75%. R. Roca, P. Chambon, I. Jobard, P.E. Kirstejer, M. Gosset and J.C. Bergès, “Comparing satellite and surface rainfall products over West Africa at meteorologically relevant scales during the AMMA campaign using error esDmates”, J. Appl. Meteorol. and Climatol., vol. 49, no. 4, pp. 715–731, 2010. N. Viltard, C. Burlaud and C. Kummerow, “Rain Retrieval from TMI Brightness Temperature Measurements Using a TRMM PR–Based Database”, J. Appl. Meteor. Climatol., vol. 45, pp. 455–466, 2006. L. Xu, X. Gao, S. Sorooshian, P. Arkin and B. Imam. “A microwave infrared threshold technique to improve the GOES precipitaDon index”, J. Appl. Meteorol., vol. 38, no. 5, pp. 569–579, 1999. P. Chambon, I. Jobard, R. Roca and N. Viltard, “An invesDgaDon of the error budget of tropical rainfall accumulaDon derived from merged passive microwave and infrared satellite measurements”, Q. J. R. Meteorol. Soc., DOI: 10.1002/qj.1907., pp. 115, 2012a. Good agreement with threshold at 1mm One of the applicaDon of the TAPEERBRAIN product concerns the evaluaDon of Ensemble PredicDon System (EPS). Indeed, the characterizaDon of the EPS simulaDons and of the spread of the ensemble can be related to the uncertainty esDmates provided along with the daily accumulaDon. A preliminary invesDgaDon is shown here where the ECMWF 50 members simulaDons are used for a day during the CINDYDYNAMO experiment in November 2011 over the Indian Ocean. Figures (a) and (b) show the TAPEER daily accumulaDon at 1°x1° resoluDon along with the error esDmates at 1 sigma. The meteorological situaDon corresponds to the early part of an acDve intraseasonal perturbaDon as witness by the large precipitaDon structure in the Southern hemisphere. Smaller convergence lines yield to two other oceanic rain patches (East of Somalia and around 80°E in the southern ocean). Climatogical features over Indonesia are also observed. The uncertainty reaches up to 15mm at the core of the maximum of accumulated rain for that day and it otherwise smaller below 5mm. The two fields are rather smooth. Figures (c) and (d) reveals the median and the standard deviaDon of daily accumulated rainfall for the ECPWF EPS. The lajer is used a metric of the spread of the ensemble. While the secondary maxima are well located in the simulaDons, the main rain features is smaller and less compact that in the observed field. The variance field is more scajered with larger values than TAPEER. This is obvious when a single member of the ensemble is plojed (Figure 3) that reveals intense rainfall in some grid points. The extent to which the variance of the ensemble and the error esDmaDon at 1 sigma in TAPEER can actually be compared quanDtaDvely requires further invesDgaDon. Figures (a) and (b): TAPEERBRAIN daily rain and error es.mates for Nov 18 th 12:00UTC to Nov 19 th 12:00UTC Figures (c) and (d): Mediane and Standard devia.on of ECMWF EPS forecast of daily rain for the same period as (a) and (b) Figure (e): One member of the ECMWF EPS forecast of daily rain for the same period as (a) and (b) (a) (b) (c) (d) (e) Figure 6: Ra.o of algorithm errors and sampling errors depending on the kind of propagated idealized errors and their magnitude TAPEERBRAIN esDmates will be produced over the whole tropical belt at the 1degree/1day resoluDon, using all available conical scanning PM imagers. Because of both the low inclinaDon of the MeghaTropiques orbit and the large swath of the MADRAS instrument, one can expect the quality of the product to be enhanced in light of the encouraging performances of the TAPEERBRAIN prototype presented in this poster over ocean and in Chambon et al. (2012) over land. In the TAPEERBRAIN framework, the sampling error term is esDmated through a variogram computaDon technique, and the algorithm error term using an error propagaDon method with idealized error scenarios in BRAIN esDmates. Plans are being made to apply the error propagaDon methodology using BRAIN error characterizaDon derived from the data collected during the MeghaTropiques CalibraDon/ValidaDon campaign over various rain regimes in Africa, India and Brazil.

Upload: lamdan

Post on 01-Jan-2017

220 views

Category:

Documents


4 download

TRANSCRIPT

Page 1: The behavior of the TAPEER-‐BRAIN algorithm over Tropical Oceans

The  behavior  of  the  TAPEER-­‐BRAIN  algorithm  over  Tropical  Oceans    Philippe  Chambon1,  Jérémie  Aublanc2  and  Rémy  Roca2  

1.  Current  affilia.on:  NASA  GSFC,  Greenbelt  MD  USA  ([email protected])  2.  OMP/LEGOS,  Toulouse,  France  

 1.  IntroducAon  

3.1    General  funcAoning  of  the  algorithm  

3.2    Error  variance  modeling  strategy  

3.3    A  simple  sampling  error  model  for  satellite  esAmates  

 2.  The  TAPEER-­‐BRAIN  algorithm  for  Megha-­‐Tropiques  

3.3    Error  propagaAon  from  instantaneous  to  accumulated  rainfall  

3.4    The  TAPEER-­‐BRAIN  product  

 3.  Intercomparison  of  TAPEER-­‐BRAIN  and  TMPA  V7  

 4.  Toward  the  use  of  TAPEER-­‐BRAIN  error  bar  for  verificaAon  of  ensemble  forecasts        

 5.      Conclusion  and  perspecAves    6.    References  

The   TAPEER-­‐BRAIN   approach   aims   to   associate   an  error   to   1°/1-­‐day   rain   accumulaDons,   by   deriving   an  esDmate  of  each  of  the  three  error  terms  considered  

Rainfall  accumulaAon  esAmaAon  of  TAPEER-­‐BRAIN    •   AdaptaDon  of  the  UAGPI  technique    (Xu  et  al.,  1999)  •   BRAIN  algorithm  (Viltard  et  al.,  2006)    provides  rain  rates  from  PMW  

Instantaneous  rain  product  errors  +    MulDple  data  merging  method  errors  

Orbit  and  instrument                                          characterisDcs  

S2  ≈  S2CalibraAon  +  S2Algorithm  +  S2Sampling  

CalibraDon  /  inter-­‐calibraDon  of  instruments  

σX:  standard  deviaDon    of  the  samples    (X)  used    to  build  the  rain  accumulaDon  

Number  of    independent  samples  

σX2  

Nind  S2  Sampling                =  

Uncertainty  on  the  mean  of  a  sampled  random  variable    (Roca  et  al.,2010),  over  a  surface  A  and  period  T  :   In  space  :                            independent  samples  

N  ind  =                .    A   T  

d2   τ  In  Dme  :                                independent  samples  T/τ  A/d2  

Ex  :  [12°N  –  17°N  ;  3°W  –  3°E]      

d  ≈  61  km  τ  ≈  1.2  h    

ComputaAon  of  Nind  :  variogram  analysis  

Variograms  are  computed  over  the  high  resoluDon  intermediate  rain  fields  (Eq.  1)  and  aggregated  over  5°x5°  areas  and    10-­‐day  periods  (Eq.  2)  before  fibng  exponenDal    models  to  derive  d  and  τ    from  staDsDcally    robust  variograms.  

(Eq.  1)  

(Eq.  2)  

Local  characteriza-on    of  d  et  τ,  updated  every    10  days  to  catch  the  intra-­‐seasonal  variability    of    Nind  (Chambon  et  al.,  2012)  

The  magnitude  of  the  two  terms  S2Algorithm  and  S2CalibraDon    is  related  to  errors  at  the  instantaneous  scale  which    propagate  at  the  accumulated  scale.  

Figure  5:  Distribu.on  of  differences  between  TAPEER  accumula.ons  aSer  systema.c  errors  propagated  on  BRAIN  rain  rates  of  medium  intensity  (  2  mm.h-­‐1  à  10  mm.h-­‐1  )  and  a  control  run  

+100  %   +80  %   +60  %   +40  %   +20  %  

Rel.  difference  (%)  Rel.  difference  (%)  Rel.  difference  (%)  Rel.  difference  (%)  Rel.  difference  (%)  PropagaDon  of  idealized  errors  :  o   random  errors  on  the  instantaneous  rain  rates  o   systemaDc  errors  on  the  instantaneous  rain  rates  o   random  errors  on  GEO  IR  data        

   A  new  algorithm  for  rainfall  esDmaDon  from  satellite  data  has  been  developed  in  the  framework  of  the  Megha-­‐Tropiques  mission.  It  aims  to  provide  daily  quanDtaDve  precipitaDon  esDmaDons  at  one-­‐degree  resoluDon  over  the  whole  Tropical  belt.  The  TAPEERBBRAIN  (Tropical  Amount  of  PrecipitaDon  with  an  EsDmate  of  ERrors)  algorithm  is  based  on  a  merging  approach  of  passive  microwave  instantaneous  rain  retrievals  and  observaDons  from  geostaDonary  cloud  top  sensiDve  Infrared  channels.  A  dedicated  error  model  involving  rainfall  auto-­‐correlaDon  calculaDons  is  then  used  to  characterize  the  associated  sampling  uncertainDes.  The  algorithm  error  term  of  the  error  budget  is  derived  from  the  microwave  retrieval  uncertainty  analysis.  A  descripDon  of  the  TAPEER-­‐BRAIN  algorithm  is  provided  in  SecDon  2.    The  TAPEER-­‐BRAIN  algorithm  is  applied  for  the  summer  2009  and  the  winter  2011  using  available  conical  scanning  microwave  imagers  (TMI,  SSMI,  AMSRE  for  2009).  The  distribuDon  of  rainfall  esDmates  (including  the  associated  errors)  is  first  presented.  This  dataset  is  then  compared  in  SecDon  3  with  the  recently  released  TRMM-­‐3B42  V7  over  the  Tropical  Oceans.  Regions  with  consistencies/discrepancies  are  highlighted  for  future  research.    In  SecDon  4,  we  discuss  an  ongoing  effort  to  set  up  a  verificaDon  method  of  ensemble  rain  forecasts  using  TAPEER-­‐BRAIN  error  bars.    

Figure1:  General  flow  diagram  of  the  TAPEER-­‐BRAIN  product  

Assuming  the  various  error  sources  to  be  independent,  the  error  budget  of  rain  accumulaDon  can  be  wrijen  as:  

The  methodology  to  esDmate  the  errors  variance    involves  modeling  the  sampling  error  term  and  esDmaDng  the  remaining  terms  of  the  error  budget  with  a  forward  error  propagaAon  method.  Indeed,  these  remaining  terms  are  related  to  errors  on  the  PM  instantaneous  rain  retrievals  and  calibraDon  of  Level  1  datasets.  

Figure  2:  Time  empirical  variogram  (diamonds)  and  space  empirical  variograms  (crosses)  for  a  5x5degrees  area  in  Western  Africa  and  a  10-­‐day  period  in  Summer  2009  

Figure  3:  Space  variability  of  d  for  the  first  10-­‐day  period  of  July  2009  (bojom  panel).  Ten  day  TAPEER  rain  accumulaDon  for  the  ten-­‐day  period  (top  panel)  

Figure  4:  Time  variability  of  d  and  τ  for  summer  2009  over  a  5×5degrees  window  [7  –  12◦  E;  12  –  17◦  N]    

The  dominant  errors  propaga-ng  at  the  accumulated  scale  in  the  TAPEER-­‐BRAIN  algorithm  are  systema-c  errors  on  BRAIN  medium  rain  rates  (2  to  10mm/h)  

A   qualitaDve   preview   of   the   total   error   magnitude   for   the  TAPEER-­‐BRAIN  esDmaDons  was  built  from  the  error  propagaDon  results   and   the   sampling   error  model.   A   best-­‐case   scenario   of  +20%  bias  and  a  worst-­‐case  scenario  of  +60%  bias  on  medium  rain  rates  were  selected;   for  both  of  them,  small  and  high  rain  rates  are  assumed  to  have  low  biases.  Figure  7  on  the  right  are  previews  of  the  corresponding  best  and  worst  total  error  maps  of  TAPEER-­‐BRAIN.    

Figure  7:  Maps  of  TAPEER-­‐BRAIN  of  accumulated  rain  and  associated  errors  for  July  30th,  2009  

Under-­‐esDmaDon  of    mean  rain  along  coast  lines  

Over-­‐esDmaDon  of  mean  rain  over  Bay  of  Bengal,    China  and  Philippines  Seas  

Mean    Season  Rain  (mm)   Over-­‐esDmaDon    

over  mountains    

June  to  September  2009  

Number  of  Rainy  Days  

(0  mm  rain/no-­‐rain  threshold)   (1  mm  rain/no-­‐rain  threshold)  

Lower  number  of  rainy  days  with  low  rain  amount  (0  to  1mm)  

Lower  number  of  rainy  days  along  coast  lines  but  bejer  agreement  over  the  tropical  belt  

October  to  December  2011  

Mean    Season  Rain  (mm)  

Number  of  Rainy  Days  

(0  mm  rain/no-­‐rain  threshold)   (1  mm  rain/no-­‐rain  threshold)  

Under-­‐esDmaDon  over  most  of  the  oceanic  area  and  over-­‐esDmaDon  over  land  

The  sampling  error  model  presented  above  was  applied  to  TMPA  V7  and  compared  with  TAPEER-­‐BRAIN  taken  their  sampling  errors  into  account  (see  Roca  et  al.,  2010  for  a  full  explanaDon  of  the  comparison  method)  

This  comparison  between  TMPA  V7  and  TAPEER-­‐BRAIN  over   two  seasons  shows   that   (i)   the  main  discrepancies  between  the  two  products  in  terms  of  mean  seasonal  rain  are  located  along  the  coast  lines,  (ii)  occurrences  of  small  rain  accumulaDons  (0  to  1mm)  are   large  over  all  oceans  for  TMPA  V7,   (iii)  occurrences  of  rain  accumulaDons   larger  than  1mm  are   in  good  agreement  over  all  ocean.    Over   the   four  oceanic   regions  depicted  above,  Bias  and  RMS  of   the   regression  are   variable   from   the   summer   season   to   the  winter  season,  the  Indian  ocean  box  presenDng  the  smallest  RMSreg  for  both  periods.    All  comparisons  lead  to  a  FEBO  (Frequency  of  Error  Bar  Ovelaping)  greater  than  75%.  

R.  Roca,  P.  Chambon,  I.  Jobard,  P.E.  Kirstejer,  M.  Gosset  and  J.C.  Bergès,  “Comparing  satellite  and  surface  rainfall  products  over  West  Africa  at  meteorologically  relevant  scales  during  the  AMMA  campaign  using  error  esDmates”,  J.  Appl.  Meteorol.  and  Climatol.,  vol.  49,  no.  4,  pp.  715–731,  2010.    

N.  Viltard,  C.  Burlaud  and  C.  Kummerow,  “Rain  Retrieval  from  TMI  Brightness  Temperature  Measurements  Using  a  TRMM  PR–Based  Database”,  J.  Appl.  Meteor.  Climatol.,  vol.  45,  pp.  455–466,  2006.  

L.  Xu,  X.  Gao,  S.  Sorooshian,  P.  Arkin  and  B.  Imam.  “A  microwave  infrared  threshold  technique  to  improve  the  GOES  precipitaDon  index”,  J.  Appl.  Meteorol.,  vol.  38,  no.  5,  pp.  569–579,  1999.    

P.  Chambon,  I.  Jobard,  R.  Roca  and  N.  Viltard,  “An  invesDgaDon  of  the  error  budget  of  tropical  rainfall  accumulaDon  derived  from  merged  passive  microwave  and  infrared  satellite  measurements”,  Q.  J.  R.  Meteorol.  Soc.,  DOI:  10.1002/qj.1907.,  pp.  1-­‐15,  2012a.    

Good  agreement  with  threshold  at  1mm  

One   of   the   applicaDon   of   the   TAPEER-­‐BRAIN   product   concerns   the   evaluaDon   of   Ensemble   PredicDon   System   (EPS).   Indeed,   the   characterizaDon   of   the   EPS  simulaDons  and  of  the  spread  of  the  ensemble  can  be  related  to  the  uncertainty  esDmates  provided  along  with  the  daily  accumulaDon.  A  preliminary  invesDgaDon  is  shown  here  where  the  ECMWF  50  members  simulaDons  are  used  for  a  day  during  the  CINDY-­‐DYNAMO  experiment  in  November  2011  over  the  Indian  Ocean.    

Figures  (a)  and  (b)  show  the  TAPEER  daily  accumulaDon  at  1°x1°  resoluDon  along  with  the  error  esDmates  at  1  sigma.  The  meteorological  situaDon  corresponds  to  the  early  part  of  an  acDve  intra-­‐seasonal  perturbaDon  as  witness  by  the  large  precipitaDon  structure  in  the  Southern  hemisphere.  Smaller  convergence  lines  yield  to  two  other  oceanic  rain  patches  (East  of  Somalia  and  around  80°E  in  the  southern  ocean).  Climatogical  features  over  Indonesia  are  also  observed.  The  uncertainty  reaches  up  to  15mm  at  the  core  of  the  maximum  of  accumulated  rain  for  that  day  and  it  otherwise  smaller  below  5mm.  The  two  fields  are  rather  smooth.    

Figures  (c)  and  (d)  reveals  the  median  and  the  standard  deviaDon  of  daily  accumulated  rainfall  for  the  ECPWF  EPS.  The  lajer  is  used  a  metric  of  the  spread  of  the  ensemble.  While   the   secondary  maxima  are  well   located   in   the   simulaDons,   the  main   rain   features   is   smaller   and   less   compact   that   in   the  observed  field.   The  variance  field  is  more  scajered  with  larger  values  than  TAPEER.  This   is  obvious  when  a  single  member  of  the  ensemble  is  plojed  (Figure  3)  that  reveals   intense  rainfall   in   some   grid   points.   The   extent   to   which   the   variance   of   the   ensemble   and   the   error   esDmaDon   at   1   sigma   in   TAPEER   can   actually   be   compared  quanDtaDvely  requires  further  invesDgaDon.  

Figures  (a)  and  (b):  TAPEER-­‐BRAIN  daily  rain  and  error  es.mates  for  Nov  18th  12:00UTC  to  Nov  19th  12:00UTC  Figures  (c)  and  (d):  Mediane  and  Standard  devia.on  of  ECMWF  EPS  forecast  of  daily  rain  for  the  same  period  as  (a)  and  (b)  Figure  (e):  One  member  of  the  ECMWF  EPS  forecast  of  daily  rain  for  the  same  period  as  (a)  and  (b)  

(a)   (b)  

(c)   (d)   (e)  

Figure  6:  Ra.o  of  algorithm  errors  and  sampling  errors  depending  on  the  kind  of  propagated  idealized  errors  and  their  magnitude  

             TAPEER-­‐BRAIN  esDmates  will  be  produced  over  the  whole  tropical  belt  at  the  1degree/1-­‐day  resoluDon,  using  all  available  conical  scanning  PM  imagers.  Because  of  both  the  low  inclinaDon  of  the  Megha-­‐Tropiques  orbit  and  the  large  swath  of  the  MADRAS  instrument,  one  can  expect  the  quality  of  the  product  to  be  enhanced  in  light  of  the  encouraging  performances  of  the  TAPEER-­‐BRAIN  prototype  presented  in  this  poster  over  ocean  and  in  Chambon  et  al.  (2012)  over  land.    In  the  TAPEER-­‐BRAIN  framework,  the  sampling  error  term  is  esDmated  through  a  variogram  computaDon  technique,  and  the  algorithm  error  term  using  an  error  propagaDon  method  with  idealized  error  scenarios  in  BRAIN  esDmates.  Plans  are  being  made  to  apply  the  error  propagaDon  methodology  using  BRAIN  error  characterizaDon  derived  from  the  data  collected  during  the  Megha-­‐Tropiques  CalibraDon/ValidaDon  campaign  over  various  rain  regimes  in  Africa,  India  and  Brazil.