the fifth international energy conference - palestine -

184
/28-27 إﺻﺪار ﻓﻠﺴﻄﻴﻦ- ﻣﺆﺗﻤﺮ اﻟﻄﺎﻗﺔ اﻟﺪوﻟﻲ اﻟﺨﺎﻣﺲ٢٠١٥ /ﻛﺎﻧﻮن اﻟﺜﺎﻧﻲ٢٨-٢٧ ﺑﺘﻨﻈﻴﻢ ﻣﻦ ﻧﻘﺎﺑﺔ اﻟﻤﻬﻨﺪﺳﻴﻦ اﻟﺘﺄﻣﻴﻦ وﺛﻴﻘﺔ راﻋﻲﻋﻼﻣﻲ اﻟﺮاﻋﻲ ا اﻟﺮﺳﻤﻲ اﻟﺮاﻋﻲ ﺑﺪﻋﻢ ﻣﻦ

Upload: duongcong

Post on 30-Dec-2016

265 views

Category:

Documents


13 download

TRANSCRIPT

Page 1: The Fifth International Energy Conference - Palestine -

/28-27

إصدارمؤتمر الطاقة الدولي الخامس - فلسطين

٢٧-٢٨/كانون الثاني ٢٠١٥

بتنظيم من نقابة المهندسين

راعي وثيقة التأمين الراعي ا�عالمي

الراعي الرسميبدعم من

IECP 2015

PRCS Building

27 -28 January A l b i r e h , P a l e s t i n e

Proceeding of

The Fifth International Energy Conference - Palestine

27-28 January 2015

Organized by Palestine Engineers Association

Official Sponsor

Media SponsorsInsurance policy

sponsor

Supported BYT

he F

ifth

Inte

rnat

iona

l Ene

rgy

Conf

eren

ce -

Pal

estine

ينسط

فلس-

املخ

ي اول

لدة ا

اقلط

مر اؤت

م

Page 2: The Fifth International Energy Conference - Palestine -
Page 3: The Fifth International Energy Conference - Palestine -

1

Proceeding of Fifth International Energy Conference- Palestine

IECP 2015

27-28 / Jan. 2015 PRCS Building , Al Bireh , Palestine

Official Sponsor

Media sponsor

Patron of The policyholder

Proceeding of Fifth International Energy Conference- Palestine

IECP 2015

27-28 / Jan. 2015 PRCS Building , Al Bireh , Palestine

Official Sponsor

Media sponsor

Patron of The policyholder

2

Introduction From its role in the development of the engineering work and providing the Palestinian engineers

withall that is new in Science engineering,Engineers Association Council has decided to organize an

international conference on energy in Palestine Under the title

“The Fifth International Energy Conference”

This is the second international conference in Palestine in this area. It aims to open up prospects for

advanced work with high quality and sustainable in the field of energy, and an emphasis on the goals

of the Association Council in the development of scientific research and encourage innovation and

investment areas.

Organized by Palestine Engineers Association (PEA)

Page 4: The Fifth International Energy Conference - Palestine -

2 2

Introduction From its role in the development of the engineering work and providing the Palestinian engineers

withall that is new in Science engineering,Engineers Association Council has decided to organize an

international conference on energy in Palestine Under the title

“The Fifth International Energy Conference”

This is the second international conference in Palestine in this area. It aims to open up prospects for

advanced work with high quality and sustainable in the field of energy, and an emphasis on the goals

of the Association Council in the development of scientific research and encourage innovation and

investment areas.

Organized by Palestine Engineers Association (PEA)

Page 5: The Fifth International Energy Conference - Palestine -

2 2

Introduction From its role in the development of the engineering work and providing the Palestinian engineers

withall that is new in Science engineering,Engineers Association Council has decided to organize an

international conference on energy in Palestine Under the title

“The Fifth International Energy Conference”

This is the second international conference in Palestine in this area. It aims to open up prospects for

advanced work with high quality and sustainable in the field of energy, and an emphasis on the goals

of the Association Council in the development of scientific research and encourage innovation and

investment areas.

Organized by Palestine Engineers Association (PEA)

33

Colleagues and peers

Greetings,

With the rapid growth and important role of the Engineers association in Palestine towards its members, and the important role that ensures the efficient contribution of the engineers in the growth and development, and with the rapid increase of the number of Engineers with their different majors, to reach more than 18500 member male and female Engineers.

The Engineers association and since It was established still insures the development of the Engineering and consultancy field as a part of its national duty towards the Palestinian community, and raising the capabilities of the Engineers whether through organizing a number of workshops or through arranging conferences and scientific events, as well, establishing a specialized scientific institutes, that insures providing a developed scientific engineering environment, which goes along with the new engineering science in the world.

With no doubts and through organizing a number of international conferences, the engineers association seeks to highlight several important issues in order to help as much as possible in decreasing the load on individuals. And one of the most important international conferences organizing the forth international energy conference which was held in the year of 2011 with a large number of international and local attendance, as well organizing the first civil engineering conference in the year 2013, as these conferences hosted international and local key note speakers and experts to discuss the different themes in these sectors that are in need to be studied, and also to develop the ability of the engineers whom work in these sectors.

All of these scientific events gave the opportunity for the Palestinian engineer to meet international experts in different domains and also it gives the Palestinian national companies the opportunity to promote their unique experiences in this sector.

After all the success that "the forth international energy conference'' has witnessed in the year of 2011, and the urgent need to keep the energy file on the top of the priorities taking into consideration the suffering of the Palestinian society in regards to the challenges and the difficulties they faceas a result of the Israeli occupation’s dominance on all the energy sources and constrains they impose on the Palestinians and the high costs of energy bills, engineers association has organized the fifth international energy conference on January 27th and 28th of the year 2015.

This conference presents some 32 scientific papers and researches in various areas related to the energy sector, it will also host four international and local key-note speakers in order to reach highest levels of interest in the presence of a special local, Arabic, and international audience.

Page 6: The Fifth International Energy Conference - Palestine -

4 4

And on the margin of this conference the engineers association is organizing an exhibition that will be held with the participation of national companies that are specialized in the energy and renewable energy sectors in order to display their experiences and success in their work domains, not to forget the experiences of the engineer college students in the Palestinian universities and the role of the engineers association which promotes through displaying different graduation seminars that are related to energy.

Finally, we wish for this international event all the success, distinction, and achieving all its scientific, national, and economic goals. We are full of hope that this conference will bring up a number of important recommendations that will improve and develop the energy sector in Palestine which will be reflected on the Palestinian citizen and insures having a decent life.

Eng. Ahmad E'daily

Chairman - EAJC

Page 7: The Fifth International Energy Conference - Palestine -

4 4

And on the margin of this conference the engineers association is organizing an exhibition that will be held with the participation of national companies that are specialized in the energy and renewable energy sectors in order to display their experiences and success in their work domains, not to forget the experiences of the engineer college students in the Palestinian universities and the role of the engineers association which promotes through displaying different graduation seminars that are related to energy.

Finally, we wish for this international event all the success, distinction, and achieving all its scientific, national, and economic goals. We are full of hope that this conference will bring up a number of important recommendations that will improve and develop the energy sector in Palestine which will be reflected on the Palestinian citizen and insures having a decent life.

Eng. Ahmad E'daily

Chairman - EAJC

55

PREFACE

Preparations for the International energy conference has been completed after the hard work of both steering

and scientific committees, and of course with the support of The engineers Association council , After all the

success the 4th international energy conference- Palestine which was held in the year of 2011 witnessed .

What features this conference that it includes many topics in the fields of energy and renewable energy that

gives the participants the opportunity to learn more about what they are interested in. the conference focuses

on finding economical, sustainable, and environment -friendly alternative energy sources. It also allows to

show the latest updates in the fields of energy technology, its management and rationalization of its

consumption. Besides that, it strengthens the mentality of energy rationalization and developing the laws and

regulations used in managing this important sector in the Palestinian life.

Both steering and scientific committees made sure on issuing this book before holding the conference to allow

the participants to view all the scientific papers and researches that will be discussed during conference

sessions, which will help guiding them to the topics they are interested in.

The conference was enriched by several key-note speakers from different countries to inform the Palestinian

Engineer on the latest updates related to the energy sector, furthermore, to give the Opportunity to exchange

knowledge and Experience between all the participants. In addition to that, Jerusalem energy Technology

exhibition will be organized on the sidelines of this conference to give the national companies the opportunity

to display all what is new in the energy sector in Palestine.

Finally I would like to thank all People who participated in the issuance of this book, first, the very respected

authors of their valuable papers. Second, the Association of Engineers' crew who exerted a big effort to make

the timely issuance of this book possible.

Dr. Ishaq Sider

Chairman of Steering Committee

Page 8: The Fifth International Energy Conference - Palestine -

6

Conference Committees

Scientific Committee

Steering Committee

Dr. Mutasim Ba’baa (Chairman ) Dr. Ishaq Seder (Chairman) Dr.Ishaq Seder Eng.Issa Jaber

Prof.Sameer Hanna Eng. Abdallah Nairat Dr. Mohammad Karaen Dr.Mutasim Ba’baa

Dr. Aysar Yasin Dr. Imad Ibrik Dr. Maher Khammash Eng.Murad Zetawi

Dr. Basim Alsayid Dr.Samer Alsadi Prof. Marwan Mahmoud Prof.Sameer Hanna

Dr. Mohannad Haj Hussein Dr. Mohammad Karaen Prof. Afif Hasan Eng.Ali Hamoudh

Eng. Nasser Ismail Prof.Marwan Mahmoud Dr. Muhammad Abu-Khaizaran Dr. Amer Marei

Dr. Husam Eldin Abu Rubb Eng.Sufian Samamreh Dr. Zuhdi Salhab Eng.Ayman Hasoneh Dr. Osama Omari Dr.NajiAl Dahoudi Dr. Raed Amro Dr.Mazen Abuamro

Dr. Samer Al Sadi Dr.Assad Abu- Jasser Dr. Imad Ibrik Eng. Salam Al-zaghah

Dr.Safa Nasser Eldin Eng.Shifa Abu Saadeh Dr.Assad Abu- Jasser Dr.Taj Eldin Joma Dr.Mazen Abuamro Eng.Eyhab Totah Dr.NajiAl Dahoudi Eng.Hussien Ibrahim Hamed

Dr.Mohammed Mushtaha Dr.Safa Nasser Eldin

Eng.Fadi Bkirat

Eng. Ismail Alaweneh

Eng. Ma’moun Abu Rayyan

Conference Coordinators

Eng. Ma’moun Abu Rayyan Eng. Aziz Salaymeh

Eng. Alaa Al Hasasneh Suad Mansour

Page 9: The Fifth International Energy Conference - Palestine -

6

Conference Committees

Scientific Committee

Steering Committee

Dr. Mutasim Ba’baa (Chairman ) Dr. Ishaq Seder (Chairman) Dr.Ishaq Seder Eng.Issa Jaber

Prof.Sameer Hanna Eng. Abdallah Nairat Dr. Mohammad Karaen Dr.Mutasim Ba’baa

Dr. Aysar Yasin Dr. Imad Ibrik Dr. Maher Khammash Eng.Murad Zetawi

Dr. Basim Alsayid Dr.Samer Alsadi Prof. Marwan Mahmoud Prof.Sameer Hanna

Dr. Mohannad Haj Hussein Dr. Mohammad Karaen Prof. Afif Hasan Eng.Ali Hamoudh

Eng. Nasser Ismail Prof.Marwan Mahmoud Dr. Muhammad Abu-Khaizaran Dr. Amer Marei

Dr. Husam Eldin Abu Rubb Eng.Sufian Samamreh Dr. Zuhdi Salhab Eng.Ayman Hasoneh Dr. Osama Omari Dr.NajiAl Dahoudi Dr. Raed Amro Dr.Mazen Abuamro

Dr. Samer Al Sadi Dr.Assad Abu- Jasser Dr. Imad Ibrik Eng. Salam Al-zaghah

Dr.Safa Nasser Eldin Eng.Shifa Abu Saadeh Dr.Assad Abu- Jasser Dr.Taj Eldin Joma Dr.Mazen Abuamro Eng.Eyhab Totah Dr.NajiAl Dahoudi Eng.Hussien Ibrahim Hamed

Dr.Mohammed Mushtaha Dr.Safa Nasser Eldin

Eng.Fadi Bkirat

Eng. Ismail Alaweneh

Eng. Ma’moun Abu Rayyan

Conference Coordinators

Eng. Ma’moun Abu Rayyan Eng. Aziz Salaymeh

Eng. Alaa Al Hasasneh Suad Mansour

77

of ContentsTable

Page No. Title Presenter

Research Progress on the Integration of Distributed Generation into the Electricity Grid Eyad H. Abed

Smart Cities, Smart Grids and Smart Buildings for Energy Conservation Mutasim FuadBabaa

Distributed Generation Connection and Operation Feasibility_A Wind Farm Case Study Maher Mohammad Al-Maghalseh

Feasibility of using microturbines instead of diesel generators as backup sources in PVwind hybrid energy systems Mahmoud Salah Ismail

Impacts of distributed photovoltaic generation on Jenin distribution network voltage level, power losse Maher Jalal Khammash

Integrating Mobile Cloud Computing into Smart Grids Salaheddin Odeh

Loss Reduction through Injection of Reactive Power in the Distribution Grid of the Gaza Strip Governorates

Hussam Awwad

Luxury Hotels Green Solutions Action Plan Ahmad M. Haddad

Near Zero Energy House in Palestine Bader Alatawneh

Oxygen Enriched Combustion with Biodiesel Mohammed Alsayed

Photovoltaic –Battery Power System for Brackish Water Desalination in Jordan Valley Design , Field Test and Evaluation

Marwan M. Mahmoud

Potential of Biomass as an Alternative Fuel in Palestine-Amounts and methods of conversion Ashraf Imriash

Practical Sample of A Full Solar project proposal Fadi K. Bkirat

PV System Penetration in the Palestinian Electrical Power System A Review of Barriers and Technical Challenges Tamer Khatib

Rehabilitation to Gaza Governorate Electrical Power Distribution Grid through Cable Sizing and Reactive Power Compensation

Hussam Awwad

Solving Optimal Control Problem for linear time-invariant systems Atya A. Abu Haya

The status of grounding in hebron district Dr. Sameer Khader

Towards Zero Energy School in Palestine M. Haj Hussein

University Students’ Practices Related to Energy Conservation A survey-based study Aysar Yasin

Use of solid waste In production of electricity in the areas of the Palestinian National Authority Majdi Kurdi

Work in Progress – A Master Program in Renewable Energy Engineering and Management at Al-Quds University

Salaheddin Odeh

Zero Cabon Houses Mother Alawne & Mohammed Hussein

Zero Net Energy Buildings Karim Farah AlKhatib

Conference Language

Arabic, English

910

11

17

22

2733

43

4751

55

58

62

67

72

788590101105110117

126

Page 10: The Fifth International Energy Conference - Palestine -
Page 11: The Fifth International Energy Conference - Palestine -

9

Research Progress on the Integration of Distributed Generation into the Electricity Grid

Speaker : Eyad H. Abed, University of Maryland, College Park and National Science Foundation, USA

Abstract : Due to the convergence of societal and technological factors, the trend toward increased distributed

generation has been in place for some time. Distributed generation includes renewable energy sources such as

solar and wind, which have characteristics that are quite different from traditional generating stations. This

trend raises significant high level policy and systems issues that need to be addressed to ensure that distributed

generation can be integrated into the electric power grid without degrading performance of the overall system.

This lecture will provide an overview of some of the major issues involved in the integration of distributed

generation, specifically renewable sources, into the power grid. Lessons learned from the experience of nations

with significant renewable energy penetration will be summarized. Current research directions, as well as

opportunities for further contributions to the field, will be discussed. The lecture will touch on issues of policy,

economics, system expansion planning, and system dynamic performance. The issue of system stability will be

discussed in some detail.

Page 12: The Fifth International Energy Conference - Palestine -

10

Smart Cities, Smart Grids and Smart Buildingsfor Energy Conservation Speaker: Dr. Mutasim Fuad Babaa

Abstract -In a smart city, energy, transportation,water,and other key services are managedefficiently to

support smooth operation of critical infrastructure while providing for a clean, economic and safe environment

for living and working. Timely logistics information will be gathered and supplied to the public through social

media networks. Conservation, safetyand efficiencywill all be greatly enhanced.

The energy infrastructure is arguably the single most important feature in any city. If unavailable for a

significant enough period of time, all other functions will eventually cease. Therefore, Smart Grid became a

backbone element for the Smart City.

A smart grid alone does three things. First, it modernizes power systems through self-healing designs,

controlandautomation, remote monitoring, and establishment of microgrids. Second, it informs consumers about

their energy usage, costs and alternative options, to enable them to manage their loads. Third, it provides safe,

secure and reliable integration of distributed and renewable energy resources. All these add up to an energy

infrastructure that is more reliable, more sustainable and more resilient. Thus, a smart grid is the backbone of

the smart city, which cannot fully exist without it.

Buildings use too much energy. With so many data sources now in buildings, it makes sense to analyze that data

to help optimize facilities operations, reduce energy expense and improve asset management. Smart buildings

go far beyond saving energy and contributing to sustainability goals. They extend capital equipment life

andaffect the security and safety of all resources – both human and capital. They enable innovation by creating

a platform for accessible information. They turn buildings into virtual power generators by allowing operators

to shed electric load and sell the “negawatts” into the market. They are a key component of a future where

information technology and human ingenuity combine to produce the robust, low-carbon economy envisioned

for the future.

Page 13: The Fifth International Energy Conference - Palestine -

10

Smart Cities, Smart Grids and Smart Buildingsfor Energy Conservation Speaker: Dr. Mutasim Fuad Babaa

Abstract -In a smart city, energy, transportation,water,and other key services are managedefficiently to

support smooth operation of critical infrastructure while providing for a clean, economic and safe environment

for living and working. Timely logistics information will be gathered and supplied to the public through social

media networks. Conservation, safetyand efficiencywill all be greatly enhanced.

The energy infrastructure is arguably the single most important feature in any city. If unavailable for a

significant enough period of time, all other functions will eventually cease. Therefore, Smart Grid became a

backbone element for the Smart City.

A smart grid alone does three things. First, it modernizes power systems through self-healing designs,

controlandautomation, remote monitoring, and establishment of microgrids. Second, it informs consumers about

their energy usage, costs and alternative options, to enable them to manage their loads. Third, it provides safe,

secure and reliable integration of distributed and renewable energy resources. All these add up to an energy

infrastructure that is more reliable, more sustainable and more resilient. Thus, a smart grid is the backbone of

the smart city, which cannot fully exist without it.

Buildings use too much energy. With so many data sources now in buildings, it makes sense to analyze that data

to help optimize facilities operations, reduce energy expense and improve asset management. Smart buildings

go far beyond saving energy and contributing to sustainability goals. They extend capital equipment life

andaffect the security and safety of all resources – both human and capital. They enable innovation by creating

a platform for accessible information. They turn buildings into virtual power generators by allowing operators

to shed electric load and sell the “negawatts” into the market. They are a key component of a future where

information technology and human ingenuity combine to produce the robust, low-carbon economy envisioned

for the future.

11

Distributed Generation Connection and Operation Feasibility:A Wind Farm Case Study

Maher Mohammad Al-Maghalseh College of Engineering and Technology

Palestine Polytechnic University Hebron, Palestine

Abstract- This study has been completed for the proposed construction of a wind farm to supply an industrial factory in the north east of theEngland. The study assessed the potential benefits of changing the operation philosophy of distribution network and embedded generation dealing with factory owner aspects, which are to reduce the electricity bills, reduce the interruption in the network, gain revenue by selling the electricity for the supply company and gain green certificate renewable obligation. The following study presents a comprehensive review of the critical factors and considerations analysed for installing an embedded generation (Wind Farm) at the factory site. Furthermore, the feasibility study in this report includes factory site description and wind data, design study and wind farm sizing, and economic study.

Keywords-component; Wind farm; Distribution generation; Generation planning.

I. INTRODUCTION The rapid increases indemand for electricity have created

the opportunity for many technological innovations including the employment of Distributed Generation (DG) to achieve a numberof benefits. Furthermore, concerns over global climate change and public awareness of the environmental impacts of electrical power generation have created an interest in renewable energy systems for DG [1]. However, Several DGs are much more environmentally benign (wind-electricity generations, microturbines, fuel cells, and photovoltaic) than conventional coal, oil, and gas plants[2].

DG can have positive impacts on distribution systems including voltage support and deferring capital investments, but it can also have negative impacts on protection systems, voltage regulation, voltage flicker, and short circuit levels [3]. Scott, studied the effect of gas turbines on the physical and electrical operation, and also estimated the cost of using this technology in rural areas[4]. Sheng-Yi, provided a new DG interconnecting planning techniquewhich includes a coordinated feeder reconfiguration and voltage control in order to calculate the maximum allowable DG capacity at a given node in the distribution network. However, the test scenario is based on wind power generation; the proposed method is also applicable to other types of DG integrations [5]. Barkerhas described a few of issues that must be considered to ensure that DG will not degrade distribution system power quality, safety, and reliability [6]. Chiradejaand Ramakumar studied the effect of DG on the voltage profile, losses, and environmental impact. 12-bus test system and a radial system are used in the study to illustrate the value and usefulness of the proposed approach[1].

The purpose of this paper is briefly to discuss the benefits of employing a wind farm to supply an industrial factory at north east of England. The study presentsa comprehensive feasibility study including a factory site description and wind data, design study,wind farm sizing and economic study.

II. SITE AND WIND ASSESSMENT STAGE At this stage only an approximate indication of the wind

farm output is required in order to confirm the potential of the site. Obviously, the sites should be known to be windy, with high and recurrent wind resources. After selecting the site, the next step is to assess the local long-term wind climate by reference to existing data or by long term monitoring. It is necessary to use at least one full year of wind data to take into account variations in wind speed during the seasons. Then, the energy available from the wind can be calculated by the proportional of the third power of the wind speed.The wind resource assessment and the consequent estimation of the yearly energy yield are of crucial importance since they determine the project yield. Figure 1 shows a typical wind speed distribution based on the statistical Weibull function with a shape factor of 2 and average wind speed of 7.63 m/s. This distribution indicates the number of hours per year that a particular wind speed may be expected.

Figure 1:- Annual wind speed distribution at the site.

A 1 MW wind turbine was used for the wind farm. Figure 2 shows a wind power speed curve (PV) of the turbine. The annual energy yield is calculated by multiplying the wind turbine power curve with the wind distribution. However, the estimated wind distribution results in a yearly energy yield representing the gross income of the wind farm. The annual

Page 14: The Fifth International Energy Conference - Palestine -

12

energy yield expected from the 16.6 MW wind farm is illustrated in Figure 3.

Based on the PV curve from Figure 2 and Weibull wind speed distribution with a shape factor of 2, the gross energy yield corresponding to 7.63 m/s is presented in Table 1. It is 42258.24 MWh full load hours, equivalent to 2347.65MWh full load hours (utilisation 26.8%) with capacity factor 26.8%.

Figure 2:- Power/wind speed curve (PV) of a 1MW wind turbine.

Figure 3:- Annual Energy yield.

TABLE 1:- GROSS YEARLY ENERGY YIELD OF A 16.6 MW WIND FARM AS A FUNCTION OF AVERAGE WIND SPEED.

Average wind speed m/s 7.63 Weibull shape factor 2 Wind turbine power (MW) 1

Wind farm power (MW) 16.6

Gross annual energy yield for each turbine (MWh) 2347.68

Gross annual yield for the whole farm (MWh) 38971

Equivalent full load hours 2347.65

III. NETWORK DESCRIPTION Figure 4 represents the basic features of a distribution

system into which an embedded generator, G, is connected. This generator (PG, QG), together with a local load (Village and Factory) at busC, and the second feeder is represented

bytheload connected at bus D, and the third feeder is represented by another load point connected at bus E. Bus A has been chosen as a slack bus. Furthermore, a 33/11 kV transformer with an On Load Tap Changer (OLTC) is connected between bus A and bus B. The voltage at slack bus A is assumed to be held constant at its nominal value by the source generation 1.05pu, since the angle voltage of this bus serves as a reference for the angles of all other buses. The tap changer on the transformer between bus A and bus B maintains the voltage at bus B at its nominal value.

Figure 4:- Distribution system with embedded generator.

A. Transformer A transmission transformer with OLTC is used to connect

the transmission network with the distribution network, giving a voltage of 33/11KV. The 30% efficiency of its maximum (50MVA) in the reverse flow reflects its age (very old transformer). This has a maximum tap change +0.5% and minimum tap change -0.5%.

B. Lines Overhead lines are typically used for high voltages and

cables are employed primarily for medium to low voltage. So in this case overhead lines are considered, which are presented as resistance and inductance (see Table 2).

TABLE 2:- THE PARAMETERS OF THE LINES.

Feeders Lines Resistance (R)pu Inductance (X)pu Feeder 1 B-E 0.4 0.24

Feeder 2 B-C 0.6 0.36

Feeder 3 B-D 0.5 0.3

C. Load Data and Points The table below elaborates on the maximum and minimum

active and reactive power for each load point.

TABLE 3:- THE MAXIMUM AND MINIMUM LOAD POINTS.

Min Min/pu Max Max/pu

Feeder 1

Factory

P MW 0.4 0.004 1.6 0.016

Q MVAR 0.3 0.003 1.2 0.012

Village

P MW 0.135 0.00135 0.405 0.00405

Q MVAR 0.0654 0.000654 0.196 0.00196

Feeder2 Load2

P MW 1 0.01 5 0.05

Q MVAR 0.2 0.002 1 0.01

Feeder 3 Load3

P MW 1.5 0.015 6 0.06

Q MVAR 0.25 0.0025 1.8 0.018

Page 15: The Fifth International Energy Conference - Palestine -

12

energy yield expected from the 16.6 MW wind farm is illustrated in Figure 3.

Based on the PV curve from Figure 2 and Weibull wind speed distribution with a shape factor of 2, the gross energy yield corresponding to 7.63 m/s is presented in Table 1. It is 42258.24 MWh full load hours, equivalent to 2347.65MWh full load hours (utilisation 26.8%) with capacity factor 26.8%.

Figure 2:- Power/wind speed curve (PV) of a 1MW wind turbine.

Figure 3:- Annual Energy yield.

TABLE 1:- GROSS YEARLY ENERGY YIELD OF A 16.6 MW WIND FARM AS A FUNCTION OF AVERAGE WIND SPEED.

Average wind speed m/s 7.63 Weibull shape factor 2 Wind turbine power (MW) 1

Wind farm power (MW) 16.6

Gross annual energy yield for each turbine (MWh) 2347.68

Gross annual yield for the whole farm (MWh) 38971

Equivalent full load hours 2347.65

III. NETWORK DESCRIPTION Figure 4 represents the basic features of a distribution

system into which an embedded generator, G, is connected. This generator (PG, QG), together with a local load (Village and Factory) at busC, and the second feeder is represented

bytheload connected at bus D, and the third feeder is represented by another load point connected at bus E. Bus A has been chosen as a slack bus. Furthermore, a 33/11 kV transformer with an On Load Tap Changer (OLTC) is connected between bus A and bus B. The voltage at slack bus A is assumed to be held constant at its nominal value by the source generation 1.05pu, since the angle voltage of this bus serves as a reference for the angles of all other buses. The tap changer on the transformer between bus A and bus B maintains the voltage at bus B at its nominal value.

Figure 4:- Distribution system with embedded generator.

A. Transformer A transmission transformer with OLTC is used to connect

the transmission network with the distribution network, giving a voltage of 33/11KV. The 30% efficiency of its maximum (50MVA) in the reverse flow reflects its age (very old transformer). This has a maximum tap change +0.5% and minimum tap change -0.5%.

B. Lines Overhead lines are typically used for high voltages and

cables are employed primarily for medium to low voltage. So in this case overhead lines are considered, which are presented as resistance and inductance (see Table 2).

TABLE 2:- THE PARAMETERS OF THE LINES.

Feeders Lines Resistance (R)pu Inductance (X)pu Feeder 1 B-E 0.4 0.24

Feeder 2 B-C 0.6 0.36

Feeder 3 B-D 0.5 0.3

C. Load Data and Points The table below elaborates on the maximum and minimum

active and reactive power for each load point.

TABLE 3:- THE MAXIMUM AND MINIMUM LOAD POINTS.

Min Min/pu Max Max/pu

Feeder 1

Factory

P MW 0.4 0.004 1.6 0.016

Q MVAR 0.3 0.003 1.2 0.012

Village

P MW 0.135 0.00135 0.405 0.00405

Q MVAR 0.0654 0.000654 0.196 0.00196

Feeder2 Load2

P MW 1 0.01 5 0.05

Q MVAR 0.2 0.002 1 0.01

Feeder 3 Load3

P MW 1.5 0.015 6 0.06

Q MVAR 0.25 0.0025 1.8 0.018

13

IV. WIND FARM AND GENERATION SIZING The voltage at bus C (Vc) in Fig. 3. Can be approximately

calculated as follows:

𝑉𝑉𝑉𝑉𝑐𝑐𝑐𝑐 − 𝑉𝑉𝑉𝑉𝐵𝐵𝐵𝐵 ∆𝑉𝑉𝑉𝑉 𝑅𝑅𝑅𝑅 𝑃𝑃𝑃𝑃𝐺𝐺𝐺𝐺 − 𝑃𝑃𝑃𝑃𝐿𝐿𝐿𝐿 ∓𝑄𝑄𝑄𝑄𝐺𝐺𝐺𝐺 − 𝑄𝑄𝑄𝑄𝐿𝐿𝐿𝐿 𝑋𝑋𝑋𝑋 (1)

This simple equation can be used to qualitatively analyse the relationship between voltage at bus C and the amount of generation that can be connected to the distribution network, as well as the impact of alternative control actions.

The capacity of generation that can be connected to a distribution circuit is determined by analysing the extreme conditions of the coincidence of minimum load (minimum load for village and factory) and maximum generation (PG = PMAX). This policy enables Distribution Network Operates (DNOs) to continue to operate their systems as if generators were not connected at all. The effect ofsuch a connection policy on the amount of generation that can be connected to existing systems can be analysed by the following assumption (0.95 leading power factor operation is assumed). The capacity of the generator that can be accommodated in the existing system is clearly limited by the maximum voltage at bus C (1.1pu) and the voltage at Bus B (1.05pu). Under these assumptions the size of the plant generator was determined (PG=16.6MW & QG=5MVArs).

A. The Network under Study The network is simulated by the IPSA program, and the

maximum amount of embedded generation that can be connected to the network is determined. Both maximum and minimum loading conditions are considered.

TABLE 2:- MAXIMUM LOADING CONDITIONS.

Generator Maximum loading condition PG MW

QG MVAr (leading)

VC Pu

P flow (MW)

Q flow (MVArs)

Plosses (MW)

16 5.26 1.085 13.995 -7.145 0.815

16.6 5.45 1.087 14.496 -7.369 0.871

16.6 3 1.093 14.602 -4.864 0.779

17 5.58 1.088 14.992 -7.551 0.925

17 3 1.094 14.997 -4.886 .816

TABLE 6:- MINIMUM LOADING CONDITIONS.

Generator Minimum loading condition

PG MW

QG MVAr (leading)

VC pu

P flow (MW)

Q flow (MVArs)

Plosses (MW)

16 5.26 1.093 15.467 -6.17 0.407

16.6 5.45 1.094 16.068 -6.401 0.975

16.6 3 1.1 16.069 -3.9 0.891

17 5.58 1.095 16.466 -6.558 1.022

17 3 1.101 16.461 -3.924 0.931

One can see from Tables 5 and 6 that in extreme circumstances, this network could accommodate 16.6 MW,

from the voltage rise point of view. Note that in this particular case, losses would be more than 0.975MW under these load conditions. Furthermore, the wind plant will export real power but is likely to absorb reactive power as its induction generator requires a source of reactive power to operate. In this case the total reactive power required by the wind farm is 2.5MVAr at minimum load and 5MVAr at maximum load. Hence, the 2.5MVAr is connected to provide a reactive power source in order to reduce the losses, which are 0.975 MW without capacitor bank and 0.891 MW with capacitor bank. This improves the power factor from 0.95 without capacitor bank to nearly of 0.97 with capacitor bank.

On the other hand, the transformer (very old) operates with 30% efficiency of its maximum power (50MVA) in the reverse flow direction. So in this case, 16.6 MW embedded generators are connected in the network. The maximum reverse power flows through the transformer are (P=2.363MW & Q=7.953MVAr) 8.296MVA at maximum load and (P=12.644 & Q=4.869MVAr) 13.388MVA at minimum load. Thus, the transformer tap-changer is capable of operating with a reverse power flow in this case. Furthermore, cable apparent power is(20-25) MVA. In this case, 16.6MW cables apparent powers are (16.069MW & 3.9MVAr) 16.53MVA at minimum load and (14.602MW & 4.864MVAr) 15.39MVA. Thus, the network doesn‟t have thermal effect in this circumstance. Figure 4 illustrates the power flow in the network at minimum load and maximum generation.

Figure 4:- Power flow at maximum generation minimum load.

B. Economic Feasibility Study The economic appraisal of wind energy involves a number

of specific factors, which are defined below: 1) The annual energy production from producing the wind

turbine installation, and demand management:The amount of the electricity generated by the wind farm (16.6 MW) is expected to be 36,243MWh annually (see Table 7). The annual demand for the factory is calculated by considering the maximum and minimum power consumption of the factory, which are (1.6MW) for 17 h/day and (0.4MW) for 7h/day respectively. Subsequently the annual factory demand is 10950 MWh/yr. On the other hand the village demand is calculated to be (0.405MW) for 14 h/day and (0.135MW) for 10h/day for maximum and minimum power consumption respectively, giving an annual village demand of 2562 MWh/yr. The value of the excess power, which is the amount of electricity produced and not used by the factory is estimated to be 25293 MWh/yr (see Table 8).

Page 16: The Fifth International Energy Conference - Palestine -

14

TABLE 7:- WIND FARM ANNUAL ENERGY OUTPUT.

One Turbine Size

Project Size Results

Rated Power (MW) 1 16 16

Energy Yield 1 MW turbine (MWh/year) 8760 16 140160

Energy Yield 0.6 MW turbine (MWh/year) 5256 1 5256

Capacity Factor 0.268 Losses (7%) 0.93 Electricity project Excess from 0.600 MW/(MWh/year) 1310.00544 1 1,310

Electricity project Excess/(MWh/year) 2183.3424 16 34,933

Total Electricity produce (MWh/year) 36,243

TABLE 8:- ANNUAL DEMAND MANAGEMENT.

Consumption MWh/year

Factory load 10950

Village load 2562

Supply Comp (total load -Factory-Village) 22731

Total produced energy from wind farm 36243

Excess Energy from the factory 25293

2) The Capital Cost : Also known as the investment cost,

this consists of equipment cost, installation cost, and “soft” (also called “project” or “engineering and management”) costs[7]. These occur at the start of the project and are independent of energy output, hence can be quoted as a straightforward annual cost (pounds per year), which is £19,045,000 for 16.6MW, or sometimes as a cost per MW of capacity (pound per MW per year), which is about 1.147M£ per MW. Table 8 summaries the capital cost for developing a 16.6MW wind farm.

TABLE 3:- CAPITAL (NON-RECURRING) INVESTMENT COSTS.

Cost/turbine #turbine Total

Turbine Cost (1MW) Induction generator £1,000,000 16 £16,000,000

Turbine Cost (0.6 MW) Induction generator £700,000 1 £700,000

Interconnection £50,000 17 £850,000

Construction/Installation Cost (150 days) £75,000 17 £1,275,000

Engineers (150 days) £500 150 £75,000

Capacitor bank (20000 £/MVAr) £20,000 1.40 £28,000

Islanding detection relay £1,000 17 £17,000

Equipment (Monitors/Building) £100,000

Total Investment cost £19,045,000

3) The operation and maintenance cost, including maintenance of the wind turbine, insurance, land leasing, etc: Operation and maintenance costs depend to a certain extent on decisions taken at the design and construction phase. It is possible that actions reducing the initial cost may lead to increased operation and maintenance costs, with a negative impact on the total economic performance of the project[7]. Table 9 summarises the estimated maintenance and operation cost of developing a 16.6MW wind farm, which is £77.3k per MW. Furthermore, the value of the maintenance and operation cost is expected to increase with rising maintenance cost through the life time of the project (25 years), which is 2% annually.

TABLE 9:- ANNUAL OPERATING AND MAINTENANCE COSTS.

Cost/Turbine #turbine Life

time/Yr Total Cost

Annual operation and maintenance costs £30,000 17 1 £510,000

Daily management £10,000 17 1 £170,000

Insurance £476,125 17 1 £476,125

Local taxes/Land rent £7,500.00 17 1 £127,500

Total Maintenance / Operation Cost

£1,283,625.00

Increasing of maintenance costs (%/year) 2%

4) Estimate electricity cost and benefits analysis: The estimated costs and benefits are analyzed over the term or useful life of the project and are then factored into a simple economic model of discounted cash flows, which returns a Net Present Value and other financial figures of merit. For this study, I have modelled the cost and benefits of 16.6MW wind farm, assuming a project life of 25 years and discount rate of 6%. Table 10 summarizes the electricity price in order to calculate the selling benefits and revenue for the supply company.

TABLE 4:- ELECTRICITY PRICES[7].

Electricity Prices

£/MWh

Buying from Sup. Comp. 65.17

Selling to Supply Company 60

Selling ROCs to Company 40

Nominal Electricity Escalation Rate (%/year) 2%

5) Cash Flow: Project cash flow is based upon the amount of retail power which can be offset by the wind farm, the sale of any excess energy which may be produced and the sale of excess energy to the supply company. The revenue per year is equal to the sum of the energy saving (factory demand

Page 17: The Fifth International Energy Conference - Palestine -

14

TABLE 7:- WIND FARM ANNUAL ENERGY OUTPUT.

One Turbine Size

Project Size Results

Rated Power (MW) 1 16 16

Energy Yield 1 MW turbine (MWh/year) 8760 16 140160

Energy Yield 0.6 MW turbine (MWh/year) 5256 1 5256

Capacity Factor 0.268 Losses (7%) 0.93 Electricity project Excess from 0.600 MW/(MWh/year) 1310.00544 1 1,310

Electricity project Excess/(MWh/year) 2183.3424 16 34,933

Total Electricity produce (MWh/year) 36,243

TABLE 8:- ANNUAL DEMAND MANAGEMENT.

Consumption MWh/year

Factory load 10950

Village load 2562

Supply Comp (total load -Factory-Village) 22731

Total produced energy from wind farm 36243

Excess Energy from the factory 25293

2) The Capital Cost : Also known as the investment cost,

this consists of equipment cost, installation cost, and “soft” (also called “project” or “engineering and management”) costs[7]. These occur at the start of the project and are independent of energy output, hence can be quoted as a straightforward annual cost (pounds per year), which is £19,045,000 for 16.6MW, or sometimes as a cost per MW of capacity (pound per MW per year), which is about 1.147M£ per MW. Table 8 summaries the capital cost for developing a 16.6MW wind farm.

TABLE 3:- CAPITAL (NON-RECURRING) INVESTMENT COSTS.

Cost/turbine #turbine Total

Turbine Cost (1MW) Induction generator £1,000,000 16 £16,000,000

Turbine Cost (0.6 MW) Induction generator £700,000 1 £700,000

Interconnection £50,000 17 £850,000

Construction/Installation Cost (150 days) £75,000 17 £1,275,000

Engineers (150 days) £500 150 £75,000

Capacitor bank (20000 £/MVAr) £20,000 1.40 £28,000

Islanding detection relay £1,000 17 £17,000

Equipment (Monitors/Building) £100,000

Total Investment cost £19,045,000

3) The operation and maintenance cost, including maintenance of the wind turbine, insurance, land leasing, etc: Operation and maintenance costs depend to a certain extent on decisions taken at the design and construction phase. It is possible that actions reducing the initial cost may lead to increased operation and maintenance costs, with a negative impact on the total economic performance of the project[7]. Table 9 summarises the estimated maintenance and operation cost of developing a 16.6MW wind farm, which is £77.3k per MW. Furthermore, the value of the maintenance and operation cost is expected to increase with rising maintenance cost through the life time of the project (25 years), which is 2% annually.

TABLE 9:- ANNUAL OPERATING AND MAINTENANCE COSTS.

Cost/Turbine #turbine Life

time/Yr Total Cost

Annual operation and maintenance costs £30,000 17 1 £510,000

Daily management £10,000 17 1 £170,000

Insurance £476,125 17 1 £476,125

Local taxes/Land rent £7,500.00 17 1 £127,500

Total Maintenance / Operation Cost

£1,283,625.00

Increasing of maintenance costs (%/year) 2%

4) Estimate electricity cost and benefits analysis: The estimated costs and benefits are analyzed over the term or useful life of the project and are then factored into a simple economic model of discounted cash flows, which returns a Net Present Value and other financial figures of merit. For this study, I have modelled the cost and benefits of 16.6MW wind farm, assuming a project life of 25 years and discount rate of 6%. Table 10 summarizes the electricity price in order to calculate the selling benefits and revenue for the supply company.

TABLE 4:- ELECTRICITY PRICES[7].

Electricity Prices

£/MWh

Buying from Sup. Comp. 65.17

Selling to Supply Company 60

Selling ROCs to Company 40

Nominal Electricity Escalation Rate (%/year) 2%

5) Cash Flow: Project cash flow is based upon the amount of retail power which can be offset by the wind farm, the sale of any excess energy which may be produced and the sale of excess energy to the supply company. The revenue per year is equal to the sum of the energy saving (factory demand

15

multiplied by electricity buying price), total selling of excess electricity to village and supply company (Excess demand multiplied by selling electricity price) and ROCs1[8](excess demand multiplied be ROCs cost), subtracted by the maintenance and operation cost. Table 11 summarizes the revenue (Net cash flow per year).However, the value of the revenue is expected to increase with rising electricity cost through the life time of the project (25 years). The nominal electricity escalation rate is expected to be 2% annually.

TABLE 5:- REVENUE- NET CASH FLOW FOR 1ST YEAR

Total power

Electricity Prices cash flow

Energy Savings 10,950 65.17 713,612

Selling Excess Electricity: Supply Company 25,293 60 1,517,609

Selling ROCs to Supply Company 25,293 40 1,011,739

Total saving 3,242,960

maintenance and operation cost £1,283,625

Total cash flow/year £1,959,334.88

6) Simple payback period (SPB): This is defined as the

length of time required to recover the investment cost (first cost) from the net cash flow produced by that investment, with no consideration of interest rate, or the number of years required to recover capital cost, ignoring discounting [7]. Figure 5 shows the cumulative cash flow for each year throughout the project period, and the payback period is 9.6 years for a 16.6 MW wind farm.

Figure 2:- Cash flow calculations for the project.

7) Net Present Value (NPV): is defined as the present value of the initial investment, plus all future cash flows. For a wind

1ROCs:- A renewable Obligation Certificate (ROC) is a green certificate issued to an accredited generator for eligible renewable electricity generated within the United Kingdom and supplied to customers within the United Kingdom by a licensed electricity supplier. One ROC is issued for each megawatt hour (MWh) of eligible renewable output generated.

turbine, cash flows are evaluated over the useful life of the equipment, in this case 25 years.However, sometimes it can be 20 or 30 years, depending upon the manufacturer and care taken during the maintenance of the equipment[9]. The NPV for the project during a 25 year lifespan and 6% discount rate is £11,112,249.32.

8) Internal Rate of Return (IRR): is the discount rate that equates the two streams of costs and benefits of the project. Alternatively, it is the rate of return „r‟ (the value at which NPV = 0) that the project is going to generate, provided the stream of costs (Cn) and stream of benefits (Bn) of the project materialises. It is also the rate, r, that would make the NPV of the project equal zero. IRR is[8]:

𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛 𝑟𝑟𝑟𝑟 𝑛𝑛𝑛𝑛 𝐵𝐵𝐵𝐵𝑛𝑛𝑛𝑛 𝑟𝑟𝑟𝑟 𝑛𝑛𝑛𝑛 (2)

Where n is the life time of the project.

The Internal Rate of Return (IRR) for the project during a 25 year lifespan is 11%.

9) Profit/Investment Ratio: This is the ratio of the project's total net income and total investment. It describes the amount of the profit generated per pound invested. The idea is the selection of the project that maximises the profit per unit of investment. The ratio is easy to calculate, but does not reflect the timing at which revenues are received and profits generated. Therefore, it does not reflect the time value of money. Consequently, it is not a proper evaluation method. As a result the profit/investment ratio for 16.6MW wind farm is 1.78 per pound[8].

CONCLUSION The amount of generation that can be connected is usually

established through deterministic load flow studies, usually with the critical case representing conditions of minimum/maximum load and maximum embedded generation output. This operating policy limits considerably the capacity of generation that can be connected to the existing distribution network. However this study represents the investigation of the potential size of an embedded generator, and elaborates on the economic and technical issues.

The ability of the network to accommodate, and the maximum amount of wind generation that can be connected to the network is determined. Both minimum and maximum loading conditions are considered. By performing a number of load flow calculations using IPSA it can be concluded that the power flow through the feeder can be 16MW and 14.6MW under minimum and maximum loading conditions respectively.

Economically, the capital cost is calculated to be £19,045,000.00 and the cost per MW is £1,147,289.16. An NPV of nearly £11,112,000 and a net cash flow of £62,186,693 are expected over 25 years, with annual positive cash flows occurring 9.6 years after development.

Page 18: The Fifth International Energy Conference - Palestine -

16

REFERENCES

[1] P. Chiradeja and R. Ramakumar, "An approach to quantify the technical benefits of distributed generation," Energy Conversion, IEEE Transactions on, vol. 19, pp. 764-773, 2004.

[2] R. Ramakumar and P. Chiradeja, "Distributed generation and renewable energy systems," in Energy Conversion Engineering Conference, 2002. IECEC '02. 2002 37th Intersociety, 2002, pp. 716-724.

[3] R. E. Brown and L. A. Freeman, "Analyzing the reliability impact of distributed generation," in Power Engineering Society Summer Meeting, 2001, 2001, pp. 1013-1018 vol.2.

[4] W. G. Scott, "Micro-turbine generators for distribution systems," Industry Applications Magazine, IEEE, vol. 4, pp. 57-62, 1998.

[5] S. Sheng-Yi, L. Chan-Nan, C. Rung-Fang, Gutie, x, and G. rrez-Alcaraz, "Distributed Generation Interconnection Planning: A Wind Power Case Study," Smart Grid, IEEE Transactions on, vol. 2, pp. 181-189, 2011.

[6] P. P. Barker and R. W. De Mello, "Determining the impact of distributed generation on power systems. I. Radial distribution systems," in Power Engineering Society Summer Meeting, 2000. IEEE, 2000, pp. 1645-1656 vol. 3.

[7] OFGEM, "Renewables Obligation, Annual Report 2010-11," 2011.

[8] H. Khatib and I. o. E. Engineers, Economic Evaluation of Projects in the Electricity Supply Industry: Institution of Engineering and Technology, 2003.

[9] G. Boyle, Renewable Energy: Power for a Sustainable Future: OUP Oxford, 2012.

Page 19: The Fifth International Energy Conference - Palestine -

16

REFERENCES

[1] P. Chiradeja and R. Ramakumar, "An approach to quantify the technical benefits of distributed generation," Energy Conversion, IEEE Transactions on, vol. 19, pp. 764-773, 2004.

[2] R. Ramakumar and P. Chiradeja, "Distributed generation and renewable energy systems," in Energy Conversion Engineering Conference, 2002. IECEC '02. 2002 37th Intersociety, 2002, pp. 716-724.

[3] R. E. Brown and L. A. Freeman, "Analyzing the reliability impact of distributed generation," in Power Engineering Society Summer Meeting, 2001, 2001, pp. 1013-1018 vol.2.

[4] W. G. Scott, "Micro-turbine generators for distribution systems," Industry Applications Magazine, IEEE, vol. 4, pp. 57-62, 1998.

[5] S. Sheng-Yi, L. Chan-Nan, C. Rung-Fang, Gutie, x, and G. rrez-Alcaraz, "Distributed Generation Interconnection Planning: A Wind Power Case Study," Smart Grid, IEEE Transactions on, vol. 2, pp. 181-189, 2011.

[6] P. P. Barker and R. W. De Mello, "Determining the impact of distributed generation on power systems. I. Radial distribution systems," in Power Engineering Society Summer Meeting, 2000. IEEE, 2000, pp. 1645-1656 vol. 3.

[7] OFGEM, "Renewables Obligation, Annual Report 2010-11," 2011.

[8] H. Khatib and I. o. E. Engineers, Economic Evaluation of Projects in the Electricity Supply Industry: Institution of Engineering and Technology, 2003.

[9] G. Boyle, Renewable Energy: Power for a Sustainable Future: OUP Oxford, 2012.

17

Feasibility of using microturbines instead of diesel generators as backup sources in PV/wind hybrid

energy systems M.S. Ismail

Electrical Engineering Department- Faculty of Engineering and Technology Palestine Technical University- Kadoorie

Tulkarm-Palestine [email protected]

Abstract—In this study, different configurations of PV/wind hybrid energy systems have been economically and environmentally studied and analyzed. The purpose is to select and design the optimal scenario that meets the load requirement at the minimum cost of energy (COE) production. This is to electrify remote small communities in Palestine. Both the diesel generator and the microturbine as backup sources have been evaluated and the purpose is to investigate the effectiveness of using microturbines as back up sources instead of diesel generators. Besides the scenario that consisted of combination of the PV panels, the wind turbine, and the microturbine as energy sources and battery as a storage system, other scenarios have also been evaluated. These are: a scenario depending on a hybrid PV/microturbine, a scenario depending on PV standalone system and other scenario depending on microturbine only. A simulation program has been developed to perform the energy balance calculations and to optimize the sizes of the components of the hybrid system. In a prior step, the PV tilt angle has been optimized to maximize the annual energy production. The results of this study indicate that electrifying rural remote communities using this type of hybrid systems is beneficial and attractive. The optimized scenario that fulfills these features is the one that is consisted of a combination of PV panels, wind turbine, battery bank and microturbine.

Keywords-Hybrid system;Photovoltaic; Wind; Hybrid system; Feasibility; Microturbines; Diesel generator

I. INTRODUCTION The world efforts to develop various technologies that

depend on renewable energies have accelerated in recent years as most countries have recognized energy as one of the strategic sectors. New regulations and policies aiming to encourage the deployment of renewable energy technologies have been adopted by many governments throughout the world. Each of these governments has adopted its own initiatives to promote renewable energy technologies, improve the efficiency of the energy use, and establish energy conservation plans and the related legislative actions [1, 2].

Hybrid power systems, which combine conventional and renewable Energy systems, are the best solution for supplying the isolated loads and mini-grids and in far remote sites. The fact that the renewable sources are location dependent, variable and intermittent necessitates a storage system and/or backup

source to ensure continuity in supplying the load. So, the reliability of the electrical power system will improve if conventional power sources support the renewable energy sources [3].

For the case of Palestine, the yearly average daily solar insolation measured on horizontally mounted surface ranges from about 5.5 kWh/m2 to about 6 kWh/m2. The total annual sunshine hours may take values exceeding 3000 h [4]. These high values for both solar radiation and sunshine hours encourage adoption of solar energy for generation of electricity using PV panels, heating water using solar heaters, and many other related applications. June to August possess the highest solar radiation levels, whereas the lowest solar radiation levels are recorded in December to February. The annual average of wind velocity at different places in Palestine is about 3 m/s. In some places it exceeds this number and reaches up to 5.5 m/s . The fact that around 80% of the energy sources of the Palestinian Territories comes from external sources makes authorities to search for other alternatives to reduce this reliance. Investment in renewable energy systems especially photovoltaic is one of these alternatives. The Palestinian Energy Authority has developed a clear goal for the year 2020. In this plan, a 10% of the total power required by the Palestinian Territories should come from different renewable sources. The first stage of this plan has been launched and it involves generation of 25 MW by the various suggested sources [5].

Projects that depend on PV hybrid systems seem to be the most popular amongst these projects. The microturbines can be used as backup sources instead of diesel generators in these PV hybrid systems, which renders the utilization of such hybrid systems more attractive. In comparison to the diesel generator, the microturbine is more reliable, more flexible in terms of fuel, emits less pollutants, requires less maintenance, and is less noisy [6, 7]. Investigation of the feasibility of using microturbines as backup sources in the PV renewable hybrid systems is actually one of the purposes of this study.

Microturbine systems are a relatively new generation of technology. They are classified as small, high speed combustion gas turbines. Their output ranges from 25 kW to 500 kW. Cogeneration forms one of its attractive features, which is defined as its ability to simultaneously generate

Page 20: The Fifth International Energy Conference - Palestine -

18

utilized heat while they are running to generate electricity. A heat exchanger (regenerator) is used for this purpose. Microturbine-generation is currently considered a viable source, and expected to take a significant role in the field of distributed generation technology, due to their relatively low capital costs, small size, and anticipated low operation and maintenance costs [6].

As previously mentioned, the feasibility of using microturbines as backup sources in the hybrid systems will be verified. Furthermore, in this study a detailed techno economic analysis of the suggested hybrid system will be conducted. The sizes of the components making up the hybrid system will be optimized in order to minimize the COE. This includes the size of the PV system (in terms of PV contribution(PVcont)) and the size of the battery bank (in terms of battery autonomy days (AD)). The microturbine power rating will be selected according to the load profile while the sizes of both the bidirectional inverter and the solar charger converter will be selected according to the sizes of the optimized parameters.

In a study involving the Palestinian territories, Daud and Ismail [8] analyzed and designed a hybrid system consisting of a PV, wind turbine, battery bank and diesel generator in order to supply power to a house. The results indicated the superiority of using such hybrid systems, especially in the context of remote areas, compared to conventional sources.

Caisheng et al. [9] studied a hybrid system that consist of a microturbine and wind turbine for standalone applications. An actual residential load profile and real wind data were also taken into account. The simulation results indicated the suitability of adopting this type of hybrid system to supply the residential loads.

In this study, a simulation program was developed in order to accomplish an energy balance for each hour in the year. The purpose of this is to optimize the sizes of the hybrid system components achieving minimum COE, while simultaneously covering the load demand.

II. HYBRID SYSTEM MODELLING

A. Block Diagram The block diagram of the suggested hybrid system in this

paper is shown in Fig. 1. The bidirectional inverter links both the DC and the AC buses. The PV panels’ output, the wind turbine output and the battery units output are linked to the DC bus, whereas the load and the backup source output are linked to the AC bus.

Figure 1. The block diagram of proposed hybrid energy system

B. Load Profile The load profile taken into account in this study is common

for a small community of Palestinians. For the purpose of this paper, two load categories are considered: one for summer period (May to October) and the second for the winter period (November to April). Fig. 2 illustrates the load profile of the two categories. The heat load profile that will be considered in the analysis while considering the cogeneration operation of the microturbine is shown in Fig. 3. The electrical load profile is the difference between these two load profiles.

Figure 2. Hourly typical load profile for both summer and winter days.

Figure 3. Hourly typical heat load profiles for both summer and winter days.

C. Components Modelling 1) The PV system

The energy generated by the PV system depends on the values of the ambient temperature in addition to its dependency on the solar radiation levels. For simple and rough calculations, Eq. (1) can be used to calculate the PV system size required to a supply an average daily load EDL [10]. Using this equation does not take into account the temperature effect and may oversize or undersize the PV system. The PSH appears in the equation is the peak sun hours. It numerically equals the yearly average of the daily solar radiation for the considered location, whereas ηBDIN, ηPC are the efficiencies of both the bidirectional inverter and the solar power converter respectively. The SF is the stacking factor and it is used to compensate the effect of the temperature and the resistive losses. A typical value of 1.15 is considered for the household applications [10]. To optimize the PV system and to take into account the temperature effect, (2)-(4) in addition to (1) have to be used. Tc, Ta, G are cell temperature (⁰C), ambient temperature (⁰C) and solar radiation (W/m2) respectively.

PRE-PV = (EDL×SF) / (ηPC×ηBDIN×PSH) (1) Ppv system= PVcont * PRE-PV (2) PPV-gen = Ppv system × (G/1000)×[1+ 0.004 (Tc - 25)] (3) Tc = Ta + (((NOCT-20)/800) ×G) (4)

2) The wind turbine

The power generated by the wind turbine depends on the wind speed itself and manufacturer power curve. It also depends on the hub height. The hourly wind speed (v) at the

0

50

1 3 5 7 9 11 13 15 17 19 21 23

Load

(kW

)

Hour

Summer Winter

0

20

1 3 5 7 9 11 13 15 17 19 21 23Lo

ad (k

W)

Hour

Summer Winter

Page 21: The Fifth International Energy Conference - Palestine -

18

utilized heat while they are running to generate electricity. A heat exchanger (regenerator) is used for this purpose. Microturbine-generation is currently considered a viable source, and expected to take a significant role in the field of distributed generation technology, due to their relatively low capital costs, small size, and anticipated low operation and maintenance costs [6].

As previously mentioned, the feasibility of using microturbines as backup sources in the hybrid systems will be verified. Furthermore, in this study a detailed techno economic analysis of the suggested hybrid system will be conducted. The sizes of the components making up the hybrid system will be optimized in order to minimize the COE. This includes the size of the PV system (in terms of PV contribution(PVcont)) and the size of the battery bank (in terms of battery autonomy days (AD)). The microturbine power rating will be selected according to the load profile while the sizes of both the bidirectional inverter and the solar charger converter will be selected according to the sizes of the optimized parameters.

In a study involving the Palestinian territories, Daud and Ismail [8] analyzed and designed a hybrid system consisting of a PV, wind turbine, battery bank and diesel generator in order to supply power to a house. The results indicated the superiority of using such hybrid systems, especially in the context of remote areas, compared to conventional sources.

Caisheng et al. [9] studied a hybrid system that consist of a microturbine and wind turbine for standalone applications. An actual residential load profile and real wind data were also taken into account. The simulation results indicated the suitability of adopting this type of hybrid system to supply the residential loads.

In this study, a simulation program was developed in order to accomplish an energy balance for each hour in the year. The purpose of this is to optimize the sizes of the hybrid system components achieving minimum COE, while simultaneously covering the load demand.

II. HYBRID SYSTEM MODELLING

A. Block Diagram The block diagram of the suggested hybrid system in this

paper is shown in Fig. 1. The bidirectional inverter links both the DC and the AC buses. The PV panels’ output, the wind turbine output and the battery units output are linked to the DC bus, whereas the load and the backup source output are linked to the AC bus.

Figure 1. The block diagram of proposed hybrid energy system

B. Load Profile The load profile taken into account in this study is common

for a small community of Palestinians. For the purpose of this paper, two load categories are considered: one for summer period (May to October) and the second for the winter period (November to April). Fig. 2 illustrates the load profile of the two categories. The heat load profile that will be considered in the analysis while considering the cogeneration operation of the microturbine is shown in Fig. 3. The electrical load profile is the difference between these two load profiles.

Figure 2. Hourly typical load profile for both summer and winter days.

Figure 3. Hourly typical heat load profiles for both summer and winter days.

C. Components Modelling 1) The PV system

The energy generated by the PV system depends on the values of the ambient temperature in addition to its dependency on the solar radiation levels. For simple and rough calculations, Eq. (1) can be used to calculate the PV system size required to a supply an average daily load EDL [10]. Using this equation does not take into account the temperature effect and may oversize or undersize the PV system. The PSH appears in the equation is the peak sun hours. It numerically equals the yearly average of the daily solar radiation for the considered location, whereas ηBDIN, ηPC are the efficiencies of both the bidirectional inverter and the solar power converter respectively. The SF is the stacking factor and it is used to compensate the effect of the temperature and the resistive losses. A typical value of 1.15 is considered for the household applications [10]. To optimize the PV system and to take into account the temperature effect, (2)-(4) in addition to (1) have to be used. Tc, Ta, G are cell temperature (⁰C), ambient temperature (⁰C) and solar radiation (W/m2) respectively.

PRE-PV = (EDL×SF) / (ηPC×ηBDIN×PSH) (1) Ppv system= PVcont * PRE-PV (2) PPV-gen = Ppv system × (G/1000)×[1+ 0.004 (Tc - 25)] (3) Tc = Ta + (((NOCT-20)/800) ×G) (4)

2) The wind turbine

The power generated by the wind turbine depends on the wind speed itself and manufacturer power curve. It also depends on the hub height. The hourly wind speed (v) at the

0

50

1 3 5 7 9 11 13 15 17 19 21 23

Load

(kW

)

Hour

Summer Winter

0

20

1 3 5 7 9 11 13 15 17 19 21 23

Load

(kW

)

Hour

Summer Winter

19

hub height (Z) can be calculated utilizing the measurements (vR) at a certain reference height (ZR) using (5) where (α) is the ground surface friction coefficient [8].

(v/vR) = (z/zR)α (5)

The correlated wind speed at the hub height is used to obtain the corresponding wind turbine power using the power curve of the wind turbine. The efficiency of the wind turbine should be considered to calculate the turbine output power.

3) The battery system The battery system is used in the hybrid system to ensure

the continuity in supplying the loads in the case where the solar source is not supplying the sufficient power needed by the load. The daily load energy and the time specified to the battery system to supply the load in the case of insufficiency of the solar energy (called the autonomy days (AD)) are the main factors that affect the battery bank capacity. The size of the battery bank actually depends on the specified value of the AD. So, this value should be optimized alongside the PV contribution PVcont in order to obtain the optimized combination of the two. The battery system storage capacity (CWh) can be calculated using (6) [11].

CWh = (EDL ×AD)/ (ηBDIN×ηBT× DOD) (6)

The DOD is the maximum allowable percentage of the battery depth of discharge, and ηBT is the efficiency of the battery bank in the discharging case. Values of both DOD and ηBT are usually given by the manufacturer

4) The power converters and the bidirectional inverter The solar power converter, the wind power converter, and

the bidirectional inverter are essential components in the suggested hybrid system. The efficiency of these components appear in the equations used to calculate the PV system size (Eq. 1) or the battery size (Eq. 6).

5) The diesel generator The role of diesel generators in the hybrid renewable

systems is to run as backup sources when the battery bank is discharged to the assigned value for the DOD. The fuel consumption of the diesel generator depends on the rated power of the diesel generator as well as on the real generated power from it. The mathematical model that can be used to calculate the diesel generator fuel consumption (FCDiGe) in liters per hour (l/h) can be calculated using (7) [12].

FCDiGe = ADiGe×PDiGe + BDiGe×PR-DiGe (7)

where PR-DiGe and PDiGe are the diesel generator rated power and the diesel generator actual output power in (kW) respectively. Each of the two coefficients ADiGe and BDiGe are associated with the fuel consumption curve in (l/kWh) respectively. Typical values for these two coefficients are ADiGe = 0.2460 in l/kWh and BDiGe = 0.081450 in l/kWh.

6) The microturbine In this paper, the microturbine is required for the hybrid

system as a backup source. It begins its operation when the battery bank is discharged to its allowable depth of discharge. To calculate the natural gas fuel flow consumption of the microturbine (FFMT) in (m3/h), Eq. (8) is used [13].

FFMT = 0.0007 (PMT-out )2+ 0.29 (PMT-out ) + 1.684 (8)

where PMT-out in the microturbine output power in (kW).

D. The economic modeling To calculate the COE production, different costs should be

taken into account. These costs include the capital cost of each of the hybrid system components, costs of installation, replacement and maintenance costs, cost of the fuel. The value of money taking into account the discount and the inflation rates should be considered in the analysis.

E. Energy Management Strategy To ensure supplying the load without any interruption, an

energy balance should be conducted. The load demand and the energy generated by each source and the battery state of charge should be known to conduct this energy balance. A simulation program has been developed to conduct this analysis. The operation of the hybrid system should be simulated according to the specified strategy for the energy management. The energy flow between the various energy sources in the hybrid renewable system has been determined according to this strategy. This strategy is based on maximizing the PV system usage, so the priority is to use the PV panels’ generated energy or the energy stored in the battery units. In the case of unavailability of the energy generated by the solar system and the battery is discharged to the allowable percentage of the DOD, a decision to run the diesel generator takes place.

F. Tilt Angle Optimization As previously mentioned, the energy generated by the PV

panels depends on the value of the solar radiation striking the PV panels’ surface. The amount of the collected solar radiation depends on the fixing angle of the PV panels. So, in this study, the optimization of the tilt angle of the PV panels should be performed before carrying out the energy balance through executing the developed program.

III. RESULTS AND ANALYSIS Table I displays the various costs of the components

making up the hybrid system and their respective efficiencies. The prices of the PV panels, the battery units and bidirectional inverter are retail prices provided by Solarbuzz (www.solarbuzz.com).

TABLE I. DIFFERENT INPUTS REQUIRED BY THE SIMULATION PROGRAM

Item Value Cost of the PV panels.($/kW) 2290 Cost of the PV installation.($/kW) 300 Cost of the bidirectional inverter($/kW) 711 Cost of the solar power converter ($/A) 5.92 Cost of the battery.($/kWh) 213 Efficiency of solar power converter (%) 95 Efficiency of bidirectional inverter (%) 92 Efficiency of battery (%) 85 PV life-time.(year) 25 Battery life-time.(year) 6 Rated power of diesel generator.(kW) 30 Cost of diesel generator.($/kW) 500 Diesel engine life-time (hours) 24000 Wind turbine rated power (kW) 30 Wind turbine cut-in speed (m/s) 2.5

Page 22: The Fifth International Energy Conference - Palestine -

20

Wind turbine rated speed (m/s) 9.5 Wind turbine cut-off speed m/s) 40 Wind turbine tower height (m) 30 Wind turbine cost ($/kW), include installation cost 3000 Microturbine rated power (kW) 30 Microturbine cost ($/kW) 2970 Natural gas fuel price ($/m3) 0.5 Major overhaul, core turbine replacement (h) 40000 Microturbine replacement (h) 80000 Microturbine annual maintenance cost($/kWh generated) 0.02 Project life-time.(year) 25.0

As previously mentioned, an iterative approach has been used to calculate the value of the optimized tilt angle for the considered location. It has been found that the optimized tilt angle equals to 31⁰.

A. Main senario results-the optimal scenario Simulation results indicate that the lowest COE is 0.286

$/kWh that occurs at 30% PV contribution and 0.3 AD. This result and others are included in Table II where the hybrid system considered here is consisted of combination of various components and the microturbine is assumed to be operated without taking into account the cogeneration feature. Taking into account the cogeneration feature of the microturbine decreases the optimized COE to 0.277 $/kWh that occurs at 20% PV contribution and 0.3 AD. It is obvious that the PV contribution for the case where the cogeneration feature is considered is lower in comparison with case where the output of the microturbine supplies both the electrical and heat loads. This is true as the running hours of the microturbine (for the optimized case) when the cogeneration is considered increases. It is 1526 h, whereas the running hours for the optimized case presented in Table II are 1394 h.

For the optimized scenario, the results indicated that the annual energy generated by the wind turbine forms the majority of the generated energy. It forms about 48% of the total generated energy, whereas the percentage of the energy generated by the PV panels forms about 29%. The rest is from the microturbine.

TABLE II. COE ($/KWH) FOR THE PV, WIND, BATTERY, AND MICROTURBINE HYBRID SYSTEM FOR DIFFERENT VALUES OF AD AND PV

CONTRIBUTION (WITHOUT COGENERATION CONSIDERATION).

AD (day)

PV Contribution (%) 10 20 30 40 50 60 70 80 90 100

0.3 0.292 0.287 0.286 0.291 0.299 0.308 0.321 0.335 0.349 0.363 0.4 0.309 0.300 0.297 0.298 0.301 0.306 0.314 0.327 0.340 0.355 05 0.321 0.314 0.312 0.311 0.313 0.317 0.326 0.337 0.352 0.367 0.6 0.337 0.328 0.326 0.324 0.325 0.330 0.340 0.354 0.369 0.383 0.7 0.352 0.346 0.340 0.339 0.339 0.345 0.355 0.370 0.385 0.399 0.8 0.370 0.362 0.354 0.353 0.355 0.362 0.371 0.386 0.401 0.416 0.9 0.387 0.376 0.371 0.369 0.372 0.378 0.389 0.403 0.418 0.433 1.0 0.401 0.394 0.388 0.387 0.388 0.393 0.406 0.420 0.435 0.451

Figure 4. Energy generated from various sources for each month in the year

Figure 5. Percentages of initial costs of different componenets

TABLE III. HYBRID SYSTEM MAIN SCENARIO DESIGN DATA RESULTS FOR 30% PV CONTRIBUTION AND 0.3 AD.

Quantity Value PV panel size 26 Battery capacity (kWh) 177 Microturbine capacity (kW) 30 Yearly load demand (kWh) 127823 Yearly energy generated by PV panel (kWh) 51177 Yearly energy generated by wind turbine (kWh) 86337 Yearly energy generated by microturbine (kWh) 41817 Yearly dump energy (kWh) 33355 Microturbine operating hours (hour) 1394 Yearly fuel consumption (m3) 15353 COE ($/kWh) 0.286

B. Results of other scenarios In addition to the main scenario where all of the

components are constructing the hybrid system and microturbine acts as backup source, other scenarios have been also analyzed.

1) PV/battery/microturbine hybrid system In this case, the only renewable source is the solar system.

The COE here is 0.313 $/kWh where the cogeneration feature is assumed to be utilized. This occurs at 30% PV contribution and 0.5 AD. The running hours of the microturbine in this case are 3045 h. The COE for the case where the cogeneration feature of the microturbine is not considered is 0.318 $/kWh and this occurs at 80% PV contribution and 0.5 AD.

2) PV/wind/battery/diesel generator hybrid system In this case the diesel generator is used as backup source

instead of microturbine. The optimized COE for this case is 0.315 $/kWh and occurs at 70% PV contribution and 0.4 AD. For this case the running hours of the diesel generator are 357 h. Although the running hours of the microturbine for the optimized case are higher when compared with the running hours of the diesel generator in the case where the diesel generator is used as a backup source, the emissions cost are less. It is 504$/year, whereas it is 544$/year for the diesel case.

3) PV/battery/diesel generator hybrid system In this case the optimized COE is 0.367 $/kWh and it

occurs at 90% PV contribution and 0.5 AD. The running hours of the diesel generator are 759 h.

4) PV/wind/battery standalone hybrid system In this case, the renewable sources work alone to supply the

load. The optimized COE in this case is 0.395 $/kWh and occurs at 110% PV contribution and 0.9 AD.

0

5000

10000

1 2 3 4 5 6 7 8 9 10 11 12

Ener

gy (k

Wh)

Month

Load PV Wind MT

Microturbine

26%

PV panels 21%

Wind turbine

27%

Power electronic

s 15%

Battery bank 11%

Page 23: The Fifth International Energy Conference - Palestine -

20

Wind turbine rated speed (m/s) 9.5 Wind turbine cut-off speed m/s) 40 Wind turbine tower height (m) 30 Wind turbine cost ($/kW), include installation cost 3000 Microturbine rated power (kW) 30 Microturbine cost ($/kW) 2970 Natural gas fuel price ($/m3) 0.5 Major overhaul, core turbine replacement (h) 40000 Microturbine replacement (h) 80000 Microturbine annual maintenance cost($/kWh generated) 0.02 Project life-time.(year) 25.0

As previously mentioned, an iterative approach has been used to calculate the value of the optimized tilt angle for the considered location. It has been found that the optimized tilt angle equals to 31⁰.

A. Main senario results-the optimal scenario Simulation results indicate that the lowest COE is 0.286

$/kWh that occurs at 30% PV contribution and 0.3 AD. This result and others are included in Table II where the hybrid system considered here is consisted of combination of various components and the microturbine is assumed to be operated without taking into account the cogeneration feature. Taking into account the cogeneration feature of the microturbine decreases the optimized COE to 0.277 $/kWh that occurs at 20% PV contribution and 0.3 AD. It is obvious that the PV contribution for the case where the cogeneration feature is considered is lower in comparison with case where the output of the microturbine supplies both the electrical and heat loads. This is true as the running hours of the microturbine (for the optimized case) when the cogeneration is considered increases. It is 1526 h, whereas the running hours for the optimized case presented in Table II are 1394 h.

For the optimized scenario, the results indicated that the annual energy generated by the wind turbine forms the majority of the generated energy. It forms about 48% of the total generated energy, whereas the percentage of the energy generated by the PV panels forms about 29%. The rest is from the microturbine.

TABLE II. COE ($/KWH) FOR THE PV, WIND, BATTERY, AND MICROTURBINE HYBRID SYSTEM FOR DIFFERENT VALUES OF AD AND PV

CONTRIBUTION (WITHOUT COGENERATION CONSIDERATION).

AD (day)

PV Contribution (%) 10 20 30 40 50 60 70 80 90 100

0.3 0.292 0.287 0.286 0.291 0.299 0.308 0.321 0.335 0.349 0.363 0.4 0.309 0.300 0.297 0.298 0.301 0.306 0.314 0.327 0.340 0.355 05 0.321 0.314 0.312 0.311 0.313 0.317 0.326 0.337 0.352 0.367 0.6 0.337 0.328 0.326 0.324 0.325 0.330 0.340 0.354 0.369 0.383 0.7 0.352 0.346 0.340 0.339 0.339 0.345 0.355 0.370 0.385 0.399 0.8 0.370 0.362 0.354 0.353 0.355 0.362 0.371 0.386 0.401 0.416 0.9 0.387 0.376 0.371 0.369 0.372 0.378 0.389 0.403 0.418 0.433 1.0 0.401 0.394 0.388 0.387 0.388 0.393 0.406 0.420 0.435 0.451

Figure 4. Energy generated from various sources for each month in the year

Figure 5. Percentages of initial costs of different componenets

TABLE III. HYBRID SYSTEM MAIN SCENARIO DESIGN DATA RESULTS FOR 30% PV CONTRIBUTION AND 0.3 AD.

Quantity Value PV panel size 26 Battery capacity (kWh) 177 Microturbine capacity (kW) 30 Yearly load demand (kWh) 127823 Yearly energy generated by PV panel (kWh) 51177 Yearly energy generated by wind turbine (kWh) 86337 Yearly energy generated by microturbine (kWh) 41817 Yearly dump energy (kWh) 33355 Microturbine operating hours (hour) 1394 Yearly fuel consumption (m3) 15353 COE ($/kWh) 0.286

B. Results of other scenarios In addition to the main scenario where all of the

components are constructing the hybrid system and microturbine acts as backup source, other scenarios have been also analyzed.

1) PV/battery/microturbine hybrid system In this case, the only renewable source is the solar system.

The COE here is 0.313 $/kWh where the cogeneration feature is assumed to be utilized. This occurs at 30% PV contribution and 0.5 AD. The running hours of the microturbine in this case are 3045 h. The COE for the case where the cogeneration feature of the microturbine is not considered is 0.318 $/kWh and this occurs at 80% PV contribution and 0.5 AD.

2) PV/wind/battery/diesel generator hybrid system In this case the diesel generator is used as backup source

instead of microturbine. The optimized COE for this case is 0.315 $/kWh and occurs at 70% PV contribution and 0.4 AD. For this case the running hours of the diesel generator are 357 h. Although the running hours of the microturbine for the optimized case are higher when compared with the running hours of the diesel generator in the case where the diesel generator is used as a backup source, the emissions cost are less. It is 504$/year, whereas it is 544$/year for the diesel case.

3) PV/battery/diesel generator hybrid system In this case the optimized COE is 0.367 $/kWh and it

occurs at 90% PV contribution and 0.5 AD. The running hours of the diesel generator are 759 h.

4) PV/wind/battery standalone hybrid system In this case, the renewable sources work alone to supply the

load. The optimized COE in this case is 0.395 $/kWh and occurs at 110% PV contribution and 0.9 AD.

0

5000

10000

1 2 3 4 5 6 7 8 9 10 11 12

Ener

gy (k

Wh)

Month

Load PV Wind MT

Microturbine

26%

PV panels 21%

Wind turbine

27%

Power electronic

s 15%

Battery bank 11%

21

5) PV/battery standalone system In this case, the PV system works alone to supply the load.

The optimized COE in this case is 0.568 $/kWh and occurs at 200% PV contribution and 1.4 AD.

6) Microturbine alone system In this case, the microturbine alone is assumed to supply the

load. The COE is 0.296 $/kWh and this is when the cogeneration feature of the microturbine is utilized. For the case where the cogeneration feature is not utilized, the COE increases to 0.354 $/kWh.

7) Diesel generator alone system In this case, the diesel generator is assumed to supply the

load. The COE is 0.699 $/kWh.

IV. CONCLUSIONS The COE for the main scenario where the hybrid system is

made up of PV panels, wind turbine, a battery bank, and a microturbine is found to be 0.286 $/kWh and this occurs at

30% PV contribution, and 0.3 AD battery bank, while the total number of operating hours of the microturbine was 1394 h. Other scenarios and derived cases were also analyzed. For the hybrid system in which the microturbine runs in its cogeneration mode, the COE is 0.277 $/kWh. Considering this feature, this scenario becomes the most optimal one. Comparison between using microturbine as a backup source, and using diesel generator for this purpose, showed that including microturbine is more attractive considering the COE. The COE of each of the analyzed scenarios is greater than the purchasing energy from the grid, and for Palestine, the COE from a grid of residential application is about 0.17 $/kWh. When considering locations that are far from the grid, and/or environmental consideration, the implementation of the hybrid system seems more acceptable. Also, as the prices of a PV system components and microturbines decreases, this will encourage more acceptances of these systems in near future.

REFERENCES [1] A. T. D. Perera, et al., "Designing standalone

hybrid energy systems minimizing initial investment, life cycle cost and pollutant emission," Energy, vol. 54, pp. 220-230, 2013.

[2] M. S. Ismail, M. Moghavvemi, and T. M. I. Mahlia, "Analysis and evaluation of various aspects of solar radiation in the Palestinian Territories," Energy Conversion and Management, vol. 73, pp. 57-68, 2013.

[3] M. S. Ismail, M. Moghavvemi, and T. M. I. Mahlia, "Techno-economic analysis of an optimized photovoltaic and diesel generator hybrid power system for remote houses in a tropical climate," Energy Conversion & Management, vol. 69, pp. 163-173, 2013.

[4] M. S. Ismail, M. Moghavvemi, and T. M. I. Mahlia, "Design of an optimized photovoltaic and microturbine hybrid power system for a remote small community: Case study of Palestine," Energy Conversion and Management vol. 75, pp. 271–281, 2013.

[5] M. S. Ismail, M. Moghavvemi, and T. M. I. Mahlia, "Energy trends in Palestinian territories of West Bank and Gaza Strip: Possibilities for reducing the reliance on external energy sources," Renewable and Sustainable Energy Reviews, vol. 28, pp. 117-129, 2013.

[6] M. S. Ismail, M. Moghavvemi, and T. M. I. Mahlia, "Current utilization of microturbines as a part of a hybrid system in distributed generation technology," Renewable and Sustainable Energy Reviews vol. 21, pp. 142-152, 2013.

[7] S. Ahmad and R. M. Tahar, "Selection of renewable energy sources for sustainable

development of electricity generation system using analytic hierarchy process: A case of Malaysia," Renewable Energy, vol. 63, pp. 458-466, 2014.

[8] A. Daud and M. S. Ismail, "Design of isolated hybrid systems minimizing costs and pollutant emissions," Renewable Energy, vol. 44, pp. 215-24, 2012.

[9] W. Caisheng, et al., "Power management of a stand-alone hybrid wind-microturbine distributed generation system," in Power Electronics and Machines in Wind Applications, 2009. PEMWA 2009. IEEE, 2009, pp. 1-7.

[10] M. M. Mahmoud and I. H. Ibrik, "Techno-economic feasibility of energy supply of remote villages in Palestine by PV- systems, diesel generators and electric grid," Renewable & Sustainable Energy Reviews vol. 10, pp. 128-138, 2006.

[11] T. Khatib, et al., "Optimal sizing of building integrated hybrid PV/diesel generator system for zero load rejection for Malaysia," Energy and Buildings, vol. 43, pp. 3430–3435, 2011.

[12] M. Moghavvemi, et al., "Development and optimization of a PV/diesel hybrid supply system for remote controlled commercial large scale FM transmitters," Energy Conversion and Management vol. 75, pp. 542–551, 2013.

[13] M. S. Ismail, M. Moghavvemi, and T. M. I. Mahlia, "Genetic algorithm based optimization on modeling and design of hybrid renewable energy systems," Energy Conversion and Management, vol. 85, pp. 120-130, 2014.

Page 24: The Fifth International Energy Conference - Palestine -

22

Impacts of distributed photovoltaic generation on Jenin distribution network: voltage level, power losses, power factor and power quality

Maher Jalal Khammash and Marwan Mahmoud Electrical Engineering Department, An-Najah National

University Nablus, Palestine

[email protected], [email protected]

Ibrahim Anwar Ibrahim and Ihsan Omareyh Electrical Engineering Department, An-Najah National

University Nablus, Palestine

[email protected], [email protected]

Abstract—This Study presents the schematic diagram of a complete PV generator with control system (design with detailed specifications) to be connected safely with the electric network of Jenin. The effects of connecting the PV generator to the grid with respect to voltage level, power losses, power factor, reactive power and harmonics distortion were thoroughly investigated in this paper. The effects of this work were that voltage profile has been increased by around 2.15%, the total losses have been decreased by about 0.87%, and total harmonic distortion has been decreased for voltage and current signals at the medium voltage level side.

Keywords- PV-Power System; DG; PSO Algorithm; THD.

I. INTRODUCTION Due to the global trend toward the clean energy resources, it is very important to make our projects and researches related with it. Moreover, we need to find the best solutions for improving our power networks taking into consideration the best possible price which is represented in the almost free sources such as solar energy, especially that Palestine is under occupation and we don't have control on our networks or the electricity generation. Accordingly, the renewable energy resources can only be tapped into distributed system through integration by means of distribution generation (DG) [1]. Distributed Generation (DG) is defined as electrical power generator that consists of distributed resources that are located on the distributed networks or on the customer side. [2]. Governments all around the world try to support the using of renewable energy sources and combined heat and power (CHP) to enhance fuel diversity and to limit the climate-change challenge. Fig.1 shows the annual renewable sources capacity around the word from year 2009 up to 2015 [1].

Fig. 1 Annual renewable distributed generation capacity, 2009 to 2015 [1].

Many studies were done to minimize the power losses and increase the voltage level in the system. These studies used the mathematical models like; optimum load flow with second order algorithm method, Hereford Ranch algorithm and genetic algorithm to find the optimal location and sizing as: Fuzzy-GA method, 2/3 rule, which is often used to study the capacitor placement algorithm to determine the near optimum location. Each methodology has its features and potential for applicability of adding PV DG in the power system [2].

II. METHODOLOGY

The methodology used in this study contains two parts, the first part is finding the optimum placement and sizing of DG that can be added to the network in order to reduce the total power losses and maintain the bus voltages in an acceptable range, the second part is studying the effects on the power quality and harmonics in the system after adding DG, then comparing the results with the previous studies to give recommendations about the best locations and sizes of PV DG that can be added to the system.

A. Artificial intelligent optimization technique for distributed renewable generation placement-PSO Techniqe.

From the previous studies it is found that the most suitable methodology to find the optimal location and sizing of the photovoltaic distributed generators to be added to the system is one of Artificial Intelligent techniques called “Particle Swarm Optimization (PSO)” because it is fast and accurate .The selected system was one part of Jenin’s distribution network that contains 25 buses of the same voltage level which was used to study the effects of DG PV on the power quality and harmonics in the system [3] ,[4]. The methodology used in this study consists of the following steps: Step 1: Input the system parameters (line parameters, transformers parameters, and bus voltage limits). Step 2: Use MATLAB program to run the load flow calculations to find the results in maximum and minimum load conditions. (Bus voltages, voltage drops, power losses, and P.Fs). Step 3: Add DG from 0% to 15% of total power load in steps of 0.5% to each bus separately at each iteration. Step 4: Use MATLAB program to calculate the total power losses and check if the bus voltages become within the acceptable range.

Page 25: The Fifth International Energy Conference - Palestine -

22

Impacts of distributed photovoltaic generation on Jenin distribution network: voltage level, power losses, power factor and power quality

Maher Jalal Khammash and Marwan Mahmoud Electrical Engineering Department, An-Najah National

University Nablus, Palestine

[email protected], [email protected]

Ibrahim Anwar Ibrahim and Ihsan Omareyh Electrical Engineering Department, An-Najah National

University Nablus, Palestine

[email protected], [email protected]

Abstract—This Study presents the schematic diagram of a complete PV generator with control system (design with detailed specifications) to be connected safely with the electric network of Jenin. The effects of connecting the PV generator to the grid with respect to voltage level, power losses, power factor, reactive power and harmonics distortion were thoroughly investigated in this paper. The effects of this work were that voltage profile has been increased by around 2.15%, the total losses have been decreased by about 0.87%, and total harmonic distortion has been decreased for voltage and current signals at the medium voltage level side.

Keywords- PV-Power System; DG; PSO Algorithm; THD.

I. INTRODUCTION Due to the global trend toward the clean energy resources, it is very important to make our projects and researches related with it. Moreover, we need to find the best solutions for improving our power networks taking into consideration the best possible price which is represented in the almost free sources such as solar energy, especially that Palestine is under occupation and we don't have control on our networks or the electricity generation. Accordingly, the renewable energy resources can only be tapped into distributed system through integration by means of distribution generation (DG) [1]. Distributed Generation (DG) is defined as electrical power generator that consists of distributed resources that are located on the distributed networks or on the customer side. [2]. Governments all around the world try to support the using of renewable energy sources and combined heat and power (CHP) to enhance fuel diversity and to limit the climate-change challenge. Fig.1 shows the annual renewable sources capacity around the word from year 2009 up to 2015 [1].

Fig. 1 Annual renewable distributed generation capacity, 2009 to 2015 [1].

Many studies were done to minimize the power losses and increase the voltage level in the system. These studies used the mathematical models like; optimum load flow with second order algorithm method, Hereford Ranch algorithm and genetic algorithm to find the optimal location and sizing as: Fuzzy-GA method, 2/3 rule, which is often used to study the capacitor placement algorithm to determine the near optimum location. Each methodology has its features and potential for applicability of adding PV DG in the power system [2].

II. METHODOLOGY

The methodology used in this study contains two parts, the first part is finding the optimum placement and sizing of DG that can be added to the network in order to reduce the total power losses and maintain the bus voltages in an acceptable range, the second part is studying the effects on the power quality and harmonics in the system after adding DG, then comparing the results with the previous studies to give recommendations about the best locations and sizes of PV DG that can be added to the system.

A. Artificial intelligent optimization technique for distributed renewable generation placement-PSO Techniqe.

From the previous studies it is found that the most suitable methodology to find the optimal location and sizing of the photovoltaic distributed generators to be added to the system is one of Artificial Intelligent techniques called “Particle Swarm Optimization (PSO)” because it is fast and accurate .The selected system was one part of Jenin’s distribution network that contains 25 buses of the same voltage level which was used to study the effects of DG PV on the power quality and harmonics in the system [3] ,[4]. The methodology used in this study consists of the following steps: Step 1: Input the system parameters (line parameters, transformers parameters, and bus voltage limits). Step 2: Use MATLAB program to run the load flow calculations to find the results in maximum and minimum load conditions. (Bus voltages, voltage drops, power losses, and P.Fs). Step 3: Add DG from 0% to 15% of total power load in steps of 0.5% to each bus separately at each iteration. Step 4: Use MATLAB program to calculate the total power losses and check if the bus voltages become within the acceptable range.

23

Step 5: Use PSO method to find the optimum location and sizing of DG according to the minimum total power losses in the network and to maintain the bus voltages within the acceptable range.

B. The effects of adding PV DG to the system After finding the optimal location and sizing of DG to be added to the system, the effects of adding PV DG to the system have been studied. These effects are: related to: the voltage level, total power losses, power losses in the branches, P.F, bus voltages and harmonics. The harmonics distortion in the network shouldn’t exceed 3% for the total voltage and 5% for the total current [3], [5].

III. RESULTS AND ANALYSIS

A. Optimum sizing for PV added: The solar radiation and the temperature change during the year in Jenin City, and the energy generated from the PV array depend on these terms. So in order to have the maximum efficiency of the PV generator we will use tracking solar system algorithm used by Maximum Power Point Tracker (MPPT) device to change the tilt angle 12 times per year [7]. In this system we used PV array that feeds the feeder at 400 V and unity power factor. Due to fluctuation into solar radiation during each day, we used DC/DC booster converter to have a constant 400 V that will be the input to the inverter [5], [11], [12]. The maximum demand for Jenin system in the months (April., May., Jun., Jul., Aug. and Sep.) is 10.076 MW and the maximum demand in the months (Jan., Feb., Mar., Oct., Nov. and Dec.) is 1.878 MW. So if the DG will be 15% of the total load, it will be clear that the PV power needed in (April., May., Jun., Jul., Aug. and Sep.) is 1.5 MW and the PV power needed in (Jan., Feb., Mar., Oct., Nov. and Dec.) is 0.2817 MW.

B. Optimum location for PV added: When the optimum sizing of DG that will be added to Ayash Feeder shown in Fig. 2 has been found, it is required to find the optimum location for this PV DG by using PSO algorithm. Firstly, we implement this size in all buses in the feeder.

Fig. 2 The system that contains 25 bus at the same Voltage levels.

The PSO algorithm uses for each bus the initial values like: voltage profile, power factor, total real power losses and total reactive power losses to find the optimum location. The results of using PSO algorithm indicate that bus #12 is the optimum location for DG PV in the minimum and maximum load states.

Fig. 3 An-Najah Solar Field

Fig. 3 shows the one line diagram of the solar field that will be used to generate the electrical power needed to feed bus #12 in the minimum and maximum load states in the grid during the year as mentioned above. This field contains PV modules so that each module generates 300 W DC in STC (1000 W/m², 25ºC, 1.5 m/sec) . Since the monthly average solar radiation in Palestine was 400 W/m² the number of modules required to cover the needed power in the maximum load state was calculated to be 10013 modules and in the minimum load sate it was 2667 modules. In addition fig.3 shows the power electronics devices used to convert the power from DC to AC to feed the AC loads in the grid. Nevertheless the field will contain some devices for protection as C.Bs. To increase the reliability of the system rotary UPS was used, that will feed the load at the maximum load state when the energy generated becomes less than the energy consumed when the solar radiation becomes less than 400 W/m²[8], [11], [12], [13].

C. Imapct of PV DG added to the system:

The total real power fed to the main feeder (Ayash Feeder) after adding DG PV is shown in fig. 4:

Page 26: The Fifth International Energy Conference - Palestine -

24

Fig. 4 The total real power fed after adding DG PV on bus 12

The total real power and reactive power losses in the main feeder (Ayash Feeder) after adding DG PV are shown in fig. 5:

Fig. 5 The total real power and reactive power loss in the main feeder after

adding DG PV on bus 12 We can notice from the previous results that:

The power factor at the main feeder sharply decreases The voltage profile at the main feeder gradually

increases. The reactive power generation remains constant. The real power supplied by the main connection point

steady decreases. The total real and reactive power losses within the

system decrease.

The following figures show the effect of adding DG PV to bus #12 on different parameters of the system at each bus. The affects of adding DG PV to bus #12 on the power factor at each bus is shown in Fig. 6:

Fig. 6 The affects of adding DG PV to bus #12 on the power factor at each bus The effects of adding DG PV to bus #12 on the voltage profile for each bus is shown in Fig. 7.

Fig. 7 The affects for adding DG PV to bus #12 on the voltage profile for each

bus

The Voltage Harmonic emission in the network after adding DG PV to bus #12 and how it affects the total harmonic distortion (THD) is shown in Fig. 8:

Page 27: The Fifth International Energy Conference - Palestine -

24

Fig. 4 The total real power fed after adding DG PV on bus 12

The total real power and reactive power losses in the main feeder (Ayash Feeder) after adding DG PV are shown in fig. 5:

Fig. 5 The total real power and reactive power loss in the main feeder after

adding DG PV on bus 12 We can notice from the previous results that:

The power factor at the main feeder sharply decreases The voltage profile at the main feeder gradually

increases. The reactive power generation remains constant. The real power supplied by the main connection point

steady decreases. The total real and reactive power losses within the

system decrease.

The following figures show the effect of adding DG PV to bus #12 on different parameters of the system at each bus. The affects of adding DG PV to bus #12 on the power factor at each bus is shown in Fig. 6:

Fig. 6 The affects of adding DG PV to bus #12 on the power factor at each bus The effects of adding DG PV to bus #12 on the voltage profile for each bus is shown in Fig. 7.

Fig. 7 The affects for adding DG PV to bus #12 on the voltage profile for each

bus

The Voltage Harmonic emission in the network after adding DG PV to bus #12 and how it affects the total harmonic distortion (THD) is shown in Fig. 8:

25

Fig. 8 The Voltage Harmonic emission in the network after adding DG PV to

bus #12 The Current Harmonic emission in the network after adding DG PV to bus #12 and how it affects the THD is shown in Fig. 9:

Fig. 9 The Current Harmonic emission in the network after adding DG PV to

bus #12. We can notice from the previous results that:

The power factor at each bus sharply decrease( Fig 6) The Voltage at each bus increases (Fig 7). The total power losses decrease. The THD decreases for voltage and current signals

( Fig8 and Fig 9).

IV. CONCLUSIONS AND RECOMMENDATIONS. In general, we can conclude that this study is a good solution for this problem due to the improvement that was obtained after adding DG PV to bus # 12 of Jenin Distribution Network. The effects of adding DG PV on the system can be summarized as follows:

The voltage profile has been improved so that all the bus voltages become within the range (0.95≤ V ≤ 1.05 p.u). This will increase the efficiency of the supply as the currents in the system will decrease and hence the total power losses will decrease, so the total bill will decrease. On the other hand increasing the voltage profile allows to add new loads to the same feeder with all voltages remaining within the acceptable range.

The total harmonic distortion in the system has been decreased. It was found that only the 12th, 15th, 18th, 21st and 24th harmonics exceeded the threshold limits. However, the total voltage harmonics distortion for all of the studied cases was within the Australian regulatory standard limit as stated in AS 4777 [10].

The total real and reactive power losses decrease sharply. This is due to the increase of the voltage profile and decrease of the currents in the system.

The total saving in the total bill will be about 24 Million $ for the next 16.5 years, while the life cycle is 20 years for the PVs. [6], [8], [13].

The only bad effect of this solution was the decrease in the power factor in the system which will cause huge penalties [9], [10],so it is recommended to use capacitor banks to increase the power factor to be equal or more than 92%.

REFERENCES

[1] Wen-Shan Tan, Mohammad Yusri Hassan, Md Shan Majid, Hasimah Abdul Rahman, Optimal distributed renewable generation planning: A review of different approaches. ELSEVIER 2013; 626-645.

[2] Tuba GÖZEL, M.Hakan HOCAOGLU, Ulas EMINOGLU, Abdulkadir BALICKCI, Optimal Placement and Sizing of Distributed Generation on Radial Feeder with Different Static Load Models. In International Conference on Future Power System 2005.

[3] Krischonme Bhumkittipich, Weerachai Phuangpornpitak, Optimal Placement and Sizing of Distributed Generation for Power Loss Reduction using Particle swarm Optimization. ELSEVIER 2013; 307-317.

[4] William Rosehart, Ed Nowicki, Optimal Placement of Distributed Generation. In: 14th PSCC, Sevilla 2002; 11(2):1-5.

[5] Gilbert M .Masters, RENEWABLE AND EFFICIENT ELECTRIC POWER SYSTEMS. WILY INTERSCIENCE 2004; 445-592.

[6] North Electricity Distribution Company, Nablus-Palestine 2013. [7] Energy Research Center, An-Najah National University-Nablus-

Palestine 2013.

Page 28: The Fifth International Energy Conference - Palestine -

26

[8] SUNTECH Solar Technology AG, 2013, [Online Available]: http://www.suntech-power.com

[9] Standards Australia, AS 4777 Grid connection of energy systems via inverters, Sydney, 2005, [Online Available]: http://www.saiglobal.com

[10] Standards Australia, AS/NZS 61000.3.2: Electromagnetic compatibility (EMC) - Part 3-2: Limits - Limits for harmonic current emissions (equipment input current ≤ 16 A per phase), Sydney, 2007, [Online Available]: http://www.saiglobal.com

[11] SMA Solar Technology AG, 2014, [Online Available]: http://www.smaaustralia.com.au/en_AU/products/solarinverters/ sunny-boy/sunny-boy-1200-1700-2500-3000.html

[12] ABB Automation and Power Technologies, 2014, [Online Available]: http://www.abb.com

[13] Schneider-Electric Com., 2014, [Online Available]: http://www.schneider-electric.com

Page 29: The Fifth International Energy Conference - Palestine -

26

[8] SUNTECH Solar Technology AG, 2013, [Online Available]: http://www.suntech-power.com

[9] Standards Australia, AS 4777 Grid connection of energy systems via inverters, Sydney, 2005, [Online Available]: http://www.saiglobal.com

[10] Standards Australia, AS/NZS 61000.3.2: Electromagnetic compatibility (EMC) - Part 3-2: Limits - Limits for harmonic current emissions (equipment input current ≤ 16 A per phase), Sydney, 2007, [Online Available]: http://www.saiglobal.com

[11] SMA Solar Technology AG, 2014, [Online Available]: http://www.smaaustralia.com.au/en_AU/products/solarinverters/ sunny-boy/sunny-boy-1200-1700-2500-3000.html

[12] ABB Automation and Power Technologies, 2014, [Online Available]: http://www.abb.com

[13] Schneider-Electric Com., 2014, [Online Available]: http://www.schneider-electric.com

27

Integrating Mobile Cloud Computing into Smart Grids

Salaheddin Odeh, Daniel Voskergian

Department of Computer Engineering, Faculty of Engineering, Al-Quds University, Abu Dies, Jerusalem, Palestine. Emails: sodeh @eng.alquds.edu, [email protected]

Abstract—Smart Grid is a two-way flow of electricity and information between the end-points and the utility, which transforms the way the power is distributed and used in such a way that it adds intelligence throughout the grid to dramatically reduce outages and faults, handles current and future demand, and increases efficiency and manage costs. In addition, Smart Grids are able to incorporate new sustainable energies such as wind and solar generation, and interacts locally with distributed power sources, or plug-in electrical vehicles. To support this new paradigm, Smart Grids will require substantial computing power for controlling and managing. This research is aimed at studying the possibility of integrating mobile cloud computing in a SCADA-based smart grid environment. In this scenario, mobile cloud computing enabled smart grid is proposed. An interesting goal to be achieved in our approach is mobility, which represents an important factor that affects both control room operators, and utility customers.

Keywords-Smart Grid; Mobile Computing, Cloud Computing, SCADA, Smart Meters;Marketplaces.

I. INTRODUCTION Historically, electricity grids has been a broadcast grids,

where we have a few centralized, huge, environmentally unfriendly power generators such as nuclear plants, coal and oil plants that provide all the electricity production in a country or a region. Supply usually follows demand, which is based on load forecasting models developed over time. Furthermore, the utility providers generally over-provision for the demand. If demands exceed average, utility turns on peaker plants to cope with increased demand. The provisioning for peak load approach is wasteful when the average demand is much lower than peak (low utilization), because electricity, once produced has to be consumed as grid storage is very expensive. Moreover, setting up and maintaining peaker plants is not only environmentally unfriendly but also very expensive leading to high cost to electricity companies [1].

In the near future, it will be difficult for conventional electricity grids to respond to the ever-changing and rising consumer demands, leading to a poor power quality including blackouts, power cuts, and brownouts. Furthermore, in longer run, it would be impossible to match the supply to this peak demand. In 2006, ABB company released a report [2], claiming that a total of 1,638 billion kWh of energy was lost on the US power grid, with 655 billion kWh lost in the distribution system alone. If we consider a 10 percent improvement in grid efficiency at the

distribution level alone, this would have produced $5.7 billion in savings based on the 2006 national average price of electricity. It would also have saved over 42 million tons of CO2 emissions. One way to overcome these problems is to use smart grids, which will also address and solve several power supply necessities such as aging infrastructure, environmental and social challenges, direction towards environmentally generating sources, need for reliable, efficient, transparent, greener power grid has led for a call to smarter power grid deployment [3].

II. SMART GRIDS According to the US Department Of Energy [5]: A smart

electronic is a power grid that uses two-way flows of electricity and information, advanced communications, to create a widely distributed automated energy delivery network. Main goal of SG is to make use of advanced information, control, automation and communications technology along distribution, delivery and consumption, working together, to make the grid more efficient, more reliable, more secure, greener and reduce costs. Table 1 shows a brief comparison between existing power grid and the smart one [3].

TABLE I. A BRIEF COMPARISON BETWEEN THE EXISTING GRID AND THE SG.

Existing Grids Smart Grids Electromechanical Digital

One-way communication Two-way communication Centralized generation Distributed generation

Few sensors Sensors throughout Manual monitoring Self-monitoring

Failures and blackouts Adaptive and islanding Limited control Pervasive control

Few customer choices Many customer choices

Introducing smart grids means that intelligence is added throughout the electricity grids leading to several benefits according NIST [5], for example, improving power reliability and quality, optimizing facility utilization and averting construction of back-up (peak load) power plants, improving resilience to disruption, enabling predictive maintenance and self-healing responses to system disturbances, facilitating expanded deployment of renewable energy sources and accommodating distributed power sources, reducing greenhouse gas emissions by enabling electric vehicles and new power sources, reducing oil consumption by reducing the need for inefficient generation

Page 30: The Fifth International Energy Conference - Palestine -

28

Figure 1: Distributed smart grid architecture [5]

during peak usage periods, increasing consumer choice, and enabling new products, services, and markets.

III. TECHNICAL ARCHITECTURE OF SG A core element of smart grids will be an electricity

network, which has the capacity to transfer significantly more energy between a diverse range of dynamically changing generators and consumers, whilst maintaining the balance between supply and demand at multiple levels within the network. In order to achieve this, significant developments are required in integrated and intelligent monitoring and network control, resulting in a dramatic increase in the distributed nature and in the complexity of network monitoring and control systems. Figure 1 presents the Smart Grid infrastructure composed and operating in three main layers. Bottom layer (right on the figure) consist of hardware and devices that measure and monitor the grid behavior through sensors on the grid or meters installed at homes. Middle layer is composed of information technology systems that gather all the information captured and deliver them where they are needed. Top layer is responsible for analyzing all the data, translating and presenting them to the stakeholders [6].

A. Smart Meter A smart meter or an automatic metering infrastructure

(AMI) differs from traditional AMR in that it enables two-way communications with the meter. Therefore, nearly all of this information is available in real time and on demand, allowing for improved system operations and customer power demand management. It allows a detailed characterization of consumptions, which is accessible both locally for the consumer and remotely for the market; the Smart Meter sets the connection between the various low-voltage grid customers and the Switching Station. It enables remote connect/disconnect, real-time pricing for energy management and consumption reduction, power-quality measurement, load management, and outage notification. Figure 1 shows main functionalities implemented for this equipment by EDP.

B. Concentrator: The role of the concentrator is mainly related with the

capacity of gathering information from the Smart Meters, installed at the client’s home, and transferring them to the central systems. It is located usually at switch stations, has a command and control role, and is often called Distribution Transformer Controller.

C. Central Systems Large volume of information that is made available by

the structure of smart grids is managed by the architecture of a Central Information System. The Information System is able to support the information management of a commercial / rate-related nature, intended for billing the use of the grids for each consumer or independent producer, as well as fraud control. The latter involves the monitors of consumption, energy production, quality-of-services indexes for the eventual automatic issue of compensations in the event of non-compliance with reference quality levels set in the Quality-of-Service Regulation, etc. It also serves as an

information system to control the quality of data collected, through the implementation of functionalities pertaining to validation, editing and estimating data, taking into account the infrastructure’s technical management needs and the rules set forth for the electricity market.

Finally, the Information System should ensure automatic implementation of operations associated with the contractual life cycle of the consumption/production facilities, such as: rate changes; changes in contracted power, cut-off and restoring service due to contractual non-compliance, contract terminations/activations, or others. It also guarantees the management of technical information intended for monitoring, controlling and operating the distribution grid, via interaction with SCADA or other types of systems (powers produced and consumed, voltage levels, monitoring quality of service, etc.) as well as updating systems responsible for managing incidents and characterizing grid topology.

IV. SCADA SYSTEM FOR SMART GRIDS SCADA refers to a Supervisory Control and Data

Acquisition, which is a generic term referring to computer systems that monitor and control industrial, infrastructure, or facility – based processes. It allows operators to directly and remotely control power system equipment. Its uses in the field of electric power infrastructure include generation, transmission, and distribution. Distribution Automation (DA) and Transmission Automation (TA) are two examples of SCADA systems that are specifically designed for electricity utilities. Main goal of SCADA systems is helping the grid to reduce operation and maintenance costs and ensure the reliability of the power supply. Integrating SCADA System with the Smart Grid yields a lot of applications that improve power quality and delivery and grid operations, as shown in Figure 2 [7].

V. COMPUTIONAL NEEDS OF SMART GRIDS A smart grid adds intelligence throughout grid to reduce

outages and faults, improves responsiveness, handles current and future demand, and increases efficiency and management costs [6]. A major requirement on introducing smart grid infrastructure is the necessity of massive amount of data and applications that are constantly increasing. Since this requires massive data centers with substantial computing power and massive storage, a scalable infrastructure is needed to handle this situation (see Figure 1). Adapting this architecture to the growing needs of smart grids points out a model with more distributed computational power where each endpoint such as concentrators and smart meters would assume an even more important role in the overall solution. In order to achieve a scalable, demand-based Smart Grid infrastructure, cloud computing solutions and services must be incorporated. On the one hand, following this client-server architecture in Figure 3 would require network equipment with more resources installed locally and could result in a higher cost of ownership, introducing complexity and security risks. On the other hand, it will pose a risk for organization, either financially or in term of reputation in case of loss of confidentiality.

Page 31: The Fifth International Energy Conference - Palestine -

28

Figure 1: Distributed smart grid architecture [5]

during peak usage periods, increasing consumer choice, and enabling new products, services, and markets.

III. TECHNICAL ARCHITECTURE OF SG A core element of smart grids will be an electricity

network, which has the capacity to transfer significantly more energy between a diverse range of dynamically changing generators and consumers, whilst maintaining the balance between supply and demand at multiple levels within the network. In order to achieve this, significant developments are required in integrated and intelligent monitoring and network control, resulting in a dramatic increase in the distributed nature and in the complexity of network monitoring and control systems. Figure 1 presents the Smart Grid infrastructure composed and operating in three main layers. Bottom layer (right on the figure) consist of hardware and devices that measure and monitor the grid behavior through sensors on the grid or meters installed at homes. Middle layer is composed of information technology systems that gather all the information captured and deliver them where they are needed. Top layer is responsible for analyzing all the data, translating and presenting them to the stakeholders [6].

A. Smart Meter A smart meter or an automatic metering infrastructure

(AMI) differs from traditional AMR in that it enables two-way communications with the meter. Therefore, nearly all of this information is available in real time and on demand, allowing for improved system operations and customer power demand management. It allows a detailed characterization of consumptions, which is accessible both locally for the consumer and remotely for the market; the Smart Meter sets the connection between the various low-voltage grid customers and the Switching Station. It enables remote connect/disconnect, real-time pricing for energy management and consumption reduction, power-quality measurement, load management, and outage notification. Figure 1 shows main functionalities implemented for this equipment by EDP.

B. Concentrator: The role of the concentrator is mainly related with the

capacity of gathering information from the Smart Meters, installed at the client’s home, and transferring them to the central systems. It is located usually at switch stations, has a command and control role, and is often called Distribution Transformer Controller.

C. Central Systems Large volume of information that is made available by

the structure of smart grids is managed by the architecture of a Central Information System. The Information System is able to support the information management of a commercial / rate-related nature, intended for billing the use of the grids for each consumer or independent producer, as well as fraud control. The latter involves the monitors of consumption, energy production, quality-of-services indexes for the eventual automatic issue of compensations in the event of non-compliance with reference quality levels set in the Quality-of-Service Regulation, etc. It also serves as an

information system to control the quality of data collected, through the implementation of functionalities pertaining to validation, editing and estimating data, taking into account the infrastructure’s technical management needs and the rules set forth for the electricity market.

Finally, the Information System should ensure automatic implementation of operations associated with the contractual life cycle of the consumption/production facilities, such as: rate changes; changes in contracted power, cut-off and restoring service due to contractual non-compliance, contract terminations/activations, or others. It also guarantees the management of technical information intended for monitoring, controlling and operating the distribution grid, via interaction with SCADA or other types of systems (powers produced and consumed, voltage levels, monitoring quality of service, etc.) as well as updating systems responsible for managing incidents and characterizing grid topology.

IV. SCADA SYSTEM FOR SMART GRIDS SCADA refers to a Supervisory Control and Data

Acquisition, which is a generic term referring to computer systems that monitor and control industrial, infrastructure, or facility – based processes. It allows operators to directly and remotely control power system equipment. Its uses in the field of electric power infrastructure include generation, transmission, and distribution. Distribution Automation (DA) and Transmission Automation (TA) are two examples of SCADA systems that are specifically designed for electricity utilities. Main goal of SCADA systems is helping the grid to reduce operation and maintenance costs and ensure the reliability of the power supply. Integrating SCADA System with the Smart Grid yields a lot of applications that improve power quality and delivery and grid operations, as shown in Figure 2 [7].

V. COMPUTIONAL NEEDS OF SMART GRIDS A smart grid adds intelligence throughout grid to reduce

outages and faults, improves responsiveness, handles current and future demand, and increases efficiency and management costs [6]. A major requirement on introducing smart grid infrastructure is the necessity of massive amount of data and applications that are constantly increasing. Since this requires massive data centers with substantial computing power and massive storage, a scalable infrastructure is needed to handle this situation (see Figure 1). Adapting this architecture to the growing needs of smart grids points out a model with more distributed computational power where each endpoint such as concentrators and smart meters would assume an even more important role in the overall solution. In order to achieve a scalable, demand-based Smart Grid infrastructure, cloud computing solutions and services must be incorporated. On the one hand, following this client-server architecture in Figure 3 would require network equipment with more resources installed locally and could result in a higher cost of ownership, introducing complexity and security risks. On the other hand, it will pose a risk for organization, either financially or in term of reputation in case of loss of confidentiality.

29

VI. CLOUD COMPUTING FOR SMART GRIDS According to the NIST definition [9], Cloud Computing

is a model for enabling convenient, on-demand network access to a shared pool of configurable computing resources, e.g. networks, servers, storage, applications and services, that can be rapidly provisioned and released with minimal management effort or service provider interaction.

As Figure 4 illustrates, the advantages brought by the smart grid cloud architecture are founded on the cloud computing essential characteristics presented below, with which it is possible to ensure, at once, scalability and computational power, safeguarding simultaneously the integration of legacy components and IT systems. Moreover, it offers the ability to dynamically allocate the needed resources to meet the required quality of service, which is designated as elasticity enabling the management of the service according to the number of requests. Instances can be added or subtracted to the service, as the demand increases or decreases, to ensure that performance and availability remain adjusted to the current needs. The good thing in cloud computing is its ability to remove infrastructure when we don’t need it, cause when we don’t use it, and thus, we don’t have to pay for it. Other benefits achieved are the quick and easy deployment, reducing total cost of ownership (TCO), no need to invest in hardware, as infrastructure is delivered as a service. Thus, a shift from capital expense to operational expense is achieved. Finally, pricing is determined in a utility service model known as “pay for what you use”.

Smart Grid with Cloud Architecture can improve the level of integration and utilization of information in the SG. In many cases, autonomous business activities lead to “islands of information,” and as a result, the information in each department of electric utility is not easily accessible by applications in other organizations or departments. However, ensuring that the information is widely available with privacy enforced is critical to the operations in the SG. If all or most of the information is stored and managed by a service provider in the Cloud, we actually have a cost-effective way to integrate these islands of information. Furthermore, high-level information integration also provides potentials to increase the information utilization level and improve the quality of decisions in operations.

VII. MAIN DIRECTION This research is aimed at studying the possibility of

integrating mobile cloud computing in a SCADA-based smart grid environment. SCADA is one of the most widespread human-machine system user-interface in process control that is also deployed in JDECO, the Jerusalem District Electricity Company. After proposing and building a mobile cloud system with SCADA functionalities, that will keep operators up-to-date and enable them to monitor system anytime and anywhere from their own smartphone, it is possible for us to test the system in cooperation with JDECO using real field data. An interesting goal to be achieved in our approach is mobility, which represents an important factor that affects both control room operators, and utility customers. To this end, control room operators have to be up-to-date in order to reduce possible risks and monitor what

is happening to the grid behavior anytime. At an instant, alarms can be issued that require immediate decisions, so losing sight can introduce many risks for utility, both financially if equipment are damaged or loss of human lives.

For customers, mobility is accomplished by using an application on their smartphones, showing them real-time pricing, real-time energy usage, details on their smart appliances consumptions, load figures, CO2 emissions, and remotely control home appliances. This can let them take smart decisions on managing their energy consumption efficiently (smoothing their demand profile) and reducing their billing costs. As a result, lowering peak demand and smoothing demand profile will yield a reduction in the overall plant and capital cost requirements. Thus, huge savings can be achieved for both utilities and customers.

Furthermore, the smart grid supports distributed and renewable energy generation, since centralized capacities for saving energy, e.g. pumped-storage hydroelectricity, are limited. One way this idea is realized is aligning energy demand with energy generation. To this end, mobile application marketplaces will be developed, aiming at a price driven balance of energy supply and demand. Such marketplaces bring together producers and consumers of energy, allowing for negotiation of flexible energy contracts with the goal to decentralize the problem of energy over- and underproduction.

In order to automatize trading and real-time pricing, consumers must provide their preferences and smart meter readings to the marketplace. For instance, such meter readings originate from a smart meter that collects the consumed and produced values via a Home Area Network (HAN) from the local energy consuming (stove, fridge), producing (solar panel), and storing (electric car) appliances.

The collected meter readings are transmitted periodically (e.g. each second) to the marketplace where these data are continuously analyzed and aggregated to supply and demand packages. Based on these packages, marketplace participants have buy and sell options in accordance with their energy demand, i.e. they can specify when, how much, and at what price they want to buy or sell energy.

Considering such a marketplace concept and the fact that a utility provider has potentially millions of smart meters, it is no surprise that such a marketplace puts high requirements on the underlying infrastructure—in particular in terms of broadband network access, performance, scalability, and flexibility. In order to meet these requirements, it is reasonable to deploy the marketplace on a mobile cloud platform, which provides the needed capacities for arbitrary services on demand.

REFERENCES [1] Z. Fan, P. Kulkarni, S. Gormus, C. Efthymiou, G. Kalogridis, M.

Sooriyabandara, Z. Zhu, S.Lambotharan, and W. H. Chin. (2012) Smart Grid Communications: Overview of Research Challenges, Solutions, and Standardization Activities. arXiv:1112.3516v1 [cs.NI] 1 ,2012

[2] ABB Whitepaper (2013). A smart grid is an optimized grid / ©ABB Inc. 3BUS094985.

Page 32: The Fifth International Energy Conference - Palestine -

30

[3] X. Fang , S. Misra, G. Xue, (2011). Smart Grid – The New and Improved Power Grid: A Survey. IEEE September 2011.

[4] US Department of Energy, “The Smart Grid: An Introduction”, at (http://energy.gov/oe/downloads/smart‐grid‐introduction.)

[5] U.S. Department of Commerce, National Institute of Standards and Technology. .NIST Framework and Roadmap for Smart Grid Interoperability Standards, Release 3.0 / NIST Special Publication 1108R3 – May 2014.

[6] Miguel Os´orio Areias. SCADA IN A CLOUD-BASED ARCHITECTURE. Universidade De Lisboa - Faculdade de Ciˆencias. Thesis, 2013

[7] Journal of Cyber security and information systems. Supervisory control and data acquisition. The Efficacy and Challenges of SCADA and Smart Grid Integration / May-2013

[8] http://www2.alcatel-lucent.com [9] National Institute of Standards and Technology/ Cloud Computing.

http://www.nist.gov/itl/csd/cloud-102511.cfm

Figure 1: Smart Meter Functionality

Page 33: The Fifth International Energy Conference - Palestine -

30

[3] X. Fang , S. Misra, G. Xue, (2011). Smart Grid – The New and Improved Power Grid: A Survey. IEEE September 2011.

[4] US Department of Energy, “The Smart Grid: An Introduction”, at (http://energy.gov/oe/downloads/smart‐grid‐introduction.)

[5] U.S. Department of Commerce, National Institute of Standards and Technology. .NIST Framework and Roadmap for Smart Grid Interoperability Standards, Release 3.0 / NIST Special Publication 1108R3 – May 2014.

[6] Miguel Os´orio Areias. SCADA IN A CLOUD-BASED ARCHITECTURE. Universidade De Lisboa - Faculdade de Ciˆencias. Thesis, 2013

[7] Journal of Cyber security and information systems. Supervisory control and data acquisition. The Efficacy and Challenges of SCADA and Smart Grid Integration / May-2013

[8] http://www2.alcatel-lucent.com [9] National Institute of Standards and Technology/ Cloud Computing.

http://www.nist.gov/itl/csd/cloud-102511.cfm

Figure 1: Smart Meter Functionality

31

Figure 2 SCADA & Smart Grid Integration [8]

Page 34: The Fifth International Energy Conference - Palestine -

32

Figure 3 Reference architecture of smart grid

Figure 4 Cloud computing essential characteristics

Page 35: The Fifth International Energy Conference - Palestine -

32

Figure 3 Reference architecture of smart grid

Figure 4 Cloud computing essential characteristics

33

Loss Reduction through Injection of Reactive Power in the Distribution Grid of the Gaza Strip Governorates

Hussam Awwad

Palestinian Broadcasting Corporation Gaza, Palestine

[email protected]

Assad Abu-Jasser The Islamic University of Gaza

Gaza, Palestine [email protected]

Abstract The Gaza Strip governorates suffer significant power shortages due to a number of factors. The high power loss in the distribution grid is a major contributor to these shortages. This paper suggests the use of capacitor banks to inject reactive power into the grid in the purpose of reducing the power loss as well as to improve the voltage levels at the customers' terminals. Two feeders will be used to conduct this research, one from the Israeli Electric Company and the other from the Gaza Power Generation Plant namely the Baghdad feeder and the J4 feeder respectively. The study has shown that a notable reduction in losses can be accomplished as well as an improvements in the voltage levels around the feeder branches.

Key words

Power Loss, capacitor bank, reactive power injection, power generation

INTRODUCTION Adequate design of the electric distribution grid rehabilitation is one of the most important needs in the Gaza-Strip. Heavy loadings and Power shortage worsen the situation. This should be solved in a manner that maximize its reliability, safety and security besides minimizing its operating costs and damage to its components which avoided by good choice of these components in their suitable places. The power system needs to be operated and controlled in order to meet those criteria at least within specific tolerance. The distribution grid of the Gaza Governorate was taken as a case study. Its network and problems that it surfers from will be handled and solutions that will be suggested. The network with different problems through RPC, using capacitor banks compromise voltage drop and power losses,

which exceed 25%, will be concern [1]. The recent network will be studied to identify these problems deeply and search for solutions to restrict them as possible in acceptable ranges. Two main feeders are selected to conduct this study: the 12-MW Baghdad feeder supplied by the Israeli Electric Company and the J4-Feeder supplied by the Gaza Power Generation Plant. Our goal is to keep them around acceptable ranges of the sending power, this will be clear after collecting the case study data to Feeders measurements required to the system.After that, how to generalize the average results for the two Feeders to Gaza Governorate Electric Distribution Feeders will be done. This will go through the voltage drop, power losses in this paper.

Power Purchases and Losses

There is a study to the ratio between the purchases and the sales by kWh. The difference between them is equal the losses. These losses when divided on the purchases will give the losses ratio.The losses ratio increase from 25% to 30%. These losses are the summation of black losses, which are related to misreading of the power consumed and theft, the other losses are technical losses that are related to 22 kV lines, 400 V cables of feeders and distribution transformers, which are attributed to thesis study to know accurate values and ratios to each kind of losses. This big value of losses ratio is a motivation to search for solutions to reduce this ratio as possible [2].

REACTIVE POWER COMPENSATION Increase in benefits for one kVAR of additional compensation decrease rapidly as the system power factor reaches close to unity.

Page 36: The Fifth International Energy Conference - Palestine -

34

This fact prompts an economic analysis to arrive at the optimum compensation level. Different economic criteria can be used for this purpose. The annual financial benefit obtained by using capacitors can be compared against the annual equivalent of the total cost involved in the capacitor installation. The decision also can be based on the number of years it will take to recover the cost involved in the Capacitor installation [3]. A more sophisticated method would be able to calculate the present value of future benefits and compare it against the present cost of capacitor installation.

Economic Justification for Use of Capacitors

When only generators provide reactive power, each system component (generators, transformers, transmission and distribution lines, switchgear and protective equipment etc) has to be increased in size accordingly. Capacitors reduce losses and loading in all these equipments, thereby effecting savings through powerless reduction and increase in generator, line and substation capacity for additional load. Depending on the initial power factor, capacitor installations can release additional capacity in generators, lines and transformers. In addition, they can increase the distribution feeder load capability in the case of feeders, which were limited by voltage drop considerations. Improvement in system voltage profile will usually result in increased power consumption thereby enhancing the revenue from energy sales. Thus, the following benefits are to be considered in an economic analysis of compensation requirements [4, 5].

Current Study Analysis

We select two feeders from the supply to the end users of the distribution network of Gaza Governorate by choosing the first from Israeli lines which is Baghdad feeder and the power of the Feeder is 12MVA [2]. Then, we take the present data and use excel program analysis and calculations to gather all information's, and get the results, after that compare the results with acceptable ranges.

Finally, we provide Suggestions that will improve the performance to the network.

Methodology

1- Select two feeders of the distribution network to Gaza Governorate.

2- Make real measurements on the feeders selected to obtain real and contemporary data that truly reflect the grid status.

3- Study the feeder's electrical analysis effects before and after suggestion of using capacitor banks RPC.

4- Analyze and compare the results with the acceptable ranges for the rehabilitation process.

High Voltage Transmission Lines Analysis

After measurements to the different power factors to main feeder at different times and loads, we noted that PF is fluctuating at average value which is 0.8 which we took as starting point power factor and noted by PF(old) and the desired power factor noted by PF(new) =0.92. This notation applied to different parameters before and after capacitors compensation improvement such as real power, reactive power, power losses, transmission line current, current entering to transformer and voltage drop[1,6,7]. We consider the branch to each transformer is the supplier from the point of the transformer before, to this transformer, which is in the same line. We denote to before improvement the power factor without reactive power compensation by (B.I) and denote to after improvement the power factor with reactive power compensation by (A.I), which we will use these abbreviated symbols in this paper.

Power Factor Improvement

We take firstly Baghdad feeder, which is Israeli feeder, and as example to the work, we take the first transformer, which is Mahtet El Petrol that is 400 KVA apparent power, and 400 A load current, and Heteen transformer as full load. Heteen transformer supplied by 22 KV HV lines whichACSR-95/15 mm2 is used.

Page 37: The Fifth International Energy Conference - Palestine -

34

This fact prompts an economic analysis to arrive at the optimum compensation level. Different economic criteria can be used for this purpose. The annual financial benefit obtained by using capacitors can be compared against the annual equivalent of the total cost involved in the capacitor installation. The decision also can be based on the number of years it will take to recover the cost involved in the Capacitor installation [3]. A more sophisticated method would be able to calculate the present value of future benefits and compare it against the present cost of capacitor installation.

Economic Justification for Use of Capacitors

When only generators provide reactive power, each system component (generators, transformers, transmission and distribution lines, switchgear and protective equipment etc) has to be increased in size accordingly. Capacitors reduce losses and loading in all these equipments, thereby effecting savings through powerless reduction and increase in generator, line and substation capacity for additional load. Depending on the initial power factor, capacitor installations can release additional capacity in generators, lines and transformers. In addition, they can increase the distribution feeder load capability in the case of feeders, which were limited by voltage drop considerations. Improvement in system voltage profile will usually result in increased power consumption thereby enhancing the revenue from energy sales. Thus, the following benefits are to be considered in an economic analysis of compensation requirements [4, 5].

Current Study Analysis

We select two feeders from the supply to the end users of the distribution network of Gaza Governorate by choosing the first from Israeli lines which is Baghdad feeder and the power of the Feeder is 12MVA [2]. Then, we take the present data and use excel program analysis and calculations to gather all information's, and get the results, after that compare the results with acceptable ranges.

Finally, we provide Suggestions that will improve the performance to the network.

Methodology

1- Select two feeders of the distribution network to Gaza Governorate.

2- Make real measurements on the feeders selected to obtain real and contemporary data that truly reflect the grid status.

3- Study the feeder's electrical analysis effects before and after suggestion of using capacitor banks RPC.

4- Analyze and compare the results with the acceptable ranges for the rehabilitation process.

High Voltage Transmission Lines Analysis

After measurements to the different power factors to main feeder at different times and loads, we noted that PF is fluctuating at average value which is 0.8 which we took as starting point power factor and noted by PF(old) and the desired power factor noted by PF(new) =0.92. This notation applied to different parameters before and after capacitors compensation improvement such as real power, reactive power, power losses, transmission line current, current entering to transformer and voltage drop[1,6,7]. We consider the branch to each transformer is the supplier from the point of the transformer before, to this transformer, which is in the same line. We denote to before improvement the power factor without reactive power compensation by (B.I) and denote to after improvement the power factor with reactive power compensation by (A.I), which we will use these abbreviated symbols in this paper.

Power Factor Improvement

We take firstly Baghdad feeder, which is Israeli feeder, and as example to the work, we take the first transformer, which is Mahtet El Petrol that is 400 KVA apparent power, and 400 A load current, and Heteen transformer as full load. Heteen transformer supplied by 22 KV HV lines whichACSR-95/15 mm2 is used.

35

Real Power P

Apparent Power S Power Factor PF

(HV)Line Current Trans. Lines = ∑HV lines currents that supplied the transformers.

In addition, we noted that all currents after improvements are decreases with ratio related to the ratio between the old and the new power factor, which means that:

(new) (old)

(new) new new

(old) old old

P P constant (no changes in loads)

P 3 V I cos

P 3 V I cos ,

new old old

old new new

I cos PFSo ,

I cos PF

8 9

Power Losses

After that, the program through the formula relation can calculate the losses that PLoss=I2×R for a single phase and for the three phases is PLoss=3I2×R:

In addition, we note that the total loss to the complete Baghdad feeder is equal the summation losses in all branches of HV transmission lines that supplies all the transformers.

( ) .

where1

b : is the branch losses.i : is the number of the branch losses.

LOSSP total branches transmission line lossesn

bii

Before using automatic capacitor banks:

P (total) =294,621 kW before improvementLOSSAfter applying automatic capacitor banks

to transformers outputs with different

reactive power Qc [75-200] kVAR STDPL (total) =218,280 kW after improvementOSS

Voltage Drop

There are two methods to calculate the voltage drop on the grid if we take single phase current the drop will affect the two lines across the load, but will be different if three phase current method used because at balance the null current must be equal zero[10].

Three phase current:

2

W2

VV% 100%V

P R cos X sin 10 10

V cosL

After andBefore improvement

By using automatic capacitors, QC STD to transformers outputs feeders.

Voltage drop 3 I R cos Xsin

Where I and for HV branch current after improvement

Low Voltage Analysis

After we did high voltage analysis, we have to do the same procedure to the low voltage distribution grid. We chose five transformers from the Feeder to do the calculations and the analysis, and as example we chose one of them here with the largest full load and highest unbalanced load, which is (Heteen) transformer feeders. We tabulate the results in two Tables for two measurements at different days and full load on 5th of Jan-2011 at 17:30

Page 38: The Fifth International Energy Conference - Palestine -

36

and on 6th of Jan 2011 at17:10) and as (Fig-1) example we choose the worst case.

Transformer Voltage Drop

Voltage drop can be calculated from the next formula:

2

kVAvoltage drop% Z % 5 .10 kV

KVA = is the transformer rating in kVA

KV = is high voltage side of transformer in (kV)

Z % = is the transformer impedance % =4.5%

The voltage rise can be calculated from the next formula:

tKVAR Voltage rise % X %KVA

,the rise is from the down point of the voltage drop.

(Fig-1) Percentage of Voltage drop before, after and the improvement

Total Power Losses to Baghdad Feeder

After we systematically analyzed the Baghdad feeder through HV and LV, distribution transformers calculations, and as we reach to the worst-case calculations to the voltage drop to the feeder until the end user.This accomplished by taking the largest full load transformer in the five transformers. then we did analysis on them, we have to study now the all-over power losses to all feeders till the end users and this must take into account the high voltage transmission lines losses, the low voltage distribution feeders losses and finally the transformers losses which the grid effected by three zones.

Baghdad FeederDaily Load Curves

Our tables study was taken to the largest load to the transformers when the power factor in the lowest value.These losses fluctuating related to the loads in lowest, highest or medium value this motivates us to study the daily load curve to the feeder and draw it several times in different days and times and this is demonstrated in the following configurations. Then taking the average value to them and so, we build our power losses calculations to the full feeder as (Fig-2) shows[11].

0%

5%

10%

15%

20%

25%

30%

BeforeImprovementAfter ImprovementImprovement %

23.30%

18.30%

5.03%

25.80%

20.40%

5.40%

20.18%

15.66%

4.52%

Perc

enta

ge o

f Nom

inal

Vol

tage

%Baghdad Feeder Before, After Improvement and The Improvement of Voltage Drop

Total Voltage DropBalance Load Largest Phsae Load Smallest Phase Load

Page 39: The Fifth International Energy Conference - Palestine -

36

and on 6th of Jan 2011 at17:10) and as (Fig-1) example we choose the worst case.

Transformer Voltage Drop

Voltage drop can be calculated from the next formula:

2

kVAvoltage drop% Z % 5 .10 kV

KVA = is the transformer rating in kVA

KV = is high voltage side of transformer in (kV)

Z % = is the transformer impedance % =4.5%

The voltage rise can be calculated from the next formula:

tKVAR Voltage rise % X %KVA

,the rise is from the down point of the voltage drop.

(Fig-1) Percentage of Voltage drop before, after and the improvement

Total Power Losses to Baghdad Feeder

After we systematically analyzed the Baghdad feeder through HV and LV, distribution transformers calculations, and as we reach to the worst-case calculations to the voltage drop to the feeder until the end user.This accomplished by taking the largest full load transformer in the five transformers. then we did analysis on them, we have to study now the all-over power losses to all feeders till the end users and this must take into account the high voltage transmission lines losses, the low voltage distribution feeders losses and finally the transformers losses which the grid effected by three zones.

Baghdad FeederDaily Load Curves

Our tables study was taken to the largest load to the transformers when the power factor in the lowest value.These losses fluctuating related to the loads in lowest, highest or medium value this motivates us to study the daily load curve to the feeder and draw it several times in different days and times and this is demonstrated in the following configurations. Then taking the average value to them and so, we build our power losses calculations to the full feeder as (Fig-2) shows[11].

0%

5%

10%

15%

20%

25%

30%

BeforeImprovementAfter ImprovementImprovement %

23.30%

18.30%

5.03%

25.80%

20.40%

5.40%

20.18%

15.66%

4.52%

Perc

enta

ge o

f Nom

inal

Vol

tage

%

Baghdad Feeder Before, After Improvement and The Improvement of Voltage Drop

Total Voltage DropBalance Load Largest Phsae Load Smallest Phase Load

37

(Fig-2) Baghdad Feeder Daily Load Curve In 20,21,23 and24 of Feb-2011

From the daily load curves of Baghdad feeder for four days, on 20, 21, 23 until 24Feb, we can take the average value for each curve and then taking the ratio between the average and the peak value of the load, which is 380A. This ratio is called load factor and equal 0.82% as average to 4 daily load curves. We take load factor as a base to power losses calculations to full feeder in 22 kV and 400 V lines, moreover the distribution transformers losses.

Full Load (HV) Transmission Lines Losses

We can denote that,

Before applying automatic capacitor banks and the old status of cables and conductors:

PLOSS (HV) = 294,621 W

before improvement and

After applying automatic capacitor banks related to Qc STD needed from

PLOSS (HV) = 218,281 W

after improvement

Therefore, the average power loss to the daily load curves is 82% of these values, then:

PAVG.LOSS (HV) = 294.621 × 82% = 242 KW before improvement

PAVG.LOSS (HV) = 218.281 × 82% = 179 KW after improvement

Therefore, we save the difference between the two values before and after the improvement, which is equal 63kW.

Full Load (LV) Feeders Losses

We can get the losses to the feeders of each transformer from the five transformers we study them from Baghdad feeder which they are in the peak load time and multiply the losses by the total average daily load curves 82% before and after the improvement and take the summation of the losses in the two cases, then we take the difference between them which expresses about the average reduction in losses for the five transformers we choose them. After that we can generalize the rule to the whole transformers feeders and this firstly starting from rearranging the transformer feeders losses as shown in(Table-1).

Page 40: The Fifth International Energy Conference - Palestine -

38

(Table-1)Average Losses Before and After RPC to Five Transformers Balanced Loads.

Day: Wednesday

Date:05/01/2011

Transformer KVA Load (A)

Load

(KW)

Load

(AVG) TIME

PF loss

(B.I)

(KW)

Average

P loss(B.I)

=82%*PF.Loss(B.I)

(KW)

P F. loss

(A.I)

(KW)

Average

P loss(A.I)

=82%*PF.Loss(A.I)

(KW)

Heteen 630 963 533.75 437.675 17:30 83.77 68.6914 60.66 49.7412 El Hayek 630 1140 631.85 518.117 19:30 67 54.94 48.6 39.852 Al Yrmook 630 1024 567.56 465.3992 18:00 39.5 32.39 28.6 23.452 Al Shabia 630 800 443.41 363.5962 18:30 43.7 35.834 31.7 25.994 Gassima 1 630 360 199.53 163.6146 19:00 5.688 4.66416 4.12 3.3784 SUM= 2376.1 1948.402 239.658 196.51956 173.68 142.4176

Loss Reduction = 196.52– 142.42 = 54 KW

For five transformers of the feeder which equal in percent

loss reduction

Loss Reduction%Average P B.Iloss

54 27.53 %196.51956

For the five transformers choose the reduction power loss ratio is:

LOSS RATIO Reduction P

Loss Reduction Transformers Average Power Load

Reduction PLOSS RATIO =54/1948.402 = 2.77 %

In addition, by applying this ratio to the full Baghdad low voltage feeders transformers, we note,

Power Load Full Feeder (AVG) = 82% 12 MW = 9.84 MW

SoPLOSS RATIO (FULL FEEDER) = 2.77%

Then Reduction in PLOSS (FULL FEEDER)AVG =2.77% 9.84MW = 273 KW

Total losses to all feeders of transformers before improvement

273 993 KW 27.5%

The total losses to all feeders of transformers after improvement

= 993−273 = 720 KW

Distribution Transformers Losses

Transformers (LOSSES) = no load power losses + (load factor) × full load power losses

There are two 400-kVA transformers:

Distribution Transformers (LOSSES) 400 KVA = 2 (610 W + 82% 4600 W) = 8764W

There are twenty-five 630kVA transformers:

Distribution Transformers (LOSSES)630KVA= 25 (860 W + 82% 5400 W) =12200W

Total Distribution Transformers (LOSSES) =8764W+12200 W = 141 kW

Total Losses to the grid before improvement:

= 242+ 993+ 141 = 1376 KW

1376KW Inpercentage 13.98 %9.84 MW

Total Losses to the feeder after improvement:

= 179+ 720 + 141= 1040 KW

In percentage to Baghdad feeder 1040 KW 10.57%9.84 MW

The total power losses reduction to Baghdad feeder = 1376 – 1040 = 336 KW

In percentageto Baghdad feeder = 13.98 % − 10.57 % = 3.41 %

Which equal?

Page 41: The Fifth International Energy Conference - Palestine -

38

(Table-1)Average Losses Before and After RPC to Five Transformers Balanced Loads.

Day: Wednesday

Date:05/01/2011

Transformer KVA Load (A)

Load

(KW)

Load

(AVG) TIME

PF loss

(B.I)

(KW)

Average

P loss(B.I)

=82%*PF.Loss(B.I)

(KW)

P F. loss

(A.I)

(KW)

Average

P loss(A.I)

=82%*PF.Loss(A.I)

(KW)

Heteen 630 963 533.75 437.675 17:30 83.77 68.6914 60.66 49.7412 El Hayek 630 1140 631.85 518.117 19:30 67 54.94 48.6 39.852 Al Yrmook 630 1024 567.56 465.3992 18:00 39.5 32.39 28.6 23.452 Al Shabia 630 800 443.41 363.5962 18:30 43.7 35.834 31.7 25.994 Gassima 1 630 360 199.53 163.6146 19:00 5.688 4.66416 4.12 3.3784 SUM= 2376.1 1948.402 239.658 196.51956 173.68 142.4176

Loss Reduction = 196.52– 142.42 = 54 KW

For five transformers of the feeder which equal in percent

loss reduction

Loss Reduction%Average P B.Iloss

54 27.53 %196.51956

For the five transformers choose the reduction power loss ratio is:

LOSS RATIO Reduction P

Loss Reduction Transformers Average Power Load

Reduction PLOSS RATIO =54/1948.402 = 2.77 %

In addition, by applying this ratio to the full Baghdad low voltage feeders transformers, we note,

Power Load Full Feeder (AVG) = 82% 12 MW = 9.84 MW

SoPLOSS RATIO (FULL FEEDER) = 2.77%

Then Reduction in PLOSS (FULL FEEDER)AVG =2.77% 9.84MW = 273 KW

Total losses to all feeders of transformers before improvement

273 993 KW 27.5%

The total losses to all feeders of transformers after improvement

= 993−273 = 720 KW

Distribution Transformers Losses

Transformers (LOSSES) = no load power losses + (load factor) × full load power losses

There are two 400-kVA transformers:

Distribution Transformers (LOSSES) 400 KVA = 2 (610 W + 82% 4600 W) = 8764W

There are twenty-five 630kVA transformers:

Distribution Transformers (LOSSES)630KVA= 25 (860 W + 82% 5400 W) =12200W

Total Distribution Transformers (LOSSES) =8764W+12200 W = 141 kW

Total Losses to the grid before improvement:

= 242+ 993+ 141 = 1376 KW

1376KW Inpercentage 13.98 %9.84 MW

Total Losses to the feeder after improvement:

= 179+ 720 + 141= 1040 KW

In percentage to Baghdad feeder 1040 KW 10.57%9.84 MW

The total power losses reduction to Baghdad feeder = 1376 – 1040 = 336 KW

In percentageto Baghdad feeder = 13.98 % − 10.57 % = 3.41 %

Which equal?

39

336 24.4 % 1376

Reduction from losses before improvement, and as example this will save in one-year energycost:

= 336 KW 24 hours 365 days 0.5NIS/ KWh

= 1.472 Million NIS =403,200 $

We note that under real balance load the frequency oscillation will be ≤ 0.5% accepted.

Baghdad Feeder Unbalance Loads

We studied and analyzed the feeder of Baghdad when it is under balance loads as if to say that there is no neutral current or equal zero under balance condition. We studied that case as a standard case we are looking forward to satisfy it, so we have to study the loads with the unbalance case to know the difference between the two cases after we get the measurements to the current in the node of our grid in our consideration.

Total losses to all feeders of transformers before improvement

303 1101 kW 27.52%

The total losses to all feeders of transformers after improvement

=1101−303=798 kW

Total Losses to the grid before improvement:

= 242+ 141+1101 = 1484 kW

Percentage of Full Feeder 1484 KW 15.1 %9.84 MW

Total Losses to the grid after improvement:

= 179+141+798= 1118 kW

Percentage of Full Feeder1118 KW 11.36%9.84 MW

The total power losses reduction to Baghdad feeder = 1484 – 1118 = 366 kW

Percentage of Full Feeder = 15.1 % − 11.36 % = 3.74 %

Which equal?

366 24.66 % 1484

This is a reduction from losses before improvement.

This will save in one year, energy cost:

= 366 kW 24 hours 365 days 0.5NIS/ kWh = 1.603 Million NIS.

Saving in Dollars = 439,178 $

the losses reduction in balanced and unbalanced condition can be seen in (Fig-3).

(Fig-3)Losses reduction in balanced and unbalanced Load

the annual saving in ($) under balanced and unbalanced condition shown in (Fig-4).

(Fig-4) Annual Saving in balancedand

unbalanced Load

320

330

340

350

360

370336

kW≡3.41%

366 kW ≡3.74%

Loss

es (k

W)

Losses Reduction with RPC

Unbalace Condition Balance Condition

380

400

420

440

Balanced Condition

Unbalanced Condition

403

439Sa

ving

in/1

000

$Annual Saving with RPC

Page 42: The Fifth International Energy Conference - Palestine -

40

GAZA POWER PLANT J4 FEEDER We do the same systematic procedure for power plant feeder til reach the end user in low voltage feeders outgoing from the distribution

transformers and for our analysis we choose Al Mughrabi Al qadeem transformer in (Table-2), which is the last transformer in J4 feeder to take the worst case in lower voltage drop as shown below.

(Table-2) Al Mughrabi Al Qadeem transformer analysis

J4 Feeder Unbalance Loads

As Baghdad feeder done we have to do the same steps for unbalanced case after we gathered the data phases and neutral currents

for several transformers in deferent times and maximum loads with peak values. After that, the average daily load curve is taken as a base to our calculations and analysis and we can see a graphical representation to the different voltage drop under balanced and unbalanced cases before and after improvement in (Fig-5).

Transformer name: Apparent Power: KVA Day: Date: Time:

Al Mughrabi Al qadeem 630 Wednesday 22/12/10 01:45

Supply Line: J4

PH FEEDERS

CURRENT Unbalance load losses

SOUTH C.B (A) (kW)

N 97 0.724 Transformer Losses:

R 179 1.58 No Load Losses = 860 watt

S 430 9.14 Full Load Losses = 5400watt

T 475 11.15

Average: 362 Loss(B.I)=22.6 3 =67.8

Loss(A.I) = 49.2

For balance phases load

= 362 A

single line losses (kW) 3- lines losses

( kW)

Total losses(kW) saving in percent

before improvement 6.478 19.434 3*19.424=58.27

after improvement 4.694 14.082 42.246 27.50%

For balance phases load

= 362 A

Before

improvement

after improvement improvement %

HV voltage drop 10.57% 7.91%

LV voltage drop 11.26% 9.53%

Transformer voltage drop 0.58% -1.21% voltage rise=1.785

Total voltage drop 22.41% 16.23% 6.19%

For largest phase load

= 475A

HV voltage drop 10.57% 7.91%

LV voltage drop 14.41% 12.20%

Transformer voltage drop 0.58% −1.21% Voltage rise =−1.785

Total voltage drop 25.56% 18.90% 6.67%

For smallest phase load

= 179 A

HV voltage drop 10.57% 7.91%

LV voltage drop 5.56% 4.71%

Transformer voltage drop 0.58% -1.21% voltage rise = −1.785

Total voltage drop 16.71% 11.41% 5.3%

Page 43: The Fifth International Energy Conference - Palestine -

40

GAZA POWER PLANT J4 FEEDER We do the same systematic procedure for power plant feeder til reach the end user in low voltage feeders outgoing from the distribution

transformers and for our analysis we choose Al Mughrabi Al qadeem transformer in (Table-2), which is the last transformer in J4 feeder to take the worst case in lower voltage drop as shown below.

(Table-2) Al Mughrabi Al Qadeem transformer analysis

J4 Feeder Unbalance Loads

As Baghdad feeder done we have to do the same steps for unbalanced case after we gathered the data phases and neutral currents

for several transformers in deferent times and maximum loads with peak values. After that, the average daily load curve is taken as a base to our calculations and analysis and we can see a graphical representation to the different voltage drop under balanced and unbalanced cases before and after improvement in (Fig-5).

Transformer name: Apparent Power: KVA Day: Date: Time:

Al Mughrabi Al qadeem 630 Wednesday 22/12/10 01:45

Supply Line: J4

PH FEEDERS

CURRENT Unbalance load losses

SOUTH C.B (A) (kW)

N 97 0.724 Transformer Losses:

R 179 1.58 No Load Losses = 860 watt

S 430 9.14 Full Load Losses = 5400watt

T 475 11.15

Average: 362 Loss(B.I)=22.6 3 =67.8

Loss(A.I) = 49.2

For balance phases load

= 362 A

single line losses (kW) 3- lines losses

( kW)

Total losses(kW) saving in percent

before improvement 6.478 19.434 3*19.424=58.27

after improvement 4.694 14.082 42.246 27.50%

For balance phases load

= 362 A

Before

improvement

after improvement improvement %

HV voltage drop 10.57% 7.91%

LV voltage drop 11.26% 9.53%

Transformer voltage drop 0.58% -1.21% voltage rise=1.785

Total voltage drop 22.41% 16.23% 6.19%

For largest phase load

= 475A

HV voltage drop 10.57% 7.91%

LV voltage drop 14.41% 12.20%

Transformer voltage drop 0.58% −1.21% Voltage rise =−1.785

Total voltage drop 25.56% 18.90% 6.67%

For smallest phase load

= 179 A

HV voltage drop 10.57% 7.91%

LV voltage drop 5.56% 4.71%

Transformer voltage drop 0.58% -1.21% voltage rise = −1.785

Total voltage drop 16.71% 11.41% 5.3%

41

(Fig-5) Balance and Unbalance Power Losses transformer feeders(A.I)

Total Losses to J4 before improvement = 1178+ 599+ 182 = 1959 kW

1959Percentage to J4 20.28 %

9660

Total Losses to the grid after improvement = 850 + 403 + 182= 1435 kW

1435 KWPercentage to J4 14.86%

9660 MW

The total power losses reduction to J4 feeder = 1959–1435 = 524 kW

The total power losses reduction to J4 feeder % = 20.28 %−14.86% = 5.42 %

5.42% 524= 26.75 %

20.28% 1959

of reduction from losses before improvement.

As example, this will save in one year an energy cost:

= 524 kW 24 hours 365 days × 0.5 NIS/ kWh = 2,295,120 NIS.

2,295,120NIS Which in Dollars

3.65 NIS/$ $ 628,800

This is over $ 28,800 cost than the balance case, and this demonstrated in (Fig-6) in a comparison with balance condition in reduction and saving.

(Fig-6) Balanced, unbalance loss reduction and annual saving with RPC

0

20

40

60

80

Al Mughrabi Al gdeem

Al DeeriSag AllahAl DahdoohJamea Ali

3442.3

72.6

3.3

16.45

39.645.8

73.4

4.4

18.7

Plos

s(A.

I) kW

Balance Average P loss(A.I) =80.5%× P loss (A.I) (KW)

Unbalance Average P loss(A.I) =80.5%× P loss (A.I) (KW)

0200400600800100012001400160018002000

B.IA.IREDUCTION

1875≡19.4%

1375≡14.2%

500≡5.2%

1959≡20.28%

1435≡14.86%

524≡5.42%

J4-FEEDER

Loss Reduction with RPCLOSSES IN BALANCE (KW)

580

590

600

610

620

630

BALANCEUNBALANCE

600

629

SAVI

NG/

1000

($)

J4-FEEDER

Annual Saving ($)

Page 44: The Fifth International Energy Conference - Palestine -

42

References

[1] Gross, C. A. Power System Analysis .2d ed. Wiley, New York , 1986.

[2] Technical Statistics, Statistics & Reports, Gaza Distribution Electric Company,2011,

http://www.gedco.ps/e/under.php

[3] Power Factor Correction and Harmonic Filtering, Schneider Electric-Electrical Installation Guide 2010.

URL:http://www.electrical-installation.org/wiki/

[4] Reactive Power Compensation Using Capacitor Banks, Last accessed April 2011,

http://www.scribd.com/doc/30917947/Reactive-Power-Compensation-Using-Capacitor-Banks

[5] Economics When Appling Shunt Capacitors N. S. Ciurro - Gilbert Electrical Systems. Last accessed Jan 2011.

URL:http://www.norrisscreen.com

[6] Guill, A. E. Electric Power System .2d ed. Maxwell, England, 1981.

[7] Weedy, B. M. Electric power system. 3ed. Wiley, New York, 1979.

[8] William D Stevenson, Jr. Elements of Power System Analysis. Fourth Edition, Carnegie-Mellon University, McGraw-

Hill Book Co-Singapore 1994.

[9] Enders, J., Powell, W. B. and Egan, D., A multi-period model for the failure re-placement of aging high-voltage

transformers, Technical report, Department of Operations Research and Financial Engineering, Princeton University

(2008).

[10] G-Sizing-and-protection-of-conductors, Schneider Electric-Electrical Installation Guide 2010, last accessed Feb

2011.URL: http://www.electrical-installation.org /w/images /0/0a/G-Sizing-and-protection-of-conductors.pdf

[11] Electricity Status in Gaza Strip_2, 2011,Last accessed July 2011URL: http://penra.gov.ps/

Page 45: The Fifth International Energy Conference - Palestine -

42

References

[1] Gross, C. A. Power System Analysis .2d ed. Wiley, New York , 1986.

[2] Technical Statistics, Statistics & Reports, Gaza Distribution Electric Company,2011,

http://www.gedco.ps/e/under.php

[3] Power Factor Correction and Harmonic Filtering, Schneider Electric-Electrical Installation Guide 2010.

URL:http://www.electrical-installation.org/wiki/

[4] Reactive Power Compensation Using Capacitor Banks, Last accessed April 2011,

http://www.scribd.com/doc/30917947/Reactive-Power-Compensation-Using-Capacitor-Banks

[5] Economics When Appling Shunt Capacitors N. S. Ciurro - Gilbert Electrical Systems. Last accessed Jan 2011.

URL:http://www.norrisscreen.com

[6] Guill, A. E. Electric Power System .2d ed. Maxwell, England, 1981.

[7] Weedy, B. M. Electric power system. 3ed. Wiley, New York, 1979.

[8] William D Stevenson, Jr. Elements of Power System Analysis. Fourth Edition, Carnegie-Mellon University, McGraw-

Hill Book Co-Singapore 1994.

[9] Enders, J., Powell, W. B. and Egan, D., A multi-period model for the failure re-placement of aging high-voltage

transformers, Technical report, Department of Operations Research and Financial Engineering, Princeton University

(2008).

[10] G-Sizing-and-protection-of-conductors, Schneider Electric-Electrical Installation Guide 2010, last accessed Feb

2011.URL: http://www.electrical-installation.org /w/images /0/0a/G-Sizing-and-protection-of-conductors.pdf

[11] Electricity Status in Gaza Strip_2, 2011,Last accessed July 2011URL: http://penra.gov.ps/

43

Luxury Hotels Green Solutions Action Plan

Ahmad M. Haddad Engineering Department

Intercontinental Hotel Bethlehem Bethlehem , Palestine

[email protected]

Abstract— This paper illustrates a case study of developing a particular green solutions action plan in luxury hotels and large facilities like hospitals and public properties based on green engage energy management tool .

I. INTRODUCTION An energy conservation action plan was designed and

being carried out in “Intercontinental Bethlehem Hotel by the facility engineering department. The action plan was created after an energy survey ,that aims to obtain an overview of the existing building energy consuming systems that includes lighting, boilers, heating ventilating and air conditioning (HVAC), building control system, motor loads, chillers and refrigeration rooms. The action plan outcome and progress are examined throughout this study by analyzing actual energy consumption data.

II. WHAT IS GREEN PLANNING This section outlines the the method of generating an

energy action plan by means of explaining the major steps that leads to an energy efficient facility.

Green Engage is comprehensive online sustainability system. It tells hotels what they can do to be a 'green' hotel and gives them the means to conserve resources and save money – by measuring, managing and reporting on hotel energy, water and waste consumption, as well as benchmarking and the ability to create action plans to track progress. This offers a huge advantage to owners for whom energy is the second largest cost in hotels. Hotels input their site data into Green Engage. The system generates reports and an energy benchmark so that hotels can compare their performance to other hotels. Green Engage then provides 'green solutions', advising both new-build and existing hotels on the specific actions they need to take to reduce their impacts, depending on their climatic location. Finally, the system produces reports which allow to review an individual hotel's progress.

A. Action paln levels that can be achived Partner – Level 1: includes 10 activities that get properties acclimatized to using the tool, sets property teams up for success and walks them through a few activities that provide near-term energy and cost savings. Achiever – Level 2: includes action items that are relatively simple to implement with good cost benefits and return on investment.

Innovator – Level 3: is more challenging to achieve. Level 3 action items will require some capital investment from the hotels. Leader – Level 4: is best practice. Hotels that achieve Level 4 demonstrate a leading and innovative approach to being sustainable.

III. KEY ACTION GROUPS Green Solutions are divided into key action groups. These groups enable hotels to identify areas of interest, focus on areas that need improvement and to navigate the system in a manageable way. a) Operations & Processes Hotel and hospitality operations can be very resource intensive. Improving a hotel's operational systems and practices is an immediate and public way of showing commitment to the environment and sustainability. Some of the most immediate cost and environmental savings can be found through changes in operations and process. b) Site A hotel's location affects commuting options, local ecosystems, building energy efficiency and much more. Proper site selection should be taken into consideration at the start of a project as it will affect many subsequent decisions c) Water All water that passes through a building and site presents responsibilities and opportunities. From an economic and environmental perspective it is best to keep man-made changes to the natural water cycle to a minimum. d) Products & Materials Materials selected for sustainable buildings need to combine the appropriate performance, durability and environmental properties. The use of materials can affect everything from natural resources to the comfort and health of guests and/or employees. The life cycle, sourcing and transportation of products are considered along with the actual product content. e) Waste Both construction and demolition contribute significantly to landfill sites and incinerators. Proper management can avoid unnecessary waste, reducing disposal fees and transportation costs. f) Building envelope

Page 46: The Fifth International Energy Conference - Palestine -

44

The 'building envelope' is the interface between a hotel's indoor and outdoor environments. Careful design helps to efficiently maintain desirable indoor conditions – for example, making the most of daylight, natural ventilation and passive heating. g) Mechanical Guest comfort, operating costs and many environmental impacts are dependent on a hotel's mechanical systems. These are best designed to work in harmony with other building systems and components. h) Energy Efficient electrical and gas systems in a hotel reduce both operating costs and environmental impact. Improved lighting design not only makes savings, it also contributes to guests' enjoyment and comfort. Table I. illustrates the set of proposed actions that can be addressed as a valuable input to develop an action plan to reduce energy consumption.

Table I. Examples of Green Solutions Actions

Develop Staff Active Green Team Green Staff Orientation & Education Guest Conservation Education Implement Energy Management Best Practice Automatically control lighting to all internal and external Modulate (change) the lighting levels within to suit the time of day/night Track Energy Data Develop Sequence of Operations Develop Building Operating Plan Develop Systems Narrative Occupancy Sensors in Corridors for Decorative Fixtures Meter Whole Building Energy Use Zero Use of Incandescent Lamps in Circulation Spaces Commissioning Plan Pipe Insulation Thermal storage systems are used to reduce a building's air conditioning load during peak hours. Collection and Use of Meter Information Against National Databases and Other Hotels Conduct Energy Audit Install Central Building Management System (BMS) Monitor BMS Provide Guest Room Master Control Boiler Efficiency Solar Thermal Chiller Heat Recovery for Domestic Hot Water Use High Performance Lighting Install Weather stripping on all Guest Room Windows High Performance Glazing Verify Minimum Outdoor Air Rates Variable Frequency Drives NEMA Premium Efficiency Motors Occupancy Sensors in Guest rooms Water Source Heat Pumps or 4-Pipe Fan Coil Units or VAVs Water Cooled Chillers Absorption Cooling System Heat Exchanger for Waterside Economiser Ventilation Air Heat Recovery Track Monthly Water Consumption Meet IPC 2006 Maximum Flow Rates Meter Whole Building Water Use Water Treatment Aerators/Low Flow Faucets Dual Flush/Low Flush Water Closets

Sensor Flush Waterless Urinals Low Flow Showerheads Water Efficient Laundry Facilities Water Efficient Dishwashers Boiler Condensate Return Use of Efficient Irrigation Rainwater Harvesting Greywater Treatment / Blackwater Treatment Non-Toxic Detergents for Laundry Ozone Treatment of Water Features Minimize waste by replacing disposable room amenities with refillable or reusable substitutes

Donate old furniture and equipment to institutions or charity.

IV. CASE STUDY The case study selected is to examine the effectiveness

of green action planning for large facilities. The green action planning was set to Jacir Palace Intercontinental Bethlehem. Intercontinental hotel is a five star luxury hotel. It consists of five building blocks; with built area approaching 28,000 square meters. It has 250 luxury guest rooms, ball rooms, restaurants, kitchens, laundry, offices, swimming pool spa, and health club. The buildings are surrounded by 30,000 sqm of planted landscape.

A. Description of Existing Energy Systems The hotel has a central HVAC system including three chillers which provide fan coil units (FCU’s) and air handling units (AHU’s) for space air conditioning. It also has two hot water boilers and sets of pumps. There are three chillers .Space heating and domestic hot water (DHW) in the hotel are provided by a pair of hot water boilers at approximately 500 Kw each, one of them i s in service and the other is standby. Hot water from the boilers is pumped by a set of pumps rated to heat exchangers for hot water and DHW loops. The hotel has 13 refrigerator and freezer rooms in kitchens, in addition to refrigeration machines in restaurants. Lighting represents about 25% of the hotel’s energy consumption for both interior and exterior lighting. Hotel uses many types of lamps as metal halide, high pressure s o d i u m , f l u o r e s c e n t , h a l o g e n ...etc, Many sets of pumps are used in different locations for the hotel systems for example: Transfer pumps Domestic cold water pumps Domestic hot water and soft domestic hot water pumps .

IV. ENERGY CONSUMPTION ANALYSIS Field data acquisition is a major step in determining efficiency. Identifying areas of high and low energy use will aid to target key areas for improvement and also areas of maximum returns. Table II. displays the actual energy consumption in the property during the years 2010 to 2014* .

Page 47: The Fifth International Energy Conference - Palestine -

44

The 'building envelope' is the interface between a hotel's indoor and outdoor environments. Careful design helps to efficiently maintain desirable indoor conditions – for example, making the most of daylight, natural ventilation and passive heating. g) Mechanical Guest comfort, operating costs and many environmental impacts are dependent on a hotel's mechanical systems. These are best designed to work in harmony with other building systems and components. h) Energy Efficient electrical and gas systems in a hotel reduce both operating costs and environmental impact. Improved lighting design not only makes savings, it also contributes to guests' enjoyment and comfort. Table I. illustrates the set of proposed actions that can be addressed as a valuable input to develop an action plan to reduce energy consumption.

Table I. Examples of Green Solutions Actions

Develop Staff Active Green Team Green Staff Orientation & Education Guest Conservation Education Implement Energy Management Best Practice Automatically control lighting to all internal and external Modulate (change) the lighting levels within to suit the time of day/night Track Energy Data Develop Sequence of Operations Develop Building Operating Plan Develop Systems Narrative Occupancy Sensors in Corridors for Decorative Fixtures Meter Whole Building Energy Use Zero Use of Incandescent Lamps in Circulation Spaces Commissioning Plan Pipe Insulation Thermal storage systems are used to reduce a building's air conditioning load during peak hours. Collection and Use of Meter Information Against National Databases and Other Hotels Conduct Energy Audit Install Central Building Management System (BMS) Monitor BMS Provide Guest Room Master Control Boiler Efficiency Solar Thermal Chiller Heat Recovery for Domestic Hot Water Use High Performance Lighting Install Weather stripping on all Guest Room Windows High Performance Glazing Verify Minimum Outdoor Air Rates Variable Frequency Drives NEMA Premium Efficiency Motors Occupancy Sensors in Guest rooms Water Source Heat Pumps or 4-Pipe Fan Coil Units or VAVs Water Cooled Chillers Absorption Cooling System Heat Exchanger for Waterside Economiser Ventilation Air Heat Recovery Track Monthly Water Consumption Meet IPC 2006 Maximum Flow Rates Meter Whole Building Water Use Water Treatment Aerators/Low Flow Faucets Dual Flush/Low Flush Water Closets

Sensor Flush Waterless Urinals Low Flow Showerheads Water Efficient Laundry Facilities Water Efficient Dishwashers Boiler Condensate Return Use of Efficient Irrigation Rainwater Harvesting Greywater Treatment / Blackwater Treatment Non-Toxic Detergents for Laundry Ozone Treatment of Water Features Minimize waste by replacing disposable room amenities with refillable or reusable substitutes

Donate old furniture and equipment to institutions or charity.

IV. CASE STUDY The case study selected is to examine the effectiveness

of green action planning for large facilities. The green action planning was set to Jacir Palace Intercontinental Bethlehem. Intercontinental hotel is a five star luxury hotel. It consists of five building blocks; with built area approaching 28,000 square meters. It has 250 luxury guest rooms, ball rooms, restaurants, kitchens, laundry, offices, swimming pool spa, and health club. The buildings are surrounded by 30,000 sqm of planted landscape.

A. Description of Existing Energy Systems The hotel has a central HVAC system including three chillers which provide fan coil units (FCU’s) and air handling units (AHU’s) for space air conditioning. It also has two hot water boilers and sets of pumps. There are three chillers .Space heating and domestic hot water (DHW) in the hotel are provided by a pair of hot water boilers at approximately 500 Kw each, one of them i s in service and the other is standby. Hot water from the boilers is pumped by a set of pumps rated to heat exchangers for hot water and DHW loops. The hotel has 13 refrigerator and freezer rooms in kitchens, in addition to refrigeration machines in restaurants. Lighting represents about 25% of the hotel’s energy consumption for both interior and exterior lighting. Hotel uses many types of lamps as metal halide, high pressure s o d i u m , f l u o r e s c e n t , h a l o g e n ...etc, Many sets of pumps are used in different locations for the hotel systems for example: Transfer pumps Domestic cold water pumps Domestic hot water and soft domestic hot water pumps .

IV. ENERGY CONSUMPTION ANALYSIS Field data acquisition is a major step in determining efficiency. Identifying areas of high and low energy use will aid to target key areas for improvement and also areas of maximum returns. Table II. displays the actual energy consumption in the property during the years 2010 to 2014* .

45

Table II 2010-2014 Yearly Energy Consumption Utility Electricity

Consumption Water

Consumption Diesel/LPG Gas Consumption

Month Jan to Dec

MWHrs CBM MW

2010 3,617 42,963 2,508 2011 2,942 38,208 2,543

2012 3,027 36,373 2,6673

2013 2,953 28,177 2,699

2014* 2,323 24,247 2,087 *2014 consumption is calculated based on the average consumption of 10 menthes.

V. ENERGY CONSERVATION PLANNED ACTIONS Changes in the lighting system is certainly the easiest way to save some electric energy, however the HVAC (Heating, Ventilation and Air conditioning) is the largest energy consumer in the building (typically between 65 and 75% of total energy consumption). Intelligent HVAC and Building management systems, occupancy smart controllers, can potentially save 20-30% energy. In this section a set of actions to save energy in the hotel is described. The levels of actions and projects can be identified and prioritized based on the distinct criteria like the amount of investment , return of investment , ease and simplicity ,time low cost, medium cost and high cost.

A. Actions considered in energy action plan HVAC & DHW System : There are many opportunities related to HVAC and DHW as controlling the circulation pumps, redesign of AHUs circulation, heat reclaim chiller, solar water system, and heat pump for both water and space heating. Control the circulation pumps of DHW to reduce heat loss. Using heat reclaim chiller to reduce electricity consumption and for DHW preheating. Utilizing Solar Heating System For Hot Water Production: CPC evacuated solar system can be used to heat water in winter season and to increase the temperature of the water came from the reclaim chiller in summer season. This will reduce the consumption of diesel/LPG consumed to produce DHW in winter . Utilizing Heat Pump for Hot Water and Space Heating : Heat pump is a machine or device that diverts heat from one location at a lower temperature to another location at a higher temperature using mechanical work. Improving The Combustion Efficiency Steam Boilers and Hot Water Boilers, by adjusting the excess air of the boilers. Replacing The Existing Diesel Burner To Dual Diesel –LPG Burner: this is to benefit from the cost deference between diesel and LPG.

Lighting is One of the important Opportunities to save energy in residential sectors. It aims to decrease the consumption by using many methods. First, switch off/on lighting by digital switching controllers and sensors. Second, reassess lighting luminance if exceeding the desirable level. Third, replacing lamps and fixtures to lower energy consuming ones like CFL and LED . Upgrading of Building Management System : The hotel has an out-of-date BMS with many missing control points , has many challenges to be upgraded . The system is missing many essential I/O points that cover the control of H V A C system like a c t u a t o r s , sensors and control valves. But however ,replacing the existing system is associated with high amount of investment, the replacement will achieve valuable energy conservation and short pay back period. Water saving Opportunities: The hotel uses an average of 43 thousand cubic meter of water yearly. In order to reduce the amount of water b e ing co n su med ce r t a in ac t io n s and mo d i f i ca t io n a r e need e d : Installation of water saving devices on water taps in guest rooms and kitchens Installation of water saving devices on shower heads in guest rooms. Self timing showers to replace existing in swimming pool and health club Consider constructing gray water recycling system (Infra structure exists) The implementation of the proposed modifications for water , system can potentially save 40% of water consumed in the hotel.

VI. ENERGY SAVING ANALYSIS & RESULTS After energy conservation assessment, there were a set of actions planed to be addressed, most of which have already been aligned with projects completed since the assessment and during the years 2013 to 2014. Simple things started like LED light bulbs, water faucet aerator, and motion sensors in non-occupied spaces. And continue through other levels of green actions. The hotel achieved Achiever level then Innovator level and challenging to achieve the Leader level in Green engage online sustainability system. By implementing the green action plan and recommended projects, change to energy saving indicator was monitored . Table III compares the current energy indicator to last year energy indicator; where it shows the change from 18.9$ POR (USD per occupied room ) in 2013 to 13.7 $ POR in 2014 year to date . Which represents 27.4% energy cost saving. However, rolling the energy conservation action plan is still believed to take it up and exceed saving levels compared to a benchmark for sister hotels.

Page 48: The Fifth International Energy Conference - Palestine -

46

Table IV. Evaluates the energy consumption against sister properties benchmark, where it shows that the property indicator falls in good boundary of benchmark . Table III 2013-2014 Energy Saving Indicator POR over Jan-June period

Table IV June-2014 Energy Results Utility Good Benchmark Hotel Electricity <150 86 KW/m2/year Gas/Fuel <140 77 KW/m2/year Water <750 380 Liters/Guest Actual data for the years 2013 and 2014 also traced to examine the effectiveness of energy conservation action plan in the hotel. This is illustrated in the Figure 1 and Figure 2. The variation can be noticed from the graphs. The indicator of cost is changing from 18.9$POR in 2013 to 13.7$POR which indicates 27.4 % expected energy energy saving by 2014 closing . And It also shows 29.3% saving of energy KWh per occupied room.

Figure 1. Monthly Average(over Jan-June) Energy cost in $ Per Occupied Room

After energy conservation actions were evaluated by the Palestinian Ministry of Energy the Hotel were received the Energy Efficiency Award as the Best Green Hotel in Palestine .The Energy Conservation Award for Jordan & Palestine region were granted to Bethlehem IC hotel after the hotel achieved the highest energy saving for electricity and water .

VII. CONCLUSION The effectiveness of green and energy conservation action planning was tested on the case study illustrated with

successful results. Investment is worthwhile and will return the back in a reasonable time.

Figure 2. Total Energy Consumption Cost (K$) 2013-2014

After assessing the accumulation of mechanical items, significant energy saving opportunities were found. The case study showed that about 29.3 % of annual energy can be saved by methods of green action planning. The actual energy conservation of the hotel compared to previous years verifies the expected outcome of conservation. The capital investment needed to implement the proposed energy projects is USD 248,000 which means that the payback period is about 1.3 year which considered very effective for return of investment. The Green action plan experienced in this study can be shred to similar public properties like hospitals, universities and airports.

VIII. ABBREVIATIONS: HVAC: Heating Ventilation Air Conditioning BMS: Building Management System VAV: Variable Air Volume . I/O : Input , Output FCU: Fan coil Unit AHU : Air Handling Unit DHW : Demotic Hot Water . LPG: Liquid Petroleum Gas . ROI : Return of Investment . POR : Per Occupied Room . LED : Light emitting diode .

REFERENCES [1] Palestinian Energy & Environment Research ,June 2011, Energy Audit

Report. [2] Center Lodging Magazine, October 2001, www.lodgingnews.com,

1.07.2002 [3] Building Research Establishment (BRE), http://www.bre.co.uk [4] InterContinental Hotels Group (IHG) , www.ihg.com [5] InterContinental Hotels Group green Engage

http://www.ihgplc.com/index.asp?pageid=742 [6] Diana Schumacher, Energy : Crisis or Opportunity? [7] Donald R. Wulfinghoff, The Modern History of Energy Conservation:

An Overview for Information Professionals. [8] Energy Efficiency and Renewable Energy Network

(EREN),http://www.environmental.com expert.com/articles/article193/article193.htm

[9] Energy Systems Research Unit (ESRU), http://www.esru.strath.ac.uk

$0.00$5.00

$10.00$15.00$20.00

Electricity Gas \ Fuel Water \Sewer

Energy Cost ($) Per Occupied Room(Jan-Jun Av.)

2013

2014

$0.0$200.0

$400.0

$600.0

$800.0

20142013

Yearly Energy Costs :(Thousands)

Electricity Gas \ Fuel Water \Sewer

Jan- Jun 2014

Jan- Jun 2013

Total energy costs ($) 415626 473147

No of Occupied Rooms 30236 25002

Total Energy KWh (Jan-Jun) 411209 465427

KWh /POR 13.6 18.62

$/POR 13.7 18.9

Jan- Jun Saving KWh POR % 29.3

Jan- Jun Saving ($) POR % 27.4

Page 49: The Fifth International Energy Conference - Palestine -

46

Table IV. Evaluates the energy consumption against sister properties benchmark, where it shows that the property indicator falls in good boundary of benchmark . Table III 2013-2014 Energy Saving Indicator POR over Jan-June period

Table IV June-2014 Energy Results Utility Good Benchmark Hotel Electricity <150 86 KW/m2/year Gas/Fuel <140 77 KW/m2/year Water <750 380 Liters/Guest Actual data for the years 2013 and 2014 also traced to examine the effectiveness of energy conservation action plan in the hotel. This is illustrated in the Figure 1 and Figure 2. The variation can be noticed from the graphs. The indicator of cost is changing from 18.9$POR in 2013 to 13.7$POR which indicates 27.4 % expected energy energy saving by 2014 closing . And It also shows 29.3% saving of energy KWh per occupied room.

Figure 1. Monthly Average(over Jan-June) Energy cost in $ Per Occupied Room

After energy conservation actions were evaluated by the Palestinian Ministry of Energy the Hotel were received the Energy Efficiency Award as the Best Green Hotel in Palestine .The Energy Conservation Award for Jordan & Palestine region were granted to Bethlehem IC hotel after the hotel achieved the highest energy saving for electricity and water .

VII. CONCLUSION The effectiveness of green and energy conservation action planning was tested on the case study illustrated with

successful results. Investment is worthwhile and will return the back in a reasonable time.

Figure 2. Total Energy Consumption Cost (K$) 2013-2014

After assessing the accumulation of mechanical items, significant energy saving opportunities were found. The case study showed that about 29.3 % of annual energy can be saved by methods of green action planning. The actual energy conservation of the hotel compared to previous years verifies the expected outcome of conservation. The capital investment needed to implement the proposed energy projects is USD 248,000 which means that the payback period is about 1.3 year which considered very effective for return of investment. The Green action plan experienced in this study can be shred to similar public properties like hospitals, universities and airports.

VIII. ABBREVIATIONS: HVAC: Heating Ventilation Air Conditioning BMS: Building Management System VAV: Variable Air Volume . I/O : Input , Output FCU: Fan coil Unit AHU : Air Handling Unit DHW : Demotic Hot Water . LPG: Liquid Petroleum Gas . ROI : Return of Investment . POR : Per Occupied Room . LED : Light emitting diode .

REFERENCES [1] Palestinian Energy & Environment Research ,June 2011, Energy Audit

Report. [2] Center Lodging Magazine, October 2001, www.lodgingnews.com,

1.07.2002 [3] Building Research Establishment (BRE), http://www.bre.co.uk [4] InterContinental Hotels Group (IHG) , www.ihg.com [5] InterContinental Hotels Group green Engage

http://www.ihgplc.com/index.asp?pageid=742 [6] Diana Schumacher, Energy : Crisis or Opportunity? [7] Donald R. Wulfinghoff, The Modern History of Energy Conservation:

An Overview for Information Professionals. [8] Energy Efficiency and Renewable Energy Network

(EREN),http://www.environmental.com expert.com/articles/article193/article193.htm

[9] Energy Systems Research Unit (ESRU), http://www.esru.strath.ac.uk

$0.00$5.00

$10.00$15.00$20.00

Electricity Gas \ Fuel Water \Sewer

Energy Cost ($) Per Occupied Room(Jan-Jun Av.)

2013

2014

$0.0$200.0

$400.0

$600.0

$800.0

20142013

Yearly Energy Costs :(Thousands)

Electricity Gas \ Fuel Water \Sewer

Jan- Jun 2014

Jan- Jun 2013

Total energy costs ($) 415626 473147

No of Occupied Rooms 30236 25002

Total Energy KWh (Jan-Jun) 411209 465427

KWh /POR 13.6 18.62

$/POR 13.7 18.9

Jan- Jun Saving KWh POR % 29.3

Jan- Jun Saving ($) POR % 27.4

47

Near Zero Energy House in Palestine: Identification of the Future Challenges

Bader Alatawneh Department of Architecture Università Degli Studi Di Palermo Palermo, Italy [email protected]

Rossella Corrao Department of Architecture

Università Degli Studi Di Palermo Palermo, Italy

[email protected]

Abstract— Most of researches and experiences of the concept of near zero energy buildings (NZEBs) are highly concentrated on the developed countries more than the developing countries due to many reasons related to the different contexts conditions. This paper is a part of a PhD thesis, which is being supervised by the Department of Architecture at the University of Palermo. The paper aims at highlighting the challenges facing the house design in Palestine as a developing country in terms of NZEBs by making a study which is related to discussing different experiences in the field of energy saving strategies in Palestine and some surrounded countries, such as Jordan which shares certain climatic and architectural characteristics with Palestine. The data analysis process is based on the study of several attempts and experiences taking into consideration the contemporary house design situation in Palestine. This study follows a classification of challenges toward near zero energy house (NZEH) into two categories; firstly the organizational challenges; such as costs, policies, and training challenges in effect relates to how society organizes itself and establishes its priorities. Secondly, the technical challenges of the NZEBs. The discussed results should be considered in the influential governmental institutions to provide the requisite leadership decisions for planning better future built-up environment in Palestine, also in other countries which have nearly similar context.

Keywords; NZEBs, Challenges, Mediterranean climate.

I. INTRODUCTION Within the first decade of the 21st century, several

architectural trends have been ranked on top of the world’s interests related to the design of environmental friendly buildings by considering the utilization of renewable energy sources, reducing carbon dioxide emission, and limiting costs associated with operating buildings. Accordingly, many researchers have focused on the concept of near zero energy buildings, which is related to the buildings that produce nearly the same amount of energy that they consume. Various design considerations are taken through the design of NZEBs; the passive and active solar design systems, beside many other environmental aspects those are recommended as guidelines to achieve effective environmental designs.

The nonexistent of non-renewable energy resources in developing countries such as Palestine has led to the increase of houses running cost due to the large dependency on fossil fuel import and consumption. On the other hand, utilizing from

renewable energy and natural resources are within reach due to the variety of climatic and geographic features of the Palestinian regions. Renewable resources, represented by solar energy, wind, and geothermal energy, have the capability to be employed and included within any design process once it is easy to obtain them. Some successful attempts and experiments, regarding utilizing from renewable energy have taken place in the region, but on a very limited scale. Thus, it has become an urgent need more than ever before to make a comprehensive study about form and function of the future house in Palestine that does not rely on any form of non- renewable energy.

II. CHALLENGES TOWARD NZEH IN PALESTINE Several studies were extracted to discuss near zero energy

houses in the world countries, but none of them were talking about Palestine, few of them were talking about the developing countries according to the European commission report which was made by ECOFYS et al. (2013). Most of these studies focused on pursuit of net zero energy building to get energy efficiency and energy conservation from a perspective of operation system, but these studies didn’t take other impacts of buildings into consideration and often ignored together [1]. Most of these studies include several challenges facing design and implementation of NZEH [2], all of them can be found in Palestine also as the following categories:

A. Organizational Challenges These challenges include several organizational aspects

related to the general context of a country such as :

1. Financial Aspects

The most important aspects that must be the base for any developmental issue are the fund and the cost. The cost must be as less as possible and the fund has to be as much as possible to meet the basic needs of a project. Therefore, regarding both sides (fund and cost), several challenges facing the implementation of near zero energy houses in the world, especially within the developing countries including Palestine. But as a special case, Palestine has very few sources of fund to support the energy saving projects within houses due to some technological issues that cost a lot of money beside the lack of funding sources, despite the few

Maria Luisa Germanà Department of Architecture

Università Degli Studi Di Palermo Palermo, Italy

[email protected]

Page 50: The Fifth International Energy Conference - Palestine -

48

trials and experiences toward using renewable energy systems in some specific projects there. Instead of the high cost of construction process and building materials relatively with people average income level and the few attention to environmental issues among the labor market.

2. Policy Aspects

On the policy level, Palestinian green building council (PGBC) has been established on the last few years as non-governmental organization (NGO) which involves several qualified professionals from Palestine within this field. PGBC created a manual to be followed by architects of Palestine in the means of designing and retrofitting of buildings in order to fit the international standards of green buildings. This is a valuable achievement, but still there are very few sharp governmental mandatory rules that can be used as a way to apply a comprehensive country policies including the municipal, provincial and national governmental policies that aim at reducing fossil fuel prices and usage, or to facilitate industrial development, international trade, and social services. In addition to the involvement of the public awareness toward NZEBs and their benefits for the communities in the future approaches.

3. Training Aspects

According to the nonexistence of NZE houses in Palestine, stakeholders have no sufficient training related to the technology’s market at present and how they should deal with this market changes in the future. The lake of well trained architects or engineers those who learned the context demands for saving energy, design ways, and technologies of NZEBs. The major house’s design technologies those used in near zero energy houses are nearly off-the-shelf, the challenge is how to design and integrate various design combinations to achieve the near zero energy goals.

B. Technical Challenges These challenges generally are related to the existence of

technologies and how they perform well. These challenges include several technical aspects related to the house design itself such as:

1. Construction Materials

In the past, construction materials have contributed in determining the house type, and size of the internal spaces. Thus, the architectural and urban styles in the old Palestinian cities were affected by the construction materials that were available, the prevailing climate in that region, geography and people’s needs. Dependently, the simple houses were not different from other houses except by their size according to the number of family members and the economic, social and political situation of the family [3]. Most of new houses facades are constructed from natural stone and concrete as the common building envelope layers. In few houses cases, external wall layers contains from:

natural stone, concrete, thermal insulation and concrete blocks successively as a way to enhance the thermal efficiency of the house, but this way of construction might not be used to build the future houses, because the natural stone is considered as unsustainable material, of course it will be depleted in some day. It is worth to mention that stone mining areas in Palestine became an environmental catastrophe due to destroying and changing of all natural mountains’ shape to steep and ugly cliffs. Within the same issue, in some regions such as Jericho and Gaza, there are availability to use different materials such as earth due to the suitable climate and geology or due to the cost and lack of building materials which specially can be found in Gaza which suffers from various living obstacles due to the complex occupational situation there.

2. Construction Technologies

Nowadays several architectural and environmental works went to solve energy problems using modern techniques, this issue has made a gap between traditional and modern architectural solutions and designs. Mostly, energy saving technologies are depending now on mechanical and electrical solutions such as air conditioning machines, which neglects the role of architectural design of the house itself. Due to this, some researchers and designers went to focus mainly on the ways of combining traditional architectural techniques (passive designs) and zero carbon energy systems beside other active technologies to design contemporary houses or buildings [4].

Most of new buildings in Palestine are still treated as a structure not as a living space that needs special attention to keep the internal atmosphere and temperatures in comfortable level, during summer and winter times. Insulation materials are sometimes used in a typical detail without thermal calculations; different house’s areas and spaces with different orientation have the similar openings and were treated and isolated with the same environmental solutions, similar construction materials, and the same wall section and thicknesses. New construction methods in Palestine pay a little attention to climate, many people build their house without referring to any engineering consultancy. In addition, most of designers do not consider climate as an important aspect to be followed in design process, many buildings do not provide the occupants with the comfortable environment they wish, this comfortable environment can be only achieved by using equipment such as expensive air conditions and heaters. As the case of Palestine, energy is valuable and out of reach for many people, but this became unreasonable. Furthermore, some people are using wood for heating in winter, which lead to a destruction of nature because forests also are few in Palestine.

Page 51: The Fifth International Energy Conference - Palestine -

48

trials and experiences toward using renewable energy systems in some specific projects there. Instead of the high cost of construction process and building materials relatively with people average income level and the few attention to environmental issues among the labor market.

2. Policy Aspects

On the policy level, Palestinian green building council (PGBC) has been established on the last few years as non-governmental organization (NGO) which involves several qualified professionals from Palestine within this field. PGBC created a manual to be followed by architects of Palestine in the means of designing and retrofitting of buildings in order to fit the international standards of green buildings. This is a valuable achievement, but still there are very few sharp governmental mandatory rules that can be used as a way to apply a comprehensive country policies including the municipal, provincial and national governmental policies that aim at reducing fossil fuel prices and usage, or to facilitate industrial development, international trade, and social services. In addition to the involvement of the public awareness toward NZEBs and their benefits for the communities in the future approaches.

3. Training Aspects

According to the nonexistence of NZE houses in Palestine, stakeholders have no sufficient training related to the technology’s market at present and how they should deal with this market changes in the future. The lake of well trained architects or engineers those who learned the context demands for saving energy, design ways, and technologies of NZEBs. The major house’s design technologies those used in near zero energy houses are nearly off-the-shelf, the challenge is how to design and integrate various design combinations to achieve the near zero energy goals.

B. Technical Challenges These challenges generally are related to the existence of

technologies and how they perform well. These challenges include several technical aspects related to the house design itself such as:

1. Construction Materials

In the past, construction materials have contributed in determining the house type, and size of the internal spaces. Thus, the architectural and urban styles in the old Palestinian cities were affected by the construction materials that were available, the prevailing climate in that region, geography and people’s needs. Dependently, the simple houses were not different from other houses except by their size according to the number of family members and the economic, social and political situation of the family [3]. Most of new houses facades are constructed from natural stone and concrete as the common building envelope layers. In few houses cases, external wall layers contains from:

natural stone, concrete, thermal insulation and concrete blocks successively as a way to enhance the thermal efficiency of the house, but this way of construction might not be used to build the future houses, because the natural stone is considered as unsustainable material, of course it will be depleted in some day. It is worth to mention that stone mining areas in Palestine became an environmental catastrophe due to destroying and changing of all natural mountains’ shape to steep and ugly cliffs. Within the same issue, in some regions such as Jericho and Gaza, there are availability to use different materials such as earth due to the suitable climate and geology or due to the cost and lack of building materials which specially can be found in Gaza which suffers from various living obstacles due to the complex occupational situation there.

2. Construction Technologies

Nowadays several architectural and environmental works went to solve energy problems using modern techniques, this issue has made a gap between traditional and modern architectural solutions and designs. Mostly, energy saving technologies are depending now on mechanical and electrical solutions such as air conditioning machines, which neglects the role of architectural design of the house itself. Due to this, some researchers and designers went to focus mainly on the ways of combining traditional architectural techniques (passive designs) and zero carbon energy systems beside other active technologies to design contemporary houses or buildings [4].

Most of new buildings in Palestine are still treated as a structure not as a living space that needs special attention to keep the internal atmosphere and temperatures in comfortable level, during summer and winter times. Insulation materials are sometimes used in a typical detail without thermal calculations; different house’s areas and spaces with different orientation have the similar openings and were treated and isolated with the same environmental solutions, similar construction materials, and the same wall section and thicknesses. New construction methods in Palestine pay a little attention to climate, many people build their house without referring to any engineering consultancy. In addition, most of designers do not consider climate as an important aspect to be followed in design process, many buildings do not provide the occupants with the comfortable environment they wish, this comfortable environment can be only achieved by using equipment such as expensive air conditions and heaters. As the case of Palestine, energy is valuable and out of reach for many people, but this became unreasonable. Furthermore, some people are using wood for heating in winter, which lead to a destruction of nature because forests also are few in Palestine.

49

3. Climatic Zones

Palestine has several climatic zones that have different temperatures and different climatic conditions due to the topographical and environmental varieties. Those zones are classified as the coastal zone, mountainous zone, Negev desert, Jericho and Jordan valley. A design challenge of buildings appears here because changing of climate means change in building design techniques and construction materials. Finding rules for Palestinian near zero energy house means finding several models and solutions in the future for each climatic zone there.

4. Renewable Energy Sources

In Palestine, there is a slightly different context from several countries in the world, due to the fact that Palestine is a developing country under occupation with nonexistence of non-renewable energy sources such as fuel. Therefore, the running cost of the Palestinian house is very high in comparison with others outside Palestine. Due to the occupation, Palestinians do not have the control of existed natural resources, such as water resources, salt mining from the dead sea, fields of producing electricity, and other natural resources. Accordingly, the need to re-thinking of how to apply the basics of zero energy house to the Palestinian context within the available resources that can be refurbished, renewable energies, and architectural elements that can be drawn from architectural heritage as in the rest of the world countries to exploit the passive and active solar solutions in architectural design.

III. LOCAL AND REGIONAL EXPERIENCES Regarding that no NZEBs experiences in Palestine until

now, but it does not mean that there is no attempts and trials related to the environmental designs approach, and low cost houses. The necessity to save energy pushed the ministry of energy to facilitate the use of solar cells within buildings to encourage people to use them within their own houses. Several valuable experiences can be found in Palestine and the surrounding countries such as Jordan and other countries within the Mediterranean region. Some of those experiences can be mentioned as:

a) Local Experiences Some valuable houses design and construction ideas were created by some architects of Palestine to apply the concept of environmental house or to find low cost solutions of houses. Some examples can be mentioned here:

Recently, the group of Shams-Ard for environmental design succeeded in designing and building houses of earth in Jericho (Fig.1) as a concept of reviving the earthen architecture with lower cost in comparison to contemporary houses there. This way of building is similar to Hassan Fathy’s architecture for “poor” in Egypt.

Figure 1. Mud house in Jericho by Shams-Ard group Source: Shams- Ard group photography

Several attempts were created also by using earth in Gaza strip between 2006 to 2014 due to the lake of construction materials which happened due to the occupation, especially after the last Israeli aggression in 2014. Those attempts were more environmental friendly and social houses that meet people’s basic needs as a place to shelter them without cost for a certain period of time.

Architect Hani Hassan won an international award related to a design concept for an environmental house in Jericho which was a new concept for the desert house that saves energy and achieves environmental equilibrium (Fig.2).

Figure 2. Desert house in Jericho by Hani Hasan Source: Hani Hassan consultant office website

Those local attempts took the attention as they solve some environmental problems related to Palestinian context such as materials and concepts toward greener architecture with the absence of public awareness of the importance of renewing architectural methods and designs to match the local environment.

b) Regional Experiences Jordanian context is very near to the Palestinian context by

sharing identity, culture, construction materials, technologies, etc. Thus, there are some architectural attempts also in Jordan that can be mentioned in the field of NZEH and earthen architecture as follow:

Ayoub Abu-Dayieh is a Jordanian architect who designed his own environmental house with very low running cost due to several passive and active solar

Page 52: The Fifth International Energy Conference - Palestine -

50

technologies were used in this house. He paid other architects attention toward this successful attempt.

Jana Khalili also designed her own house in Jordan from earth as a way to find low cost environmental friendly houses, to be an example for other people to follow, as a way of finding other low cost materials instead of the natural stone (Fig. 3). At the same time this house is designed to resist earthquakes.

Other architects also assures these problems facing the building sector. But all of these personal or organizational efforts must be followed by intensive public efforts to achieve a group of guidelines for the future of the region.

Figure 3. Earthen house in Jordan by Jana Khalili

Source: Al-Jazeera net website

IV. CONCLUSIONS To conclude, several challenges are facing the concept of near zero energy houses in the world not only Palestine or Jordan, and may some other challenges appear in the future. Several trials as mentioned in this paper are going to change the stone as a building material due to its high cost, and replace it by earth, but earth doesn’t fit all the climatic regions, so it can be maintained to fit the different climates.

Accordingly, the first crucial need that had been highlighted here is thinking of the future of building materials in Palestine, due to that the natural stone is not a sustainable material, it will be depleted one day, beside the negative effects of cut-stone sites on the environment. Therefore, more passive design strategies and concepts can be involved within technical challenges aspect to enhance the house design situation. Also architects must utilize from different NZEBs solutions those can be found in the world countries with different contexts and different variables. Secondly, an important organizational aspect is related to the public awareness starting from architects and engineers until clients to insure the importance of the concept of NZEH and its environmental benefits to reduce CO2 emission within the environment. Also by going back to the mentioned experiences in this paper, the person can find a huge gap of cost between stone constructed houses and earth constructed houses, the stone ones may cost around 240,000 Euros, while the mud house cost less than 50,000 Euros according to the designers of those houses themselves. So, the public awareness must take into account the cost issues which

bring people’s attention toward low cost designs of zero energy houses that are not easily optimized, and can be developed in some ways in the future [5].

Finally, those mentioned challenges are nearly common in other world countries but in different levels. Also the low cost houses are crucially needed in the developing countries more than other countries due to people’s income levels.

V. RECOMMENDATIONS A series of recommendations can be addressed here to be

taken into consideration by architects in Palestine and other related contexts, these recommendations can be shorten by the following points:

1- Building materials or structures must be improved to have more thermal performance inside houses.

2- More effective methods can decrease nonrenewable energy consumption to near zero with the existing of renewable energy sources, have to be followed.

3- Architects have to reuse the traditional architectural elements in future designs to insure the identity and to benefit from the historical passive design solutions.

4- Patio house can be reactivated these days due to its enhancing of spatial harmonies and energy efficiency.

5- More scientific researches must be conducted in the future to study the future governmental plans for energy efficient house strategies and rules. In addition to the study of the development of sustainable energy policies and strategies to eliminate the barriers to net zero energy housing.

6- Playing efforts toward minimizing the cost and maintenance process of construction materials in an effective way, beside the involvement of technologies of active designs.

REFERENCES

[1] ECOFYS, Polytechnic of Milan, University of Wuppertal, & ERG. Towards nearly zero-energy buildings: Definition of common principles under the EPBD. European commission report. Project number: BESDE10788. Germany, 2013.

[2] G. Nazif, and H. Altan, “Zero Energy House Design for Cyprus: enhancing energy efficiency with vernacular techniques”, 13th Conference of International Building Performance Simulation Association, Chambéry, France, pp.2979-2985, 2013.

[3] M. Brostorm, and G. Howell, “The Challenges of Designing and Building a Net Zero Energy Home in a Cold High-Latitude Climate”, 3rd International Solar Cities Congress, Adelaide - South Australia, 2008.

[4] O. Hamdan, “Folk architecture of Palestine” Albireh: Family reviving association, Arabic language book, 1996.

[5] S. Attia, “Computational Optimization for Zero Energy Building Design: Interviews with twenty eight international experts”, International Energy Agency (IEA), task 40, Zero Energy Buildings Subtask B, 2012.

[6] S. Hogue, “Net Zero Energy Homes: an evaluation of two homes in the north-eastern United States”, Journal of Green building, college publishing, Vol. 5, N.2, pp.79-90 , 2010.

Page 53: The Fifth International Energy Conference - Palestine -

50

technologies were used in this house. He paid other architects attention toward this successful attempt.

Jana Khalili also designed her own house in Jordan from earth as a way to find low cost environmental friendly houses, to be an example for other people to follow, as a way of finding other low cost materials instead of the natural stone (Fig. 3). At the same time this house is designed to resist earthquakes.

Other architects also assures these problems facing the building sector. But all of these personal or organizational efforts must be followed by intensive public efforts to achieve a group of guidelines for the future of the region.

Figure 3. Earthen house in Jordan by Jana Khalili

Source: Al-Jazeera net website

IV. CONCLUSIONS To conclude, several challenges are facing the concept of near zero energy houses in the world not only Palestine or Jordan, and may some other challenges appear in the future. Several trials as mentioned in this paper are going to change the stone as a building material due to its high cost, and replace it by earth, but earth doesn’t fit all the climatic regions, so it can be maintained to fit the different climates.

Accordingly, the first crucial need that had been highlighted here is thinking of the future of building materials in Palestine, due to that the natural stone is not a sustainable material, it will be depleted one day, beside the negative effects of cut-stone sites on the environment. Therefore, more passive design strategies and concepts can be involved within technical challenges aspect to enhance the house design situation. Also architects must utilize from different NZEBs solutions those can be found in the world countries with different contexts and different variables. Secondly, an important organizational aspect is related to the public awareness starting from architects and engineers until clients to insure the importance of the concept of NZEH and its environmental benefits to reduce CO2 emission within the environment. Also by going back to the mentioned experiences in this paper, the person can find a huge gap of cost between stone constructed houses and earth constructed houses, the stone ones may cost around 240,000 Euros, while the mud house cost less than 50,000 Euros according to the designers of those houses themselves. So, the public awareness must take into account the cost issues which

bring people’s attention toward low cost designs of zero energy houses that are not easily optimized, and can be developed in some ways in the future [5].

Finally, those mentioned challenges are nearly common in other world countries but in different levels. Also the low cost houses are crucially needed in the developing countries more than other countries due to people’s income levels.

V. RECOMMENDATIONS A series of recommendations can be addressed here to be

taken into consideration by architects in Palestine and other related contexts, these recommendations can be shorten by the following points:

1- Building materials or structures must be improved to have more thermal performance inside houses.

2- More effective methods can decrease nonrenewable energy consumption to near zero with the existing of renewable energy sources, have to be followed.

3- Architects have to reuse the traditional architectural elements in future designs to insure the identity and to benefit from the historical passive design solutions.

4- Patio house can be reactivated these days due to its enhancing of spatial harmonies and energy efficiency.

5- More scientific researches must be conducted in the future to study the future governmental plans for energy efficient house strategies and rules. In addition to the study of the development of sustainable energy policies and strategies to eliminate the barriers to net zero energy housing.

6- Playing efforts toward minimizing the cost and maintenance process of construction materials in an effective way, beside the involvement of technologies of active designs.

REFERENCES

[1] ECOFYS, Polytechnic of Milan, University of Wuppertal, & ERG. Towards nearly zero-energy buildings: Definition of common principles under the EPBD. European commission report. Project number: BESDE10788. Germany, 2013.

[2] G. Nazif, and H. Altan, “Zero Energy House Design for Cyprus: enhancing energy efficiency with vernacular techniques”, 13th Conference of International Building Performance Simulation Association, Chambéry, France, pp.2979-2985, 2013.

[3] M. Brostorm, and G. Howell, “The Challenges of Designing and Building a Net Zero Energy Home in a Cold High-Latitude Climate”, 3rd International Solar Cities Congress, Adelaide - South Australia, 2008.

[4] O. Hamdan, “Folk architecture of Palestine” Albireh: Family reviving association, Arabic language book, 1996.

[5] S. Attia, “Computational Optimization for Zero Energy Building Design: Interviews with twenty eight international experts”, International Energy Agency (IEA), task 40, Zero Energy Buildings Subtask B, 2012.

[6] S. Hogue, “Net Zero Energy Homes: an evaluation of two homes in the north-eastern United States”, Journal of Green building, college publishing, Vol. 5, N.2, pp.79-90 , 2010.

51

Oxygen Enriched Combustion of Biodiesel/Petro-diesel Blends in Internal Combustion Engines

Mohammed Alsayed Energy Eng. and Environment Dept.

An-najah National University Nablus, Palestine

[email protected]

Abedalraheem Abusafa Chemical Engineering Dept. An-najah National University

Nablus, Palestine [email protected]

Husni Odeh Chemical Engineering Dept. An-najah National University

Nablus, Palestine [email protected]

Abstract— The main purpose of this study is to

investigate the environmental effects of using oxygen enriched air in internal combustion engines with biodiesel and petro-diesel mixtures as a fuel. A four stroke compression ignition internal combustion engine was used to perform the experiments. The air was enriched with oxygen (O2) by mixing the intake air with pure O2 before entering the combustion chamber. The mole fraction of O2 in the enriched air was 0.21-0.24. The biodiesel was mixed with petro-diesel in the volume ratios of 0/1 to 0.15/0.85 (B0 – B15). For O2 enrichment adjustment and exhaust emissions measurements, a Bacharach module 300 combustion analyzer was used.

Results showed that increasing O2 concentration in the intake air has increased exhaust gas temperature with all fuels mixtures (B0-B15), the highest exhaust temperature difference with respect to B0 fuel and 21% O2 as a reference was 14%, and this result was achieved when 24% O2 concentration was used with B0. Also, higher biodiesel fuel portion intensify the combustion process and increase the exhaust gas temperature due to the additional O2 quantities contained in it, 7.4% temperature difference was recorded when using B15 with 21% O2 intake air. This temperature difference can be assumed as an indicator of thermal efficiency improvement. In addition, applying oxygen enriched combustion technology and biodiesel fuels affect exhaust emissions by increasing or decreasing its composition. NOx emissions have increased when using O2 enriched air with blended fuel; in contrast, it has decreased when using either higher O2 concentration or higher biodiesel fuel concentrations. For CO emissions, results showed that it have been decreased when higher O2 concentrations with B0 were used. However, when increasing O2 intake air concentration with higher biodiesel portions, CO exhaust emissions increase, it happened as a result of CO prompt formation, results show that when using 23% O2 intake air and B15 fuel, CO emissions increased 150.3% with respect when using 23% O2 intake air and B0, but when using 21% O2 concentration with B15 fuel, CO emissions increased 104.5% with respect to 21% O2-B0 reference. Finally, SO2 emissions did not changed in all executed experiments.

Keywords-Biodiesel; Oxygen Enriched Combustion; Environmental Emissions

I. INTRODUCTION Global energy consumption proportionally increases with

population size; moving from the current 6.7 billion to the projected 9.6 billion in 2050 equals to 43% increase. The

energy consumption growth is not linearly related to population growth; instead, it depends strongly on the living standards which increase in an exponential manner [1]. Among different energy consuming sectors, the transportation is a crucial. Global number of cars on road is explosively increasing, which burdens the environment with a lot of emissions related challenges such as global warming and acid rain, and reduces the estimated life time for fossil fuels reservoirs. Thus, developing new environment-friendly engineering solutions to help moving toward sustainable energy development is crucial. Among available alternatives, bio-fuels show promising future. It has many technical and environmental attractive features, moreover, it is renewable, and has the potential to meet sustainability goals. However, before broadly using bio-fuels in transportation applications, technical, economic, and environmental challenges still needs to be solved. The most important phase in this process is the energy conversion one, which is the combustion process.

Previous literatures are rich of contributions to test and improve bio-fuels combustion processes performance and exhaust emissions. [2-5] tested a diesel engine performance and emissions characteristics when using biodiesel. Other researches focused on the combustion process, [6, 7] studied combustion characteristics of diesel engine with petro-diesel and biodiesel fuels, [8] performed detailed investigation about the effects of using biodiesel fuels on diesel engine emissions, including CO and NOx, and [9] performed a comparison between biodiesel, vegetable oil, gas-to-liquid and petro-diesel fuels based on its combustion emissions and mutagenicity. In contrast, [10] focused on the impact of using biodiesel on vehicle performance and fuel consumption, where an on-road comparison of two identical cars has been investigated.

Moreover, applying OEC technology to ICE has been considered in previous contributions. [11] tested the performance of a single-cylinder diesel engine using oxygen-enriched intake air at simulated high-altitude conditions. [12] studied The effect of oxygen enriched air obtained by gas separation membranes from the emission gas of diesel engines. [13] performed a theoretical study of diesel engine performance and pollutant emissions using oxygen enrichment techniques. Other researchers tested the effects of using oxygenated fuels by blending biodiesel with different alcohols. In this context, [14-16] investigated the potential for emission reduction by using methanol, ethanol, biodiesel, and diesel blends on. In addition, due to the promising future of biodiesel, some contributions have been dedicated to make comprehensive reviews of the field, such as [17-19].

Page 54: The Fifth International Energy Conference - Palestine -

52

However, in all previous contributions, either biodiesel effects on engine performance and exhaust emissions, or OEC technology has been investigated separately. Even when oxygenate fuels (biodiesel-alcohol) blends were tested, alcohols contain other compounds (carbon and hydrogen) which makes it like a fuel. There is a lack of researches applying OEC technology with bio-fuels on ICE in order to explore the effects on engine performance and emissions.

This paper presents an experimental work of applying OEC technology with biodiesel-petrodiesel blends on a four stroke diesel ICE Volkswagen passat to study its effects on exhaust gas temperature and emissions, specifically, CO, NOx, and SO2. The remaining part of this paper is organized as follows; section II describes the combustion process theory; section III illustrates the experimental set up in this research; section IV presents the experimental results; and finally section V provides the conclusion.

II. COMBUSTION PROCESS It is a chemical reaction during which a fuel is oxidized

(using O2 in the atmospheric air) and a large quantity of thermal energy is released. Figure -1- demonstrates the basic combustion equation, and Table -I- shows its products which are of interest in this research. Typically, to insure (as much as possible) complete combustion, more air carrying 21% O2 by volume (excess air) is passed through the burner than the chemically required (stoichiometric). Excess air speeds up the mixing of fuel and air and ensure complete combustion. Unfortunately, it wastes energy by carrying heat out through the exhaust. [20-24]

Figure 1. Combustion inputs/outputs basic equation

TABLE I. COMBUSTION PROCESS PRODUCED EMISSIONS.

Emission Source Effect CO2 (Carbon

Dioxide) Complete combustion of

carbon fuels Global warming

CO (Carbon Monoxide)

Incomplete combustion of carbon fuels

Smog

SO2 (Sulpher Dioxide)

Combustion of Sulphur fuels

Smog and acid rain

NOx (Nitrogen Oxides)

By-product of most combustion processes

Acid rain

III. EXPERIMENTAL SETUP

The objective of this research is to analyze the effects of using higher OEL on ICEs exhaust emissions using petro-diesel, and blended petro-diesel with bio-diesel fuels. To do so, a ―Bacharach‖ module 300 combustion analyzer has been used to measure the exhaust emissions, and the experiments were performed using compression ignition four stroke engine Volkswagen passat. Table II illustrates the used engine specifications.

The experimental biodiesel was produced using waste cooking oil at An-Najah National University Chemical Engineering laboratories. In all experiments, its portions did not exceed 15% from total fuel volume in order to protect the engine, higher (>20%) concentrations needs special engine

modifications, the blended fuel will be denoted by symbols such as Bx, where x represents biodiesel portion. For example B5 means a mixture of 95% petro-diesel and 5% biodiesel by volume.

For intake air, low OEL were used; it did not exceed 24% of the intake air in order to protect the engine, higher oxygen enrichment levels need special engine modifications due to the expected higher output temperature [24]. The intake air OEL was increased by injecting pure O2 from a cylinder directly to the mixing chamber. The experimental setup of this part is shown in Figure 3.

TABLE II. EXPERIMENTAL ENGINE AND SOFTWARE SPECIFICATIONS

Number of cylinders 4/OHC Capacity 1896 CC

Compression ratio 19.5:1 Injection pump assembly Bosch

Pump type Rotary Injection sequence 1-3-4-2

Injection nozzle Bosch Nozzle opening pressure-new/used 190-200/170

Leak rate (dribble) 150/10 bar/sec. Software Herman DiGIS-applications ©

AVL DiTEST V2.2

ICEMixing Chamber

CombustionAnalyzer

O2 cylinder Inject pure O2

Adjust OEL

Exhaustemissions

Measure outputemissions

Atmospheric air

Figure 3: Experimental setup for Oxygen enriched combustion with internal

combustion engine.

IV. RESULTS AND DISCUSSION

To perform a representative analysis, in addition to the engine rpm, two main variables were taken into considerations; which are the biodiesel to petro-diesel ratio, and the OEL.

In this research, in addition to the 21% O2 level which is the normal air composition, two OELs were applied, which are 22% O2 and 23% O2. In the preliminary experiments, 24% OEL has been applied; however, results showed that there are no significant differences in comparison to 23% OEL. Effects of changing the aforementioned variables on exhaust gas temperature, CO exhaust emissions, and NOx exhaust emissions were considered. These effects were investigated using two analytical strategies for the achieved results. The first one is analyzing results when using different biodiesel concentrations at the same OEL, results are shown in figure 4. It can be noticed that using higher biodiesel concentration resulted slightly higher exhaust temperature in all OELs, especially when comparing the results of B0 and B15, this might be assumed an important indicator that biodiesel released higher energy, it happens because biodiesel is an oxygenated fuel and contains on average 10% of its weight as oxygen which improves the combustion efficiency [25].

Page 55: The Fifth International Energy Conference - Palestine -

52

However, in all previous contributions, either biodiesel effects on engine performance and exhaust emissions, or OEC technology has been investigated separately. Even when oxygenate fuels (biodiesel-alcohol) blends were tested, alcohols contain other compounds (carbon and hydrogen) which makes it like a fuel. There is a lack of researches applying OEC technology with bio-fuels on ICE in order to explore the effects on engine performance and emissions.

This paper presents an experimental work of applying OEC technology with biodiesel-petrodiesel blends on a four stroke diesel ICE Volkswagen passat to study its effects on exhaust gas temperature and emissions, specifically, CO, NOx, and SO2. The remaining part of this paper is organized as follows; section II describes the combustion process theory; section III illustrates the experimental set up in this research; section IV presents the experimental results; and finally section V provides the conclusion.

II. COMBUSTION PROCESS It is a chemical reaction during which a fuel is oxidized

(using O2 in the atmospheric air) and a large quantity of thermal energy is released. Figure -1- demonstrates the basic combustion equation, and Table -I- shows its products which are of interest in this research. Typically, to insure (as much as possible) complete combustion, more air carrying 21% O2 by volume (excess air) is passed through the burner than the chemically required (stoichiometric). Excess air speeds up the mixing of fuel and air and ensure complete combustion. Unfortunately, it wastes energy by carrying heat out through the exhaust. [20-24]

Figure 1. Combustion inputs/outputs basic equation

TABLE I. COMBUSTION PROCESS PRODUCED EMISSIONS.

Emission Source Effect CO2 (Carbon

Dioxide) Complete combustion of

carbon fuels Global warming

CO (Carbon Monoxide)

Incomplete combustion of carbon fuels

Smog

SO2 (Sulpher Dioxide)

Combustion of Sulphur fuels

Smog and acid rain

NOx (Nitrogen Oxides)

By-product of most combustion processes

Acid rain

III. EXPERIMENTAL SETUP

The objective of this research is to analyze the effects of using higher OEL on ICEs exhaust emissions using petro-diesel, and blended petro-diesel with bio-diesel fuels. To do so, a ―Bacharach‖ module 300 combustion analyzer has been used to measure the exhaust emissions, and the experiments were performed using compression ignition four stroke engine Volkswagen passat. Table II illustrates the used engine specifications.

The experimental biodiesel was produced using waste cooking oil at An-Najah National University Chemical Engineering laboratories. In all experiments, its portions did not exceed 15% from total fuel volume in order to protect the engine, higher (>20%) concentrations needs special engine

modifications, the blended fuel will be denoted by symbols such as Bx, where x represents biodiesel portion. For example B5 means a mixture of 95% petro-diesel and 5% biodiesel by volume.

For intake air, low OEL were used; it did not exceed 24% of the intake air in order to protect the engine, higher oxygen enrichment levels need special engine modifications due to the expected higher output temperature [24]. The intake air OEL was increased by injecting pure O2 from a cylinder directly to the mixing chamber. The experimental setup of this part is shown in Figure 3.

TABLE II. EXPERIMENTAL ENGINE AND SOFTWARE SPECIFICATIONS

Number of cylinders 4/OHC Capacity 1896 CC

Compression ratio 19.5:1 Injection pump assembly Bosch

Pump type Rotary Injection sequence 1-3-4-2

Injection nozzle Bosch Nozzle opening pressure-new/used 190-200/170

Leak rate (dribble) 150/10 bar/sec. Software Herman DiGIS-applications ©

AVL DiTEST V2.2

ICEMixing Chamber

CombustionAnalyzer

O2 cylinder Inject pure O2

Adjust OEL

Exhaustemissions

Measure outputemissions

Atmospheric air

Figure 3: Experimental setup for Oxygen enriched combustion with internal

combustion engine.

IV. RESULTS AND DISCUSSION

To perform a representative analysis, in addition to the engine rpm, two main variables were taken into considerations; which are the biodiesel to petro-diesel ratio, and the OEL.

In this research, in addition to the 21% O2 level which is the normal air composition, two OELs were applied, which are 22% O2 and 23% O2. In the preliminary experiments, 24% OEL has been applied; however, results showed that there are no significant differences in comparison to 23% OEL. Effects of changing the aforementioned variables on exhaust gas temperature, CO exhaust emissions, and NOx exhaust emissions were considered. These effects were investigated using two analytical strategies for the achieved results. The first one is analyzing results when using different biodiesel concentrations at the same OEL, results are shown in figure 4. It can be noticed that using higher biodiesel concentration resulted slightly higher exhaust temperature in all OELs, especially when comparing the results of B0 and B15, this might be assumed an important indicator that biodiesel released higher energy, it happens because biodiesel is an oxygenated fuel and contains on average 10% of its weight as oxygen which improves the combustion efficiency [25].

53

1000 1200 1400 1600 1800 2000

100

120

140

160

RPM

Tem

pera

ture

(Co )

O2 21%

1000 1200 1400 1600 1800 2000

100

120

140

160

RPM

Tem

pera

ture

(Co )

O2 22%

1000 1200 1400 1600 1800 2000

100

120

140

160

RPM

Tem

pera

ture

(Co )

O2 23%

1000 1200 1400 1600 1800 20000

500

1000

RPM

CO

(ppm

)

O2 21%

1000 1200 1400 1600 1800 20000

500

1000

RPM

CO

(ppm

)

O2 22%

1000 1200 1400 1600 1800 20000

500

1000

RPM

CO

(ppm

)

O2 23%

1000 1200 1400 1600 1800 20000

100

200

300

RPM

NO

x(p

pm)

O2 21%

1000 1200 1400 1600 1800 20000

100

200

300

RPM

NO

x(p

pm)

O2 22%

1000 1200 1400 1600 1800 20000

100

200

300

RPM

NO

x(p

pm)

O2 23%

B0 B5 B10 B15

Figure -4- Effects of using different biodiesel concentration at the same OEL

.

1000 1200 1400 1600 1800 2000

100

150

RPM

Tem

per

ature

(Co)

B0

1000 1200 1400 1600 1800 2000

100

150

RPM

Tem

per

ature

(Co)

B5

1000 1200 1400 1600 1800 2000

100

150

RPM

Tem

per

ature

(Co)

B10

1000 1200 1400 1600 1800 2000

100

150

RPM

Tem

per

ature

(Co)

B15

1000 1200 1400 1600 1800 20000

500

1000

RPM

CO

(ppm

)

B0

1000 1200 1400 1600 1800 20000

500

1000

RPM

CO

(ppm

)

B5

1000 1200 1400 1600 1800 20000

500

1000

RPM

CO

(ppm

)

B10

1000 1200 1400 1600 1800 20000

500

1000

RPM

CO

(ppm

)

B15

1000 1200 1400 1600 1800 20000

100

200

300

RPM

NO

x(p

pm

)

B0

1000 1200 1400 1600 1800 20000

100

200

300

RPM

NO

x(p

pm

)

B5

1000 1200 1400 1600 1800 20000

100

200

300

RPM

NO

x(p

pm

)

B10

1000 1200 1400 1600 1800 20000

100

200

300

RPM

NO

x(p

pm

)

B15

21% O2 22% O2 23% O2

Figure 5: Effects of using different OELs at the same biodiesel concentration.

For CO emissions, lower emissions were achieved when injecting 21% OEL (ambient air), while with higher OELs resulted higher CO emissions, the higher the biodiesel concentration leads to the higher CO emissions level. And finally, for NOx emissions, results were opposite to the CO

case, where applying higher biodiesel concentration with 21% O2 level results slightly higher NOx emissions; while when assuming higher OEL, increasing the biodiesel portion could improve the process and produce lower NOx emissions.

Page 56: The Fifth International Energy Conference - Palestine -

54

The other results analysis strategy is devoted to show clearly the effects of applying different OELs at the same biodiesel blend concentration, results are shown in figure 5. It might be noticed that using higher OEL increased the exhaust gas temperature more significantly than increasing the biodiesel concentration as presented in figure 4 before. However, CO emissions results show that applying higher OELs with B0 (pure petro-diesel) reduce CO emissions level, while when using biodiesel/petro-diesel blends, CO emissions level has increased, it might be concluded with the pre-described results in figure 4 that using either OEC technology or biodiesel fuel has the potential to reduce CO emissions level, but, when applying both OEC technology and biodiesel/petro-diesel fuel blends, CO emissions level has increased.

For the NOx emissions, results show that applying higher OEL increase the NOx emissions when B0 and B5 fuels are used, but when increasing biodiesel concentration

(B10 and B15), NOx emissions are almost the same with respect to all experimented OELs.

And finally, it is worth to mention that SO2 emissions were measured during all experiments, and it has not been changed when using higher biodiesel/petro-diesel ratio and/or higher OEL.

V. CONCLUSION

This research explores the potential of applying OEL technology on ICE with different biodiesel/petro-diesel ratio, experimental results proved higher exhaust temperature, which is a strong indicator about the combustion process thermal efficiency, for CO emissions, results show that applying both methods leads to higher CO emissions, and finally, NOx emissions which is very important from environmental point of view might be reduced when combining both methods.

REFERENCES [1] Noam Lior. Sustainable energy development: The present (2009)

situation and possible paths to the future. Energy Journal, 2010, vol. 35, pp. 3976-3994.

[2] Cherng-Yuan Lin, Hsiu-An Lin. Diesel engine performance and emission characteristics of biodiesel produced by the peroxidation process. Fuel 85 (2006) 298–305.

[3] D.H. Qi, H. Chen, L.M. Geng, Y.ZH. Bian, X.CH. Ren. Performance and combustion characteristics of biodiesel–diesel–methanol blend fuelled engine. Applied Energy 87 (2010) 1679–1686.

[4] Kyunghyun Ryu. The characteristics of performance and exhaust emissions of a diesel engine using a biodiesel with antioxidants. Bioresource Technology 101 (2010) S78–S82

[5] Hüseyin Aydin, Cumali _Ilkılıç. Effect of ethanol blending with biodiesel on engine performance and exhaust emissions in a CI engine. Applied Thermal Engineering 30 (2010) 1199–1204

[6] Mustafa Canakci. Combustion characteristics of a turbocharged DI compression ignition engine fueled with petroleum diesel fuels and biodiesel. Bioresource Technology 98 (2007) 1167–1175

[7] Ekrem Buyukkaya. Effects of biodiesel on a DI diesel engine performance, emission and combustion characteristics. Fuel 89 (2010) 3099–3105.

[8] Magı´n Lapuerta, Octavio Armas, Jose´ Rodrı´guez-Ferna´ndez. Effect of biodiesel fuels on diesel engine emissions. Progress in Energy and Combustion Science 34 (2008) 198–223. GOOD in results discussion

[9] Jürgen Krahl, Gerhard Knothe, Axel Munack, Yvonne Ruschel, Olaf Schröder, Ernst Hallier, Götz Westphal, Jürgen Bünger. Comparison of exhaust emissions and their mutagenicity from the combustion of biodiesel, vegetable oil, gas-to-liquid and petrodiesel fuels. Fuel 88 (2009) 1064–1069

[10] L. Serrano, V. Carreira, R. Câmara, M. Gameiro da Silva. On-road performance comparison of two identical cars consuming petrodiesel and biodiesel. Fuel Processing Technology 103 (2012) 125–133

[11] Peter L. Perez, Andre L. Boehman. Performance of a single-cylinder diesel engine using oxygen-enriched intake air at simulated high-altitude conditions. Aerospace Science and Technology 14 (2010) 83–94

[12] Hongsik Byuna, Byungpyo Hong, Byoungsoo Lee. The effect of oxygen enriched air obtained by gas separation membranes from the emission gas of diesel engines. Desalination 193 (2006) 73–81

[13] T.C. Zannis, E.G. Pariotis, D.T. Hountalas, D.C. Rakopoulos, Y.A. Levendis. Theoretical study of DI diesel engine performance and

pollutant emissions using comparable air-side and fuel-side oxygen addition. Energy Conversion and Management 48 (2007) 2962–2970

[14] Xiaoyan Shi, Xiaobing Pang, Yujing Mu, Hong He, Shijin Shuai, Jianxin Wang, Hu Chen, Rulong Li. Emission reduction potential of using ethanol–biodiesel–diesel fuel blend on a heavy-duty diesel engine. Atmospheric Environment 40 (2006) 2567–2574

[15] C.S. Cheung, Lei Zhu, Zhen Huang. Regulated and unregulated emissions from a diesel engine fueled with biodiesel and biodiesel blended with methanol. Atmospheric Environment 43 (2009) 4865–4872

[16] Lei Zhu, C.S. Cheung, W.G. Zhang, Zhen Huang. Emissions characteristics of a diesel engine operating on biodiesel and biodiesel blended with ethanol and methanol. Science of the Total Environment 408 (2010) 914–921

[17] E. Rajasekar, A. Murugesan, R. Subramanian, N. Nedunchezhian. Review of NOx reduction technologies in CI engines fuelled with oxygenated biomass fuels. Renewable and Sustainable Energy Reviews 14 (2010) 2113–2121.

[18] Syed Ameer Basha, K. Raja Gopal, S. Jebaraj. A review on biodiesel production, combustion, emissions and performance. Renewable and Sustainable Energy Reviews 13 (2009) 1628–1634

[19] I.M. Atadashi, M.K. Aroua, A. Abdul Aziz. High quality biodiesel and its diesel engine application: A review. Renewable and Sustainable Energy Reviews 14 (2010) 1999–2008

[20] Yunus A. Cengel, Michael A. Boles, Thermodynamics An Engineering Approach, 5th edition, 2006, Mc Graw Hill.

[21] Arvind Atreya and David Everest, Highly Preheated Combustion Air Furnace with Oxygen Enrichment for Metal Processing to Significantly Improve Energy Efficiency and Reduce Emissions, University of Michigan.

[22] Canadian Industry Program for Energy Conservation (CIPEC). Boilers and Heaters Improving Energy Efficiency. Canada, 2001.

[23] Jesse Adams, Chun Lee. Theoretical and actual combustion process. 2001. Available at: (web.me.unr.edu/me372/Spring2001/Theoretical%20and%20Actual%2 0Combustion.pdf), access date: March, 15, 2007.

[24] Charles E Baukal. Oxygen-Enhanced Combustion, CRC Press LCC, 1998.

[25] Cherng-Yuan Lin, Shiou-An Lin. Effects of Emulsification Variables on Fuel Properties of Two and Three-phase Biodiesel Emulsions. Fuel; 86, 1-2: 210-17. 2007.

Page 57: The Fifth International Energy Conference - Palestine -

54

The other results analysis strategy is devoted to show clearly the effects of applying different OELs at the same biodiesel blend concentration, results are shown in figure 5. It might be noticed that using higher OEL increased the exhaust gas temperature more significantly than increasing the biodiesel concentration as presented in figure 4 before. However, CO emissions results show that applying higher OELs with B0 (pure petro-diesel) reduce CO emissions level, while when using biodiesel/petro-diesel blends, CO emissions level has increased, it might be concluded with the pre-described results in figure 4 that using either OEC technology or biodiesel fuel has the potential to reduce CO emissions level, but, when applying both OEC technology and biodiesel/petro-diesel fuel blends, CO emissions level has increased.

For the NOx emissions, results show that applying higher OEL increase the NOx emissions when B0 and B5 fuels are used, but when increasing biodiesel concentration

(B10 and B15), NOx emissions are almost the same with respect to all experimented OELs.

And finally, it is worth to mention that SO2 emissions were measured during all experiments, and it has not been changed when using higher biodiesel/petro-diesel ratio and/or higher OEL.

V. CONCLUSION

This research explores the potential of applying OEL technology on ICE with different biodiesel/petro-diesel ratio, experimental results proved higher exhaust temperature, which is a strong indicator about the combustion process thermal efficiency, for CO emissions, results show that applying both methods leads to higher CO emissions, and finally, NOx emissions which is very important from environmental point of view might be reduced when combining both methods.

REFERENCES [1] Noam Lior. Sustainable energy development: The present (2009)

situation and possible paths to the future. Energy Journal, 2010, vol. 35, pp. 3976-3994.

[2] Cherng-Yuan Lin, Hsiu-An Lin. Diesel engine performance and emission characteristics of biodiesel produced by the peroxidation process. Fuel 85 (2006) 298–305.

[3] D.H. Qi, H. Chen, L.M. Geng, Y.ZH. Bian, X.CH. Ren. Performance and combustion characteristics of biodiesel–diesel–methanol blend fuelled engine. Applied Energy 87 (2010) 1679–1686.

[4] Kyunghyun Ryu. The characteristics of performance and exhaust emissions of a diesel engine using a biodiesel with antioxidants. Bioresource Technology 101 (2010) S78–S82

[5] Hüseyin Aydin, Cumali _Ilkılıç. Effect of ethanol blending with biodiesel on engine performance and exhaust emissions in a CI engine. Applied Thermal Engineering 30 (2010) 1199–1204

[6] Mustafa Canakci. Combustion characteristics of a turbocharged DI compression ignition engine fueled with petroleum diesel fuels and biodiesel. Bioresource Technology 98 (2007) 1167–1175

[7] Ekrem Buyukkaya. Effects of biodiesel on a DI diesel engine performance, emission and combustion characteristics. Fuel 89 (2010) 3099–3105.

[8] Magı´n Lapuerta, Octavio Armas, Jose´ Rodrı´guez-Ferna´ndez. Effect of biodiesel fuels on diesel engine emissions. Progress in Energy and Combustion Science 34 (2008) 198–223. GOOD in results discussion

[9] Jürgen Krahl, Gerhard Knothe, Axel Munack, Yvonne Ruschel, Olaf Schröder, Ernst Hallier, Götz Westphal, Jürgen Bünger. Comparison of exhaust emissions and their mutagenicity from the combustion of biodiesel, vegetable oil, gas-to-liquid and petrodiesel fuels. Fuel 88 (2009) 1064–1069

[10] L. Serrano, V. Carreira, R. Câmara, M. Gameiro da Silva. On-road performance comparison of two identical cars consuming petrodiesel and biodiesel. Fuel Processing Technology 103 (2012) 125–133

[11] Peter L. Perez, Andre L. Boehman. Performance of a single-cylinder diesel engine using oxygen-enriched intake air at simulated high-altitude conditions. Aerospace Science and Technology 14 (2010) 83–94

[12] Hongsik Byuna, Byungpyo Hong, Byoungsoo Lee. The effect of oxygen enriched air obtained by gas separation membranes from the emission gas of diesel engines. Desalination 193 (2006) 73–81

[13] T.C. Zannis, E.G. Pariotis, D.T. Hountalas, D.C. Rakopoulos, Y.A. Levendis. Theoretical study of DI diesel engine performance and

pollutant emissions using comparable air-side and fuel-side oxygen addition. Energy Conversion and Management 48 (2007) 2962–2970

[14] Xiaoyan Shi, Xiaobing Pang, Yujing Mu, Hong He, Shijin Shuai, Jianxin Wang, Hu Chen, Rulong Li. Emission reduction potential of using ethanol–biodiesel–diesel fuel blend on a heavy-duty diesel engine. Atmospheric Environment 40 (2006) 2567–2574

[15] C.S. Cheung, Lei Zhu, Zhen Huang. Regulated and unregulated emissions from a diesel engine fueled with biodiesel and biodiesel blended with methanol. Atmospheric Environment 43 (2009) 4865–4872

[16] Lei Zhu, C.S. Cheung, W.G. Zhang, Zhen Huang. Emissions characteristics of a diesel engine operating on biodiesel and biodiesel blended with ethanol and methanol. Science of the Total Environment 408 (2010) 914–921

[17] E. Rajasekar, A. Murugesan, R. Subramanian, N. Nedunchezhian. Review of NOx reduction technologies in CI engines fuelled with oxygenated biomass fuels. Renewable and Sustainable Energy Reviews 14 (2010) 2113–2121.

[18] Syed Ameer Basha, K. Raja Gopal, S. Jebaraj. A review on biodiesel production, combustion, emissions and performance. Renewable and Sustainable Energy Reviews 13 (2009) 1628–1634

[19] I.M. Atadashi, M.K. Aroua, A. Abdul Aziz. High quality biodiesel and its diesel engine application: A review. Renewable and Sustainable Energy Reviews 14 (2010) 1999–2008

[20] Yunus A. Cengel, Michael A. Boles, Thermodynamics An Engineering Approach, 5th edition, 2006, Mc Graw Hill.

[21] Arvind Atreya and David Everest, Highly Preheated Combustion Air Furnace with Oxygen Enrichment for Metal Processing to Significantly Improve Energy Efficiency and Reduce Emissions, University of Michigan.

[22] Canadian Industry Program for Energy Conservation (CIPEC). Boilers and Heaters Improving Energy Efficiency. Canada, 2001.

[23] Jesse Adams, Chun Lee. Theoretical and actual combustion process. 2001. Available at: (web.me.unr.edu/me372/Spring2001/Theoretical%20and%20Actual%2 0Combustion.pdf), access date: March, 15, 2007.

[24] Charles E Baukal. Oxygen-Enhanced Combustion, CRC Press LCC, 1998.

[25] Cherng-Yuan Lin, Shiou-An Lin. Effects of Emulsification Variables on Fuel Properties of Two and Three-phase Biodiesel Emulsions. Fuel; 86, 1-2: 210-17. 2007.

55

Photovoltaic –Battery Power System for Brackish Water Desalination in Jordan Valley: Design , Field Test and Evaluation

Marwan M. Mahmoud Electrical Engineering Department

An Najah National University Nablus –Palestine [email protected]

Abstract— This paper presents the first reverse osmosis brackish water desalination system

operated by solar electric power (PV) in West Bank- Palestine. The annual average of daily solar energy in Palestine amounting to 5.4kWh/m2.day was considered in the design. The total PV peak power supplying the RO-desalination system is 5.182kW .The system delivers an average of

11.9m3/day , which corresponds to a PV peak power of 435W necessary to deliver 1m3/day of drink

water from brackish with a salinity of 2681mg/L. The energy needed for desalination of the specified

brackish water is 2.35kWh/m3.

Keywords: Water desalination; Solar electric powered water desalination; PV power system

I. INTRODUCTION

Palestine, suffers from shortage of water due to scarcity of rain and political factors that control the distribution of water reserves. In the Palestinian Jordan Valley area there is a bigger problem because the most ground water is salty and the salts content varies in the range : 1800 - 7500 mg per liter while the upper limit allowed for drink water is 1000 mg per liter. The citizens of this area are forced to buy water from other far areas at high costs including the transportation expenses to their villages. Jordan Valley is an ideal area for exploitation of solar energy for different applications because of the available high solar radiation and the high number of annual sunshine hours exceeding 3000 hours per year. The annual average of daily solar radiation on horizontal surface in Palestine is 5.4 kWh/m²-day. The average of solar radiation during the eight months: March- October amounts to 6.82 kWh/m²-day and it amounts during the remaining four months ( November- February) to 3.14 kWh/m²day. Figure 1 shows the monthly average of daily solar radiation for all months of the year.

II DESIGN OF THE BRACKISH WATER DESALINATION SYSTEM

The project village “ Zbaidat “ has only three wells with brackish water . The brackish water from

one well is pumped to a cement storage tank, located at 45m higher than the level of the village .

The inhabitants of the village use the water from the tank for different purposes but not for drinking. The brackish water of the tank is used for desalination

by the photovoltaic (PV) powered RO system. A.The Brackish Water Quality

The analysis indicates that the water salinity is too high for drinking which limits it only for irrigation purposes. The water is very hard, has TSS and SiO2 content and turbidity which makes it very appropriate for desalination by RO membranes. The parameters that cause high salinity and hardness are illustrated in Table1 with WHO standards for comparison. Table1: Comparison Between Water Quality of Zbiadat Water Tank and WHO Drinking Water Standards.

Parameter Concentration (mg/L)

WHO(mg/L)

Potassium 13.1 12 Sodium 483 200

Magnesium 146 <125 Calcium 200 75 Chloride 1200 250 Hardness 1098 500

TDS 2636 500-1000 B. Sizing the System Components The desalination system was designed to deliver a daily capacity of 10m3 /day. The reverse osmosis system analysis (ROSA) software of DOW Chemicals Company was used in designing the

Identify applicable sponsor/s here. (sponsors)

Page 58: The Fifth International Energy Conference - Palestine -

56

system and to select the best recovery for the system which has given the results shown in Table2 Table3: ROSA Software Results at Different Recoveries % Recovery Permeate

TDS (mg/L)

Input power of

RO Pump (kW)

Feed pressure

(bar)

65 123.04 0.68 6.69 70 135.93 0.67 7.07 75 153.8 0.67 7.57 80 178.77 0.69 8.34

According to the permeate TDS and feed pressure in the above table, the option 65% recovery was selected , due to lowest permeate salt content and the lowest feed pressure to avoid membrane deterioration . Six RO membranes built in 3 vessels were built in the system.

IIMEASURING RESULTS, EVALUATION AND DISCUSSION The RO desalination system has been operated since the middle of September 2012 until Jan.2013, where the average daily solar radiation intensity varied in the range: 6.2-3.2kWh/m2.day. The fresh water produced by the RO system has very low TDS of about 50 mg/liter. The main metals included in the desalinated water , with very low percentage, are calcium, sodium and magnesium. Dangerous metals as lead, cadmium and arsenic have 0% in the permeate which makes it very safe for drinking. The desalination system delivered a constant output of 1.62m3/hr for 6.5hours /day which means 10.53m3 of drink water per day. During periods of especially high solar radiation intensity as in May, June, July and August, where the daily average of solar radiation exceeds 7.5kWh/m2.day, the operation time of the system can be safely extended to 8 hours per day to deliver 13m3 per day. Control panel of the system show that the inlet pressure is 3.4bar, the feed pressure is 4.1bar and the pressure of the RO pump is 17 bar . These pressures were set to obtain a permeate of 27liter/min. The conductance of the permeate varies in the range : 46-73μS and the TDS of brine(reject water) was measured to 3700mg/L.

Based on the obtained results during the first period(Sept.-Jan.13) of operation and considering the solar radiation distribution during the following eight months, it is estimated that the system will deliver an annual amount of drink water amounting to 4347m3 which corresponds to a daily average of 11.9m3/day. This means that the energy required from the solar PV generator is 2.35kWh/m3 to desalinate brackish water with TDS=2681mg/L . As conclusion, under Palestinian climate conditions, a PV peak power of 435W/m3.day is required to desalinate brackish water of TDS amounting to about 3000ppm .

Figure 1 shows the configuration of the photovoltaic powered RO- desalination system.

Figure 1 shows the configuration of the photovoltaic powered RO- desalination system.

Figure1: Schematic diagram of the PV powered RO brackish water desalination system in Zbaidat Village-Jordan Valley. (PV1 &PV2 :Photovoltaic arrays 1&2 , CR1 &CR2 : Battery charge regulators ,B1-B24 :Storage battery cells , NV1, NV2,NV3 :DC/AC Inverters , Sync.p. : Synchronizing control panel ,M1-TP : Transfer motor pump , M2-HP: RO High pressure motor pump ,AST-ASP: Anti scaling pump, BWT: Brackish water storage tank, MMF: Multi media filter, CF: Cartridge filter, RO: RO Vessels containing the membranes) .

Page 59: The Fifth International Energy Conference - Palestine -

56

system and to select the best recovery for the system which has given the results shown in Table2 Table3: ROSA Software Results at Different Recoveries % Recovery Permeate

TDS (mg/L)

Input power of

RO Pump (kW)

Feed pressure

(bar)

65 123.04 0.68 6.69 70 135.93 0.67 7.07 75 153.8 0.67 7.57 80 178.77 0.69 8.34

According to the permeate TDS and feed pressure in the above table, the option 65% recovery was selected , due to lowest permeate salt content and the lowest feed pressure to avoid membrane deterioration . Six RO membranes built in 3 vessels were built in the system.

IIMEASURING RESULTS, EVALUATION AND DISCUSSION The RO desalination system has been operated since the middle of September 2012 until Jan.2013, where the average daily solar radiation intensity varied in the range: 6.2-3.2kWh/m2.day. The fresh water produced by the RO system has very low TDS of about 50 mg/liter. The main metals included in the desalinated water , with very low percentage, are calcium, sodium and magnesium. Dangerous metals as lead, cadmium and arsenic have 0% in the permeate which makes it very safe for drinking. The desalination system delivered a constant output of 1.62m3/hr for 6.5hours /day which means 10.53m3 of drink water per day. During periods of especially high solar radiation intensity as in May, June, July and August, where the daily average of solar radiation exceeds 7.5kWh/m2.day, the operation time of the system can be safely extended to 8 hours per day to deliver 13m3 per day. Control panel of the system show that the inlet pressure is 3.4bar, the feed pressure is 4.1bar and the pressure of the RO pump is 17 bar . These pressures were set to obtain a permeate of 27liter/min. The conductance of the permeate varies in the range : 46-73μS and the TDS of brine(reject water) was measured to 3700mg/L.

Based on the obtained results during the first period(Sept.-Jan.13) of operation and considering the solar radiation distribution during the following eight months, it is estimated that the system will deliver an annual amount of drink water amounting to 4347m3 which corresponds to a daily average of 11.9m3/day. This means that the energy required from the solar PV generator is 2.35kWh/m3 to desalinate brackish water with TDS=2681mg/L . As conclusion, under Palestinian climate conditions, a PV peak power of 435W/m3.day is required to desalinate brackish water of TDS amounting to about 3000ppm .

Figure 1 shows the configuration of the photovoltaic powered RO- desalination system.

Figure 1 shows the configuration of the photovoltaic powered RO- desalination system.

Figure1: Schematic diagram of the PV powered RO brackish water desalination system in Zbaidat Village-Jordan Valley. (PV1 &PV2 :Photovoltaic arrays 1&2 , CR1 &CR2 : Battery charge regulators ,B1-B24 :Storage battery cells , NV1, NV2,NV3 :DC/AC Inverters , Sync.p. : Synchronizing control panel ,M1-TP : Transfer motor pump , M2-HP: RO High pressure motor pump ,AST-ASP: Anti scaling pump, BWT: Brackish water storage tank, MMF: Multi media filter, CF: Cartridge filter, RO: RO Vessels containing the membranes) .

57

III.CONCLUSIONS Based on the obtained results and experience gained from this pilot project, the desalination of brackish water by RO membranes using PV power system is technically and economically feasible especially in isolated areas of Palestine were only brackish water is available and limited amount of daily drink water is required.

REFERENCES

1- Marwan M. Mahmoud, “Solar Electric Powered Reverse Osmosis Water Desalination System for the Rural Village ,Al Maleh : Design and Simulation”, Int. Journal of Sustainable Energy,Vol.23 No.1-2, March-June 2003,pp.51-62 .

2- Marwan M. Mahmoud and Ismail Nabhan , “Determination of Optimum Tilt Angle of Single and Multi Rows of Photovoltaic Arrays for Selected Sites in Jordan”,Solar &Wind Technology , Vol.7 No. 6 pp.739-745. 1990. Pergamon Press-Great Britain .

3-Grundfos Pump Catalogue, Edition1, DK8850 Bjerringbro,Dnmark

4- Winter Engineering ltd. , “Water Treatment Technologies&Fluids Control “ , [email protected]

5-U.S.Department of the Interior,”Photovoltaic Reverse Osmosis Desalination System”, Agreement No.02-FC-81-0831,May2004

M.Thomson, M.Miranda&J.Gwilliam, ”Batteryless Photovoltaic Reverse Osmosis Desalination System, CREST Dulas Ltd 2001

Page 60: The Fifth International Energy Conference - Palestine -

58

Potential of Biomass as an Alternative Fuel in Palestine-

Amounts and methods of conversion

Ashraf Imriash Clean Energy and Conservation Strategy Engineering,

Faculty of Graduate Studies An-Najah National University

Nablus, Palestine [email protected]

Abdelrahim Abusafa Chemical Engineering Department

Energy Engineering and Environment Dept. An-Najah National University,

Nablus, Palestine [email protected]

Abstract—these days, there is much talk about the alternative fuel and clean-burning as an alternative for petrol. Palestine is known to be very poor country in terms of fossil fuel resources. At the same time, energy alternatives are not defined well specially the non-conventional types such as biomass. Biomass can be defined as material which is recently derived from animals, and plants that use sunlight to grow.

In this research, all types and amount of biomass that exist in Palestine that can be used as an alternative fuel for petrol was analyzed and defined by a comprehensive field survey. The sources of clean and alternative energy which depend on the biomass using traditional and new technologies were discussed. This research aims to investigate the biomass and new process to find out a durable and a reliable alternative energy source for Palestinians.

All results in this study showed biomass waste can be used to produce a new energy source in the form of clean fuel and high efficiency, which constitutes an alternative source for traditional fuel in several applications. The most important of these applications is electricity production.

Final results shows 797GWh of electrical energy a can be generated annually by using biogas process from biomass residue and household solid waste, and approximately824GWh can be generated when gasification process used for the same waste.

Keywords-component; Biomass residues, Biogass, Gasification

1. INTRODUCTION

This work was done to determine the main source of organic waste in Palestine that produced from household, plant and animals.

The main wastes generate in Palestine can be divide into three parts: the first is municipal household solid waste which is generated by household. It contains mainly organic waste and other material such as glass, iron, and other.

The second type of wastes which is produced by animals and poultry. The animals include Cattles, Goats, Sheep, and camels. The poultry include: Turkey, Broilers Mothers, Layers, and Broilers.

The Final part of waste is the residue of plants. Plant wealth can be divided into three types, the first type is Field

crops. The second is Vegetables, and final one is Horticulture Trees. The potential of energy was measured from plant without field crops because this type is used to feed animals. [1, 2, 3]

Biomass is a term for all organic material that stems from plants and agriculture residues, animal waste and urban waste.

Biomass that produced by plants convert sunlight into plant material through photosynthesis. The energy of sunlight is stored in chemical bonds. When the bonds between adjacent carbon, hydrogen and oxygen molecules are broken by digestion, combustion, or decomposition, these substances release their stored, chemical energy.

Urban wastes are basically two types of municipal refuse that offer opportunities for energy recovery: (i) municipally solid waste (MSW, urban refuse, garbage) and (ii) bio-solids (sewage, sludge). [4]

Biomass can be converted into three main products: two related to energy – power/heat generation and one as a chemical feedstock.

The conversion of biomass into energy can be achieved in a number of ways. To provide a fuel suitable for direct use in spark ignition gas engines (SIGE.), the fuel must be provided in either a gaseous, or a liquid form. [5]

Conversion of biomass to energy is undertaken using two main process technologies: thermo-chemical and bio-chemical/biological.

Within thermo-chemical conversion four process options are available: combustion, pyrolysis, gasification and liquefaction. Bio-chemical conversion encompasses two process options: digestion (production of biogas, a mixture of mainly methane and carbon dioxide) and fermentation (production of ethanol). [6]

2. USES OF BIOMASS WASTE AS BIO-FUEL

2.1. BIO-CHEMICAL CONVERSION Two main processes are used, fermentation and

anaerobic digestion (AD). 4.1. Fermentation

Fermentation is used to produce ethanol from sugar crops and starch crops. The biomass is ground down and the starch converted by enzymes to sugars, with yeast then converting the sugars to ethanol. The solid residue from the

Potential of Biomass as an Alternative Fuel in Palestine-Amounts and methods of conversion

Page 61: The Fifth International Energy Conference - Palestine -

58

Potential of Biomass as an Alternative Fuel in Palestine-

Amounts and methods of conversion

Ashraf Imriash Clean Energy and Conservation Strategy Engineering,

Faculty of Graduate Studies An-Najah National University

Nablus, Palestine [email protected]

Abdelrahim Abusafa Chemical Engineering Department

Energy Engineering and Environment Dept. An-Najah National University,

Nablus, Palestine [email protected]

Abstract—these days, there is much talk about the alternative fuel and clean-burning as an alternative for petrol. Palestine is known to be very poor country in terms of fossil fuel resources. At the same time, energy alternatives are not defined well specially the non-conventional types such as biomass. Biomass can be defined as material which is recently derived from animals, and plants that use sunlight to grow.

In this research, all types and amount of biomass that exist in Palestine that can be used as an alternative fuel for petrol was analyzed and defined by a comprehensive field survey. The sources of clean and alternative energy which depend on the biomass using traditional and new technologies were discussed. This research aims to investigate the biomass and new process to find out a durable and a reliable alternative energy source for Palestinians.

All results in this study showed biomass waste can be used to produce a new energy source in the form of clean fuel and high efficiency, which constitutes an alternative source for traditional fuel in several applications. The most important of these applications is electricity production.

Final results shows 797GWh of electrical energy a can be generated annually by using biogas process from biomass residue and household solid waste, and approximately824GWh can be generated when gasification process used for the same waste.

Keywords-component; Biomass residues, Biogass, Gasification

1. INTRODUCTION

This work was done to determine the main source of organic waste in Palestine that produced from household, plant and animals.

The main wastes generate in Palestine can be divide into three parts: the first is municipal household solid waste which is generated by household. It contains mainly organic waste and other material such as glass, iron, and other.

The second type of wastes which is produced by animals and poultry. The animals include Cattles, Goats, Sheep, and camels. The poultry include: Turkey, Broilers Mothers, Layers, and Broilers.

The Final part of waste is the residue of plants. Plant wealth can be divided into three types, the first type is Field

crops. The second is Vegetables, and final one is Horticulture Trees. The potential of energy was measured from plant without field crops because this type is used to feed animals. [1, 2, 3]

Biomass is a term for all organic material that stems from plants and agriculture residues, animal waste and urban waste.

Biomass that produced by plants convert sunlight into plant material through photosynthesis. The energy of sunlight is stored in chemical bonds. When the bonds between adjacent carbon, hydrogen and oxygen molecules are broken by digestion, combustion, or decomposition, these substances release their stored, chemical energy.

Urban wastes are basically two types of municipal refuse that offer opportunities for energy recovery: (i) municipally solid waste (MSW, urban refuse, garbage) and (ii) bio-solids (sewage, sludge). [4]

Biomass can be converted into three main products: two related to energy – power/heat generation and one as a chemical feedstock.

The conversion of biomass into energy can be achieved in a number of ways. To provide a fuel suitable for direct use in spark ignition gas engines (SIGE.), the fuel must be provided in either a gaseous, or a liquid form. [5]

Conversion of biomass to energy is undertaken using two main process technologies: thermo-chemical and bio-chemical/biological.

Within thermo-chemical conversion four process options are available: combustion, pyrolysis, gasification and liquefaction. Bio-chemical conversion encompasses two process options: digestion (production of biogas, a mixture of mainly methane and carbon dioxide) and fermentation (production of ethanol). [6]

2. USES OF BIOMASS WASTE AS BIO-FUEL

2.1. BIO-CHEMICAL CONVERSION Two main processes are used, fermentation and

anaerobic digestion (AD). 4.1. Fermentation

Fermentation is used to produce ethanol from sugar crops and starch crops. The biomass is ground down and the starch converted by enzymes to sugars, with yeast then converting the sugars to ethanol. The solid residue from the

Potential of Biomass as an Alternative Fuel in Palestine-Amounts and methods of conversion

59

fermentation process can be used as cattle-feed and can be used as a fuel for boilers.

2.1.1. Anaerobic digestion (AD).

AD is the conversion of organic material directly to a gas, termed biogas, a mixture of mainly methane and carbon dioxide with small quantities of other gases such as hydrogen sulphide. The biomass is converted by bacteria and breakdown of organic material in an anaerobic environment, producing a gas with an energy content of about 20-25 M/Nm3.

AD is widely used for treating high moisture content organic wastes, i.e. +80– 90% moisture. Biogas can be used directly in spark ignition gas engines and gas turbines and can be upgraded to higher quality i.e. natural gas quality, by the removal of CO2. A typical flow sheet for processing biomass using AD is shown in Fig 1. [7, 8]

2.2. Thermo-chemical conversion Three main processes are used for the thermo-chemical

conversion of biomass. The main processes, the intermediate energy carriers and the final energy products resulting from thermo-chemical conversion are illustrated in the flowchart shown in Fig. 2.

2.2.1. Combustion The burning of biomass in air is used to convert the

chemical energy stored in biomass into heat, mechanical power, or electricity using various items of process equipment, such as stoves, furnaces, boilers, steam turbines, turbo-generators. Combustion of biomass produces gases at temperatures around 800–1000 oC.

2.2.2. Gasification Gasification is the conversion of biomass into a

combustible gas mixture by breaking down of biomass to form a flammable gas by the partial oxidation of biomass at high temperatures, typically in the range 800–900 oC. this gas is known as a synthesis gas (syngas) which contains mainly mixture of hydrogen and carbon monoxide and a little of carbon dioxide, methane and others. This gas used as fuel to generate electricity in large system through the use of a gas turbine in smaller systems; the syngas can be fired in reciprocating engines, micro turbines, Sterling engines, or fuel cells.

The range of calorific value of gas produced is between 4-40MJ/Nm3 as show in table 1, these differences depend on the type of material that using in oxidizing gas. Table 1:- Product gas qualities achievable via gasification. [6]

Figure 1:- Anaerobic digestion (AD) Process.

The low calorific value (CV) gas produced can be

burnt directly or used as a fuel for gas engines and gas turbines. The product gas can be used as a feedstock (syngas) in the production of chemicals (e.g. methanol). [7, 9, 10]

2.2.3. Pyrolysis

Pyrolysis is the conversion of biomass to liquid (bio-oil), solid (char) and gaseous fractions, by heating the biomass in the absence of air to around 500 oC. These products used for heating application. Bio-oil is suitable for use in boiler furnaces or gas turbines. [10, 11]

Page 62: The Fifth International Energy Conference - Palestine -

60

Figure 2:- Thermochemical Process.

3. RESULTS AND DISCUSSION

The aim of present study is to estimate the yearly waste product of plant.

The most suitable way to produce a biogas from municipal household solid waste is landfills process. The main results of this research are related to the amount of gas and energy that can be produces from biomass waste in west bank.

First process which can be used to produce biogas is anaerobic digestion. Total volume of biogas that can be produced only from animal dung is approximately 79118078 m3per year which is equivalent to electrical energy of 106 GWh per year. Other amount of biogas produced from Poultry waste is approximately 151008218m3 per year which is equivalent to 253 GWh, while the biogas that can be generated by plant is approximately 283348335 m3 per year that equivalent to electrical energy of 380.199GWh per year, and finally around 57.625GWh of electricity can be generated from by municipal household solid waste. Table 2 shows all details for these values.

Table 2:- Biomass yield and energy production by biogas process. [11- 18]

The amount of electrical power and energy that can be produced annually by gasification process is approximately824.202GWh. Table 3 shows all details for these values.

Page 63: The Fifth International Energy Conference - Palestine -

60

Figure 2:- Thermochemical Process.

3. RESULTS AND DISCUSSION

The aim of present study is to estimate the yearly waste product of plant.

The most suitable way to produce a biogas from municipal household solid waste is landfills process. The main results of this research are related to the amount of gas and energy that can be produces from biomass waste in west bank.

First process which can be used to produce biogas is anaerobic digestion. Total volume of biogas that can be produced only from animal dung is approximately 79118078 m3per year which is equivalent to electrical energy of 106 GWh per year. Other amount of biogas produced from Poultry waste is approximately 151008218m3 per year which is equivalent to 253 GWh, while the biogas that can be generated by plant is approximately 283348335 m3 per year that equivalent to electrical energy of 380.199GWh per year, and finally around 57.625GWh of electricity can be generated from by municipal household solid waste. Table 2 shows all details for these values.

Table 2:- Biomass yield and energy production by biogas process. [11- 18]

The amount of electrical power and energy that can be produced annually by gasification process is approximately824.202GWh. Table 3 shows all details for these values.

61

Table 3 :- Biomass yield and energy production by gasification

4. References: 1- Palestinian Central Bureau of Statistics- PCBS. (July,

2012). Agriculture Statistics Survey-Main Results 2010/2011 (first edition ed.). Ramallah, Palestine: PCBS.

2- Palestinian Central Bureau of Statistics- PCBS. (November,2011). Agriculture Census 2010, Press Conference. Ramallah, Palestine.

3- Palestinian Central Bureau of Statistics- PCBS. (December, 2011). Agricultural Census - 2010-Final Results. Ramallah, Palestine.

4- Karaj, Sh., Rehl, T., Leis H.& Muller, J.(2010), Analysis of biomass residues potential for electrical energy generation in Albania, Renewable and Sustainable Energy Reviews, V. 14, pp 494-497

5- McKendry, P. (2002), Energy production from biomass (part 1): overview of biomass, Bioresource Technology, Vol. 83, P.37

6- McKendry, P.(2002), Energy production from biomass (part 2): conversion technologies, Bioresource Technology 83, p.p. 48-51

7- Basu, P. (2010). Biomass Gasification and Pyrolysis Practical Design and Theory (1 ed.). Oxford, England: Elsevier Inc.

8- McKendry, P.(2002), Energy production from biomass (part 2): conversion technologies, Bioresource Technology 83, p.p. 48-51

9- EEA, ICF, and ERG (2007), Biomass Combined Heat and Power Catalog of Technologies, U. S.

10- McKendry, P.(2002), Energy production from biomass (part 2): conversion technologies, Bioresource Technology 83, p.p. 48-51

11- El Ibraheem, J. (2013, April 14). Manager of the department of livestock research and animal health. Palestinian National Agricultural Research. The amount of agricultural wastes and agro-industrial waste produced annually in the West Bank. (A. Imriash, Interviewer) Nablus, Palestine.

12- Palestinian Central Bureau of Statistics- PCBS.(June, 2011). Household Energy Survey: (January, 2011)-Main Results. Ramallah, Palestine.

13- Haddad, A. (2013). Supervisor of treatment unit. Aziza slaughterhouse. Palestine Poultry Company- L.T.D. Tulkarm, Palestine.

14- Abo Omar, J. M., & Ishtayeh, M. S. (1996). estimate of wastes produces from cattles, goats, sheep, and poultry in west bank and utilization of these waste. islamic university journal ,Palestine, 2, 301.

15- Abo Omar, J. (2007). Auspices of farm animals, Department of animal production, An-Najah National University, Palestine.

16- Palestinian Central Bureau of Statistics- PCBS.(December, 2011). Household Environmental Survey, 2011 Main Findings. Ramallah, Palestine.

17- Deublein, D., & Steinhauser, A. (2008). Biogas from Waste and Renewable Resources An Introduction (first ed.). the Federal Republic of Germany: Wiley-VCH.

18- Basu, P. (2010). Biomass Gasification and Pyrolysis Practical Design and Theory (1 ed.). Oxford, England: Elsevier Inc.

Page 64: The Fifth International Energy Conference - Palestine -

62

A Practical Sample of A Full Solar project proposal

Case Discribtion : Beit Jala Medical Association

High investment, Quick ROI, Profitability

Prepared by :Fadi K. Bkirat Solar Systems Consultant Specialist

Rack Tech Engineering Company-Jerusalem

Jan- 2015 Introduction:

General Data & Technical: Palestine: Palestine has a generally warm weather, where the temperature varies around 8-25 C and has around 1680 efficient sunshine hours per year. Despite the fact that Palestine has relatively long hours of sunshine per year, it still depends on petrol and electrical power to generate energy. In addition, the price of electricity in Palestine is higher than its neighboring countries like Jordan and Lebanon paying $0.45/ KWH, where others pay around $0.35/ KWH (Ibrik, 2008). These costs increase due to the fact that Palestine depends on electricity imports mainly from Israel. Technical Data:

- Photovoltaic : The photovoltaic electrical generating system generates electrical power by converting solar radiation into direct current electricity, using semiconductors that exhibit the photovoltaic effect, using solar cells to convert energy from the sun into a flow of electrons. This can be used to produce electricity from sun light and power equipment or charge batteries. Solar energy has abundance and is considered a primary energy source to highest power density.

It is pollution free, and the PV installation and operating costs are low compared to existing power technologies despite of the fact that the initial cost is high. Energy consumption and environmental risks have been on the governments’ agenda worldwide, as a result, the Kyoto protocol came to life after the “United Nations” framework convention on climate change where developed countries set a target for emission reduction. Along these lines the Palestinian energy and natural resource authority (PENRA) has developed national plans to reduce CO2 emissions, setting a national goal of generating 10% electricity through renewable sources by 2020 (PwC, 2012).

- Renewable Energy: Renewable energy (RE) will have great benefits to Palestine. First it will create energy security through the use of solar energy to produce electricity, upon which Palestine will reduce its electricity imports, thus creating more sustainability and less cost. Second, unlike the use of electricity, renewable energy (RE) supply is less prone to interruptions; and third, environmentally wise, the use of RE will end harm of fossil fuels and reduce the CO2 emissions. System Component :

Page 65: The Fifth International Energy Conference - Palestine -

62

A Practical Sample of A Full Solar project proposal

Case Discribtion : Beit Jala Medical Association

High investment, Quick ROI, Profitability

Prepared by :Fadi K. Bkirat Solar Systems Consultant Specialist

Rack Tech Engineering Company-Jerusalem

Jan- 2015 Introduction:

General Data & Technical: Palestine: Palestine has a generally warm weather, where the temperature varies around 8-25 C and has around 1680 efficient sunshine hours per year. Despite the fact that Palestine has relatively long hours of sunshine per year, it still depends on petrol and electrical power to generate energy. In addition, the price of electricity in Palestine is higher than its neighboring countries like Jordan and Lebanon paying $0.45/ KWH, where others pay around $0.35/ KWH (Ibrik, 2008). These costs increase due to the fact that Palestine depends on electricity imports mainly from Israel. Technical Data:

- Photovoltaic : The photovoltaic electrical generating system generates electrical power by converting solar radiation into direct current electricity, using semiconductors that exhibit the photovoltaic effect, using solar cells to convert energy from the sun into a flow of electrons. This can be used to produce electricity from sun light and power equipment or charge batteries. Solar energy has abundance and is considered a primary energy source to highest power density.

It is pollution free, and the PV installation and operating costs are low compared to existing power technologies despite of the fact that the initial cost is high. Energy consumption and environmental risks have been on the governments’ agenda worldwide, as a result, the Kyoto protocol came to life after the “United Nations” framework convention on climate change where developed countries set a target for emission reduction. Along these lines the Palestinian energy and natural resource authority (PENRA) has developed national plans to reduce CO2 emissions, setting a national goal of generating 10% electricity through renewable sources by 2020 (PwC, 2012).

- Renewable Energy: Renewable energy (RE) will have great benefits to Palestine. First it will create energy security through the use of solar energy to produce electricity, upon which Palestine will reduce its electricity imports, thus creating more sustainability and less cost. Second, unlike the use of electricity, renewable energy (RE) supply is less prone to interruptions; and third, environmentally wise, the use of RE will end harm of fossil fuels and reduce the CO2 emissions. System Component :

63

This section contains the main information about the parts of the system to generate solar electricity which is included in the financial offer made by Solar Engineering Consultant - Fadi Bkirat . The system consists of the following parts: - Solar panels brand Sun-tech or its equivalent:

Panels which contain a collection of solar cells that are collected to generate electricity when the sun's rays fall on them. Each panel consists of 72-60 per cell, and each cell efficiency ranging between 16.8% - 16% depending on the model and the generating capacity of each panel. RackTech company usually offers panels that are able to generate 280-300 watts per hour - the efficiency of 16-15% per panel -. (These panels are guaranteed for 25 years).

- Reflector Inverter:

The adapter is the heart of the system that generates solar electricity, and is working to transform the constant current to AC which corresponds with the current that is used in the electric grid. This converter works with remote connection means that enable users to monitor the system’s performance, and this convertor is guaranteed for 10 years and it is renewable.

- Metal Support Structures” Aluminum or galvanized iron”

Metal structures that are used to support the solar systems on the roofs of building These structures are characterized by its ability and

strength to withstand wind speeds with at least 100 km / h and its longevity. These structures can be movable or static. It is guaranteed for 10 years and its subject to renewal.

- Monitoring device (European such as sunny web box or any equivalent):

This device monitors the performance of the actual system and send it to the user or save it to enable the user to monitor the performance of the system and evaluate its productivity continuously.

- Circuit breaker:

Circuits are used to protect the system of high currents before the convertor.

- Constant voltage cables:

used for connections needed by the adaptor.

- AC breakers:

These are used to protect the system from high currents that can occur after the converter.

- AC cables:

This section contains the main information about the parts of the system to generate solar electricity which is included in the financial offer made by Solar Engineering Consultant - Fadi Bkirat . The system consists of the following parts: - Solar panels brand Sun-tech or its equivalent:

Panels which contain a collection of solar cells that are collected to generate electricity when the sun's rays fall on them. Each panel consists of 72-60 per cell, and each cell efficiency ranging between 16.8% - 16% depending on the model and the generating capacity of each panel. RackTech company usually offers panels that are able to generate 280-300 watts per hour - the efficiency of 16-15% per panel -. (These panels are guaranteed for 25 years).

- Reflector Inverter:

The adapter is the heart of the system that generates solar electricity, and is working to transform the constant current to AC which corresponds with the current that is used in the electric grid. This converter works with remote connection means that enable users to monitor the system’s performance, and this convertor is guaranteed for 10 years and it is renewable.

- Metal Support Structures” Aluminum or galvanized iron”

Metal structures that are used to support the solar systems on the roofs of building These structures are characterized by its ability and

strength to withstand wind speeds with at least 100 km / h and its longevity. These structures can be movable or static. It is guaranteed for 10 years and its subject to renewal.

- Monitoring device (European such as sunny web box or any equivalent):

This device monitors the performance of the actual system and send it to the user or save it to enable the user to monitor the performance of the system and evaluate its productivity continuously.

- Circuit breaker:

Circuits are used to protect the system of high currents before the convertor.

- Constant voltage cables:

used for connections needed by the adaptor.

- AC breakers:

These are used to protect the system from high currents that can occur after the converter.

- AC cables:

A Practical Sample of A Full Solar project proposal

Case Discribtion : Beit Jala Medical Association

High investment, Quick ROI, Profitability

Prepared by :Fadi K. Bkirat Solar Systems Consultant Specialist

Rack Tech Engineering Company-Jerusalem

Jan- 2015 Introduction:

General Data & Technical: Palestine: Palestine has a generally warm weather, where the temperature varies around 8-25 C and has around 1680 efficient sunshine hours per year. Despite the fact that Palestine has relatively long hours of sunshine per year, it still depends on petrol and electrical power to generate energy. In addition, the price of electricity in Palestine is higher than its neighboring countries like Jordan and Lebanon paying $0.45/ KWH, where others pay around $0.35/ KWH (Ibrik, 2008). These costs increase due to the fact that Palestine depends on electricity imports mainly from Israel. Technical Data:

- Photovoltaic : The photovoltaic electrical generating system generates electrical power by converting solar radiation into direct current electricity, using semiconductors that exhibit the photovoltaic effect, using solar cells to convert energy from the sun into a flow of electrons. This can be used to produce electricity from sun light and power equipment or charge batteries. Solar energy has abundance and is considered a primary energy source to highest power density.

It is pollution free, and the PV installation and operating costs are low compared to existing power technologies despite of the fact that the initial cost is high. Energy consumption and environmental risks have been on the governments’ agenda worldwide, as a result, the Kyoto protocol came to life after the “United Nations” framework convention on climate change where developed countries set a target for emission reduction. Along these lines the Palestinian energy and natural resource authority (PENRA) has developed national plans to reduce CO2 emissions, setting a national goal of generating 10% electricity through renewable sources by 2020 (PwC, 2012).

- Renewable Energy: Renewable energy (RE) will have great benefits to Palestine. First it will create energy security through the use of solar energy to produce electricity, upon which Palestine will reduce its electricity imports, thus creating more sustainability and less cost. Second, unlike the use of electricity, renewable energy (RE) supply is less prone to interruptions; and third, environmentally wise, the use of RE will end harm of fossil fuels and reduce the CO2 emissions. System Component :

Page 66: The Fifth International Energy Conference - Palestine -

64

Used for necessary connections with the system after the converter.

- Grounding System:

This system works on grounding all parts of the solar system including solar cells, the metal structures, the converter and any other parts to protect the system from breakdowns.

- Electricity meter:

Connections between the system and the network: the electricity meter calculates the generated electricity and the sold and imported ones so that the consumer can evaluate his debits and credits at the end of the month.

Range of work & System Components & Project Case Economics:

1- Range of work:

The company specialized crew of engineers and technicians supply everything that is necessary for the system and what meets the requirements. This offer includes designing and engineering works, supply of all system requirements, and everything that is needed from electrical, mechanical and civil works, and updating software and operating

system, and the completion of connectivity with the network, according to the requirements and approval of the electricity company. Note that the connection charges and other related items are not included in the offer price.

2- System components included in the financial

offer: The proposed system consists of the most popular types of devices and accessories from European brands, which is classified as first class in the renewable energy sector. Detailed specifications are available at the company. The following table is briefly explaining the types of devices and accessories:

Project Economics:

We can observe from the last table the following:

Energy 60,000 nis Monthly bill 85,700 kw The amount of energy daily

consumed 2850 kw The amount of energy

consumed daily 570 kw The amount of energy

consumed per hour Solar Cells

427 cell Number of Cells Targeted Area

854 m2 Expected Area for Cells Economics

563 nis Daily system of production 16,890 nis Monthly system of production

202,680 nis Annually system of production 5,067,000 nis System production in the

estimated period the project (25 years)

Installation Cost 130 kw Amount of the system -On Grid

221,000 $

4 year Period of capital Retrieval 21 year Period of benefiting from the

project for free Profitability

4,242,000 Nis Amount of estimated profit

Page 67: The Fifth International Energy Conference - Palestine -

64

Used for necessary connections with the system after the converter.

- Grounding System:

This system works on grounding all parts of the solar system including solar cells, the metal structures, the converter and any other parts to protect the system from breakdowns.

- Electricity meter:

Connections between the system and the network: the electricity meter calculates the generated electricity and the sold and imported ones so that the consumer can evaluate his debits and credits at the end of the month.

Range of work & System Components & Project Case Economics:

1- Range of work:

The company specialized crew of engineers and technicians supply everything that is necessary for the system and what meets the requirements. This offer includes designing and engineering works, supply of all system requirements, and everything that is needed from electrical, mechanical and civil works, and updating software and operating

system, and the completion of connectivity with the network, according to the requirements and approval of the electricity company. Note that the connection charges and other related items are not included in the offer price.

2- System components included in the financial

offer: The proposed system consists of the most popular types of devices and accessories from European brands, which is classified as first class in the renewable energy sector. Detailed specifications are available at the company. The following table is briefly explaining the types of devices and accessories:

Project Economics:

We can observe from the last table the following:

Energy 60,000 nis Monthly bill 85,700 kw The amount of energy daily

consumed 2850 kw The amount of energy

consumed daily 570 kw The amount of energy

consumed per hour Solar Cells

427 cell Number of Cells Targeted Area

854 m2 Expected Area for Cells Economics

563 nis Daily system of production 16,890 nis Monthly system of production

202,680 nis Annually system of production 5,067,000 nis System production in the

estimated period the project (25 years)

Installation Cost 130 kw Amount of the system -On Grid

221,000 $

4 year Period of capital Retrieval 21 year Period of benefiting from the

project for free Profitability

4,242,000 Nis Amount of estimated profit

65

Analysis of the above Economic factors:

- Energy prospective :

Based on the electricity bill you have, it was decided that the system is a 130 kilowatt-hour. Therefore, the system has the ability to produce 800 kilowatts per day and per month 24000 kW. which is the equivalent of almost 16,800 NIS per month. - Cells After determining the size of the system, the number of cells required is approximately 427 cells

- Targeted Area:

Since the number of cells is 427, the cell area expected to be almost 854 square meters.

- Production verses Cost :

Based on the amount of energy that can be produced by the system which have been previously identified by 24000 kWh per month, the system produces almost 16800 NIS based on the rate that the electricity company gives which is 0.7 NIS This is equivalent to 201,600 Nis annually. And based on the project’s life which is estimated by 25 years, this system has produced the equivalent of 5,040,000 million Nis.

- Initial investment : As specified in the third item, this system is the 130 kilowatt per hour solar, since each kilowatt

cost about U.S. $ 1700, the expected cost of this system is about 221,000 U.S. dollars, which is equivalent to 773,500 shekels and it’s subject to increase or decrease. We must note that there is a possibility for the development of the project by adding additional cells at a lower cost.

- Return on investment:

The return on investment represents the period of time that is required in order to produce the system with a price that is equal to the price of its creation, and based on the amounts of the annual production of the system which is estimated by 201,600 shekels, the system will retrieve the capital during the time period of approximately four years, in other words, there are 21 additional years that the project can benefit you from using the solar energy for free.

- Profitability:

As noted before, the amount of production during the estimated period of the project is about NIS 5,040,000 NIS, and that the cost to create it is about 773,500 NIS, therefore the amount of the expected profit is 4,240,000 NIS. We attached 3D images that shows the dimensions of the cells and how they are distributed on the roofs of buildings and the effect of sunlight on the surface of cells. Note that the main building with full utilization can include 210 solar cell. And the internal building with the use of most of the surface area as shown in the pictures can be featuring 138 solar cell energy-producing the total of 349 cell electric energy producers. noted that we distributed the cells over the entire surface of the building, assuming that there are no obstacles, and in the case of an obstacle on one roof the cells will be removed, noting that the sum of cells necessary for Al Arab child home is 305 cell. We can see All the Pv details ,,, high width ,,,etc

Analysis of the above Economic factors:

- Energy prospective :

Based on the electricity bill you have, it was decided that the system is a 130 kilowatt-hour. Therefore, the system has the ability to produce 800 kilowatts per day and per month 24000 kW. which is the equivalent of almost 16,800 NIS per month. - Cells After determining the size of the system, the number of cells required is approximately 427 cells

- Targeted Area:

Since the number of cells is 427, the cell area expected to be almost 854 square meters.

- Production verses Cost :

Based on the amount of energy that can be produced by the system which have been previously identified by 24000 kWh per month, the system produces almost 16800 NIS based on the rate that the electricity company gives which is 0.7 NIS This is equivalent to 201,600 Nis annually. And based on the project’s life which is estimated by 25 years, this system has produced the equivalent of 5,040,000 million Nis.

- Initial investment : As specified in the third item, this system is the 130 kilowatt per hour solar, since each kilowatt

cost about U.S. $ 1700, the expected cost of this system is about 221,000 U.S. dollars, which is equivalent to 773,500 shekels and it’s subject to increase or decrease. We must note that there is a possibility for the development of the project by adding additional cells at a lower cost.

- Return on investment:

The return on investment represents the period of time that is required in order to produce the system with a price that is equal to the price of its creation, and based on the amounts of the annual production of the system which is estimated by 201,600 shekels, the system will retrieve the capital during the time period of approximately four years, in other words, there are 21 additional years that the project can benefit you from using the solar energy for free.

- Profitability:

As noted before, the amount of production during the estimated period of the project is about NIS 5,040,000 NIS, and that the cost to create it is about 773,500 NIS, therefore the amount of the expected profit is 4,240,000 NIS. We attached 3D images that shows the dimensions of the cells and how they are distributed on the roofs of buildings and the effect of sunlight on the surface of cells. Note that the main building with full utilization can include 210 solar cell. And the internal building with the use of most of the surface area as shown in the pictures can be featuring 138 solar cell energy-producing the total of 349 cell electric energy producers. noted that we distributed the cells over the entire surface of the building, assuming that there are no obstacles, and in the case of an obstacle on one roof the cells will be removed, noting that the sum of cells necessary for Al Arab child home is 305 cell. We can see All the Pv details ,,, high width ,,,etc

Page 68: The Fifth International Energy Conference - Palestine -

66

The Researcher : Fadi Bkirat , visionary, believer, professional figure, leader, contributor, investor,

developer, in the field of “GREEN ENERGY”, since early 2000s’ , played a critical role in introducing the Green Energy technology forward, believing in environmental aspect, believing in building new &advance technology, leading the establishment of number companies and successful projects, contributing towards the creating and success of semi organizations , adapting and developing number of projects at the national and regionally, attracting potential investments, pioneer in introducing new technology to investors , marginalized community. Knowledgeable, been attracted by other professional to build umbrella organizations serving various objectives, in maintain better sustainable energy serving the sector at the national level. Landmarks and bench marks: Some of the bench marks can be listed as follow: - Al-Amaneh bakery, Ramallah 22 kilo solar system. - Arab Medical Centers 20 k/w each center solar system. - A Turn-Key Managing Consultant Of Al Haia Center Green Building . - 600 Kva Power Stabilizer for Tubas Electrical Company . - Al-Jada’ factory installing a power saving Turbine . - Palestine First Solar Grid Connected Solar System . Community Activities: - Member of the PHGBC higher green building council - Founder and Owner of Rach-Tech Company - General Secretary of the Palestinian union of Energy Industry (FREI) Arab Renewable Energy Member “AREC” Member . United Nations: Escwa – Palestine Representative Palestine Environment Society {SES} Member & Project& Technical Manager . Inter Solar “Europe” ,German , Member Palestine Technology Association “Pita” member ,

Other Full View with the whole system

The Researcher : Fadi Bkirat , visionary, believer, professional figure, leader, contributor, investor,

developer, in the field of “GREEN ENERGY”, since early 2000s’ , played a critical role in introducing the Green Energy technology forward, believing in environmental aspect, believing in building new &advance technology, leading the establishment of number companies and successful projects, contributing towards the creating and success of semi organizations , adapting and developing number of projects at the national and regionally, attracting potential investments, pioneer in introducing new technology to investors , marginalized community. Knowledgeable, been attracted by other professional to build umbrella organizations serving various objectives, in maintain better sustainable energy serving the sector at the national level. Landmarks and bench marks: Some of the bench marks can be listed as follow: - Al-Amaneh bakery, Ramallah 22 kilo solar system. - Arab Medical Centers 20 k/w each center solar system. - A Turn-Key Managing Consultant Of Al Haia Center Green Building . - 600 Kva Power Stabilizer for Tubas Electrical Company . - Al-Jada’ factory installing a power saving Turbine . - Palestine First Solar Grid Connected Solar System . Community Activities: - Member of the PHGBC higher green building council - Founder and Owner of Rach-Tech Company - General Secretary of the Palestinian union of Energy Industry (FREI) Arab Renewable Energy Member “AREC” Member . United Nations: Escwa – Palestine Representative Palestine Environment Society {SES} Member & Project& Technical Manager . Inter Solar “Europe” ,German , Member Palestine Technology Association “Pita” member ,

Other Full View with the whole system

The Researcher : Fadi Bkirat , visionary, believer, professional figure, leader, contributor, investor,

developer, in the field of “GREEN ENERGY”, since early 2000s’ , played a critical role in introducing the Green Energy technology forward, believing in environmental aspect, believing in building new &advance technology, leading the establishment of number companies and successful projects, contributing towards the creating and success of semi organizations , adapting and developing number of projects at the national and regionally, attracting potential investments, pioneer in introducing new technology to investors , marginalized community. Knowledgeable, been attracted by other professional to build umbrella organizations serving various objectives, in maintain better sustainable energy serving the sector at the national level. Landmarks and bench marks: Some of the bench marks can be listed as follow: - Al-Amaneh bakery, Ramallah 22 kilo solar system. - Arab Medical Centers 20 k/w each center solar system. - A Turn-Key Managing Consultant Of Al Haia Center Green Building . - 600 Kva Power Stabilizer for Tubas Electrical Company . - Al-Jada’ factory installing a power saving Turbine . - Palestine First Solar Grid Connected Solar System . Community Activities: - Member of the PHGBC higher green building council - Founder and Owner of Rach-Tech Company - General Secretary of the Palestinian union of Energy Industry (FREI) Arab Renewable Energy Member “AREC” Member . United Nations: Escwa – Palestine Representative Palestine Environment Society {SES} Member & Project& Technical Manager . Inter Solar “Europe” ,German , Member Palestine Technology Association “Pita” member ,

Other Full View with the whole system

The Researcher : Fadi Bkirat , visionary, believer, professional figure, leader, contributor, investor,

developer, in the field of “GREEN ENERGY”, since early 2000s’ , played a critical role in introducing the Green Energy technology forward, believing in environmental aspect, believing in building new &advance technology, leading the establishment of number companies and successful projects, contributing towards the creating and success of semi organizations , adapting and developing number of projects at the national and regionally, attracting potential investments, pioneer in introducing new technology to investors , marginalized community. Knowledgeable, been attracted by other professional to build umbrella organizations serving various objectives, in maintain better sustainable energy serving the sector at the national level. Landmarks and bench marks: Some of the bench marks can be listed as follow: - Al-Amaneh bakery, Ramallah 22 kilo solar system. - Arab Medical Centers 20 k/w each center solar system. - A Turn-Key Managing Consultant Of Al Haia Center Green Building . - 600 Kva Power Stabilizer for Tubas Electrical Company . - Al-Jada’ factory installing a power saving Turbine . - Palestine First Solar Grid Connected Solar System . Community Activities: - Member of the PHGBC higher green building council - Founder and Owner of Rach-Tech Company - General Secretary of the Palestinian union of Energy Industry (FREI) Arab Renewable Energy Member “AREC” Member . United Nations: Escwa – Palestine Representative Palestine Environment Society {SES} Member & Project& Technical Manager . Inter Solar “Europe” ,German , Member Palestine Technology Association “Pita” member ,

Other Full View with the whole system

The Researcher : Fadi Bkirat , visionary, believer, professional figure, leader, contributor, investor,

developer, in the field of “GREEN ENERGY”, since early 2000s’ , played a critical role in introducing the Green Energy technology forward, believing in environmental aspect, believing in building new &advance technology, leading the establishment of number companies and successful projects, contributing towards the creating and success of semi organizations , adapting and developing number of projects at the national and regionally, attracting potential investments, pioneer in introducing new technology to investors , marginalized community. Knowledgeable, been attracted by other professional to build umbrella organizations serving various objectives, in maintain better sustainable energy serving the sector at the national level. Landmarks and bench marks: Some of the bench marks can be listed as follow: - Al-Amaneh bakery, Ramallah 22 kilo solar system. - Arab Medical Centers 20 k/w each center solar system. - A Turn-Key Managing Consultant Of Al Haia Center Green Building . - 600 Kva Power Stabilizer for Tubas Electrical Company . - Al-Jada’ factory installing a power saving Turbine . - Palestine First Solar Grid Connected Solar System . Community Activities: - Member of the PHGBC higher green building council - Founder and Owner of Rach-Tech Company - General Secretary of the Palestinian union of Energy Industry (FREI) Arab Renewable Energy Member “AREC” Member . United Nations: Escwa – Palestine Representative Palestine Environment Society {SES} Member & Project& Technical Manager . Inter Solar “Europe” ,German , Member Palestine Technology Association “Pita” member ,

Other Full View with the whole system

Page 69: The Fifth International Energy Conference - Palestine -

66

The Researcher : Fadi Bkirat , visionary, believer, professional figure, leader, contributor, investor,

developer, in the field of “GREEN ENERGY”, since early 2000s’ , played a critical role in introducing the Green Energy technology forward, believing in environmental aspect, believing in building new &advance technology, leading the establishment of number companies and successful projects, contributing towards the creating and success of semi organizations , adapting and developing number of projects at the national and regionally, attracting potential investments, pioneer in introducing new technology to investors , marginalized community. Knowledgeable, been attracted by other professional to build umbrella organizations serving various objectives, in maintain better sustainable energy serving the sector at the national level. Landmarks and bench marks: Some of the bench marks can be listed as follow: - Al-Amaneh bakery, Ramallah 22 kilo solar system. - Arab Medical Centers 20 k/w each center solar system. - A Turn-Key Managing Consultant Of Al Haia Center Green Building . - 600 Kva Power Stabilizer for Tubas Electrical Company . - Al-Jada’ factory installing a power saving Turbine . - Palestine First Solar Grid Connected Solar System . Community Activities: - Member of the PHGBC higher green building council - Founder and Owner of Rach-Tech Company - General Secretary of the Palestinian union of Energy Industry (FREI) Arab Renewable Energy Member “AREC” Member . United Nations: Escwa – Palestine Representative Palestine Environment Society {SES} Member & Project& Technical Manager . Inter Solar “Europe” ,German , Member Palestine Technology Association “Pita” member ,

Other Full View with the whole system

The Researcher : Fadi Bkirat , visionary, believer, professional figure, leader, contributor, investor,

developer, in the field of “GREEN ENERGY”, since early 2000s’ , played a critical role in introducing the Green Energy technology forward, believing in environmental aspect, believing in building new &advance technology, leading the establishment of number companies and successful projects, contributing towards the creating and success of semi organizations , adapting and developing number of projects at the national and regionally, attracting potential investments, pioneer in introducing new technology to investors , marginalized community. Knowledgeable, been attracted by other professional to build umbrella organizations serving various objectives, in maintain better sustainable energy serving the sector at the national level. Landmarks and bench marks: Some of the bench marks can be listed as follow: - Al-Amaneh bakery, Ramallah 22 kilo solar system. - Arab Medical Centers 20 k/w each center solar system. - A Turn-Key Managing Consultant Of Al Haia Center Green Building . - 600 Kva Power Stabilizer for Tubas Electrical Company . - Al-Jada’ factory installing a power saving Turbine . - Palestine First Solar Grid Connected Solar System . Community Activities: - Member of the PHGBC higher green building council - Founder and Owner of Rach-Tech Company - General Secretary of the Palestinian union of Energy Industry (FREI) Arab Renewable Energy Member “AREC” Member . United Nations: Escwa – Palestine Representative Palestine Environment Society {SES} Member & Project& Technical Manager . Inter Solar “Europe” ,German , Member Palestine Technology Association “Pita” member ,

Other Full View with the whole system

The Researcher : Fadi Bkirat , visionary, believer, professional figure, leader, contributor, investor,

developer, in the field of “GREEN ENERGY”, since early 2000s’ , played a critical role in introducing the Green Energy technology forward, believing in environmental aspect, believing in building new &advance technology, leading the establishment of number companies and successful projects, contributing towards the creating and success of semi organizations , adapting and developing number of projects at the national and regionally, attracting potential investments, pioneer in introducing new technology to investors , marginalized community. Knowledgeable, been attracted by other professional to build umbrella organizations serving various objectives, in maintain better sustainable energy serving the sector at the national level. Landmarks and bench marks: Some of the bench marks can be listed as follow: - Al-Amaneh bakery, Ramallah 22 kilo solar system. - Arab Medical Centers 20 k/w each center solar system. - A Turn-Key Managing Consultant Of Al Haia Center Green Building . - 600 Kva Power Stabilizer for Tubas Electrical Company . - Al-Jada’ factory installing a power saving Turbine . - Palestine First Solar Grid Connected Solar System . Community Activities: - Member of the PHGBC higher green building council - Founder and Owner of Rach-Tech Company - General Secretary of the Palestinian union of Energy Industry (FREI) Arab Renewable Energy Member “AREC” Member . United Nations: Escwa – Palestine Representative Palestine Environment Society {SES} Member & Project& Technical Manager . Inter Solar “Europe” ,German , Member Palestine Technology Association “Pita” member ,

Other Full View with the whole system

The Researcher : Fadi Bkirat , visionary, believer, professional figure, leader, contributor, investor,

developer, in the field of “GREEN ENERGY”, since early 2000s’ , played a critical role in introducing the Green Energy technology forward, believing in environmental aspect, believing in building new &advance technology, leading the establishment of number companies and successful projects, contributing towards the creating and success of semi organizations , adapting and developing number of projects at the national and regionally, attracting potential investments, pioneer in introducing new technology to investors , marginalized community. Knowledgeable, been attracted by other professional to build umbrella organizations serving various objectives, in maintain better sustainable energy serving the sector at the national level. Landmarks and bench marks: Some of the bench marks can be listed as follow: - Al-Amaneh bakery, Ramallah 22 kilo solar system. - Arab Medical Centers 20 k/w each center solar system. - A Turn-Key Managing Consultant Of Al Haia Center Green Building . - 600 Kva Power Stabilizer for Tubas Electrical Company . - Al-Jada’ factory installing a power saving Turbine . - Palestine First Solar Grid Connected Solar System . Community Activities: - Member of the PHGBC higher green building council - Founder and Owner of Rach-Tech Company - General Secretary of the Palestinian union of Energy Industry (FREI) Arab Renewable Energy Member “AREC” Member . United Nations: Escwa – Palestine Representative Palestine Environment Society {SES} Member & Project& Technical Manager . Inter Solar “Europe” ,German , Member Palestine Technology Association “Pita” member ,

Other Full View with the whole system

The Researcher : Fadi Bkirat , visionary, believer, professional figure, leader, contributor, investor,

developer, in the field of “GREEN ENERGY”, since early 2000s’ , played a critical role in introducing the Green Energy technology forward, believing in environmental aspect, believing in building new &advance technology, leading the establishment of number companies and successful projects, contributing towards the creating and success of semi organizations , adapting and developing number of projects at the national and regionally, attracting potential investments, pioneer in introducing new technology to investors , marginalized community. Knowledgeable, been attracted by other professional to build umbrella organizations serving various objectives, in maintain better sustainable energy serving the sector at the national level. Landmarks and bench marks: Some of the bench marks can be listed as follow: - Al-Amaneh bakery, Ramallah 22 kilo solar system. - Arab Medical Centers 20 k/w each center solar system. - A Turn-Key Managing Consultant Of Al Haia Center Green Building . - 600 Kva Power Stabilizer for Tubas Electrical Company . - Al-Jada’ factory installing a power saving Turbine . - Palestine First Solar Grid Connected Solar System . Community Activities: - Member of the PHGBC higher green building council - Founder and Owner of Rach-Tech Company - General Secretary of the Palestinian union of Energy Industry (FREI) Arab Renewable Energy Member “AREC” Member . United Nations: Escwa – Palestine Representative Palestine Environment Society {SES} Member & Project& Technical Manager . Inter Solar “Europe” ,German , Member Palestine Technology Association “Pita” member ,

Other Full View with the whole system

67

PV System Penetration in the Palestinian Electrical Power System: A Review of Barriers and Technical

Challenges

Tamer Khatib, Wilfried Elmenreich Institute of Networked & Embedded Systems/Lakeside

Labs, Alpen-Adria-Universität Klagenfurt, Klagenfurt, Austria

[email protected]; [email protected]

Samer AlSadi Electrical Engineering department, Faculty of Engineering and Technology, Palestine Technical University-Kadoorie

Tulkarm, Palestine [email protected]

Abstract—This This paper is overview of some of the main issues in photovoltaic based distributed generation (PVDG). It discusses various aspects of PVDG, such as definitions, technologies, power quality impacts, maximum allowable penetration level, and optimal PVDG planning in a distribution system. A discussion of the harmonic distortion produced by PVDG units in a low voltage distribution is presented in this paper. The maximum permissible penetration level of PVDG in distribution system without violating harmonic limits is also considered. The general procedure of optimal planning for PVDG placement and sizing with considering the power quality constraints are also explained in this paper. Moreover, analysis of current structural and behavioral barriers is carried out.

Keywords-PV system; Distribution generation; Power system; Energy policy; Palestine

I. INTRODUCTION(HEADING 1) According to OSLO accords signed between Israel and the

Palestinian authority, the Palestinian energy authority and the Palestinian electricity companies are responsible of the electricity distribution network of the Palestinian authority areas. Meanwhile the transmission and the generation of the electricity is the responsibility of the Israeli electricity company(s). Based on this, any suggested upgrade/expansion for a distribution power station located in the Palestinian authority area needs a political decision because it cannot be done without cooperation with the Israeli electricity companies. Following that, the Palestinian energy authority has approved a renewable energy policy in order to resolve the electricity problem caused by the Palestinian- Israeli energy dispute. The main focus of this green initiative is given on smart homes (SHs) which utilize sustainable energy sources at high level of energy efficiency together with a smart energy management system (EMS). SHs are renewable energy powered homes that exploit computer based technologies to control home electrical appliances. Such systems can range from simple remote controlling of lighting and other simple loads to complex micro-controller based networks with different level of automation and intelligence. Smart homes are promoted for reasons of energy security and efficiency.

However, before enforcing energy efficiency and smart home acts, the gap between energy users represented by the public, energy producer and government, and energy efficiency must be studied. To this end, it is important to let the citizens be aware, of the detailed energy consumption in their households. According to many researchers, SH and energy efficiency technologies may face a huge failure due to many gaps and wrong practices [1].

Moreover, there are some technical challenges for integrating PV system into the grid. The integration of PVDG into a distribution system will have either positive or negative impact depending on the distribution system operating features and the PVDG characteristics. One of the growing power quality concerns that degrade the performance of power systems is harmonic distortion. The main causes of harmonic distortion are due to the proliferation of power electronic devices like computer, television, energy saving lamps, adjustable-speed drives, arc furnaces and power converters. Harmonic distortion is also caused by non-linearity of equipment such as transformer and rotating machines [2]. These harmonic currents may create greater losses in the loads which consecutively require derating of the load, overheating of neutral conductor, overheating of transformer and malfunction of protective devices [3]. Another power quality problem arises at the interface between PVDG inverters and the grid is harmonic resonance phenomenon. Harmonic resonance phenomena will occur at a resonant frequency where the inductive component is equal to the capacitive component. Harmonic resonance which has been found to be an increasingly common problem at the interface between PVDG inverters and the grid depend on the number of PVDG units. The effect of harmonic resonance not only presents a severe power quality problem but it can also trip protection devices and cause damage to sensitive equipment [2].

On the other hand, it is well known that PVDG needs to be installed at the distribution system level of the electric grid and located close to the load centre. Studies are usually conducted to evaluate the impact of PVDG on harmonic distortion, power loss, voltage profile, short circuit current, and power system

[email protected]

Page 70: The Fifth International Energy Conference - Palestine -

68

reliability before placing it in a distribution system. To reduce power losses, improve system voltage and minimize voltage total harmonic distortion (THDv), appropriate planning of power system with the presence of DG is required. Several considerations need to be taken into account such as, the number and the capacity of the PVDG units, the optimal PVDG location and the type of network connection. The installation of PVDG units at non-optimal locations and with non-optimal sizes may cause higher power loss, voltage fluctuation problem, system instability and amplification of operational cost [2].

II. THEGAP BETWEEN THE END-USER AND SMART HOME TECHNOLOGY

Smart home and energy efficiency gaps are attributed to low public awareness, market and policy failures. Therefore, understanding the public attitude, for example, is extremely important to propose suitable technical decisions and governmental policies. In [4], Hirst concluded that there are two reasons for the gap between the public and smart homes and energy efficiency, i.e., behavioral and structural barriers. The behavior and the practice of the public and private organizations is the reason for the structural barrier, while the individual energy end-user is not really responsible of that. An example of this kind of barriers is the fuel price subsidization for energy production. The current fuel prices is mainly subsidized by the governments whereas the consumers do not pay the actual price of the fuel which reflects the actual costs including production, distribution and consumption costs. Therefore, the consumers are not really interested in energy efficiency technologies or smart homes investment. Another reason listed in [4] is the uncertainty of future fuel prices. Fuel prices are typically fluctuating which gives a very fuzzy image about the future fuel prices. This situation actually prevents consumers from investing in new energy technologies such as smart homes. In addition to the potential prices subsidization and fluctuation, high costs of energy-efficiency technologies are considered one of the most important causes of the low energy efficiency [4]. Moreover, the current marking policy which represents by applying high discount rates to make tradeoffs between the initial investment and savings also prevents the customer for any investment in energy-efficiency technologies. On the other hand, approved government policies are one of the structural reasons for the energy efficiency gap. In general, the applied government policies usually encourage energy consumption, rather than energy efficiency as the profit of selling the electricity, for example is a function of government income [4]. The lack of the technical standards behind the technology development is considered as a structural barrier that prevents the consumer from any investment in EMSs. Moreover, there are many factors that restrict the deployment of energy efficiency technologies such as infrastructure, geography and human resources. Regarding the behavioral barriers, they can be defined as negative characterization of the end-user decision-making relating to energy consumption. According to [4] there are many reasons for this negative decision-making characterization of the end-user such as end-user attitude toward smart homes and energy efficiency. Better awareness of smart homes and energy efficiency leads to a positive attitude toward these technologies

and, consequently could greatly affect their energy-related consumption and purchase behaviors. However, the risk of smart home investments is considered one of the behavioral barriers. As a fact, the fluctuation of fuel prices and current high discount rates for conventional energy systems operating costs have made smart home investments risky for many of the end users. Furthermore, the lack of the non-technical information about these systems caused some negative attitudes with the consumers. Non-technical information on systems feasibility and reliability may greatly encourage the consumers to change their energy consumption behavior. In addition to the lack of information, misplaced incentives is considered one the behavioral barriers. The lack of life-cycle thinking on costs and savings has imposed barriers for energy conservation.

III. TECHNICAL CHALLENGES FOR INTEGRATING PV SYSTEM IN ELECTRICAL POWER SYS

A. Power quality impact of PVDG A.1 Harmonic impact of PVDG

Harmonic is a sinusoidal component of a periodic wave or a quantity which has a frequency that is an integral multiple of the fundamental frequency [5]. Harmonic distortion is caused by the non-linearity of equipment such as power converters, transformer, rotating machines, arc furnaces, and fluorescent lighting [6]. PVDG connected to a distribution system may introduce harmonic distortion in the system depending on the power converter technology. A power quality study was performed on a PV system to estimate the effect of inverter-interfaced PVDG on the quality of electric power [6]. The experimental results indicate that the values of total harmonic distortion THDidepend on the output power of the inverter. This dependence decreases proportionally with reduced power converter rating. Another factor that influences harmonic distortion in a power system is the number of PVDG units connected to the power system. The interaction between grid components and a group of PVDG units can amplify harmonic distortion [6]. In addition, PVDG placement also contributes to harmonic distortion levels in a power system. DG placement at higher voltage circuit produces less harmonic distortion compared with PVDG placement at low voltage level [6]. On the customer side, the increasing use of harmonic-producing equipment such as adjustable speed drives may create problems, such as greater propagation of harmonics in the system, shortened lifetime of electronic equipment, and motor and wiring overheating. In addition, harmonics can flow back to the supply line and affect other customers at the PCC. Therefore, harmonic mitigation strategies for power systems must be measured, analyzed, and identified.

A.2 Harmonic resonance in a power system with PVDG

Resonance occurs in a power system when the capacitive elements of the system become exactly equal to the inductive elements at a particular frequency. Depending on the parallel or series operation, it may form parallel or series resonance. At a given location, when a system forms a parallel resonance, it exhibits high network impedance, whereas for a series

Page 71: The Fifth International Energy Conference - Palestine -

68

reliability before placing it in a distribution system. To reduce power losses, improve system voltage and minimize voltage total harmonic distortion (THDv), appropriate planning of power system with the presence of DG is required. Several considerations need to be taken into account such as, the number and the capacity of the PVDG units, the optimal PVDG location and the type of network connection. The installation of PVDG units at non-optimal locations and with non-optimal sizes may cause higher power loss, voltage fluctuation problem, system instability and amplification of operational cost [2].

II. THEGAP BETWEEN THE END-USER AND SMART HOME TECHNOLOGY

Smart home and energy efficiency gaps are attributed to low public awareness, market and policy failures. Therefore, understanding the public attitude, for example, is extremely important to propose suitable technical decisions and governmental policies. In [4], Hirst concluded that there are two reasons for the gap between the public and smart homes and energy efficiency, i.e., behavioral and structural barriers. The behavior and the practice of the public and private organizations is the reason for the structural barrier, while the individual energy end-user is not really responsible of that. An example of this kind of barriers is the fuel price subsidization for energy production. The current fuel prices is mainly subsidized by the governments whereas the consumers do not pay the actual price of the fuel which reflects the actual costs including production, distribution and consumption costs. Therefore, the consumers are not really interested in energy efficiency technologies or smart homes investment. Another reason listed in [4] is the uncertainty of future fuel prices. Fuel prices are typically fluctuating which gives a very fuzzy image about the future fuel prices. This situation actually prevents consumers from investing in new energy technologies such as smart homes. In addition to the potential prices subsidization and fluctuation, high costs of energy-efficiency technologies are considered one of the most important causes of the low energy efficiency [4]. Moreover, the current marking policy which represents by applying high discount rates to make tradeoffs between the initial investment and savings also prevents the customer for any investment in energy-efficiency technologies. On the other hand, approved government policies are one of the structural reasons for the energy efficiency gap. In general, the applied government policies usually encourage energy consumption, rather than energy efficiency as the profit of selling the electricity, for example is a function of government income [4]. The lack of the technical standards behind the technology development is considered as a structural barrier that prevents the consumer from any investment in EMSs. Moreover, there are many factors that restrict the deployment of energy efficiency technologies such as infrastructure, geography and human resources. Regarding the behavioral barriers, they can be defined as negative characterization of the end-user decision-making relating to energy consumption. According to [4] there are many reasons for this negative decision-making characterization of the end-user such as end-user attitude toward smart homes and energy efficiency. Better awareness of smart homes and energy efficiency leads to a positive attitude toward these technologies

and, consequently could greatly affect their energy-related consumption and purchase behaviors. However, the risk of smart home investments is considered one of the behavioral barriers. As a fact, the fluctuation of fuel prices and current high discount rates for conventional energy systems operating costs have made smart home investments risky for many of the end users. Furthermore, the lack of the non-technical information about these systems caused some negative attitudes with the consumers. Non-technical information on systems feasibility and reliability may greatly encourage the consumers to change their energy consumption behavior. In addition to the lack of information, misplaced incentives is considered one the behavioral barriers. The lack of life-cycle thinking on costs and savings has imposed barriers for energy conservation.

III. TECHNICAL CHALLENGES FOR INTEGRATING PV SYSTEM IN ELECTRICAL POWER SYS

A. Power quality impact of PVDG A.1 Harmonic impact of PVDG

Harmonic is a sinusoidal component of a periodic wave or a quantity which has a frequency that is an integral multiple of the fundamental frequency [5]. Harmonic distortion is caused by the non-linearity of equipment such as power converters, transformer, rotating machines, arc furnaces, and fluorescent lighting [6]. PVDG connected to a distribution system may introduce harmonic distortion in the system depending on the power converter technology. A power quality study was performed on a PV system to estimate the effect of inverter-interfaced PVDG on the quality of electric power [6]. The experimental results indicate that the values of total harmonic distortion THDidepend on the output power of the inverter. This dependence decreases proportionally with reduced power converter rating. Another factor that influences harmonic distortion in a power system is the number of PVDG units connected to the power system. The interaction between grid components and a group of PVDG units can amplify harmonic distortion [6]. In addition, PVDG placement also contributes to harmonic distortion levels in a power system. DG placement at higher voltage circuit produces less harmonic distortion compared with PVDG placement at low voltage level [6]. On the customer side, the increasing use of harmonic-producing equipment such as adjustable speed drives may create problems, such as greater propagation of harmonics in the system, shortened lifetime of electronic equipment, and motor and wiring overheating. In addition, harmonics can flow back to the supply line and affect other customers at the PCC. Therefore, harmonic mitigation strategies for power systems must be measured, analyzed, and identified.

A.2 Harmonic resonance in a power system with PVDG

Resonance occurs in a power system when the capacitive elements of the system become exactly equal to the inductive elements at a particular frequency. Depending on the parallel or series operation, it may form parallel or series resonance. At a given location, when a system forms a parallel resonance, it exhibits high network impedance, whereas for a series

69

resonance, it presents a low network impedance path [7]. With increasing PVDG penetration in the power grid, harmonic resonance is becoming a crucial issue in power systems [7]. Harmonic resonance can occur at the interconnection point of individual or multiple PVDG units to the grid because of impedance mismatch between the grid and the inverters. Dynamic interaction between grid and inverter output impedance can lead to harmonic resonance in grid current and/or voltage which occur at certain frequencies. The effect of harmonic resonance presents severe power quality problems such as tripping of protection devices and damage to sensitive equipment because of overvoltage or overcurrent [7]. A study investigated the harmonic interaction between multiple PVDG units and a distributed network and found that high penetration levels of PVDG units increase harmonic emission significantly even though the PV inverters each meet IEC 61000-3-2 specifications. Parallel and series resonance phenomena between the network and PV inverters were found to be responsible for unexpected high current and voltage distortion levels in the network [7].

A.3 Effect of PVDG on voltage variation

The operating voltages in a distribution system are not always within required voltage ranges because of load variations along the feeders, the action of tap changers of the substation transformers, and switching of capacitor banks or reactors. This results in voltage variations, which may be defined as the deviations of a voltage from its nominal value [8]. Disturbances classified as short-duration voltage variations are voltage sag, voltage swell, and short interruption, whereas disturbances classified as long-duration voltage variations include sustained interruption, undervoltage, and overvoltage [8].

With the growing electricity demand in distribution systems, the voltage tends to drop below its tolerable operating limits along distribution feeders with the increase of loads. Thus, the distribution system infrastructure should be upgraded to solve voltage drop problems [8]. The integration of PVDG units in a distribution system can improve the voltage profile as voltage drop across feeder segments is reduced because of reduced power flow through the feeder. However, if the power generated by PVDG is greater than the local demand at the PCC, the surplus power flows back to the grid. The excess power from DG may produce reverse power flow in the feeder and may create voltage rise at the feeder [8]. With high DG penetration at low voltage level, a violation may occur in the upper voltage limit. Therefore, a solution is needed to reduce the overvoltage caused by DG.

B. Maximum allowable penetration level of PVDG Several studies have been conducted to investigate the impacts of high PVDG penetration in distribution systems by considering various constraints. Kirawanich and O’Connell (2003) performed a simulation to investigate the harmonic impact of a PVDG on a typical commercial distribution system [9]. The results showed that even at the most vulnerable lateral tap points in the system under worst-case

conditions, the voltage THD did not exceed the IEEE Standard 519 limit for up to 40% saturation of commercial distribution system with DG units. A similar study performed by Pandi et al. (2013) concluded that the maximum PVDG penetration level based on an optimal DG size and locations on the 18-bus and 33-bus radial distribution systems are 66.67% and 33.53%, respectively [9]. Other studies focused on the maximum allowable penetration level of DG units by considering the transient stability limit [9]. Azmy and Erlich (2005) investigated the impact of utilizing selected DG units with different penetration levels on various forms of power system stability [9]. The simulation result showed that the voltage deviation decreases significantly with 28.3% DG penetration. Moreover, it is reported that the maximum penetration level of DG, without violating the transient stability limit, is 40% of the total connected load [9].

Another factor that may limit the penetration level of DG in a typical distribution system is the steady-state voltage rise. Celli et al. (2009) developed a method for evaluating the critical value of DG penetration level by considering DG siting and sizing [9]. The result showed that the limit of the DG penetration level in a distribution system was 40% to 50%. A similar study was conducted by Po-Chen et al. (2012) to clarify what would happen to a distribution system if customers were allowed to install DG units freely on their premises and DG units became widespread [9]. The major factor that led to overvoltage and undervoltage was the surplus DG power in localized areas of the secondary network, which caused the tripping of the network protectors.

C. Optimal placement and sizing of PVDG Voltage variation and harmonic distortion are two major disturbances in distribution systems. The voltage drop occurs because of increasing electricity demand, thereby indicating the need to upgrade the distribution system infrastructure. Studies have indicated that approximately 13% of the generated power is consumed as losses at the distribution level [10]. To mitigate voltage variation and harmonic distortion in distribution systems, several strategies were applied, such as the use of passive and active power filters to mitigate harmonic distortion and the application of custom power controllers to mitigate voltage variation problems. However, these mitigation strategies require investment. Therefore, to improve voltage profile and eliminate harmonic distortion in a distribution system with PVDG, a non-invasive method is proposed, which involves appropriate planning of PVDG units and determining optimal placement and sizing of PVDG units. Before installing PVDG units in a distribution system, a feasibility analysis has to be performed. PVDG owners are requested to present the type, size, and location of their PVDG [10]. The power system is usually affected by the installation of PVDG. Therefore, the allowable PVDG penetration level must comply with the harmonic limits. Thus, optimal placement and sizing of DG is important because installation of DG units at optimal places and with optimal sizes can provide economic, environmental and technical advantages

Page 72: The Fifth International Energy Conference - Palestine -

70

such as power losses reduction, power quality enhancement, system stability, and lower operational cost [10].

Several methods have been applied to determine the optimal location and size of PVDG in a distribution system. The analytical method used for optimal PVDG placement and sizing is only accurate for the model developed, and it can be very complicated for solving complex systems. The power flow algorithm [10] has been used to find the optimum PVDG size at each load bus by assuming that each load bus can have a PVDG unit. However, this method is ineffective because it requires a large number of load flow computations. Analytical methods can also be used to place the PVDG in radial or meshed systems [10]. In this method, separate expressions for radial and meshed systems are required, and complex procedures based on the phasor current are applied to solve the PVDG placement problem. However, this method only determines the optimum PVDG placement and not the optimum PVDG size as it considers a fixed PVDG size.

The meta-heuristic method is alsoused in optimal placement and sizing of DG in distribution systems. This method applies an iterative generation process which can act as a lead for its subordinate heuristics to find the optimal or near-optimal solutions of the optimization problem [10]. It combines different concepts derived from artificial intelligence to improve performance. Some of the techniques that adopt meta-heuristics concepts include genetic algorithm (GA), Tabu search, particle swarm optimization (PSO), ant colony optimization (ACO), and gravitational search algorithm (GSA).

The implementation of the general optimization technique for solving the optimal placement and sizing of PVDG problem is depicted in Figure 1. A multi-objective function is formulated to minimize the total losses, average total voltage harmonic distortion (THDv) and voltage deviation in a distribution system. The procedures for implementing the general optimization algorithm for determining optimal placement and sizing of PVDG are described as follows:

i. Obtain the input network information such as bus, line and generator data.

ii. Randomly generate initial positions within feasible solution combination, such as the PVDG location; PVDG size in the range of 40% to 50% of the total connected loads; PVDG controllable bus voltage in the range of 0.98 p.u to 1.02 p.u.

iii. Improvise the optimization algorithm using the optimal parameters such as population size; number of dimension; maximum iteration.

iv. Run loadflow and harmonic loadflow to obtain the total power loss, average THDv and voltage deviation.

v. Calculate the fitness function.

vi. Check the bus voltage magnitude and THDv constraints. If both exceed their limits, repeat step iv.

vii. Update the optimization parameters.

viii. Repeat the process until the stopping creteria is achieved and the best solution is obtained.

Start

Initial populationgeneration

Improvise GeneralOptimization

Technique

Iteration=max

End

Yes

No

Gettingnetwork

information

Iteration=1

Calculate the loadflow and theharmonic loadflow

Best solution

Calculate the fitnessfunction

Update optimizationparameter

Iteration +1

THDvi ≤ ThdvmaxVmin ≤ Vi ≤ Vmax

Population = max

New agent

No

Yes

No

Yes

General OptimizationTechnique

Figure 1 Flowchart of the general optimization technique for

determining optimal placement and sizing of PVDG in a distribution system

IV. CONCLUSION This paper describes an overview of the relevant aspects related to PVDG and its impacts that might have to the distribution system. This paper evolve the background of PVDG and its impacts on power quality and the maximum allowable penetration level of PVDG connected to a distribution system.. The implementation of the general optimization technique for solving the optimal placement and sizing of PVDG problem with multi-objective functions such as minimization of losses, THDv and voltage deviation are explained. The multi-objective functions are considered as the technical benefits factors for optimal planning PVDG in the distribution system. It is concluded that there are great oppurtunities and beneficial such as technicals, economical and environmental benefits are offered when installing PVDG in a distribution system. However, there are some technical issues and challenges come up when incorperating PVDG in a distribution system. These issues and challenges concluded by several researchers needs to be assessed for proper PVDG planning and operation in the distribution network.

ACKNOWLEDGMENT

Page 73: The Fifth International Energy Conference - Palestine -

70

such as power losses reduction, power quality enhancement, system stability, and lower operational cost [10].

Several methods have been applied to determine the optimal location and size of PVDG in a distribution system. The analytical method used for optimal PVDG placement and sizing is only accurate for the model developed, and it can be very complicated for solving complex systems. The power flow algorithm [10] has been used to find the optimum PVDG size at each load bus by assuming that each load bus can have a PVDG unit. However, this method is ineffective because it requires a large number of load flow computations. Analytical methods can also be used to place the PVDG in radial or meshed systems [10]. In this method, separate expressions for radial and meshed systems are required, and complex procedures based on the phasor current are applied to solve the PVDG placement problem. However, this method only determines the optimum PVDG placement and not the optimum PVDG size as it considers a fixed PVDG size.

The meta-heuristic method is alsoused in optimal placement and sizing of DG in distribution systems. This method applies an iterative generation process which can act as a lead for its subordinate heuristics to find the optimal or near-optimal solutions of the optimization problem [10]. It combines different concepts derived from artificial intelligence to improve performance. Some of the techniques that adopt meta-heuristics concepts include genetic algorithm (GA), Tabu search, particle swarm optimization (PSO), ant colony optimization (ACO), and gravitational search algorithm (GSA).

The implementation of the general optimization technique for solving the optimal placement and sizing of PVDG problem is depicted in Figure 1. A multi-objective function is formulated to minimize the total losses, average total voltage harmonic distortion (THDv) and voltage deviation in a distribution system. The procedures for implementing the general optimization algorithm for determining optimal placement and sizing of PVDG are described as follows:

i. Obtain the input network information such as bus, line and generator data.

ii. Randomly generate initial positions within feasible solution combination, such as the PVDG location; PVDG size in the range of 40% to 50% of the total connected loads; PVDG controllable bus voltage in the range of 0.98 p.u to 1.02 p.u.

iii. Improvise the optimization algorithm using the optimal parameters such as population size; number of dimension; maximum iteration.

iv. Run loadflow and harmonic loadflow to obtain the total power loss, average THDv and voltage deviation.

v. Calculate the fitness function.

vi. Check the bus voltage magnitude and THDv constraints. If both exceed their limits, repeat step iv.

vii. Update the optimization parameters.

viii. Repeat the process until the stopping creteria is achieved and the best solution is obtained.

Start

Initial populationgeneration

Improvise GeneralOptimization

Technique

Iteration=max

End

Yes

No

Gettingnetwork

information

Iteration=1

Calculate the loadflow and theharmonic loadflow

Best solution

Calculate the fitnessfunction

Update optimizationparameter

Iteration +1

THDvi ≤ ThdvmaxVmin ≤ Vi ≤ Vmax

Population = max

New agent

No

Yes

No

Yes

General OptimizationTechnique

Figure 1 Flowchart of the general optimization technique for

determining optimal placement and sizing of PVDG in a distribution system

IV. CONCLUSION This paper describes an overview of the relevant aspects related to PVDG and its impacts that might have to the distribution system. This paper evolve the background of PVDG and its impacts on power quality and the maximum allowable penetration level of PVDG connected to a distribution system.. The implementation of the general optimization technique for solving the optimal placement and sizing of PVDG problem with multi-objective functions such as minimization of losses, THDv and voltage deviation are explained. The multi-objective functions are considered as the technical benefits factors for optimal planning PVDG in the distribution system. It is concluded that there are great oppurtunities and beneficial such as technicals, economical and environmental benefits are offered when installing PVDG in a distribution system. However, there are some technical issues and challenges come up when incorperating PVDG in a distribution system. These issues and challenges concluded by several researchers needs to be assessed for proper PVDG planning and operation in the distribution network.

ACKNOWLEDGMENT

71

This work was partially supported by the research cluster Lakeside Labs funded by the European Regional Development Fund, the Carinthian Economic Promotion Fund (KWF), and the state of Austria under grant 20214|22935|34445 (Project Smart Microgrid).

REFERENCES [1] Holzmann, A., Adensam, H., Kratena, K., Schmid, E. Decomposing

final energy use for heating in the residential sector in Austria. Energy Policy. 62, (2013):607–616

[2] "IEEE Recommended Practices and Requirements for Harmonic Control in Electrical Power Systems," in IEEE Std 519-1992, ed.

[3] N. S. Rau and Y. Wan, "Optimum location of resources in distributed planning," Power Systems, IEEE Transactions on, vol. 9, pp. 2014-2020, 1994.

[4] Hirst, E., Brown, M. Closing the efficiency gap: barriers to the efficient use of energy. Resources, Conservation and Recycling, 3(1990): 267-281.

[5] IEEE, "IEEE Std. 519-1992," in IEEE Recommended Practices and Requirements for harmonic control in electrical in electrical power system, ed: IEEE, 1992.

[6] M. Sidrach-de-Cardona and J. Carretero, "Analysis of the current total harmonic distortion for different single-phase inverters for grid-connected pv-systems," Solar Energy Materials and Solar Cells, vol. 87, pp. 529-540, 2005.

[7] M. H. J. Bollen, "What is power quality?," Electric Power Systems Research, vol. 66, pp. 5-14, 2003.

[8] T. H. Chen, L. S. Chiang, and N. C. Yang, "Examination of major factors affecting voltage variation on distribution feeders," Energy and Buildings, vol. 55, pp. 494-499, 2012.

[9] V. R. Pandi, H. H. Zeineldin, W. Xiao, and A. F. Zobaa, "Optimal penetration levels for inverter-based distributed generation considering harmonic limits," Electric Power Systems Research, vol. 97, pp. 68-75, 2013.

[10] O. Amanifar and G. M. E. Hamedani, "Optimal distributed generation placement and sizing for loss and THD reduction and voltage profile improvement in distribution systems using Particle Swarm Optimization and sensitivity analysis," International Journal on Technical and Physical Problems of Engineering, vol. 3, pp. 47-53, 2011.

Page 74: The Fifth International Energy Conference - Palestine -

72

Rehabilitation to Gaza Governorate Electrical Power Distribution Grid

through Cable Sizing and Reactive Power Compensation.

Hussam Awwad Palestinian Broadcasting Corporation

Gaza, Palestine [email protected]

Assad Abu-Jasser The Islamic University of Gaza

Gaza, Palestine [email protected]

Abstract This paper introduces suggestion to reduce the losses and voltage drop by reactive power compensation and cable sizing. This losses reduction ratio, the annual saving and reducing in voltage drop is a good motivation to rehabilitate the Gaza Governorate Electrical Grid by applying this suggestion. The grid was unbalanced in most cases, there was a big difference in losses and voltage drop between balance and unbalanced load. Keywords: Distribution Grid, Cable Sizing, capacitor bank, reactive power compensation

1. Introduction In this paper, we will change the value of conductor size cross section area with standard in range [2.5 - 3] ampere per square millimeter. This will decrease resistance and impedance values and so the losses and the voltage drop will decrease [1]. The changes to the radius of conductor will affect to XL, which is inversely proportional to the logarithm of conductor radius. This will be demonstrated in the next tables for HV transmission lines, which decreases the total losses and the voltage drop at any point. We have to change Aluminum Conductor Steel Reinforced cross sectional area as the following values:

ACSR 150 mm2 to 185 mm2

ACSR 50 mm2 to 95 mm2

CU 50 mm2 to CU 70 mm2

Cable NA2X-3× (1×120/16) to Cable NA2X-3× (1×150/25)

We will choose two feeders one represents Israeli feeders which is Baghdad feeder and the other represents power plant feeders which is J4 feeder [2].

High Voltage Transmission Lines Analysis

We can note from analysis that the total losses related to the full feeder high voltage transmission lines are equal the summation to the losses in each branch for single line multiplied by three and this related to the three phase losses to the full feeder as below:

Before applying capacitor banks and without improving power factor

PHV.LOSSES (B.I) = 216 KW with cable sizing

After applying capacitor banks in range [75-200] kVAR to all feeders and with improving power factor to PF=0.92 without load changing [3].

PHV.LOSSES (A.I) = 160 KW with cable sizing and RPC

By applying load factor to Baghdad Feeder which equal 82%, then

PHV.AVG.LOSSES (B.I) = 82%×216=177 KW with cable sizing

PHV.AVG.LOSSES (A.I) = 82%×160=131 KW with cable sizing and RPC

We note from analysis that the voltage drop to the end of the feeder as the entrance to the transformer in Gassima 13 before and after the improvement is demonstrated next. For any point the total voltage drop is summation to the voltage drops on the branches in continuous track, so we have to eliminate the out of the continuous track, So the total voltage drop for each branches before and after the improvement to the end point. For example the voltage drop to the entrance of Gassima-13 transformer, is equal the total voltage drop minus the voltage drop outgoing the continuous track [4, 5].

ΔVHV (B.I) = 4.1506 − 0.0949 = 4.1 % with cable sizing

ΔVHV (A.I) = 3.1198 − 0.0692 = 3.1 % with cable sizing and RPC

This means that the voltage drop decreases to 3.1 % after reactive power compensation and with cable sizing interchanging and to 4.1 % with cable sizing only.

1.1. Low Voltage Analysis (Balanced Condition)

After we did high voltage analysis and chose the last transformer (Gassima13) as an example, we have to do the same procedure to the low voltage distribution grid. We choose five transformers from the feeder to do the calculations and the analysis, and as example we choose one of them here with the largest full load and highest unbalance loads, which is (Heteen) transformer, we tabulate the results through the tables below as we take two measurements at different days. The largest load and big difference between

Page 75: The Fifth International Energy Conference - Palestine -

72

Rehabilitation to Gaza Governorate Electrical Power Distribution Grid

through Cable Sizing and Reactive Power Compensation.

Hussam Awwad Palestinian Broadcasting Corporation

Gaza, Palestine [email protected]

Assad Abu-Jasser The Islamic University of Gaza

Gaza, Palestine [email protected]

Abstract This paper introduces suggestion to reduce the losses and voltage drop by reactive power compensation and cable sizing. This losses reduction ratio, the annual saving and reducing in voltage drop is a good motivation to rehabilitate the Gaza Governorate Electrical Grid by applying this suggestion. The grid was unbalanced in most cases, there was a big difference in losses and voltage drop between balance and unbalanced load. Keywords: Distribution Grid, Cable Sizing, capacitor bank, reactive power compensation

1. Introduction In this paper, we will change the value of conductor size cross section area with standard in range [2.5 - 3] ampere per square millimeter. This will decrease resistance and impedance values and so the losses and the voltage drop will decrease [1]. The changes to the radius of conductor will affect to XL, which is inversely proportional to the logarithm of conductor radius. This will be demonstrated in the next tables for HV transmission lines, which decreases the total losses and the voltage drop at any point. We have to change Aluminum Conductor Steel Reinforced cross sectional area as the following values:

ACSR 150 mm2 to 185 mm2

ACSR 50 mm2 to 95 mm2

CU 50 mm2 to CU 70 mm2

Cable NA2X-3× (1×120/16) to Cable NA2X-3× (1×150/25)

We will choose two feeders one represents Israeli feeders which is Baghdad feeder and the other represents power plant feeders which is J4 feeder [2].

High Voltage Transmission Lines Analysis

We can note from analysis that the total losses related to the full feeder high voltage transmission lines are equal the summation to the losses in each branch for single line multiplied by three and this related to the three phase losses to the full feeder as below:

Before applying capacitor banks and without improving power factor

PHV.LOSSES (B.I) = 216 KW with cable sizing

After applying capacitor banks in range [75-200] kVAR to all feeders and with improving power factor to PF=0.92 without load changing [3].

PHV.LOSSES (A.I) = 160 KW with cable sizing and RPC

By applying load factor to Baghdad Feeder which equal 82%, then

PHV.AVG.LOSSES (B.I) = 82%×216=177 KW with cable sizing

PHV.AVG.LOSSES (A.I) = 82%×160=131 KW with cable sizing and RPC

We note from analysis that the voltage drop to the end of the feeder as the entrance to the transformer in Gassima 13 before and after the improvement is demonstrated next. For any point the total voltage drop is summation to the voltage drops on the branches in continuous track, so we have to eliminate the out of the continuous track, So the total voltage drop for each branches before and after the improvement to the end point. For example the voltage drop to the entrance of Gassima-13 transformer, is equal the total voltage drop minus the voltage drop outgoing the continuous track [4, 5].

ΔVHV (B.I) = 4.1506 − 0.0949 = 4.1 % with cable sizing

ΔVHV (A.I) = 3.1198 − 0.0692 = 3.1 % with cable sizing and RPC

This means that the voltage drop decreases to 3.1 % after reactive power compensation and with cable sizing interchanging and to 4.1 % with cable sizing only.

1.1. Low Voltage Analysis (Balanced Condition)

After we did high voltage analysis and chose the last transformer (Gassima13) as an example, we have to do the same procedure to the low voltage distribution grid. We choose five transformers from the feeder to do the calculations and the analysis, and as example we choose one of them here with the largest full load and highest unbalance loads, which is (Heteen) transformer, we tabulate the results through the tables below as we take two measurements at different days. The largest load and big difference between

73

phases loads chosen to study the unbalanced case effectiveness.

1.1.1. Power Losses before improvement

Single line losses: 2

loss (old) i i1

P I R (1)

where i is the number of branchN is the largest number of the branches

N

i

So

2

loss (old)

2loss (old)

2

2

2

2

branch current(A)P branch resistance( / Km)

branch length(Km)P 321 (0.197 / Km 0.190 Km)

214 0.206 / Km 0.200 Km

62 0.320 / Km 0.078Km

76 320 / Km 0.11Km

100 (0

.320 / Km 0.150 Km) = 6.523 KW

Three lines losses: 2

3loss (old) 3 3 6.523 19.6 kWi iP I R There are 3-feeders from 3-circuit breakers Total losses 3 19.6 58.7 KW

1.1.2. Power Losses After improvement

Single line losses: 2

oldloss(new) loss (old)2

new

2

2

cosP P cos

0.8 6.523 4.72 kW (2)0.94

PF-STD=0.94 and obtained by connecting automatic capacitors banks with Qc STD=200 kVAR

(calculated) 3loss new P 3 4.72 14.2 KW

Total losses 3 14.2 42.5 KW

42.5Total reduction in losses 1 100% 27.6 %58.7

The losses to Heteen transformer feeders in single line, three lines and the total losses from all feeders outgoing from all circuit breakers can be shown in Figure (1.1):

Figure (1.1): Single, three and total feeders lines losses to Heteen Transformer

Voltage drop for average phases load (Balanced)

We change the cables to anew sizes cross section area in which the resistance will reduced and the losses and voltage drop will decrease and this lead us to take 2.5 to 3 Amps to one millimeter square and this cleared as follows:

ABC (4×50 mm2) to ABC (4X95mm2),

ABC (4X95mm2) to ABC (4X150mm2),

AAC (4X120mm2) to AAC (4X150mm2),

ABC (4X150mm2) to ABC (4X185mm2).

Voltage Drop before improvement

(AVG) (old) (AVG)

(AVG) (old)

(AVG)

V total 3 I Z , V total : is total average voltage drop . I : is the average value to 3 feeder currents .

321 0.19 0.3463 214 0.222 0.2+

100 0.332

(3)

61.6 V0.150

In percent 15.4%

After improvement

We know that:

old oldnew

new newold

cos PFI I cos PF (4)

This accomplished by adding automatic capacitor banks, in which the load is the same as the load in this chapter with cable sizing. The value of Qc STD connected to outputs of the transformers is the difference between the loaded value and the desired value required to reach to PF=0.92.

Page 76: The Fifth International Energy Conference - Palestine -

74

old( new) (old)

new

( new)

cos V total Vtotal cos

0.8 61.6 52.4 V 0.94

% Vtotal 13.1%

Voltage Drop Reduction52.41 100% 14.9 % [6]61.6

Figure (1.2): Voltage Drop to Balanced Heteen Transformer Feeders

1.1.3. Voltage drop full feeder to smallest phase load

FULL. SPL

FULL. SPL

V 13.1 2.1054 0.58 %

15.79 % (B.I)

V 11.1 1.5321 0.85 %

11.78 % (A.I)The improvement 15.79 11.78 4.01 %

All calculated results to the different cases of balanced, largest phase load and the smallest phase load are tabulated in Table (1.1) as shown next: Table (1.1): Heteen Transformer Load Analysis with RPC and Cable Sizing [7].

Transformer name:

Apparent Power: KVA Day: Date: Time:

Heteen 630 Wednesday 05/01/11 17:30 Supply Line: Baghdad

PH

FEEDERS CURRENT

(A) WEST C.B

Unbalance load losses (B.I),

(KW) N 70 0.310

R 273 4.72 Transformer

Losses S 330 6.89 No Load Losses = 860 watt

T 360 8.2 Full Load Losses

= 5400 watt

AVG 321

Loss(B.I) = 20.1× 3 = 60.36

Loss(A.I) = 14.6×3 = 43.7

single line losses (KW)

3- lines losses ( KW)

total losses (KW)

saving in percent

before improvement 6.523 19.6 3×19.6=58.7 after improvement 4.72 14.2 42.5 27.6%

Balance phases load

before improvement

after improvement

Improvement %

HV voltage drop: 2.11% 1.53% LV voltage drop 15.4% 13.1% Transformer Voltage

Drop 0.58% − 0.85% Voltage rise = −

1.43

Total Voltage Drop 18.09% 13.78%

4.31 %

largest phase load HV voltage drop: 2.11% 1.53%

LV voltage drop 17.3% 14.7% Transformer Voltage

Drop 0.58% -0.85% Voltage rise=

−1.43% improvement

% Total Voltage Drop 19.99% 15.38%

4.61 %

smallest phase load

LV voltage drop 13.10% 11.10% Total Voltage Drop 15.79% 11.78%

4.01 %

1.2. Full Load Baghdad Feeder Losses (LV side) balanced

From the previous chapters systematic calculations the overall output feeders losses to the whole transformers, we can get the losses to the feeders of each transformer from the five transformers we study them from Baghdad feeder which they are in the peak load time and multiply the losses by the load factor 82% before and after the improvement. After that taking the summation of the losses in the two cases, then we take the difference between them, which expresses about the average reduction in losses for the five transformers we choose them. In addition to, we

can generalize the rule to the whole transformers feeders and this firstly starting from rearranging

the transformers feeder's losses as the following Table (1.2) and graphical representation in Figure (1.3). Table (1.2): Balanced Losses Before and After RPC and Cable Sizes.

Day

: W

edne

sday

Dat

e:

05/0

1/20

11

Transformer name kVA

Load

(A)

Load

(kW)

Load

(AVG)

TIME

P loss-Peak

Before Impr. (kW)

'Cable Sizing'

Average P

loss(B.I)=82%

× peak-loss (kW)

P loss-Peak After Impr. (kW)

'Cable Sizing &RPC'

Average P

loss(A.I)=82% × Peak-loss (kW)

Heteen 630 963 533.75

437.67 17:30 58.7 48.14 42.5 34.85

Abed El Hayek 630 114

0 631.85

518.11 19:30 47 38.54 35.6

4 29.224

Sooq Al Yrmook 630 102

4 567.56

465.32 18:00 25.8 21.156 19.9

2 16.334

Al Shabia 630 800 443.41

363.59 18:30 30.6 25.092 22.6

8 18.6

Gassima 1 630 360 199.53

163.61 19:00 4.092 3.355 3.09

6 2.54

SUM= 2376.1

1948.2 166.19 136.27 123.

83 101.54

old( new) (old)

new

( new)

cos V total Vtotal cos

0.8 61.6 52.4 V 0.94

% Vtotal 13.1%

Voltage Drop Reduction52.41 100% 14.9 % [6]61.6

Figure (1.2): Voltage Drop to Balanced Heteen Transformer Feeders

1.1.3. Voltage drop full feeder to smallest phase load

FULL. SPL

FULL. SPL

V 13.1 2.1054 0.58 %

15.79 % (B.I)

V 11.1 1.5321 0.85 %

11.78 % (A.I)The improvement 15.79 11.78 4.01 %

All calculated results to the different cases of balanced, largest phase load and the smallest phase load are tabulated in Table (1.1) as shown next: Table (1.1): Heteen Transformer Load Analysis with RPC and Cable Sizing [7].

Transformer name:

Apparent Power: KVA Day: Date: Time:

Heteen 630 Wednesday 05/01/11 17:30 Supply Line: Baghdad

PH

FEEDERS CURRENT

(A) WEST C.B

Unbalance load losses (B.I),

(KW) N 70 0.310

R 273 4.72 Transformer

Losses S 330 6.89 No Load Losses = 860 watt

T 360 8.2 Full Load Losses

= 5400 watt

AVG 321

Loss(B.I) = 20.1× 3 = 60.36

Loss(A.I) = 14.6×3 = 43.7

single line losses (KW)

3- lines losses ( KW)

total losses (KW)

saving in percent

before improvement 6.523 19.6 3×19.6=58.7 after improvement 4.72 14.2 42.5 27.6%

Balance phases load

before improvement

after improvement

Improvement %

HV voltage drop: 2.11% 1.53% LV voltage drop 15.4% 13.1% Transformer Voltage

Drop 0.58% − 0.85% Voltage rise = −

1.43

Total Voltage Drop 18.09% 13.78%

4.31 %

largest phase load HV voltage drop: 2.11% 1.53%

LV voltage drop 17.3% 14.7% Transformer Voltage

Drop 0.58% -0.85% Voltage rise=

−1.43% improvement

% Total Voltage Drop 19.99% 15.38%

4.61 %

smallest phase load

LV voltage drop 13.10% 11.10% Total Voltage Drop 15.79% 11.78%

4.01 %

1.2. Full Load Baghdad Feeder Losses (LV side) balanced

From the previous chapters systematic calculations the overall output feeders losses to the whole transformers, we can get the losses to the feeders of each transformer from the five transformers we study them from Baghdad feeder which they are in the peak load time and multiply the losses by the load factor 82% before and after the improvement. After that taking the summation of the losses in the two cases, then we take the difference between them, which expresses about the average reduction in losses for the five transformers we choose them. In addition to, we

can generalize the rule to the whole transformers feeders and this firstly starting from rearranging

the transformers feeder's losses as the following Table (1.2) and graphical representation in Figure (1.3). Table (1.2): Balanced Losses Before and After RPC and Cable Sizes.

Day

: W

edne

sday

Dat

e:

05/0

1/20

11

Transformer name kVA

Load

(A)

Load

(kW)

Load

(AVG)

TIME

P loss-Peak

Before Impr. (kW)

'Cable Sizing'

Average P

loss(B.I)=82%

× peak-loss (kW)

P loss-Peak After Impr. (kW)

'Cable Sizing &RPC'

Average P

loss(A.I)=82% × Peak-loss (kW)

Heteen 630 963 533.75

437.67 17:30 58.7 48.14 42.5 34.85

Abed El Hayek 630 114

0 631.85

518.11 19:30 47 38.54 35.6

4 29.224

Sooq Al Yrmook 630 102

4 567.56

465.32 18:00 25.8 21.156 19.9

2 16.334

Al Shabia 630 800 443.41

363.59 18:30 30.6 25.092 22.6

8 18.6

Gassima 1 630 360 199.53

163.61 19:00 4.092 3.355 3.09

6 2.54

SUM= 2376.1

1948.2 166.19 136.27 123.

83 101.54

old( new) (old)

new

( new)

cos V total Vtotal cos

0.8 61.6 52.4 V 0.94

% Vtotal 13.1%

Voltage Drop Reduction52.41 100% 14.9 % [6]61.6

Figure (1.2): Voltage Drop to Balanced Heteen Transformer Feeders

1.1.3. Voltage drop full feeder to smallest phase load

FULL. SPL

FULL. SPL

V 13.1 2.1054 0.58 %

15.79 % (B.I)

V 11.1 1.5321 0.85 %

11.78 % (A.I)The improvement 15.79 11.78 4.01 %

All calculated results to the different cases of balanced, largest phase load and the smallest phase load are tabulated in Table (1.1) as shown next: Table (1.1): Heteen Transformer Load Analysis with RPC and Cable Sizing [7].

Transformer name:

Apparent Power: KVA Day: Date: Time:

Heteen 630 Wednesday 05/01/11 17:30 Supply Line: Baghdad

PH

FEEDERS CURRENT

(A) WEST C.B

Unbalance load losses (B.I),

(KW) N 70 0.310

R 273 4.72 Transformer

Losses S 330 6.89 No Load Losses = 860 watt

T 360 8.2 Full Load Losses

= 5400 watt

AVG 321

Loss(B.I) = 20.1× 3 = 60.36

Loss(A.I) = 14.6×3 = 43.7

single line losses (KW)

3- lines losses ( KW)

total losses (KW)

saving in percent

before improvement 6.523 19.6 3×19.6=58.7 after improvement 4.72 14.2 42.5 27.6%

Balance phases load

before improvement

after improvement

Improvement %

HV voltage drop: 2.11% 1.53% LV voltage drop 15.4% 13.1% Transformer Voltage

Drop 0.58% − 0.85% Voltage rise = −

1.43

Total Voltage Drop 18.09% 13.78%

4.31 %

largest phase load HV voltage drop: 2.11% 1.53%

LV voltage drop 17.3% 14.7% Transformer Voltage

Drop 0.58% -0.85% Voltage rise=

−1.43% improvement

% Total Voltage Drop 19.99% 15.38%

4.61 %

smallest phase load

LV voltage drop 13.10% 11.10% Total Voltage Drop 15.79% 11.78%

4.01 %

1.2. Full Load Baghdad Feeder Losses (LV side) balanced

From the previous chapters systematic calculations the overall output feeders losses to the whole transformers, we can get the losses to the feeders of each transformer from the five transformers we study them from Baghdad feeder which they are in the peak load time and multiply the losses by the load factor 82% before and after the improvement. After that taking the summation of the losses in the two cases, then we take the difference between them, which expresses about the average reduction in losses for the five transformers we choose them. In addition to, we

can generalize the rule to the whole transformers feeders and this firstly starting from rearranging

the transformers feeder's losses as the following Table (1.2) and graphical representation in Figure (1.3). Table (1.2): Balanced Losses Before and After RPC and Cable Sizes.

Day

: W

edne

sday

Date

: 05

/01/

2011

Transformer name kVA

Load

(A)

Load

(kW)

Load

(AVG)

TIME

P loss-Peak

Before Impr. (kW)

'Cable Sizing'

Average P

loss(B.I)=82%

× peak-loss (kW)

P loss-Peak After Impr. (kW)

'Cable Sizing &RPC'

Average P

loss(A.I)=82% × Peak-loss (kW)

Heteen 630 963 533.75

437.67 17:30 58.7 48.14 42.5 34.85

Abed El Hayek 630 114

0 631.85

518.11 19:30 47 38.54 35.6

4 29.224

Sooq Al Yrmook 630 102

4 567.56

465.32 18:00 25.8 21.156 19.9

2 16.334

Al Shabia 630 800 443.41

363.59 18:30 30.6 25.092 22.6

8 18.6

Gassima 1 630 360 199.53

163.61 19:00 4.092 3.355 3.09

6 2.54

SUM= 2376.1

1948.2 166.19 136.27 123.

83 101.54

old( new) (old)

new

( new)

cos V total Vtotal cos

0.8 61.6 52.4 V 0.94

% Vtotal 13.1%

Voltage Drop Reduction52.41 100% 14.9 % [6]61.6

Figure (1.2): Voltage Drop to Balanced Heteen Transformer Feeders

1.1.3. Voltage drop full feeder to smallest phase load

FULL. SPL

FULL. SPL

V 13.1 2.1054 0.58 %

15.79 % (B.I)

V 11.1 1.5321 0.85 %

11.78 % (A.I)The improvement 15.79 11.78 4.01 %

All calculated results to the different cases of balanced, largest phase load and the smallest phase load are tabulated in Table (1.1) as shown next: Table (1.1): Heteen Transformer Load Analysis with RPC and Cable Sizing [7].

Transformer name:

Apparent Power: KVA Day: Date: Time:

Heteen 630 Wednesday 05/01/11 17:30 Supply Line: Baghdad

PH

FEEDERS CURRENT

(A) WEST C.B

Unbalance load losses (B.I),

(KW) N 70 0.310

R 273 4.72 Transformer

Losses S 330 6.89 No Load Losses = 860 watt

T 360 8.2 Full Load Losses

= 5400 watt

AVG 321

Loss(B.I) = 20.1× 3 = 60.36

Loss(A.I) = 14.6×3 = 43.7

single line losses (KW)

3- lines losses ( KW)

total losses (KW)

saving in percent

before improvement 6.523 19.6 3×19.6=58.7 after improvement 4.72 14.2 42.5 27.6%

Balance phases load

before improvement

after improvement

Improvement %

HV voltage drop: 2.11% 1.53% LV voltage drop 15.4% 13.1% Transformer Voltage

Drop 0.58% − 0.85% Voltage rise = −

1.43

Total Voltage Drop 18.09% 13.78%

4.31 %

largest phase load HV voltage drop: 2.11% 1.53%

LV voltage drop 17.3% 14.7% Transformer Voltage

Drop 0.58% -0.85% Voltage rise=

−1.43% improvement

% Total Voltage Drop 19.99% 15.38%

4.61 %

smallest phase load

LV voltage drop 13.10% 11.10% Total Voltage Drop 15.79% 11.78%

4.01 %

1.2. Full Load Baghdad Feeder Losses (LV side) balanced

From the previous chapters systematic calculations the overall output feeders losses to the whole transformers, we can get the losses to the feeders of each transformer from the five transformers we study them from Baghdad feeder which they are in the peak load time and multiply the losses by the load factor 82% before and after the improvement. After that taking the summation of the losses in the two cases, then we take the difference between them, which expresses about the average reduction in losses for the five transformers we choose them. In addition to, we

can generalize the rule to the whole transformers feeders and this firstly starting from rearranging

the transformers feeder's losses as the following Table (1.2) and graphical representation in Figure (1.3). Table (1.2): Balanced Losses Before and After RPC and Cable Sizes.

Day

: W

edne

sday

Date

: 05

/01/

2011

Transformer name kVA

Load

(A)

Load

(kW)

Load

(AVG)

TIME

P loss-Peak

Before Impr. (kW)

'Cable Sizing'

Average P

loss(B.I)=82%

× peak-loss (kW)

P loss-Peak After Impr. (kW)

'Cable Sizing &RPC'

Average P

loss(A.I)=82% × Peak-loss (kW)

Heteen 630 963 533.75

437.67 17:30 58.7 48.14 42.5 34.85

Abed El Hayek 630 114

0 631.85

518.11 19:30 47 38.54 35.6

4 29.224

Sooq Al Yrmook 630 102

4 567.56

465.32 18:00 25.8 21.156 19.9

2 16.334

Al Shabia 630 800 443.41

363.59 18:30 30.6 25.092 22.6

8 18.6

Gassima 1 630 360 199.53

163.61 19:00 4.092 3.355 3.09

6 2.54

SUM= 2376.1

1948.2 166.19 136.27 123.

83 101.54

Page 77: The Fifth International Energy Conference - Palestine -

74

old( new) (old)

new

( new)

cos V total Vtotal cos

0.8 61.6 52.4 V 0.94

% Vtotal 13.1%

Voltage Drop Reduction52.41 100% 14.9 % [6]61.6

Figure (1.2): Voltage Drop to Balanced Heteen Transformer Feeders

1.1.3. Voltage drop full feeder to smallest phase load

FULL. SPL

FULL. SPL

V 13.1 2.1054 0.58 %

15.79 % (B.I)

V 11.1 1.5321 0.85 %

11.78 % (A.I)The improvement 15.79 11.78 4.01 %

All calculated results to the different cases of balanced, largest phase load and the smallest phase load are tabulated in Table (1.1) as shown next: Table (1.1): Heteen Transformer Load Analysis with RPC and Cable Sizing [7].

Transformer name:

Apparent Power: KVA Day: Date: Time:

Heteen 630 Wednesday 05/01/11 17:30 Supply Line: Baghdad

PH

FEEDERS CURRENT

(A) WEST C.B

Unbalance load losses (B.I),

(KW) N 70 0.310

R 273 4.72 Transformer

Losses S 330 6.89 No Load Losses = 860 watt

T 360 8.2 Full Load Losses

= 5400 watt

AVG 321

Loss(B.I) = 20.1× 3 = 60.36

Loss(A.I) = 14.6×3 = 43.7

single line losses (KW)

3- lines losses ( KW)

total losses (KW)

saving in percent

before improvement 6.523 19.6 3×19.6=58.7 after improvement 4.72 14.2 42.5 27.6%

Balance phases load

before improvement

after improvement

Improvement %

HV voltage drop: 2.11% 1.53% LV voltage drop 15.4% 13.1% Transformer Voltage

Drop 0.58% − 0.85% Voltage rise = −

1.43

Total Voltage Drop 18.09% 13.78%

4.31 %

largest phase load HV voltage drop: 2.11% 1.53%

LV voltage drop 17.3% 14.7% Transformer Voltage

Drop 0.58% -0.85% Voltage rise=

−1.43% improvement

% Total Voltage Drop 19.99% 15.38%

4.61 %

smallest phase load

LV voltage drop 13.10% 11.10% Total Voltage Drop 15.79% 11.78%

4.01 %

1.2. Full Load Baghdad Feeder Losses (LV side) balanced

From the previous chapters systematic calculations the overall output feeders losses to the whole transformers, we can get the losses to the feeders of each transformer from the five transformers we study them from Baghdad feeder which they are in the peak load time and multiply the losses by the load factor 82% before and after the improvement. After that taking the summation of the losses in the two cases, then we take the difference between them, which expresses about the average reduction in losses for the five transformers we choose them. In addition to, we

can generalize the rule to the whole transformers feeders and this firstly starting from rearranging

the transformers feeder's losses as the following Table (1.2) and graphical representation in Figure (1.3). Table (1.2): Balanced Losses Before and After RPC and Cable Sizes.

Day

: W

edne

sday

Dat

e:

05/0

1/20

11

Transformer name kVA

Load

(A)

Load

(kW)

Load

(AVG)

TIME

P loss-Peak

Before Impr. (kW)

'Cable Sizing'

Average P

loss(B.I)=82%

× peak-loss (kW)

P loss-Peak After Impr. (kW)

'Cable Sizing &RPC'

Average P

loss(A.I)=82% × Peak-loss (kW)

Heteen 630 963 533.75

437.67 17:30 58.7 48.14 42.5 34.85

Abed El Hayek 630 114

0 631.85

518.11 19:30 47 38.54 35.6

4 29.224

Sooq Al Yrmook 630 102

4 567.56

465.32 18:00 25.8 21.156 19.9

2 16.334

Al Shabia 630 800 443.41

363.59 18:30 30.6 25.092 22.6

8 18.6

Gassima 1 630 360 199.53

163.61 19:00 4.092 3.355 3.09

6 2.54

SUM= 2376.1

1948.2 166.19 136.27 123.

83 101.54

old( new) (old)

new

( new)

cos V total Vtotal cos

0.8 61.6 52.4 V 0.94

% Vtotal 13.1%

Voltage Drop Reduction52.41 100% 14.9 % [6]61.6

Figure (1.2): Voltage Drop to Balanced Heteen Transformer Feeders

1.1.3. Voltage drop full feeder to smallest phase load

FULL. SPL

FULL. SPL

V 13.1 2.1054 0.58 %

15.79 % (B.I)

V 11.1 1.5321 0.85 %

11.78 % (A.I)The improvement 15.79 11.78 4.01 %

All calculated results to the different cases of balanced, largest phase load and the smallest phase load are tabulated in Table (1.1) as shown next: Table (1.1): Heteen Transformer Load Analysis with RPC and Cable Sizing [7].

Transformer name:

Apparent Power: KVA Day: Date: Time:

Heteen 630 Wednesday 05/01/11 17:30 Supply Line: Baghdad

PH

FEEDERS CURRENT

(A) WEST C.B

Unbalance load losses (B.I),

(KW) N 70 0.310

R 273 4.72 Transformer

Losses S 330 6.89 No Load Losses = 860 watt

T 360 8.2 Full Load Losses

= 5400 watt

AVG 321

Loss(B.I) = 20.1× 3 = 60.36

Loss(A.I) = 14.6×3 = 43.7

single line losses (KW)

3- lines losses ( KW)

total losses (KW)

saving in percent

before improvement 6.523 19.6 3×19.6=58.7 after improvement 4.72 14.2 42.5 27.6%

Balance phases load

before improvement

after improvement

Improvement %

HV voltage drop: 2.11% 1.53% LV voltage drop 15.4% 13.1% Transformer Voltage

Drop 0.58% − 0.85% Voltage rise = −

1.43

Total Voltage Drop 18.09% 13.78%

4.31 %

largest phase load HV voltage drop: 2.11% 1.53%

LV voltage drop 17.3% 14.7% Transformer Voltage

Drop 0.58% -0.85% Voltage rise=

−1.43% improvement

% Total Voltage Drop 19.99% 15.38%

4.61 %

smallest phase load

LV voltage drop 13.10% 11.10% Total Voltage Drop 15.79% 11.78%

4.01 %

1.2. Full Load Baghdad Feeder Losses (LV side) balanced

From the previous chapters systematic calculations the overall output feeders losses to the whole transformers, we can get the losses to the feeders of each transformer from the five transformers we study them from Baghdad feeder which they are in the peak load time and multiply the losses by the load factor 82% before and after the improvement. After that taking the summation of the losses in the two cases, then we take the difference between them, which expresses about the average reduction in losses for the five transformers we choose them. In addition to, we

can generalize the rule to the whole transformers feeders and this firstly starting from rearranging

the transformers feeder's losses as the following Table (1.2) and graphical representation in Figure (1.3). Table (1.2): Balanced Losses Before and After RPC and Cable Sizes.

Day

: W

edne

sday

Dat

e:

05/0

1/20

11

Transformer name kVA

Load

(A)

Load

(kW)

Load

(AVG)

TIME

P loss-Peak

Before Impr. (kW)

'Cable Sizing'

Average P

loss(B.I)=82%

× peak-loss (kW)

P loss-Peak After Impr. (kW)

'Cable Sizing &RPC'

Average P

loss(A.I)=82% × Peak-loss (kW)

Heteen 630 963 533.75

437.67 17:30 58.7 48.14 42.5 34.85

Abed El Hayek 630 114

0 631.85

518.11 19:30 47 38.54 35.6

4 29.224

Sooq Al Yrmook 630 102

4 567.56

465.32 18:00 25.8 21.156 19.9

2 16.334

Al Shabia 630 800 443.41

363.59 18:30 30.6 25.092 22.6

8 18.6

Gassima 1 630 360 199.53

163.61 19:00 4.092 3.355 3.09

6 2.54

SUM= 2376.1

1948.2 166.19 136.27 123.

83 101.54

old( new) (old)

new

( new)

cos V total Vtotal cos

0.8 61.6 52.4 V 0.94

% Vtotal 13.1%

Voltage Drop Reduction52.41 100% 14.9 % [6]61.6

Figure (1.2): Voltage Drop to Balanced Heteen Transformer Feeders

1.1.3. Voltage drop full feeder to smallest phase load

FULL. SPL

FULL. SPL

V 13.1 2.1054 0.58 %

15.79 % (B.I)

V 11.1 1.5321 0.85 %

11.78 % (A.I)The improvement 15.79 11.78 4.01 %

All calculated results to the different cases of balanced, largest phase load and the smallest phase load are tabulated in Table (1.1) as shown next: Table (1.1): Heteen Transformer Load Analysis with RPC and Cable Sizing [7].

Transformer name:

Apparent Power: KVA Day: Date: Time:

Heteen 630 Wednesday 05/01/11 17:30 Supply Line: Baghdad

PH

FEEDERS CURRENT

(A) WEST C.B

Unbalance load losses (B.I),

(KW) N 70 0.310

R 273 4.72 Transformer

Losses S 330 6.89 No Load Losses = 860 watt

T 360 8.2 Full Load Losses

= 5400 watt

AVG 321

Loss(B.I) = 20.1× 3 = 60.36

Loss(A.I) = 14.6×3 = 43.7

single line losses (KW)

3- lines losses ( KW)

total losses (KW)

saving in percent

before improvement 6.523 19.6 3×19.6=58.7 after improvement 4.72 14.2 42.5 27.6%

Balance phases load

before improvement

after improvement

Improvement %

HV voltage drop: 2.11% 1.53% LV voltage drop 15.4% 13.1% Transformer Voltage

Drop 0.58% − 0.85% Voltage rise = −

1.43

Total Voltage Drop 18.09% 13.78%

4.31 %

largest phase load HV voltage drop: 2.11% 1.53%

LV voltage drop 17.3% 14.7% Transformer Voltage

Drop 0.58% -0.85% Voltage rise=

−1.43% improvement

% Total Voltage Drop 19.99% 15.38%

4.61 %

smallest phase load

LV voltage drop 13.10% 11.10% Total Voltage Drop 15.79% 11.78%

4.01 %

1.2. Full Load Baghdad Feeder Losses (LV side) balanced

From the previous chapters systematic calculations the overall output feeders losses to the whole transformers, we can get the losses to the feeders of each transformer from the five transformers we study them from Baghdad feeder which they are in the peak load time and multiply the losses by the load factor 82% before and after the improvement. After that taking the summation of the losses in the two cases, then we take the difference between them, which expresses about the average reduction in losses for the five transformers we choose them. In addition to, we

can generalize the rule to the whole transformers feeders and this firstly starting from rearranging

the transformers feeder's losses as the following Table (1.2) and graphical representation in Figure (1.3). Table (1.2): Balanced Losses Before and After RPC and Cable Sizes.

Day

: W

edne

sday

Date

: 05

/01/

2011

Transformer name kVA

Load

(A)

Load

(kW)

Load

(AVG)

TIME

P loss-Peak

Before Impr. (kW)

'Cable Sizing'

Average P

loss(B.I)=82%

× peak-loss (kW)

P loss-Peak After Impr. (kW)

'Cable Sizing &RPC'

Average P

loss(A.I)=82% × Peak-loss (kW)

Heteen 630 963 533.75

437.67 17:30 58.7 48.14 42.5 34.85

Abed El Hayek 630 114

0 631.85

518.11 19:30 47 38.54 35.6

4 29.224

Sooq Al Yrmook 630 102

4 567.56

465.32 18:00 25.8 21.156 19.9

2 16.334

Al Shabia 630 800 443.41

363.59 18:30 30.6 25.092 22.6

8 18.6

Gassima 1 630 360 199.53

163.61 19:00 4.092 3.355 3.09

6 2.54

SUM= 2376.1

1948.2 166.19 136.27 123.

83 101.54

old( new) (old)

new

( new)

cos V total Vtotal cos

0.8 61.6 52.4 V 0.94

% Vtotal 13.1%

Voltage Drop Reduction52.41 100% 14.9 % [6]61.6

Figure (1.2): Voltage Drop to Balanced Heteen Transformer Feeders

1.1.3. Voltage drop full feeder to smallest phase load

FULL. SPL

FULL. SPL

V 13.1 2.1054 0.58 %

15.79 % (B.I)

V 11.1 1.5321 0.85 %

11.78 % (A.I)The improvement 15.79 11.78 4.01 %

All calculated results to the different cases of balanced, largest phase load and the smallest phase load are tabulated in Table (1.1) as shown next: Table (1.1): Heteen Transformer Load Analysis with RPC and Cable Sizing [7].

Transformer name:

Apparent Power: KVA Day: Date: Time:

Heteen 630 Wednesday 05/01/11 17:30 Supply Line: Baghdad

PH

FEEDERS CURRENT

(A) WEST C.B

Unbalance load losses (B.I),

(KW) N 70 0.310

R 273 4.72 Transformer

Losses S 330 6.89 No Load Losses = 860 watt

T 360 8.2 Full Load Losses

= 5400 watt

AVG 321

Loss(B.I) = 20.1× 3 = 60.36

Loss(A.I) = 14.6×3 = 43.7

single line losses (KW)

3- lines losses ( KW)

total losses (KW)

saving in percent

before improvement 6.523 19.6 3×19.6=58.7 after improvement 4.72 14.2 42.5 27.6%

Balance phases load

before improvement

after improvement

Improvement %

HV voltage drop: 2.11% 1.53% LV voltage drop 15.4% 13.1% Transformer Voltage

Drop 0.58% − 0.85% Voltage rise = −

1.43

Total Voltage Drop 18.09% 13.78%

4.31 %

largest phase load HV voltage drop: 2.11% 1.53%

LV voltage drop 17.3% 14.7% Transformer Voltage

Drop 0.58% -0.85% Voltage rise=

−1.43% improvement

% Total Voltage Drop 19.99% 15.38%

4.61 %

smallest phase load

LV voltage drop 13.10% 11.10% Total Voltage Drop 15.79% 11.78%

4.01 %

1.2. Full Load Baghdad Feeder Losses (LV side) balanced

From the previous chapters systematic calculations the overall output feeders losses to the whole transformers, we can get the losses to the feeders of each transformer from the five transformers we study them from Baghdad feeder which they are in the peak load time and multiply the losses by the load factor 82% before and after the improvement. After that taking the summation of the losses in the two cases, then we take the difference between them, which expresses about the average reduction in losses for the five transformers we choose them. In addition to, we

can generalize the rule to the whole transformers feeders and this firstly starting from rearranging

the transformers feeder's losses as the following Table (1.2) and graphical representation in Figure (1.3). Table (1.2): Balanced Losses Before and After RPC and Cable Sizes.

Day

: W

edne

sday

Date

: 05

/01/

2011

Transformer name kVA

Load

(A)

Load

(kW)

Load

(AVG)

TIME

P loss-Peak

Before Impr. (kW)

'Cable Sizing'

Average P

loss(B.I)=82%

× peak-loss (kW)

P loss-Peak After Impr. (kW)

'Cable Sizing &RPC'

Average P

loss(A.I)=82% × Peak-loss (kW)

Heteen 630 963 533.75

437.67 17:30 58.7 48.14 42.5 34.85

Abed El Hayek 630 114

0 631.85

518.11 19:30 47 38.54 35.6

4 29.224

Sooq Al Yrmook 630 102

4 567.56

465.32 18:00 25.8 21.156 19.9

2 16.334

Al Shabia 630 800 443.41

363.59 18:30 30.6 25.092 22.6

8 18.6

Gassima 1 630 360 199.53

163.61 19:00 4.092 3.355 3.09

6 2.54

SUM= 2376.1

1948.2 166.19 136.27 123.

83 101.54

75

Figure (1.3): Transformers feeders losses before and after improvement.

Total losses to Baghdad Feeder before cable sizing and PF improvement in unbalanced loads equal 1484 kW

Total losses to Baghdad Feeder after cable sizing and PF improvement in unbalanced loads equal 834 kW

Unbalanced condition Baghdad feeder losses reduction=1484 − 834= 650 kW Which is reduction from losses before improvement and this will save an energy cost:

= 650 kW ×24 hours × 365 days ×0.5NIS/ KWh = 2,847,000 NIS =780,000 $. Figure (1.4), shows a comparison between balanced and unbalanced condition losses reduction in kW and annual saving in $ after RPC and cable sizing.

(a) (b)

Figure (1.4): Balance and Unbalanced: (a) Losses Reduction, (b) Annual Saving

Figure (1.5) shows losses, losses reduction, and annual saving under balanced condition with RPC, CS separated and with RPC and CS together.

(a) (b)

Figure (1.5): Balance with RPC and CS (a) loss, loss reduction (b) Annual Saving

Here, we can tabulate summary Table (1.3) to the voltage drop with RPC to the old size of conductors and cables and how it changes as a percentage ratio from nominal voltage. Another case with RPC after a new cable sizing. Table (1.3): Summary of Voltage Drop Changes with RPC before and after Cable Sizing.

Transformer Feeder Balance Unbalance /(LPL)

Voltage drop % From % To % From % To %

Heteen/Baghdad

RPC 23.3 18.3 25.8 20.4

CS &RPC 18.09 13.78 19.99 15.38

±5% -Tap Changer

13.09 8.78 14.99 10.38

60.36

Volt

35.12

Volt

63.96

Volt

41.52

Volt

Here, we can tabulate summary Table (1.4) to the power losses with RPC to the old size of conductors and cables and how it changes as a percentage ratio from Feeder Power [8,9].

Another case with RPC after a new cable sizing. Table (1.4): Summary of Power Losses Changes with RPC before and after Cable Sizing.

Feeder Balance Unbalance

Losses %

Application From To From To

Baghdad-Feeder

RPC % 13.98 10.57 15.10 11.36

RPC (kW) 1376 1040 1484 1118

Saving (kW) 336 366

Saving ($) 403,200 439,200

CS &RPC % 10.20 7.97 10.93 8.48

CS &RPC (kW) 1005 784 1075 834

Saving (kW) 221 241

Saving ($) 265,200 289,200

Unbalance-Losses Reduction =1484-834= 650 kW

Annual Saving= 780,000 $

Balance-Losses Reduction =1376-784= 592 kW

Annual Saving= 710,400 $

Page 78: The Fifth International Energy Conference - Palestine -

76

Power Plant J4 Feeder:

we will change the value of conductor size cross section area as the same as in Baghdad feeder with standard as 2.5 to 3 ampere per square millimeter of cross sectional area of the conductors. This will effect on resistance and the impedance in decreasing values. As a result, For HV transmission lines branches will decrease the total losses and the voltage drop at any point. This leads us to the following formulas:

J4-Feeder Total Losses = Losses (HV.SIDE) +

Losses (LV.SIDE) + Losses. (Transformers) [10]

Total Losses to J4 (B.I) are equal

= 432 + 889 + 182 = 1503 kW

1503Percentage to J4 15.6%9660

Total Losses to J4 (A.I) are equal

= 291 + 638 + 182= 1111 kW

1111 KWPercentage to J4= 11.5%9660 MW

The total power losses reduction to J4 feeder

= 1503 – 1111 = 392 kW

The total power losses reduction to J4 feeder %

= 15.6 % − 11.5% = 4.1 %

Which equal?

4.1% 392= 26.1 % 15.6% 1503

of reduction from losses before PF improvement.

From calculations to unbalanced condition:

Losses before RPC and Cable Sizing changing = 1959 kW

Losses reduction after cable sizing changing = 1959−1503 = 456 kW

This will save in one year an energy cost:

= 456 kW × 24 hours × 365 days × 0.5 NIS/ kWh = 1997280 NIS.

1997280 NIS. Which in Dollars 547,200 $3.65 NIS/$

Total Losses reduction after cable sizing and PF changing = 456 +392 = 848 kW

This will save in one year an energy cost:

= 848 kW × 24 hours × 365 days × 0.5 NIS/ kWh = 3714240 NIS.

3714240 NIS. Which in Dollars 1,017600 $3.65 NIS/$

This is over $ 69,600 cost than the balance case.

This can be tabulated in Table (1.5) as shown below, and graphically represented as shown in Figure (1.6),(1.7) clearly.

Table (1.5): J4-Feeder Losses, Losses Reduction and Annual Saving with CS or RPC & CS.

Improvement with: Losses(kW) Loss Reduction(kW) Annual Saving($)

Before Improvement (B.I) 1959 - -

Cable Sizing (CS) 1503 456 547,200

Reactive Power Compensation and Cable sizing (RPC &CS) 1111 848 1,017,600

Figure (1.6): J4- Losses and loss reduction with RPC and CS (unbalanced load)

Figure (1.7): Annual Saving with RPC and CS (unbalanced load)

Page 79: The Fifth International Energy Conference - Palestine -

76

Power Plant J4 Feeder:

we will change the value of conductor size cross section area as the same as in Baghdad feeder with standard as 2.5 to 3 ampere per square millimeter of cross sectional area of the conductors. This will effect on resistance and the impedance in decreasing values. As a result, For HV transmission lines branches will decrease the total losses and the voltage drop at any point. This leads us to the following formulas:

J4-Feeder Total Losses = Losses (HV.SIDE) +

Losses (LV.SIDE) + Losses. (Transformers) [10]

Total Losses to J4 (B.I) are equal

= 432 + 889 + 182 = 1503 kW

1503Percentage to J4 15.6%9660

Total Losses to J4 (A.I) are equal

= 291 + 638 + 182= 1111 kW

1111 KWPercentage to J4= 11.5%9660 MW

The total power losses reduction to J4 feeder

= 1503 – 1111 = 392 kW

The total power losses reduction to J4 feeder %

= 15.6 % − 11.5% = 4.1 %

Which equal?

4.1% 392= 26.1 % 15.6% 1503

of reduction from losses before PF improvement.

From calculations to unbalanced condition:

Losses before RPC and Cable Sizing changing = 1959 kW

Losses reduction after cable sizing changing = 1959−1503 = 456 kW

This will save in one year an energy cost:

= 456 kW × 24 hours × 365 days × 0.5 NIS/ kWh = 1997280 NIS.

1997280 NIS. Which in Dollars 547,200 $3.65 NIS/$

Total Losses reduction after cable sizing and PF changing = 456 +392 = 848 kW

This will save in one year an energy cost:

= 848 kW × 24 hours × 365 days × 0.5 NIS/ kWh = 3714240 NIS.

3714240 NIS. Which in Dollars 1,017600 $3.65 NIS/$

This is over $ 69,600 cost than the balance case.

This can be tabulated in Table (1.5) as shown below, and graphically represented as shown in Figure (1.6),(1.7) clearly.

Table (1.5): J4-Feeder Losses, Losses Reduction and Annual Saving with CS or RPC & CS.

Improvement with: Losses(kW) Loss Reduction(kW) Annual Saving($)

Before Improvement (B.I) 1959 - -

Cable Sizing (CS) 1503 456 547,200

Reactive Power Compensation and Cable sizing (RPC &CS) 1111 848 1,017,600

Figure (1.6): J4- Losses and loss reduction with RPC and CS (unbalanced load)

Figure (1.7): Annual Saving with RPC and CS (unbalanced load)

77

Here, we can tabulate summary Table (1.6) to the voltage drop with RPC to the old size of conductors and cables and how it changes as a percentage ratio from nominal voltage. Another case with RPC after a new cable sizing. Table (1.6): Summary of Voltage Drop Changes with RPC before and after Cable Sizing.

Transformer Feeder Balance Unbalance/(LPL)

Voltage drop % From %

To % From %

To %

Al Mughrabi / J4

RPC 22.4 16.23 25.56 18.9

CS &RPC 17.6 12.1 20.26 14.36

±5% -Tap-

Changer

12.6 7.1 15.26 9.36

50.6 Volt

28.4 Volt

61.04 Volt

37.44 Volt

Here, we can tabulate summary Table (1.7) to the power losses with RPC to the old size of conductors and cables and how it changes as a percentage ratio from Feeder Power. Another case with RPC after a new cable sizing. Table (1.7): Summary of Power Losses Changes with RPC before and after Cable Sizing

Feeder Balance Unbalance

Losses

%

Application From To From To

J4-Feeder

RPC % 19.40 14.20 20.28 14.86

RPC (kW) 1875 1375 1959 1435

Saving (kW) 500 524

Saving ($) 600,000 628,800

CS &RPC % 15.40 11.23 15.60 11.50

CS &RPC (kW) 1483 1085 1503 1111

Saving (kW) 398 392

Saving ($) 477,600 470,400

Unbalance-Losses Reduction = 1959-1111=848 kW

Annual Saving= 1,018million $

Balance-Losses Reduction = 1875-1085=790 kW

Annual Saving= 948,000 $

Conclusion The measurements and the analysis made on the two feeders have shown that the power loss in the distribution grid is high and exceeds the acceptable levels. This high loss is a attributed to the heavily loaded grid, the low power factor, the inadequate size for wires and cables used, and the imbalance load distribution. Two different tools have been adopted to handle the high power loss and high voltage drop. Reactive power compensation and cable sizing are employed separately and simultaneously to the selected feeders. The average Pay Back Period: PBPavg to the two Feeders is equal 1.4495 years [11]. Baghdad Feeder, as a real example to Israeli Feeders that supplies Gaza Governorate, and J4 Feeder as example to Power Plant Feeders that supplies

Gaza Governorate. Therefore, we can generalize the case study to all feeders of Gaza Governorate. This PBPAVG means that 17.4 months required recovering from investments costs for each Feeder of the Gaza Governorate Distribution Grid. After that, we can build generally to the percentage of average technical losses for all Feeders that supplies Gaza Governorate from two sides. This value reduced from 17.69% to 9.99% related to load factor. The voltage drop reduced from 19.65% to 9.87% in worst case of the unbalanced full load. The total annual saving to the Gaza Governorate is $7,188,000 and investments recovered in PBPAVG, which is equal 1.4495 years. This paper introduces suggestion to reduce the losses and voltage drop by reactive power compensation and cable sizing. This losses reduction ratio, the annual saving and reducing in voltage drop is a good motivation to rehabilitate the Gaza Governorate Electrical Grid by applying this suggestion. The grid was unbalanced in most cases, there was a big difference in losses and voltage drop between balance and unbalanced load. Balanced loads will reserve the frequency in accepted oscillation range and so balancing must take into account in rehabilitation.

References [1] G-Sizing-and-protection-of-conductors, Schneider Electric-Electrical Installation Guide 2010, last accessed Feb 2011.URL: http://www.electrical-installation.org /w/images /0/0a/G-Sizing-and-protection-of-conductors.pdf [2] Electricity Status in Gaza Strip_2, 2011,Last accessed July 2011URL: http://penra.gov.ps/ [3 ]Reactive Power Compensation Using Capacitor Banks, Last accessed April 2011, http://www.scribd.com/doc/30917947/Reactive-Power-Compensation-Using-Capacitor-Banks [4] List Prices or cost of Low Voltage Automatic Capacitor Banks for RPC, Northeast Power Systems, Inc. 1999 – 2009. Last Accesses March 2011, URL:http://www.nepsi.com/lvacbpricesheet.htm [5] The Economics of Improving Power Factor, Ed KWiatkowski, BSEE, MS President, Staco Energy Products Company, Last Access May,2011, URL: http://www.stacoenergy.com/pdf/articles/ [6] IEEE Standard 141, Recommended Practice for Electric Power Distribution for Industrial Plants1993. [7] Brown,R.E., Electric Power Distribution Reliability, Marcel Dekker, 2002. [8] Power Factor Correction and Harmonic Filtering, Schneider Electric-Electrical Installation Guide 2010. URL:http://www.electrical-installation.org/wiki/ [9] Technical Statistics, Statistics & Reports, Gaza DistributionElectricCompany,2011, http://www.gedco.ps/e/under.php [10] Chen, Q. M. and Egan, D. M. (2006), `A bayesian method for transformer Systems 21(4), IEEE Transactions on Power Systems 21(4), 1954-1965.

Here, we can tabulate summary Table (1.6) to the voltage drop with RPC to the old size of conductors and cables and how it changes as a percentage ratio from nominal voltage. Another case with RPC after a new cable sizing. Table (1.6): Summary of Voltage Drop Changes with RPC before and after Cable Sizing.

Transformer Feeder Balance Unbalance/(LPL)

Voltage drop % From %

To % From %

To %

Al Mughrabi / J4

RPC 22.4 16.23 25.56 18.9

CS &RPC 17.6 12.1 20.26 14.36

±5% -Tap-

Changer

12.6 7.1 15.26 9.36

50.6 Volt

28.4 Volt

61.04 Volt

37.44 Volt

Here, we can tabulate summary Table (1.7) to the power losses with RPC to the old size of conductors and cables and how it changes as a percentage ratio from Feeder Power. Another case with RPC after a new cable sizing. Table (1.7): Summary of Power Losses Changes with RPC before and after Cable Sizing

Feeder Balance Unbalance

Losses

%

Application From To From To

J4-Feeder

RPC % 19.40 14.20 20.28 14.86

RPC (kW) 1875 1375 1959 1435

Saving (kW) 500 524

Saving ($) 600,000 628,800

CS &RPC % 15.40 11.23 15.60 11.50

CS &RPC (kW) 1483 1085 1503 1111

Saving (kW) 398 392

Saving ($) 477,600 470,400

Unbalance-Losses Reduction = 1959-1111=848 kW

Annual Saving= 1,018million $

Balance-Losses Reduction = 1875-1085=790 kW

Annual Saving= 948,000 $

Conclusion The measurements and the analysis made on the two feeders have shown that the power loss in the distribution grid is high and exceeds the acceptable levels. This high loss is a attributed to the heavily loaded grid, the low power factor, the inadequate size for wires and cables used, and the imbalance load distribution. Two different tools have been adopted to handle the high power loss and high voltage drop. Reactive power compensation and cable sizing are employed separately and simultaneously to the selected feeders. The average Pay Back Period: PBPavg to the two Feeders is equal 1.4495 years [11]. Baghdad Feeder, as a real example to Israeli Feeders that supplies Gaza Governorate, and J4 Feeder as example to Power Plant Feeders that supplies

Gaza Governorate. Therefore, we can generalize the case study to all feeders of Gaza Governorate. This PBPAVG means that 17.4 months required recovering from investments costs for each Feeder of the Gaza Governorate Distribution Grid. After that, we can build generally to the percentage of average technical losses for all Feeders that supplies Gaza Governorate from two sides. This value reduced from 17.69% to 9.99% related to load factor. The voltage drop reduced from 19.65% to 9.87% in worst case of the unbalanced full load. The total annual saving to the Gaza Governorate is $7,188,000 and investments recovered in PBPAVG, which is equal 1.4495 years. This paper introduces suggestion to reduce the losses and voltage drop by reactive power compensation and cable sizing. This losses reduction ratio, the annual saving and reducing in voltage drop is a good motivation to rehabilitate the Gaza Governorate Electrical Grid by applying this suggestion. The grid was unbalanced in most cases, there was a big difference in losses and voltage drop between balance and unbalanced load. Balanced loads will reserve the frequency in accepted oscillation range and so balancing must take into account in rehabilitation.

References [1] G-Sizing-and-protection-of-conductors, Schneider Electric-Electrical Installation Guide 2010, last accessed Feb 2011.URL: http://www.electrical-installation.org /w/images /0/0a/G-Sizing-and-protection-of-conductors.pdf [2] Electricity Status in Gaza Strip_2, 2011,Last accessed July 2011URL: http://penra.gov.ps/ [3 ]Reactive Power Compensation Using Capacitor Banks, Last accessed April 2011, http://www.scribd.com/doc/30917947/Reactive-Power-Compensation-Using-Capacitor-Banks [4] List Prices or cost of Low Voltage Automatic Capacitor Banks for RPC, Northeast Power Systems, Inc. 1999 – 2009. Last Accesses March 2011, URL:http://www.nepsi.com/lvacbpricesheet.htm [5] The Economics of Improving Power Factor, Ed KWiatkowski, BSEE, MS President, Staco Energy Products Company, Last Access May,2011, URL: http://www.stacoenergy.com/pdf/articles/ [6] IEEE Standard 141, Recommended Practice for Electric Power Distribution for Industrial Plants1993. [7] Brown,R.E., Electric Power Distribution Reliability, Marcel Dekker, 2002. [8] Power Factor Correction and Harmonic Filtering, Schneider Electric-Electrical Installation Guide 2010. URL:http://www.electrical-installation.org/wiki/ [9] Technical Statistics, Statistics & Reports, Gaza DistributionElectricCompany,2011, http://www.gedco.ps/e/under.php [10] Chen, Q. M. and Egan, D. M. (2006), `A bayesian method for transformer Systems 21(4), IEEE Transactions on Power Systems 21(4), 1954-1965.

Here, we can tabulate summary Table (1.6) to the voltage drop with RPC to the old size of conductors and cables and how it changes as a percentage ratio from nominal voltage. Another case with RPC after a new cable sizing. Table (1.6): Summary of Voltage Drop Changes with RPC before and after Cable Sizing.

Transformer Feeder Balance Unbalance/(LPL)

Voltage drop % From %

To % From %

To %

Al Mughrabi / J4

RPC 22.4 16.23 25.56 18.9

CS &RPC 17.6 12.1 20.26 14.36

±5% -Tap-

Changer

12.6 7.1 15.26 9.36

50.6 Volt

28.4 Volt

61.04 Volt

37.44 Volt

Here, we can tabulate summary Table (1.7) to the power losses with RPC to the old size of conductors and cables and how it changes as a percentage ratio from Feeder Power. Another case with RPC after a new cable sizing. Table (1.7): Summary of Power Losses Changes with RPC before and after Cable Sizing

Feeder Balance Unbalance

Losses

%

Application From To From To

J4-Feeder

RPC % 19.40 14.20 20.28 14.86

RPC (kW) 1875 1375 1959 1435

Saving (kW) 500 524

Saving ($) 600,000 628,800

CS &RPC % 15.40 11.23 15.60 11.50

CS &RPC (kW) 1483 1085 1503 1111

Saving (kW) 398 392

Saving ($) 477,600 470,400

Unbalance-Losses Reduction = 1959-1111=848 kW

Annual Saving= 1,018million $

Balance-Losses Reduction = 1875-1085=790 kW

Annual Saving= 948,000 $

Conclusion The measurements and the analysis made on the two feeders have shown that the power loss in the distribution grid is high and exceeds the acceptable levels. This high loss is a attributed to the heavily loaded grid, the low power factor, the inadequate size for wires and cables used, and the imbalance load distribution. Two different tools have been adopted to handle the high power loss and high voltage drop. Reactive power compensation and cable sizing are employed separately and simultaneously to the selected feeders. The average Pay Back Period: PBPavg to the two Feeders is equal 1.4495 years [11]. Baghdad Feeder, as a real example to Israeli Feeders that supplies Gaza Governorate, and J4 Feeder as example to Power Plant Feeders that supplies

Gaza Governorate. Therefore, we can generalize the case study to all feeders of Gaza Governorate. This PBPAVG means that 17.4 months required recovering from investments costs for each Feeder of the Gaza Governorate Distribution Grid. After that, we can build generally to the percentage of average technical losses for all Feeders that supplies Gaza Governorate from two sides. This value reduced from 17.69% to 9.99% related to load factor. The voltage drop reduced from 19.65% to 9.87% in worst case of the unbalanced full load. The total annual saving to the Gaza Governorate is $7,188,000 and investments recovered in PBPAVG, which is equal 1.4495 years. This paper introduces suggestion to reduce the losses and voltage drop by reactive power compensation and cable sizing. This losses reduction ratio, the annual saving and reducing in voltage drop is a good motivation to rehabilitate the Gaza Governorate Electrical Grid by applying this suggestion. The grid was unbalanced in most cases, there was a big difference in losses and voltage drop between balance and unbalanced load. Balanced loads will reserve the frequency in accepted oscillation range and so balancing must take into account in rehabilitation.

References [1] G-Sizing-and-protection-of-conductors, Schneider Electric-Electrical Installation Guide 2010, last accessed Feb 2011.URL: http://www.electrical-installation.org /w/images /0/0a/G-Sizing-and-protection-of-conductors.pdf [2] Electricity Status in Gaza Strip_2, 2011,Last accessed July 2011URL: http://penra.gov.ps/ [3 ]Reactive Power Compensation Using Capacitor Banks, Last accessed April 2011, http://www.scribd.com/doc/30917947/Reactive-Power-Compensation-Using-Capacitor-Banks [4] List Prices or cost of Low Voltage Automatic Capacitor Banks for RPC, Northeast Power Systems, Inc. 1999 – 2009. Last Accesses March 2011, URL:http://www.nepsi.com/lvacbpricesheet.htm [5] The Economics of Improving Power Factor, Ed KWiatkowski, BSEE, MS President, Staco Energy Products Company, Last Access May,2011, URL: http://www.stacoenergy.com/pdf/articles/ [6] IEEE Standard 141, Recommended Practice for Electric Power Distribution for Industrial Plants1993. [7] Brown,R.E., Electric Power Distribution Reliability, Marcel Dekker, 2002. [8] Power Factor Correction and Harmonic Filtering, Schneider Electric-Electrical Installation Guide 2010. URL:http://www.electrical-installation.org/wiki/ [9] Technical Statistics, Statistics & Reports, Gaza DistributionElectricCompany,2011, http://www.gedco.ps/e/under.php [10] Chen, Q. M. and Egan, D. M. (2006), `A bayesian method for transformer Systems 21(4), IEEE Transactions on Power Systems 21(4), 1954-1965.

Here, we can tabulate summary Table (1.6) to the voltage drop with RPC to the old size of conductors and cables and how it changes as a percentage ratio from nominal voltage. Another case with RPC after a new cable sizing. Table (1.6): Summary of Voltage Drop Changes with RPC before and after Cable Sizing.

Transformer Feeder Balance Unbalance/(LPL)

Voltage drop % From %

To % From %

To %

Al Mughrabi / J4

RPC 22.4 16.23 25.56 18.9

CS &RPC 17.6 12.1 20.26 14.36

±5% -Tap-

Changer

12.6 7.1 15.26 9.36

50.6 Volt

28.4 Volt

61.04 Volt

37.44 Volt

Here, we can tabulate summary Table (1.7) to the power losses with RPC to the old size of conductors and cables and how it changes as a percentage ratio from Feeder Power. Another case with RPC after a new cable sizing. Table (1.7): Summary of Power Losses Changes with RPC before and after Cable Sizing

Feeder Balance Unbalance

Losses

%

Application From To From To

J4-Feeder

RPC % 19.40 14.20 20.28 14.86

RPC (kW) 1875 1375 1959 1435

Saving (kW) 500 524

Saving ($) 600,000 628,800

CS &RPC % 15.40 11.23 15.60 11.50

CS &RPC (kW) 1483 1085 1503 1111

Saving (kW) 398 392

Saving ($) 477,600 470,400

Unbalance-Losses Reduction = 1959-1111=848 kW

Annual Saving= 1,018million $

Balance-Losses Reduction = 1875-1085=790 kW

Annual Saving= 948,000 $

Conclusion The measurements and the analysis made on the two feeders have shown that the power loss in the distribution grid is high and exceeds the acceptable levels. This high loss is a attributed to the heavily loaded grid, the low power factor, the inadequate size for wires and cables used, and the imbalance load distribution. Two different tools have been adopted to handle the high power loss and high voltage drop. Reactive power compensation and cable sizing are employed separately and simultaneously to the selected feeders. The average Pay Back Period: PBPavg to the two Feeders is equal 1.4495 years [11]. Baghdad Feeder, as a real example to Israeli Feeders that supplies Gaza Governorate, and J4 Feeder as example to Power Plant Feeders that supplies

Gaza Governorate. Therefore, we can generalize the case study to all feeders of Gaza Governorate. This PBPAVG means that 17.4 months required recovering from investments costs for each Feeder of the Gaza Governorate Distribution Grid. After that, we can build generally to the percentage of average technical losses for all Feeders that supplies Gaza Governorate from two sides. This value reduced from 17.69% to 9.99% related to load factor. The voltage drop reduced from 19.65% to 9.87% in worst case of the unbalanced full load. The total annual saving to the Gaza Governorate is $7,188,000 and investments recovered in PBPAVG, which is equal 1.4495 years. This paper introduces suggestion to reduce the losses and voltage drop by reactive power compensation and cable sizing. This losses reduction ratio, the annual saving and reducing in voltage drop is a good motivation to rehabilitate the Gaza Governorate Electrical Grid by applying this suggestion. The grid was unbalanced in most cases, there was a big difference in losses and voltage drop between balance and unbalanced load. Balanced loads will reserve the frequency in accepted oscillation range and so balancing must take into account in rehabilitation.

References [1] G-Sizing-and-protection-of-conductors, Schneider Electric-Electrical Installation Guide 2010, last accessed Feb 2011.URL: http://www.electrical-installation.org /w/images /0/0a/G-Sizing-and-protection-of-conductors.pdf [2] Electricity Status in Gaza Strip_2, 2011,Last accessed July 2011URL: http://penra.gov.ps/ [3 ]Reactive Power Compensation Using Capacitor Banks, Last accessed April 2011, http://www.scribd.com/doc/30917947/Reactive-Power-Compensation-Using-Capacitor-Banks [4] List Prices or cost of Low Voltage Automatic Capacitor Banks for RPC, Northeast Power Systems, Inc. 1999 – 2009. Last Accesses March 2011, URL:http://www.nepsi.com/lvacbpricesheet.htm [5] The Economics of Improving Power Factor, Ed KWiatkowski, BSEE, MS President, Staco Energy Products Company, Last Access May,2011, URL: http://www.stacoenergy.com/pdf/articles/ [6] IEEE Standard 141, Recommended Practice for Electric Power Distribution for Industrial Plants1993. [7] Brown,R.E., Electric Power Distribution Reliability, Marcel Dekker, 2002. [8] Power Factor Correction and Harmonic Filtering, Schneider Electric-Electrical Installation Guide 2010. URL:http://www.electrical-installation.org/wiki/ [9] Technical Statistics, Statistics & Reports, Gaza DistributionElectricCompany,2011, http://www.gedco.ps/e/under.php [10] Chen, Q. M. and Egan, D. M. (2006), `A bayesian method for transformer Systems 21(4), IEEE Transactions on Power Systems 21(4), 1954-1965.

[11] Payback Period Definition. Last accessed May 2011. URL :http://www.investopedia.com /terms /p/paybackperiod.asp

Page 80: The Fifth International Energy Conference - Palestine -

78

Solving Optimal Control Problem Via Chebyshev Wavelet, Jan 2015 1

Solving Optimal Control Problem for linear time-invariant systems

Via Chebyshev Wavelet

Atya A. Abu Haya Hatem Elaydi

Faculty of Engineering, Islamic University, Gaza, Palestine

Abstract: Over the last four decades, optimal control problem are solved using direct and indirect methods. Direct methods are based on using polynomials to represent the optimal problem. Direct methods can be implemented using either discretization or parameterization. The proposed method here is considered as a direct method in which the optimal control problem is directly converted into a mathematical programming problem. A wavelet-based method is presented to solve the linear quadratic optimal control problem. The Chebyshev wavelets functions are used as the basis functions. Numerical examples are presented to show the effectiveness of the method, several optimal control problems were solved, and the simulation results show that the proposed method gives good and comparable results with some other methods. Keywords: Chebyshev wavelet, optimal control problem, time-invariant systems.

1. Introduction The goal of an optimal controller is the determination of the control signal such that a specified performance index is optimized, while at the same time keeping the system equations, initial condition, and any other constraints are satisfied. Many different methods have been introduced to solve optimal control problem for a system with given state equations. Examples of optimal control applications include environment, engineering, economics etc. The most popular method to solve the optimal control problem is the Riccati method for quadratic cost functions however this method results in a set of usually complicated differential equations [1]. In the last few decades orthogonal functions have been extensively used in obtaining an approximate solution of problems described by differential equations [2], which is based on converting the differential equations into an integral equation through integration. The state and/or control involved in the equation are approximated by finite terms of orthogonal series and using an operational matrix of integration to eliminate the integral operations. The form of the operational matrix of integration depends on the choice of the orthogonal functions like Walsh functions, block pulse functions, Laguerre series, Jacobi series, Fourier series, Bessel series, Taylor series, shifted Legendry, Chebyshev polynomials, Hermit polynomials and Wavelet functions [3]. 2. Scaling functions and wavelets Wavelets constitute a family of functions constructed from dilation and translation of a single function called the mother wavelet. When the dilation parameter and the translation parameter vary continuously we have the following family of continuous wavelets as [4]

Chebyshev wavelets have four arguments; is the order for Chebyshev polynomials and t is the normalized time. They are defined on the interval [0,1) by:

( 2 )

Here, are the well−known Chebyshev polynomials of order , which are orthogonal with respect to the weight function and satisfy the following recursive formula [5]:

,

( 3 )

The set of Chebyshev wavelets are an orthogonal set with respect to the weight function

Page 81: The Fifth International Energy Conference - Palestine -

78

Solving Optimal Control Problem Via Chebyshev Wavelet, Jan 2015 1

Solving Optimal Control Problem for linear time-invariant systems

Via Chebyshev Wavelet

Atya A. Abu Haya Hatem Elaydi

Faculty of Engineering, Islamic University, Gaza, Palestine

Abstract: Over the last four decades, optimal control problem are solved using direct and indirect methods. Direct methods are based on using polynomials to represent the optimal problem. Direct methods can be implemented using either discretization or parameterization. The proposed method here is considered as a direct method in which the optimal control problem is directly converted into a mathematical programming problem. A wavelet-based method is presented to solve the linear quadratic optimal control problem. The Chebyshev wavelets functions are used as the basis functions. Numerical examples are presented to show the effectiveness of the method, several optimal control problems were solved, and the simulation results show that the proposed method gives good and comparable results with some other methods. Keywords: Chebyshev wavelet, optimal control problem, time-invariant systems.

1. Introduction The goal of an optimal controller is the determination of the control signal such that a specified performance index is optimized, while at the same time keeping the system equations, initial condition, and any other constraints are satisfied. Many different methods have been introduced to solve optimal control problem for a system with given state equations. Examples of optimal control applications include environment, engineering, economics etc. The most popular method to solve the optimal control problem is the Riccati method for quadratic cost functions however this method results in a set of usually complicated differential equations [1]. In the last few decades orthogonal functions have been extensively used in obtaining an approximate solution of problems described by differential equations [2], which is based on converting the differential equations into an integral equation through integration. The state and/or control involved in the equation are approximated by finite terms of orthogonal series and using an operational matrix of integration to eliminate the integral operations. The form of the operational matrix of integration depends on the choice of the orthogonal functions like Walsh functions, block pulse functions, Laguerre series, Jacobi series, Fourier series, Bessel series, Taylor series, shifted Legendry, Chebyshev polynomials, Hermit polynomials and Wavelet functions [3]. 2. Scaling functions and wavelets Wavelets constitute a family of functions constructed from dilation and translation of a single function called the mother wavelet. When the dilation parameter and the translation parameter vary continuously we have the following family of continuous wavelets as [4]

Chebyshev wavelets have four arguments; is the order for Chebyshev polynomials and t is the normalized time. They are defined on the interval [0,1) by:

( 2 )

Here, are the well−known Chebyshev polynomials of order , which are orthogonal with respect to the weight function and satisfy the following recursive formula [5]:

,

( 3 )

The set of Chebyshev wavelets are an orthogonal set with respect to the weight function

79

6 Solving Optimal Control Problem Via Chebyshev Wavelet, Jan 2015

3. Function Approximation

A function defined over [0,1) may be expanded as:

If the infinite series in Eq. ( 5 ) is truncated, then Eq. ( 5 ) can be written as:

( 6 )

( 7 )

( 8 ) 3.1 Chebyshev Wavelets Operational Matrix of Integration

For Chebyshev wavelet the integration of the vector defined in Eq. ( 8) can be obtained as

where P is the operational matrix for integration and is given in [5] as

( 11)

( 12 )

Lemma 1 The integration of the product of two Chebyshev wavelet function vectors is obtained as

( 13 )

3.2 Chebyshev Scaling Functions

Page 82: The Fifth International Energy Conference - Palestine -

80

Solving Optimal Control Problem Via Chebyshev Wavelet, Jan 2015 7

( 14 )

( 15 )

( 16 )

( 17 )

4. Optimal Control Problem Reformulation

The linear quadratic optimal control problem can be stated as follows: Find an optimal controller that minimizes the following quadratic performance index

( 18 )

( 19 )

( 20 )

Because Chebyshev wavelets are defined on the time interval and since our problem is defined on the interval it is necessary before using Chebyshev wavelets to transform the time interval of the optimal control problem into the interval

. We can obtained that by using

( 21 ) So,

( 22 ) Then the optimal control problem became as

( 23 )

( 24 )

4.1 Control State Parameterization

The basic idea is to approximate the state and control variables by a finite series of Chebyshev wavelets as follows [5]

( 25 )

(26 )

We can write these two equations in compact form as :

( 27 )

( 29 )

is ,

( 30 )

( 31 )

( 32 )

Page 83: The Fifth International Energy Conference - Palestine -

80

Solving Optimal Control Problem Via Chebyshev Wavelet, Jan 2015 7

( 14 )

( 15 )

( 16 )

( 17 )

4. Optimal Control Problem Reformulation

The linear quadratic optimal control problem can be stated as follows: Find an optimal controller that minimizes the following quadratic performance index

( 18 )

( 19 )

( 20 )

Because Chebyshev wavelets are defined on the time interval and since our problem is defined on the interval it is necessary before using Chebyshev wavelets to transform the time interval of the optimal control problem into the interval

. We can obtained that by using

( 21 ) So,

( 22 ) Then the optimal control problem became as

( 23 )

( 24 )

4.1 Control State Parameterization

The basic idea is to approximate the state and control variables by a finite series of Chebyshev wavelets as follows [5]

( 25 )

(26 )

We can write these two equations in compact form as :

( 27 )

( 29 )

is ,

( 30 )

( 31 )

( 32 )

81

6 Solving Optimal Control Problem Via Chebyshev Wavelet, Jan 2015

( 33 )

To approximate the state equation via Chebyshev scaling functions equation ( 3.22 ) can be integrated as

( 34 )

4.2 Initial Condition

The initial condition vector can be expressed via Chebyshev scaling function as

(

=

( 35 )

( 36 ) Using Kronecker product properties [ 6 ]we have

( 37 )

By equating the coefficients of , we get

( 38 )

or

( 39 )

4.3 Performance Index Approximation

Then we substitute ( 28 ) and ( 29 ) into ( 19 ) to get

( 40 ) Then we simplified it as

( 41 ) Because of the orthogonality of Chebyshev scaling functions and from Lemma1 then we have :

Then

( ( 42 ) Finally we can write it as

( 43 )

4.4 Continuity of the State Variables

To insure the continuity of the state variables between the different sections we must add constraints. There are points at which the continuity of the state variables have to ensured [7]. Theses points are :

( 44 ) So there are

( 45 )

Where

( 46 )

matrix

4.5 Quadratic Optimal Control Transformation

By combining the equality constraints ( 39 ) with those in ( 45 )we have

Page 84: The Fifth International Energy Conference - Palestine -

82

Solving Optimal Control Problem Via Chebyshev Wavelet, Jan 2015 7

( 47 )

From ( 43 ) and ( 47 ) the optimal control problem is transformed into the following quadratic programming problem

( 48 )

Subject to equality constraints

( 49 )

( 50 )

( 51 )

F = ( 52 )

h = ( 53 )

F =

h =

5. Numerical Example 1

Problem Treated by Feldbaum Find the optimal control which minimizes

subject to

We solved this problem when

Then we approximate the state and control variables as

( 54 )

( 55 )

For this problem Chebyshev scaling functions for this problem are for k=1,M=3

There are point. This point is :

So there are

matrix

then matrix

1.1284 1.5958 1.5958 -1.1284 +1.5958

-1.5958] By solving the corresponding quadratic programming problem we obtained the optimal value of performance index

Page 85: The Fifth International Energy Conference - Palestine -

82

Solving Optimal Control Problem Via Chebyshev Wavelet, Jan 2015 7

( 47 )

From ( 43 ) and ( 47 ) the optimal control problem is transformed into the following quadratic programming problem

( 48 )

Subject to equality constraints

( 49 )

( 50 )

( 51 )

F = ( 52 )

h = ( 53 )

F =

h =

5. Numerical Example 1

Problem Treated by Feldbaum Find the optimal control which minimizes

subject to

We solved this problem when

Then we approximate the state and control variables as

( 54 )

( 55 )

For this problem Chebyshev scaling functions for this problem are for k=1,M=3

There are point. This point is :

So there are

matrix

then matrix

1.1284 1.5958 1.5958 -1.1284 +1.5958

-1.5958] By solving the corresponding quadratic programming problem we obtained the optimal value of performance index

83

6 Solving Optimal Control Problem Via Chebyshev Wavelet, Jan 2015

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Time

State Trajectory x(t) and control Trajectory u(t)x(

t),u(

t)

x(t)

u(t)

Figure ( 1 ) Optimal state and control trajectories

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Time

State Trajectory x(t) and control Trajectory u(t)

x(t),

u(t)

x(t)

u(t)

Figure ( 2 ) Optimal state and control trajectories

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Time

State Trajectory x(t) and control Trajectory u(t)

x(t),

u(t)

x(t)

u(t)

Figure ( 3 ) Optimal state and control trajectories

Table ( 1) K=1 M=3 K=2 M=3 J K=3 M=3 K=3 M=4 J 0.1929093208 EXACT VALU J

We conclude from Table ( 1 ) that when we increase k or M we can obtain the results of performance index ( J ) more closed to the exact value. Also from Figures ( 1 - 3 ) we conclude that, we can plot the OCP trajectories more good when we increase in K and M.

6. Numerical Example 2

Find an optimal controller that minimizes the following performance index

subject to

We apply the proposed method at this example , we solved this problem when

By solving the corresponding quadratic programming problem we obtained the optimal value of performance index

, while the exact value is .

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

t

xl(t)

x2(t)

Figure ( 4 )

Page 86: The Fifth International Energy Conference - Palestine -

84

Solving Optimal Control Problem Via Chebyshev Wavelet, Jan 2015 7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1-2

0

2

4

6

8

10

12

14

u(t)

Figure ( 5 )

Table ( 2 ) Comparison between different researches for ( ) value

Research

Name Deviation error

Exact value 0.06936094 0 Hsieh [36] 0.0702

Neuman and Sen [31]

0.06989

Vlassenbroeck [41]

0.069368

Jaddu [2] 0.0693689 Majdalawi

[22] 0.0693668896

This research here, we proposed a numerical method for solving linear time in-variant quadratic optimal control problems. In this method we used Chebyshev wavelet to approximate controls and states of the system using a finite length of Chebyshev wavelet. Then we solved two examples, the first example contains one state and the second example contains two states, compared with other researches, our research gives better or comparable results with other researches. As we saw in this paper we converted the difficult linear quadratic optimal control problem into a quadratic programming problem which was easy to solve, and solved it by MATLAB program.

7. Conclusion

In this paper, we proposed a numerical methods to solve optimal control problems for linear time invariant systems. This method is based on parameterizing the system state and control variables using a finite length Chebyshev wavelet. The aim of the proposed method is the determination of the optimal control and state vector by a direct method of solution based upon Chebyshev wavelet.

We also presented an explicit formula for the performance index. In addition Chebyshev wavelet operational matrix of integration was presented and used to approximate the solution. Also product operational matrix of Chebyshev wavelets was presented and we used it to solve linear time-varying systems, so the solution of the linear optimal control problem is reduced to a simple matrix-vector multiplication solved using MATLAB program. Compared with other methods and based on the simulation carried out in this work, our method gives better or comparable results with other methods. Using this method, the difficult linear quadratic optimal control problem is converted into a quadratic programming problem that is easy to solve. The numerical method proposed in this paper have many advantages as: The approximation is easy; explicit formula is presented to approximate the quadratic performance index; small quadratic programming problems are to be solved. References

[1] Kirk, D. "Optimal Control Theory: An Introduction", Prentice-Hall, Englewood Cliffs, NJ. 1970. [2] Jaddu, H., "Numerical methods for solving optimal control problems using Chebyshev polynomials", PHD Thesis, JAIST, Japan, 1998. [3] Mohammad Ali Tavallaei and Behrouz Tousi, "Closed form solution to an optimal control problem by orthogonal polynomial expansion," American J. of Engineering and Applied Sciences, 2008. [4] E. Babolian, F. Fattahzadeh, "Numerical solution of differential equations by using Chebyshev wavelet operational matrix of integration", Applied Mathematics and Computation 188 417–426, 2007. [5] M. Ghasemi , M. Tavassoli Kajani, "Numerical solution of time-varying delay systems by Chebyshev wavelets", Applied Mathematical Modelling 35 5235–5244, 2011. [6] J. W. Brewer, ”Kronecker product and matrix calculus in system theory”, IEEE Transactions on Circuits and Systems, Vol. 25, No. 9, 1978. [7] H. Jaddu and M. Vlach, "Wavelets-based approach to optimizing linear systems", School of Information Science, Japan Advanced Institute of Science and technology, submitted for publication.

Page 87: The Fifth International Energy Conference - Palestine -

84

Solving Optimal Control Problem Via Chebyshev Wavelet, Jan 2015 7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1-2

0

2

4

6

8

10

12

14

u(t)

Figure ( 5 )

Table ( 2 ) Comparison between different researches for ( ) value

Research

Name Deviation error

Exact value 0.06936094 0 Hsieh [36] 0.0702

Neuman and Sen [31]

0.06989

Vlassenbroeck [41]

0.069368

Jaddu [2] 0.0693689 Majdalawi

[22] 0.0693668896

This research here, we proposed a numerical method for solving linear time in-variant quadratic optimal control problems. In this method we used Chebyshev wavelet to approximate controls and states of the system using a finite length of Chebyshev wavelet. Then we solved two examples, the first example contains one state and the second example contains two states, compared with other researches, our research gives better or comparable results with other researches. As we saw in this paper we converted the difficult linear quadratic optimal control problem into a quadratic programming problem which was easy to solve, and solved it by MATLAB program.

7. Conclusion

In this paper, we proposed a numerical methods to solve optimal control problems for linear time invariant systems. This method is based on parameterizing the system state and control variables using a finite length Chebyshev wavelet. The aim of the proposed method is the determination of the optimal control and state vector by a direct method of solution based upon Chebyshev wavelet.

We also presented an explicit formula for the performance index. In addition Chebyshev wavelet operational matrix of integration was presented and used to approximate the solution. Also product operational matrix of Chebyshev wavelets was presented and we used it to solve linear time-varying systems, so the solution of the linear optimal control problem is reduced to a simple matrix-vector multiplication solved using MATLAB program. Compared with other methods and based on the simulation carried out in this work, our method gives better or comparable results with other methods. Using this method, the difficult linear quadratic optimal control problem is converted into a quadratic programming problem that is easy to solve. The numerical method proposed in this paper have many advantages as: The approximation is easy; explicit formula is presented to approximate the quadratic performance index; small quadratic programming problems are to be solved. References

[1] Kirk, D. "Optimal Control Theory: An Introduction", Prentice-Hall, Englewood Cliffs, NJ. 1970. [2] Jaddu, H., "Numerical methods for solving optimal control problems using Chebyshev polynomials", PHD Thesis, JAIST, Japan, 1998. [3] Mohammad Ali Tavallaei and Behrouz Tousi, "Closed form solution to an optimal control problem by orthogonal polynomial expansion," American J. of Engineering and Applied Sciences, 2008. [4] E. Babolian, F. Fattahzadeh, "Numerical solution of differential equations by using Chebyshev wavelet operational matrix of integration", Applied Mathematics and Computation 188 417–426, 2007. [5] M. Ghasemi , M. Tavassoli Kajani, "Numerical solution of time-varying delay systems by Chebyshev wavelets", Applied Mathematical Modelling 35 5235–5244, 2011. [6] J. W. Brewer, ”Kronecker product and matrix calculus in system theory”, IEEE Transactions on Circuits and Systems, Vol. 25, No. 9, 1978. [7] H. Jaddu and M. Vlach, "Wavelets-based approach to optimizing linear systems", School of Information Science, Japan Advanced Institute of Science and technology, submitted for publication.

85

THE STATUS OF GROUNDING IN HEBRON DISTRICT FACTS & PROPOSED SOLUTIONS

Eng. Ayman Hassouni Hebron Electrical Company

& Municiplity Electrical Team

Dr. Sameer Khader Eng. Nizar Amro

Eng. Nassim Eareit Palestine Polytechnic University

Abstract:

This work presents applied research in form of field survey conducted over the status of grounding system in Hebron district, aiming at proposing regulations, techniques and instructions for increasing the human security against electrical chock and hazard leakage current. Realizing this task more than 300 residential, industrial, commercial and public sites were visited. The subjected testing factors are the applied grounding method, status of grounding resistance, soil type, and functionality of residual current barker, status of distribution boards, and the aging of existing grounding systems. The obtained results according to conducted methodology show that: Keywords: Earthing, transformers, Networks, 1. Introduction 1.1 What is the earthing (grounding)? “Earthling” may be described as a system

of electrical connections to the general mass of earth. The characteristic primarily determining the effectiveness of an earth electrode is the resistance, which it provides between the earthing system and the general mass of earth[ 1,2].

Electric shocks have two causes, namely: o direct contact, i.e. a person or an animal

touching an exposed live conductor; o indirect contact, i.e. a person touching the

metal frame of an electrical load on which an insulation fault has occurred

(a)

(b)

Fig 1: (a) direct contact (b) indirect contact

1.2 Purposes of earthling The earthing of an electrical installation has two purposes:

• To provide protection for persons or animals against the danger of electric shock.

• Protect the buildings and the power system from the risk of electrical discharge resulting from lightning.

• Maintain a constant voltage in the neutral. • Trip circuit protection devices, such as

fuses and circuit-breakers, by allowing a substantial current to flow in certain fault conditions. Particularly important in cases of mechanical damage, or where live conductors come into contact with the

Page 88: The Fifth International Energy Conference - Palestine -

86

metallic housings of equipment or appliances.

• Provide a preferred path for the energy of a lightning strike to be carried to earth, without causing damage to buildings or high structures and their occupants.

• Prevent dangerous potential differences to exist in exposed metalwork and other conductive surfaces, such as structural steelwork, plumbing systems.

• Protect sensitive equipment, particularly electrical, electronic and telecommunications installations, by providing barriers, alternative paths to earth, and energy- discharging devices.

• trip certain forms of circuit-breaker used to protect against electric shock (e.g. earth leakage circuit breakers ELCBs)

• To maintain the proper function of the electrical system [3,4]:

1. Fixing the potential of live conductors with respect to the earth in normal operation.

2. Limiting voltage between the frames of electrical equipment and the earth should an insulation fault occur.

3. Implementing protection devices, which remove the risk of Electric Shocks or electrocution of personnel.

4. Limiting rises in potential due to MV faults.

5. Increased continuity of service (availability of electrical power) by authorizing automatic reconnection on a transient fault.

6. Connection or not of the frames of the MV/LV substation and those of the LV neutral to avoid risk for LV users and equipment.

1.3 Types of Grounding

• Function Grounding • Protection Grounding • Local Grounding • Grid Grounding • Static Grounding

1.4 Measuring Soil Resistivity

Figure 1.15 illustrates the simple test setup for measuring soil resistivity. The test results give a resistivity profile of the earth beneath the surface. A four terminal instrument is required for soil resistivity. The probes are installed in a straight line with an equal spacing of “a” meters and inserted to a depth of no more than a/20 meters, i.e. for spacing of 2 meters, depth must be less than 100mm. Now keeping the centre position the same, resistance measurements are taken at increasing spacing (e.g. a=2mm, 3mm, 4mm etc.). Always ensure that the spacing between individual test probes is identical. The soil resistivity can be obtained from the following formula: ρ = apparent soil resistivity a = spacing of probes in meters. R = resistance value in Ohms (as indicated on the tester).

Fig.2: Measuring soil resistivity

1.5 Measuring Resistance

Figure 1.16 illustrates the test setup for measuring the resistance in Ohms between the installed earth rod and the general mass of earth. Refer to the instrument manufacturer’s manual on how to carry out the test. As a general rule, the distance between the earth rod under test and the current probe “C” is not less than 15 meters[5].

Page 89: The Fifth International Energy Conference - Palestine -

86

metallic housings of equipment or appliances.

• Provide a preferred path for the energy of a lightning strike to be carried to earth, without causing damage to buildings or high structures and their occupants.

• Prevent dangerous potential differences to exist in exposed metalwork and other conductive surfaces, such as structural steelwork, plumbing systems.

• Protect sensitive equipment, particularly electrical, electronic and telecommunications installations, by providing barriers, alternative paths to earth, and energy- discharging devices.

• trip certain forms of circuit-breaker used to protect against electric shock (e.g. earth leakage circuit breakers ELCBs)

• To maintain the proper function of the electrical system [3,4]:

1. Fixing the potential of live conductors with respect to the earth in normal operation.

2. Limiting voltage between the frames of electrical equipment and the earth should an insulation fault occur.

3. Implementing protection devices, which remove the risk of Electric Shocks or electrocution of personnel.

4. Limiting rises in potential due to MV faults.

5. Increased continuity of service (availability of electrical power) by authorizing automatic reconnection on a transient fault.

6. Connection or not of the frames of the MV/LV substation and those of the LV neutral to avoid risk for LV users and equipment.

1.3 Types of Grounding

• Function Grounding • Protection Grounding • Local Grounding • Grid Grounding • Static Grounding

1.4 Measuring Soil Resistivity

Figure 1.15 illustrates the simple test setup for measuring soil resistivity. The test results give a resistivity profile of the earth beneath the surface. A four terminal instrument is required for soil resistivity. The probes are installed in a straight line with an equal spacing of “a” meters and inserted to a depth of no more than a/20 meters, i.e. for spacing of 2 meters, depth must be less than 100mm. Now keeping the centre position the same, resistance measurements are taken at increasing spacing (e.g. a=2mm, 3mm, 4mm etc.). Always ensure that the spacing between individual test probes is identical. The soil resistivity can be obtained from the following formula: ρ = apparent soil resistivity a = spacing of probes in meters. R = resistance value in Ohms (as indicated on the tester).

Fig.2: Measuring soil resistivity

1.5 Measuring Resistance

Figure 1.16 illustrates the test setup for measuring the resistance in Ohms between the installed earth rod and the general mass of earth. Refer to the instrument manufacturer’s manual on how to carry out the test. As a general rule, the distance between the earth rod under test and the current probe “C” is not less than 15 meters[5].

87

Fig.3: Measuring soil resistance

(a) The quality of an earth electrode (resistance as low as possible) depends essentially on two factors [6]: Type of soil Installation method The conductor forming the earth electrode, particularly when it is laid in an excavation for foundations, must be in the earth, at least 50 cm below the hard-core or aggregate base for the concrete foundation. Neither the electrode nor the vertical rising conductors to the ground floor, should ever be in contact with the foundation concrete. For existing buildings, the electrode conductor should be buried around the outside wall of the premises to a depth of at least 1 meter. As a rule, all vertical connections from an electrode to above-ground level should be insulated for the nominal LV voltage (600-1,000 V). The conductors may be:

1- Copper: Bare cable (> 25mm2.) 2- Aluminum with lead jacket: cable (>

35 mm2) 3- Galvanized-steel cable: bare cable (> 95

mm2)

1.6 Earthing components a) Underground earthing copper grid. b) Earthing Copper rods and beams c) Earthing copper plate d) Earthing system using ULG & ALG

water pipes e) Figures 4 and 5 illustrates the underground shape and how these methods are implemented.

(b) (c) (d)

Fig.5: Several ground connecting methods.

There is huge variety of used grounding

methods with no concrete instruction and regulations for applying these methods, as shown on fig.6

Fig.4: Various underground earthing rods and plates

Page 90: The Fifth International Energy Conference - Palestine -

88

The measured resistance ranging between few Ohms to thousand Ohm, which is bad indicator for the security of grounding system as shown on fig.7.

Fig.6 Grounding method

Fig.7 Average resistance according to conducting grounding method

Tasks related to grounding & protection

system functionality and reliability Several issues / tasks related to grounding and protection operation and reliability are discussed as follows: Q1: Existing of Residual Current Breaker (RCB) Q2: Readiness & functionality of RCB Q3: Periodical test of RCB Q4: Existing of grounding continuity of grounding lines inside the building. Q5: Connection the metal structures with the ground. Q6: Existing of simply achievable test points. Q7: Existing of connection boards according to international standards.

Fig.8 Functinality and rediness of RCBs

The obtained survey results are illustrated

in fig.8 where it is clearly shown that there is a need of public campaign for the importance of RCBs, functionality and ability to protect humans from leakage currents.

Conclusion & Recommendation Conclusion:

Because of dominant character of rocky soil in Hebron the grounding resistance is generally high and cannot relays on it as main current discharging medium… Therefore additional grounding techniques must be applied aiming at reducing the total grounding resistance … Building foundations grounding occupies ~31%

of overall grounding methods, while grounding rods covers 13%, therefore attention must be paid for designing and implementation of grounding network placed in the building foundations…. Rocky and Clayey soils are characterized with

high average resistances ~ Rav=60, while this value of resistance is significantly decreased when combined grounding methods are applied such as combinations of building foundations , grounding rods, grounding holes and water pipes methods. Building foundation grounding with presence of

calcareous soil results minimum grounding resistance with acceptable and safety values, Grounding method using water pipes connection is inefficient method irrespective of soil type… The value of grounding resistance varies from

building age to another at the same soil type. The values of average resistances measured for buildings built before 2000 is dramatically greater than that buildings built after 2000.

Page 91: The Fifth International Energy Conference - Palestine -

88

The measured resistance ranging between few Ohms to thousand Ohm, which is bad indicator for the security of grounding system as shown on fig.7.

Fig.6 Grounding method

Fig.7 Average resistance according to conducting grounding method

Tasks related to grounding & protection

system functionality and reliability Several issues / tasks related to grounding and protection operation and reliability are discussed as follows: Q1: Existing of Residual Current Breaker (RCB) Q2: Readiness & functionality of RCB Q3: Periodical test of RCB Q4: Existing of grounding continuity of grounding lines inside the building. Q5: Connection the metal structures with the ground. Q6: Existing of simply achievable test points. Q7: Existing of connection boards according to international standards.

Fig.8 Functinality and rediness of RCBs

The obtained survey results are illustrated

in fig.8 where it is clearly shown that there is a need of public campaign for the importance of RCBs, functionality and ability to protect humans from leakage currents.

Conclusion & Recommendation Conclusion:

Because of dominant character of rocky soil in Hebron the grounding resistance is generally high and cannot relays on it as main current discharging medium… Therefore additional grounding techniques must be applied aiming at reducing the total grounding resistance … Building foundations grounding occupies ~31%

of overall grounding methods, while grounding rods covers 13%, therefore attention must be paid for designing and implementation of grounding network placed in the building foundations…. Rocky and Clayey soils are characterized with

high average resistances ~ Rav=60, while this value of resistance is significantly decreased when combined grounding methods are applied such as combinations of building foundations , grounding rods, grounding holes and water pipes methods. Building foundation grounding with presence of

calcareous soil results minimum grounding resistance with acceptable and safety values, Grounding method using water pipes connection is inefficient method irrespective of soil type… The value of grounding resistance varies from

building age to another at the same soil type. The values of average resistances measured for buildings built before 2000 is dramatically greater than that buildings built after 2000.

89

These resistances depend on building utilization and function, therefore the applied grounding methods affects the resistance values. Only 67% of surveyed buildings have RCBs,

which is a negative indicator for the person's safety from touch and step voltage, while ~20% of tested RCBs are out of order, and ~60% of RCBs are not tested periodically with purpose to check their readiness for eventual leakage current… Only 42 % of metal constructions are directly

grounded, 55% of tested buildings with respect to ground have simply and directly achievable test point/s, and 45% of checked main boards are designed according to international standards. Unsatisfied results concerning the readiness and

keeping RCB functioned, in additional to bad status of feeding boards, and the most of metal structures are not connected with the ground line…. Schools sector needs additional efforts in recovering and updating the electrical installation in general…

Recommendations:

Increasing the awareness of importance of grounding system on human safety…… Using grounding rods must be mandatory

accompanied by another grounding techniques and grounding solutions. Applying strict regulations in building on and

implementation of the grounding system….. Combined grounding system must be applied

aiming at decreasing the grounding resistance and avoiding disconnection in grounding system. All buildings irrespective of building's function

they must have RCBs as main current protection device. RCBs must be functionally checked before first

activation time and during periodic intervals of time. In addition to starting of public awareness campaign about the importance of periodic test of RCBs. RCBs must be periodically tested by

competitive person from the electrical company in additional to conducting workshops, releasing technical brochures about the importance of RCB. All buildings must have solid and good

designed overall grounding system, all exposed to electrical voltage metal constructions must be mandatory grounded.

Conducting technical workshops for all peoples involved in design and constructions of metal constructers about the importance of connecting metal constructions with ground. Similarly to the testing procedure before feeding

the electrical main board with energy, grounding test point must be checked and approved before giving the permission by the electrical company… Strict electrical test before permission to all

parts of main feeding boards. Acknowledgment: Jerusalem Electric Company is deeply appreciated for their technical support References

[1] The Basics of Grounding Systems , Jack Woodham, P.E. , Jedson Engineering, 2003 [2] Measurements for testing earthing system integrity, A.M.Davies, Earthing Measurements Ltd, UK J.Queenan, GPU Power, UK, 2009

[3] Promotion of Copper in High Integrity Earthing Systems, Author : Mike Mc Dermott, 2009.

[4] Understanding NEC requirements for grounding vs Bonding, Mike Holt, 2014. المختصر المفيذ للتاريض ومانعة الصىاعق ، [5] . 2008 إعذاد وبحث المهنذس علي شريف الحلفي[6] http://www.rfi-ind.com.au “Earthling & grounding systems”.

Page 92: The Fifth International Energy Conference - Palestine -

90

Towards Zero Energy School in Palestine

M. Haj Hussein1*, M. Baba2, A; Barlet3 and C. Semidor4 1Dept. of Building Engineering, An-Najah University, Nablus, Palestine - [email protected]

2Dept. of Building Engineering, An-Najah University, Nablus, Palestine - [email protected] 3ENSAP-Bx, Bordeaux, France- [email protected]

4 ENSAP-Bx, Bordeaux, France- [email protected] ABSTRACT

Buildings have a significant impact on energy use and the environment. However, school buildings differ from other types of buildings because they are the places where children are educated and have the opportunity to learn how to become environmentally aware citizens. This paper is a part of an ongoing research project funded by the French government (Al-Maqdisi Fund) in cooperation between Building engineering department at NNU and GRECAU laboratory at ENSAP in France. Zero energy and energy efficiency concepts are very important in school buildings, as they are associated with comfort and air quality conditions in the interior spaces and energy cost of these buildings are associated with their main operational cost. There is an increasing awareness throughout donors for promotion of sustainable solutions in Palestinian school buildings involving energy efficient technologies and measures.The aim of this paper is to assess the energy and comfort performance, based on subjective and objective approaches, of school buildings in two different climatic zones of Palestine. It also demonstrates, through thermal simulation the potential for achieving Near Zero Energy school buildings in each region and proposestheappropriate strategies.

Keywords; zero energy, school design, ZEB strategies, climate zones, Palestine. I. Introduction In the field of energy saving in buildings, the interest towards the school sector is deeply motivated: schools have standard energy requests, and high levels of environmental comforts have to be guaranteed. According to the estimations of US Department of Energy, 25% of the expenses on energy in schools could be saved through better building design and using of energy-efficient technologies combined with improvements in operations and maintenance [1]. Nowadays, the Zero Energy Buildings(ZEBs) are a revolutionary concept that aims to create buildings with greatly reduced energy needs

through efficiency gains such that the balance of energy needs can be supplied with renewable technologies [2]. In other words, ZEB is a building that produces as much energy as they consume.

In many of technologically and economically advanced countries, collaborative efforts seek to achieve, in terms of comfort and energy, high performance schoolsthrough evaluation procedures for what has been built.However,in the developing countries, these procedures are the missing linktowards sustainability in school design.The quality of school building design is performed in a

Page 93: The Fifth International Energy Conference - Palestine -

90

Towards Zero Energy School in Palestine

M. Haj Hussein1*, M. Baba2, A; Barlet3 and C. Semidor4 1Dept. of Building Engineering, An-Najah University, Nablus, Palestine - [email protected]

2Dept. of Building Engineering, An-Najah University, Nablus, Palestine - [email protected] 3ENSAP-Bx, Bordeaux, France- [email protected]

4 ENSAP-Bx, Bordeaux, France- [email protected] ABSTRACT

Buildings have a significant impact on energy use and the environment. However, school buildings differ from other types of buildings because they are the places where children are educated and have the opportunity to learn how to become environmentally aware citizens. This paper is a part of an ongoing research project funded by the French government (Al-Maqdisi Fund) in cooperation between Building engineering department at NNU and GRECAU laboratory at ENSAP in France. Zero energy and energy efficiency concepts are very important in school buildings, as they are associated with comfort and air quality conditions in the interior spaces and energy cost of these buildings are associated with their main operational cost. There is an increasing awareness throughout donors for promotion of sustainable solutions in Palestinian school buildings involving energy efficient technologies and measures.The aim of this paper is to assess the energy and comfort performance, based on subjective and objective approaches, of school buildings in two different climatic zones of Palestine. It also demonstrates, through thermal simulation the potential for achieving Near Zero Energy school buildings in each region and proposestheappropriate strategies.

Keywords; zero energy, school design, ZEB strategies, climate zones, Palestine. I. Introduction In the field of energy saving in buildings, the interest towards the school sector is deeply motivated: schools have standard energy requests, and high levels of environmental comforts have to be guaranteed. According to the estimations of US Department of Energy, 25% of the expenses on energy in schools could be saved through better building design and using of energy-efficient technologies combined with improvements in operations and maintenance [1]. Nowadays, the Zero Energy Buildings(ZEBs) are a revolutionary concept that aims to create buildings with greatly reduced energy needs

through efficiency gains such that the balance of energy needs can be supplied with renewable technologies [2]. In other words, ZEB is a building that produces as much energy as they consume.

In many of technologically and economically advanced countries, collaborative efforts seek to achieve, in terms of comfort and energy, high performance schoolsthrough evaluation procedures for what has been built.However,in the developing countries, these procedures are the missing linktowards sustainability in school design.The quality of school building design is performed in a

91

traditional ways, which lack important analysis phases. It depends mainly on known design criteria, professional knowledge and practice.

Many scientific studies identify a strong correlation between daylighting, acoustical and thermal comfort and performance in building. Careful management of daylighting has the potential to produce positive effects on health [6-7], well-being and productivity [8-9]. It can also bring tangible energy savings, as long as it minimizes energy use for artificial lighting and prevents visual discomfort such as glare.

In Palestine, recommendations may be given on how school should be built to be efficient and economical. However, there is limited of information specific design guidelines for classrooms according to its climatic zone in order to realize a comfortable classroom and beneficial studying environment by minimizing the use of energy used for ventilation, heating, cooling and lighting.

Moreover, in the last years, the Palestinian government has significantly reduced the number of students per school by increasing the number of schools in major town and cities. This leads to increase energy consumption by this building sector.

Accordingly, a new approach at the primary stage of the school design is indispensable for introducing environmental improvements and achievingusers optimum performance in away to relate, as maximum as possible, our schools to zero energy-building concept.

II. Energy data of school buildings in Palestine. Despite the availability of solar energy in Palestine, the integration of

this energy in the building design was very limited [12]. For example, the electrical energy consumption of 108 school buildings in Nablus city alone can be estimated at 140 MWh per year corresponding to 47 KWh per student per year [13]. This energy is mainly used for lighting spaces in schools.

It is important to say that there is no single public school in the West Bank or Gaza that is equipped with heating or cooling systems (HVAC system). Administrative rooms may have an electric heater for heating in winter and a fan for cooling in summer. The ministry of education budget does not allocate any support for capital and running cost of HVAC systems in schools [14].

The lack of heating system in classrooms has many negative impacts on students, especially those in elementary level. Classrooms main heat source is the heat generated by human bodies. This is usually achieved by closing all windows and doors of classrooms, which will prevent any efficient ventilation. Testing of air pollution of these rooms have never been done, however, we expect it to be at high levels.

III. Materials And Methodology A. Materials Both exterior and interior climatic variables have been measured. So, two schools; one in Nablus and the other in Jericho were selected. For the exterior climatic variable, amini weather station (figure 1-a) was installed on the roof of each school. The exterior targeted variables are ambient temperature, relative humidity, sky coverage and wind speed and orientation. The objective is to take the urban morphology on the surrounding of each school in

Page 94: The Fifth International Energy Conference - Palestine -

92

consideration and investigate its effect on the local microclimate. For the interior monitoring, a HOBBO data logger (figure1-b) was localizedin each classroom. The measured interior physical environmental variables areair temperature, relative humidity, air velocityand illumination level.

Figure 1:Devices used for exterior and interior climatic variables monitoring.

B. Measurements Methodology

To achieve the objectives of this paper, two approaches were adopted. The first one is anobjective (quantitative) approach, which consists of two phases: (1) in-situ campaigns and (2) modeling& simulations. While, the second approachis a subjective (qualitative) one based on questionnaire survey.

A. Objective approach: (1) In-situ campaigns protocol: The

measurements were performed in May 2014 during one week for each city. The hygrothermal, luminous and acoustical comfortsare the three major environmental comforts that constructing this protocoland affecting the school energy consumption. However, the acoustical comfort will not be presented in this paper. All the measurements in the two schools of the same city will be derived simultaneously.

(2) Modeling& simulations: in this phase two groups of graduate studentsof Building Engineering Department at An Najah National University were asked to design a school building which takes in consideration the results obtained from the field study and ensures the zero energy concept in their proposed design. Each group works on one city.

B. Subjective approach:

It aims to identify the comfort quality and determine the significant variables that could affect it in the classroom from users’ point view.Thestudents and teachers were asked to examine the working quality in their classroom by writing down their impressions and assessments on two types of surveys: a comprehensive questionnaire and an evaluation daily sheet.The questionnaire is looking for the users’ perception and judgment about their classroom environment, while the evaluation sheet is a daily subjective monitoring concerning the three environmental comforts in the examined classrooms.

The two surveys are structured around 34 and 9 closed and open-ended questions, related to three themes:

1. Personal information: age, seat’s position, taught courses, working period, clothing level.

2. The comfortable classroom characteristics: size, environmental comfort, view, cleanness, spatial organization, etc.

3. The users’ satisfaction: size, spatial organization, natural lighting, ventilation, ambient temperature, noise, etc.

Page 95: The Fifth International Energy Conference - Palestine -

92

consideration and investigate its effect on the local microclimate. For the interior monitoring, a HOBBO data logger (figure1-b) was localizedin each classroom. The measured interior physical environmental variables areair temperature, relative humidity, air velocityand illumination level.

Figure 1:Devices used for exterior and interior climatic variables monitoring.

B. Measurements Methodology

To achieve the objectives of this paper, two approaches were adopted. The first one is anobjective (quantitative) approach, which consists of two phases: (1) in-situ campaigns and (2) modeling& simulations. While, the second approachis a subjective (qualitative) one based on questionnaire survey.

A. Objective approach: (1) In-situ campaigns protocol: The

measurements were performed in May 2014 during one week for each city. The hygrothermal, luminous and acoustical comfortsare the three major environmental comforts that constructing this protocoland affecting the school energy consumption. However, the acoustical comfort will not be presented in this paper. All the measurements in the two schools of the same city will be derived simultaneously.

(2) Modeling& simulations: in this phase two groups of graduate studentsof Building Engineering Department at An Najah National University were asked to design a school building which takes in consideration the results obtained from the field study and ensures the zero energy concept in their proposed design. Each group works on one city.

B. Subjective approach:

It aims to identify the comfort quality and determine the significant variables that could affect it in the classroom from users’ point view.Thestudents and teachers were asked to examine the working quality in their classroom by writing down their impressions and assessments on two types of surveys: a comprehensive questionnaire and an evaluation daily sheet.The questionnaire is looking for the users’ perception and judgment about their classroom environment, while the evaluation sheet is a daily subjective monitoring concerning the three environmental comforts in the examined classrooms.

The two surveys are structured around 34 and 9 closed and open-ended questions, related to three themes:

1. Personal information: age, seat’s position, taught courses, working period, clothing level.

2. The comfortable classroom characteristics: size, environmental comfort, view, cleanness, spatial organization, etc.

3. The users’ satisfaction: size, spatial organization, natural lighting, ventilation, ambient temperature, noise, etc.

93

IV. Criteria for the selection of case study building for thermal analysis Palestine is a Mediterranean country in which the Palestinian territories (6100km2) represent 23.11% of the total area. In spite of its small surface area, seven climatic zones (5 in the West Bank and 2 in Gaza strip) have been defined[15]. In this research, Jericho and Nablus were selected as representative case studies for two different climatic zones. Two case study buildings for each city were selected as representative of the school building stock, so the results and conclusions to be of greater applicability.The selection process based on the following criteria:

. The school has 8th grade class, which is the target age group for this project.

. The school is for girl students

. Two different typologies (L-shape or Square) per city should be selected.

. The two selected classrooms per school should be found on two different orientations and also on the same level

. All schools have, as possible as, the same urban environment.

V. Results And Discussions Questionnaire survey primary results

A group of 226 pupils (122 from Nablus & 104 from Jericho) from 4 schools in agefrom 14 till 17 years were tested.It was based on five point differential scales with (1) being most satisfied and (5) being most dissatisfied.

1. Comfort requirements: The results of statistical analysis of students’ perception about classroom comfort requirements show that the

indoor air quality and temperatureare the most issues affecting on their classroom quality. The natural and artificial lighting were ranked respectively on the 7th and 9th level of requirements that could play a role on the classroom comfort question. This could be attributed to the fact that students always keep the artificial lighting turned on even in summer. However, the investigation of this question shows that studentspresented similar responses about comfort requirements in view of their importance, whatever the form of their school (L-shape, square) or their geographical location. Thus, these requirements will be also essential for all Palestinian students. Moreover, the investigation about the ambient indoor temperature from students’ perception point of view shows that all students, regardless of their position (seats) in the classroom are dissatisfied, figure (2).

Figure 2: Percentage of students’ satisfaction concerning indoor air

temperature.

2. Average comfort index: In order to evaluate the comfort quality in the monitored classrooms, an average comfort index was deduced based on the students’ satisfaction about the above requirements. The index is

Page 96: The Fifth International Energy Conference - Palestine -

94

necessarily between 0 for total comfort and 4 for a total discomfort, table (1). Table 1: Signification for average comfort

index according to Barlet A.

0-1 Completely comfortable 1-1.5 Very comfortable 1.5-2 Comfortable 2-2.5 Neither comfortable, nor uncomfortable 2.5-3 Uncomfortable 3-3.5 Very uncomfortable 3.5-4 Completely uncomfortable Table (2) shows the average comfort index (ACI) calculated for the working conditions in the investigated classrooms according to their location (city), building form (L-shape or square) and comprehensive (for all the classrooms)

Table 2: Average comfort index (ACI) according to different analysis stratum

Analysis stratum

ACI Perception Signification

Nablus 3.26 Completely uncomfortable

Jericho city

2.93 Uncomfortable L-Shape schools

3 Very uncomfortable Square schools

3.02 Very uncomfortable (all the above)

3.09 Very uncomfortable

Based on the result obtained in the above table, where the ACI for a classroom was approximately around 3 (very uncomfortable) whatever the analysis stratum (i.e; city, form or both), we could generalize this result for all the school found in Palestine.

IV. In-situ campaign primary results In this section, where the results obtained for the four schools are similar and convergent with students’ perception, we will restrain this section on the results for obtained from Qurtoba school in Nablus. The interior temperature was measured in two classrooms: one situated on the south while the second oriented to the West. The interior ambient temperatures in both classrooms were compared to the exterior air temperatures monitored on the same site, figure (3). We observe that the interior temperatures in West classroom are greater than those illustrated in the South one. However the temperatures in both classrooms are generally noticed greater than those of outdoors during 4 days (6,8,9,11/05/2014). Interior temperatures range between 21 and 30.3°C in the south classroom and between 25 and 30.7°C in the west classroom, over the week of experiment.

Figure 3: Outdoor & indoor Temperature- Qourtoba School

Page 97: The Fifth International Energy Conference - Palestine -

94

necessarily between 0 for total comfort and 4 for a total discomfort, table (1). Table 1: Signification for average comfort

index according to Barlet A.

0-1 Completely comfortable 1-1.5 Very comfortable 1.5-2 Comfortable 2-2.5 Neither comfortable, nor uncomfortable 2.5-3 Uncomfortable 3-3.5 Very uncomfortable 3.5-4 Completely uncomfortable Table (2) shows the average comfort index (ACI) calculated for the working conditions in the investigated classrooms according to their location (city), building form (L-shape or square) and comprehensive (for all the classrooms)

Table 2: Average comfort index (ACI) according to different analysis stratum

Analysis stratum

ACI Perception Signification

Nablus 3.26 Completely uncomfortable

Jericho city

2.93 Uncomfortable L-Shape schools

3 Very uncomfortable Square schools

3.02 Very uncomfortable (all the above)

3.09 Very uncomfortable

Based on the result obtained in the above table, where the ACI for a classroom was approximately around 3 (very uncomfortable) whatever the analysis stratum (i.e; city, form or both), we could generalize this result for all the school found in Palestine.

IV. In-situ campaign primary results In this section, where the results obtained for the four schools are similar and convergent with students’ perception, we will restrain this section on the results for obtained from Qurtoba school in Nablus. The interior temperature was measured in two classrooms: one situated on the south while the second oriented to the West. The interior ambient temperatures in both classrooms were compared to the exterior air temperatures monitored on the same site, figure (3). We observe that the interior temperatures in West classroom are greater than those illustrated in the South one. However the temperatures in both classrooms are generally noticed greater than those of outdoors during 4 days (6,8,9,11/05/2014). Interior temperatures range between 21 and 30.3°C in the south classroom and between 25 and 30.7°C in the west classroom, over the week of experiment.

Figure 3: Outdoor & indoor Temperature- Qourtoba School

95

The maximum temperature measured inside both classrooms was 30°C. The minimum interior temperature (20.7°C) was registered in the South classroom on Friday (9/5/2014) at 9:00. This can be attributed to the fact that students have been left the windows of their classroom opened where the wind direction illustrated by the mini-weather station was SWW. Hence, reducing the interior ambient temperature. During the school time (8:00-14:00), indoor temperatures range from 28.2 to 30.3 °C in the south classroom

(figure 4) and from 29.4 to 30.7°C in the West classroom (figure 5). For both classrooms, the minimum temperature values were recorded during the weekend (Friday and Saturday) where classrooms were empty. Concerning indoor relative humidity (RH%), The maximum values for both classrooms were recorded on 08/05/2014, the only rainy day in the monitoring week, figures (6-7). VII. Modeling & simulation Two school models, one model per city, were proposed by two groups of

Figure 5: indoor Temperature- West classroom, Qourtoba

Figure 4: indoor Temperature- South classroom, Qourtoba

Page 98: The Fifth International Energy Conference - Palestine -

96

senior building engineering students, figures (8,9). They tried through their design to evaluate and select the most suitable zero energy strategies for each city. They take in consideration the findings obtained from previous approaches.

IIX. Zero energy school strategies 1. Enhancement of local microclimate The first step to create zero energy schools is by generating a healthy local microclimate supported by managing of the existing negative power of the climate variety. A well designing of surrounds landscape can

be a good long-term investment for reducing heating and cooling costs by protecting against winter wind and summer sunlight. 2. Open spaces

In Jericho city, the patio, proposed in the model school, plays a significant role on local microclimate and helping in ameliorates of the surrounding environment. The in-between outdoor spaces take an important function of lowering the temperature and creating a pleasant atmosphere in the zero energy school conception, it can be covered by the shadow of the trees and the climbing plants, which are cooling it.

Figure 7: indoor RH% - West classroom, Qourtoba

Figure 6: indoor RH% - South classroom, Qourtoba

Page 99: The Fifth International Energy Conference - Palestine -

96

senior building engineering students, figures (8,9). They tried through their design to evaluate and select the most suitable zero energy strategies for each city. They take in consideration the findings obtained from previous approaches.

IIX. Zero energy school strategies 1. Enhancement of local microclimate The first step to create zero energy schools is by generating a healthy local microclimate supported by managing of the existing negative power of the climate variety. A well designing of surrounds landscape can

be a good long-term investment for reducing heating and cooling costs by protecting against winter wind and summer sunlight. 2. Open spaces

In Jericho city, the patio, proposed in the model school, plays a significant role on local microclimate and helping in ameliorates of the surrounding environment. The in-between outdoor spaces take an important function of lowering the temperature and creating a pleasant atmosphere in the zero energy school conception, it can be covered by the shadow of the trees and the climbing plants, which are cooling it.

Figure 7: indoor RH% - West classroom, Qourtoba

Figure 6: indoor RH% - South classroom, Qourtoba

97

3. Enhancement of thermal Insulation

The concept of enhancement of thermal Insulation consists much in effective thermal insulation, which is vital for the accomplishment of the school development. The two groups worked carefully on the composition of external envelop to achieve the recommended U-value determined by PHGBC (Palestinian HigherGreen Building Council). The U-value of external wall is 0.45 W/m2C°. For an efficient roof they used a U-value = 0.38W/m2C°. In Jericho school models, students utilized white gravel

on the roof, which receive the most of solar radiation over the year, to

conserve, insulate and hold back a change of energy flux, between outdoor and indoor as maximum as possible.

Tables (3&4) show the results obtained due to a comparison between different thickness of insulation materials used in the exterior walls and different type of internal partition construction composition.

Figure 8: Proposed school model for Jericho city.

Figure 9: Proposed school model for Nablus city.

Page 100: The Fifth International Energy Conference - Palestine -

98

IX. Passive heating and cooling policies and systems

As climate conditions in both selected cities are clearly different, different strategies for cooling and heating were proposed. In case of Nablus, the classrooms were oriented to the north while a curtain-glazed wall is used on the southern facade of classrooms blocks. It is used as a solarium in order to enhance heating in winter and stack effect ventilation in summer and hence cross ventilation through the classrooms.

In Jericho, where the dominant problem is overheating along the year, multi-passive cooling strategies were

tested in the proposed model. The classrooms were oriented to the south. Solar chimney combined with underground tube system was used also on the southern façade (figure 10). Hot air get out from the classrooms via the upper opening of the chimney, while a fresh outdoor air, coming form the in-between shaded green area between the classroom blocks, is drawn into the earth cooling tubes and transported directly to the inside of the classrooms. This system provides ventilation while optimistically cooling the classroom’s interior. Moreover, in order to improve the performance of Jericho school model,

Table 3: Summary results for Discomfort degree hour for different material cases-Nablus.

Table 4: Summary results for Discomfort degree hour for different material cases-Jericho.

Page 101: The Fifth International Energy Conference - Palestine -

98

IX. Passive heating and cooling policies and systems

As climate conditions in both selected cities are clearly different, different strategies for cooling and heating were proposed. In case of Nablus, the classrooms were oriented to the north while a curtain-glazed wall is used on the southern facade of classrooms blocks. It is used as a solarium in order to enhance heating in winter and stack effect ventilation in summer and hence cross ventilation through the classrooms.

In Jericho, where the dominant problem is overheating along the year, multi-passive cooling strategies were

tested in the proposed model. The classrooms were oriented to the south. Solar chimney combined with underground tube system was used also on the southern façade (figure 10). Hot air get out from the classrooms via the upper opening of the chimney, while a fresh outdoor air, coming form the in-between shaded green area between the classroom blocks, is drawn into the earth cooling tubes and transported directly to the inside of the classrooms. This system provides ventilation while optimistically cooling the classroom’s interior. Moreover, in order to improve the performance of Jericho school model,

Table 3: Summary results for Discomfort degree hour for different material cases-Nablus.

Table 4: Summary results for Discomfort degree hour for different material cases-Jericho.

99

Nocturnal ventilative passive cooling method is indispensable. This method help to mitigate anticipated uncomfortably warm conditions during the coming day. This form of cooling use for cooler the structural mass of the building interior by air movement from the cooler outside during the night and closed the building to the warm outside air during the daytime. In order to enhance the nighttime ventilation, the school corridors were closed by using metal tasbil shape, which keep air drawn freely among the school blocks in away that prevent any overheat stocking.

X. Conclusions This paper has evaluated qualitatively and quantitatively current architectural school design user’s comfort and energy performance in order to highlight the appropriate design strategies for future sustainable schools.

The “zero energy school design” provides the opportunity to reach extremely low levels of energy consumption by employing high quality and cost-efficient components.

We have responsibility to come together all factors that determine school quality to be relative cheap. We shall start to take in consideration factors that can help us to reduce remarkable Zero energy school cost by helping of mathematical models in operation research science and marketing researches, etc. Therefore, architects and investors are invited to revise their design approach and strategies in order to relate our school designs towards zero energy concepts.

The investigation of proposed school models showed some differences in the proposed zero energy school building design strategies and recommendations for each climatic zone. The latter are not supposed to be prescriptive but they are guidelines for designers and decision-makers to develop innovative and effective design solutions that can better incorporate passive solar strategies in the future school design.

Acknowledgments

This paper presents the primary research results of Al-Maqdisi research project. This research would

Figure 90: solar chimney principle.

Page 102: The Fifth International Energy Conference - Palestine -

100

not have been possible without the support of many people. The authors gratefully acknowledge the financial support of this work provided by the French government. Especial thanks for our graduate students: Sama Abu shanab, Azza Natour, Mais Dalab, Sawsan Domaidi, Bayan Howari and Asala Naser for their participation in this project during the data collection and numerical simulations. We also take this opportunity to acknowledge ministry of education staff for their permission to realize our measurements in the selected schools.

References

[1] US DOE-Energy Smart Schools, US Department of Energy, Energy Efficiency and Renewable Energy, Building Technologies Program. Available on: <http:// www.eere.energy.gov/buildings/energysmartschools/resources.html> [2] P. Torcellini, S. Pless, and M. Deru (2006). Zero Energy Buildings: A Critical Look at the Definition. Proceedings ACEEE Summer Study on Energy Efficiency in Buildings, August 14−18, 2006, Pacific Grove, CA. Golden, CO: National Renewable Energy Laboratory. www.nrel.gov/docs/fy06osti/39833.pdf [3]BINGLER S, QUINN L, SULLIVAN K. Schools as centers of community: a citizen’s guide for planning and design. Washington, DC: National Clearinghouse for Educational Facilities; 2003. Available on: http://www.edfacilities.org/pubs/ scc. [4] GIFFORD R. 1997. Environmental psychology: principles and practice. 2nd ed. Boston: Allyn & Bacon [5] MOORE DP, WARNER E. 1998. Where children learn: the effect of facilities on student achievement, available on: http://www.cefpi.org/issue8.htmlS [6] VEITCH, J. 2005. Light, Lighting, and Health: Issues for Consideration. LEUKOS, 2 (2), 85-96. [7] BOUBEKRI, M. 2008. Daylighting, Architecture and Health: Building Design Strategies, UK: Oxford, Architectural Press. [8] EDWARDS, L. & TORCELLINI,P. 2002. A Literature Review of the Effects of Natural Light on Building Occupants, NREL/TP-550-30769,U.S. Department of Energy Laboratory. [9] LOFTNESS,V.,HARTKOPF, V.,KHEE,

L.,SNYDER,M., HUA,Y., GU,Y., CHOI,J. & YANG, X. 2006. Sustainability and Health are Integral Goals for the Built Environment. Healthy Buildings, June 4-8. Lisbon, Portugal. [10] VALERIA A . et al. 2007.An evaluation method for school building design at the preliminary phase with optimisation of aspects of environmental comfort for the school system of the State Sa o Paulo in Brazil,Building and Environment 42, 984–999. [11] UMBERTO D. & STEFANIA P. 2002. Analysis of energy consumption in the high schools of a province in central Italy, Energy and Buildings, 34,1003-1016. [12] ABU-HAFEETHA, M. 2009. Planning for Solar Energy as an Energy Option for Palestine, Master thesis, Nablus: An-Najah National University. [13] North Electricity Distribution Company (NEDCO). 2013. Nablus. Unpublished information. [14] MUTASIM B. 2012. Environmental aspects of Green Schools in the oPt ,Workshop Building Green School in the occupied Palestinian territory, 3rd July , PCRS, Ramallah [15] Applied Research Institute of Jerusalem. 2003. Climatic zoning for energy efficient buildings in the Palestinian territories (the West Bank and Gaza), Unpublished Report, ARIJ, Jerusalem. [16] R. de Dear and G. Brager, “The Adaptive Model of Thermal Comfort and Energy Conservation in the Built Environment”, International Journal of Biometeorology 2110; 45: 011-108

Page 103: The Fifth International Energy Conference - Palestine -

100

not have been possible without the support of many people. The authors gratefully acknowledge the financial support of this work provided by the French government. Especial thanks for our graduate students: Sama Abu shanab, Azza Natour, Mais Dalab, Sawsan Domaidi, Bayan Howari and Asala Naser for their participation in this project during the data collection and numerical simulations. We also take this opportunity to acknowledge ministry of education staff for their permission to realize our measurements in the selected schools.

References

[1] US DOE-Energy Smart Schools, US Department of Energy, Energy Efficiency and Renewable Energy, Building Technologies Program. Available on: <http:// www.eere.energy.gov/buildings/energysmartschools/resources.html> [2] P. Torcellini, S. Pless, and M. Deru (2006). Zero Energy Buildings: A Critical Look at the Definition. Proceedings ACEEE Summer Study on Energy Efficiency in Buildings, August 14−18, 2006, Pacific Grove, CA. Golden, CO: National Renewable Energy Laboratory. www.nrel.gov/docs/fy06osti/39833.pdf [3]BINGLER S, QUINN L, SULLIVAN K. Schools as centers of community: a citizen’s guide for planning and design. Washington, DC: National Clearinghouse for Educational Facilities; 2003. Available on: http://www.edfacilities.org/pubs/ scc. [4] GIFFORD R. 1997. Environmental psychology: principles and practice. 2nd ed. Boston: Allyn & Bacon [5] MOORE DP, WARNER E. 1998. Where children learn: the effect of facilities on student achievement, available on: http://www.cefpi.org/issue8.htmlS [6] VEITCH, J. 2005. Light, Lighting, and Health: Issues for Consideration. LEUKOS, 2 (2), 85-96. [7] BOUBEKRI, M. 2008. Daylighting, Architecture and Health: Building Design Strategies, UK: Oxford, Architectural Press. [8] EDWARDS, L. & TORCELLINI,P. 2002. A Literature Review of the Effects of Natural Light on Building Occupants, NREL/TP-550-30769,U.S. Department of Energy Laboratory. [9] LOFTNESS,V.,HARTKOPF, V.,KHEE,

L.,SNYDER,M., HUA,Y., GU,Y., CHOI,J. & YANG, X. 2006. Sustainability and Health are Integral Goals for the Built Environment. Healthy Buildings, June 4-8. Lisbon, Portugal. [10] VALERIA A . et al. 2007.An evaluation method for school building design at the preliminary phase with optimisation of aspects of environmental comfort for the school system of the State Sa o Paulo in Brazil,Building and Environment 42, 984–999. [11] UMBERTO D. & STEFANIA P. 2002. Analysis of energy consumption in the high schools of a province in central Italy, Energy and Buildings, 34,1003-1016. [12] ABU-HAFEETHA, M. 2009. Planning for Solar Energy as an Energy Option for Palestine, Master thesis, Nablus: An-Najah National University. [13] North Electricity Distribution Company (NEDCO). 2013. Nablus. Unpublished information. [14] MUTASIM B. 2012. Environmental aspects of Green Schools in the oPt ,Workshop Building Green School in the occupied Palestinian territory, 3rd July , PCRS, Ramallah [15] Applied Research Institute of Jerusalem. 2003. Climatic zoning for energy efficient buildings in the Palestinian territories (the West Bank and Gaza), Unpublished Report, ARIJ, Jerusalem. [16] R. de Dear and G. Brager, “The Adaptive Model of Thermal Comfort and Energy Conservation in the Built Environment”, International Journal of Biometeorology 2110; 45: 011-108

101

University Students’ Practices Related to Energy Conservation: A survey-based study

Aysar Yasin, D. Barakat , L. Antari and N. Assaf Energy Engineering and Environment Dept.

Faculty of Engineering An-Najah National University

Nablus, Palestine [email protected]

Abstract—

Energy conservation is considered one of the most important measure for improving energy sector in any country, this will reduce the amount of gas emissions and energy bill. Palestine imports all of its needs from fossil fuels and most of electrical energy from Israel, this makes the cost and consumer prices of electricity in Palestine the most expensive compared to other countries in the region. The residential and commercial sector in Palestine comprised of about 72% of total energy consumption which makes energy conservation in this sector feasible and effective. Building a culture of energy conservation in Palestine society to engage all family members is considered the most important action than can be taken to save energy, money, reducing the energy demand and consequently reduce gas emissions. This paper investigates the extent to how much the students’ universityare aware to energy conservation measures in their homes and university as well as the extent to how much they follow and respect the regulations for conserving energy. A survey of about 200 students from AnNajahNational University that includes scientific and literature specialization had been conducted. The survey used 20 questionspaper-based to investigate the university students practices related to energy conservation mainly in the residential sector. The study based on 11 scientific hypothesis and each hypothesis was checked by the survey questions. It was found that students were interested in energy conservation issues and were aware to energy sources of Palestine. Most of the students were ignorant to energy conservation establishments and facilities as well as the energy labels which is considered an important energy conservation measure. It was found that students respected energy conservation measures in their homes more than university. The documentary programs and internet were the main source of energy conservation information and culture. The students were aware to the relationship between environment and energy conservation. Keywords-Energy conservation,energy conservation survey, energy efficiency, energy efficient technologies and energy management.

I. INTRODUCTION Energy consumption per capita of the Palestinian population has been considerably increased and this is due tomajor developments in several sectors such as residential, industrial and commercial. In the meanwhile, Palestine suffers from shortage of energy supply which is considered one of the significant problems that hinders progress and development. The available options to overcome this dilemma are limited as Palestine is suffering from Israeli occupation and high constraints on importations of energy sources and equipment. Palestine has to import all its needs of petroleum products from Israeli market and about 92% of electrical energy from the Israeli Electric Corporation. Indigenous energy resources are quite limited which forced the prices of energy to be relatively high [1].

Applying energy conservation is considered one of the most feasible measure that can reduce the energy consumption and consequently the energy demand. Energy conservation is defined as using less energy for implementing a specific task without affecting the standard level of life.

Energy conservation culture is still immature in Palestine. Great attention being given to energy conservation, particularly in the residential sector as most of the energy demand and consumption is allocated in this sector as shown in Figure. 1[1].

Figure 1: The total final energy consumption (TFEC) by sector.

Different studies and research papers have been publishedin energy conservation and all of them confirm the economic feasibility of energy conservation in all sectors [2-4].

Industry7%

Transoport22%

Residential and

commercial sector71%

Page 104: The Fifth International Energy Conference - Palestine -

102

This paper investigates and judges the level of awareness of university students in Palestine in energy conservation measures in residential sector. This is very important for assisting the decision makers for drawing the future plans to disseminate the culture of energy conservation.

This paper is based on the following research hypotheses:(1) the students are interested on energy conservation measures.(2) the students are acquainted with energy situation of Palestine.(3) The students have no idea about energy conservations establishments and facilities that care about energy conservation in Palestine.(4)The students turn off the appliancesafter use in their homes . (5) The students turn off the appliances in the university after use (6) The ethical factor is the main motivation for turning off the appliances by students in the university.(7) The students unplugging (turn off completely) appliances after use. (8) The students have no idea about energy labels. (9) The students link between environment and energy conservation. (10) The documentary programs and internet are the main source of energy conservation information and culture.

This paper is arranged as follows: Section 2 describes the research methodology. Section 3 presents the survey result and analysis. Conclusion and recommendation of the study is presented section 4.

II. THE RESEARCH MYTHODOLOGY The methodology followed to test the previous scientific

hypothesis was conducting a survey. The survey was composed of four items within the questionnaire whichare summarized in Table 1.

TABLE 1. Items of the questionnaire sheet

Item Part 1 Student profile : residence, college

(specialization) and level Part 2 knowledge onenergy conservation measures,

energy conservation equipment and general culture on energy conservation

Part 3 The sense of responsibility towards public and private properties.

Part 4 The source of information and knowledge of energy conservation.

The size of the sample is estimated appropriately in order to cover most of the students. The questionnaires were distributed manually and filled immediately by students, this facilitates the understanding the questions of the questionnaires. The questionnaires results were filled in Microsoft excel and analyzed.The next section shows the survey result and analysis.

III. SURVEY RESULTS AND ANALYSIS The questionnaire was conducted at An-Najah National University in both literature and scientific specialization with different levels. About 200 students had participated in filling up the questionnaires with about 100students from literature specializations and about 100 from scientific specializations. The scientific specializations includes engineering, science, IT, medicine and heath colleges.The literature specializations

includes social, economic, fine arts, humanities and law colleges.

The analysis of the survey are illustrated as following: The students were interested in energy conservation issues regardless of their specialization, level and place of residence. This result is depicted from Figure 2.

Figure2. The percentage of respondents to the question: “Does energy conservation issuesinterest you ?”.

The students were acquainted with the energy sources in Palestine. This result is depicted from Figure 3.

Figure 3. The percentage of respondents to the question:” Do you know the available energy sources of Palestine ?”.

Most of students were not aware to establishments that are interested in dissemination the culture of energy conservation in Palestine. This result is depicted from Figure 4, this may due to insufficient efforts presented by those establishments towards this sample of people.

Figure 4. The percentage of respondents to the question: “ Do you

acquinted with the establishements and research centers that are interested in dissmination the culture and measures of energy conservation in Palestine?”.

0%

20%

40%

60%

80%

100%

Perc

enta

ge o

f res

pond

ents

No

Yes

0%20%40%60%80%

100%Pe

rcen

tage

of r

espo

nden

ts

No

Yes

0%

20%

40%

60%

80%

100%

Perc

enta

ge o

f res

pond

ents

No

Yes

Page 105: The Fifth International Energy Conference - Palestine -

102

This paper investigates and judges the level of awareness of university students in Palestine in energy conservation measures in residential sector. This is very important for assisting the decision makers for drawing the future plans to disseminate the culture of energy conservation.

This paper is based on the following research hypotheses:(1) the students are interested on energy conservation measures.(2) the students are acquainted with energy situation of Palestine.(3) The students have no idea about energy conservations establishments and facilities that care about energy conservation in Palestine.(4)The students turn off the appliancesafter use in their homes . (5) The students turn off the appliances in the university after use (6) The ethical factor is the main motivation for turning off the appliances by students in the university.(7) The students unplugging (turn off completely) appliances after use. (8) The students have no idea about energy labels. (9) The students link between environment and energy conservation. (10) The documentary programs and internet are the main source of energy conservation information and culture.

This paper is arranged as follows: Section 2 describes the research methodology. Section 3 presents the survey result and analysis. Conclusion and recommendation of the study is presented section 4.

II. THE RESEARCH MYTHODOLOGY The methodology followed to test the previous scientific

hypothesis was conducting a survey. The survey was composed of four items within the questionnaire whichare summarized in Table 1.

TABLE 1. Items of the questionnaire sheet

Item Part 1 Student profile : residence, college

(specialization) and level Part 2 knowledge onenergy conservation measures,

energy conservation equipment and general culture on energy conservation

Part 3 The sense of responsibility towards public and private properties.

Part 4 The source of information and knowledge of energy conservation.

The size of the sample is estimated appropriately in order to cover most of the students. The questionnaires were distributed manually and filled immediately by students, this facilitates the understanding the questions of the questionnaires. The questionnaires results were filled in Microsoft excel and analyzed.The next section shows the survey result and analysis.

III. SURVEY RESULTS AND ANALYSIS The questionnaire was conducted at An-Najah National University in both literature and scientific specialization with different levels. About 200 students had participated in filling up the questionnaires with about 100students from literature specializations and about 100 from scientific specializations. The scientific specializations includes engineering, science, IT, medicine and heath colleges.The literature specializations

includes social, economic, fine arts, humanities and law colleges.

The analysis of the survey are illustrated as following: The students were interested in energy conservation issues regardless of their specialization, level and place of residence. This result is depicted from Figure 2.

Figure2. The percentage of respondents to the question: “Does energy conservation issuesinterest you ?”.

The students were acquainted with the energy sources in Palestine. This result is depicted from Figure 3.

Figure 3. The percentage of respondents to the question:” Do you know the available energy sources of Palestine ?”.

Most of students were not aware to establishments that are interested in dissemination the culture of energy conservation in Palestine. This result is depicted from Figure 4, this may due to insufficient efforts presented by those establishments towards this sample of people.

Figure 4. The percentage of respondents to the question: “ Do you

acquinted with the establishements and research centers that are interested in dissmination the culture and measures of energy conservation in Palestine?”.

0%

20%

40%

60%

80%

100%

Perc

enta

ge o

f res

pond

ents

No

Yes

0%20%40%60%80%

100%

Perc

enta

ge o

f res

pond

ents

No

Yes

0%

20%

40%

60%

80%

100%

Perc

enta

ge o

f res

pond

ents

No

Yes

103

The result depicted from Figure 5shows that high percentage of students are turning off the appliances after use.

Figure 5. The percentage of respondents to the question:” Do you turn off

the appliances after usein your home?”.

The resultdepicted from Figure 6 shows that percentage of students are turning off the appliances after use in their university.

Figure 6. The percentage of respondents to the question:” Do you turn off

the light after usein you’re the university?”.

Higher percentage of respondents had higher sense of responsibility in their homes than in their university.

Thestudents that followed rules of energy conservation in the university had different motivations as shown in Figure 7. The environmental issue had no effect in the students’ behavior.

Figure 7. The percentage of respondents to the question:” What is the

motivation for respecting energy conservation measures in the university?”.

The result depicted from Figure 8 shows that high percentage of students didn’t constantly unplug (turning off completely) the appliances after use.

The reason behind this result might due to ignorance of the amount of energy losses by keeping the appliances plugging all the time.

Figure 8. The percentage of respondents to the question: “Do you unplug (turn off completely) the appliances after use?”

Figure 9 shows that most of students are not aware to energy labels that are used to show up the energy consumption of an appliance.

Figure 9. The percentage of respondents to the question: “Do you have an idea about energy labelling systems?”

The result depicted from Figure 10 shows that high percentage of students are aware to the role of energy conservation for reducing the gas emissions and protecting environment.

Figure 10. The percentage of respondents to the question: “Does energy conservation saves environment and reduce gas emissions?”

The result depicted from Figure 11 shows that less than 50% of students knew the appliances that consume the highest amount of energy in their homes.

0%20%40%60%80%

100%

Perc

enta

ge o

f res

pond

ents

never

often

sometimes

Always

0%

20%

40%

60%

80%

100%

Perc

enta

ge o

f res

pond

ents

never

often

sometimes

Always

0%

20%

40%

60%

80%

100%

Perc

enta

ge o

f res

pond

ents

keep envi.

habit

ethical

economical

0%20%40%60%80%

100%

Perc

enta

ge o

f res

pond

ents

neveroftensometimesAlways

0%20%40%60%80%

100%Pe

rcen

tage

of r

espo

nden

ts

No

Yes

0%20%40%60%80%

100%

Perc

enta

ge o

f res

pond

ents

Not sure

No

Yes

Page 106: The Fifth International Energy Conference - Palestine -

104

Figure 11. The percentage of respondents to the question: “Do you know

the appliances that consume the highest amount of energy in your home?”

Most of the students earned their energy conservation culture from documentary TV programs and internet. This is depicted in Figure in Figure 12.

Figure 12. The percentage of respondents to the question: “What it is the source of your information about energy conservation?”

IV. CONCLUSION AND RECOMMENDATION The students were aware to the importance of energy

conservation and were acquainted with the energy situation in Palestine.

The students had no idea about energy conservations establishments and facilities that interested in dissemination of energy conservation in Palestine.The students turned off the appliances after use in their homes.

About 25% of the surveyed students didn’t turn off the appliances in the university. The students’ sense of responsibility should be inspired towards their university and the public property in general.

The ethical factor was the main motivation for turning off the appliances in the university. The economic and environmental factor had less effect in the students’ behavior.

The students didn’t constantly unplugging (turn off completely) appliances after use, the main reason for this was that some students thought that unplugging the appliances didn’t save energy.

The students had no idea about energy labels, this is an indication of lack of awareness of the students in a very important measure of energy conservation.

The students were aware to the importance of energy conservation in reducing gas emissions and protect environment in general.

Half of surveyed students knew the appliances that consume the highest amount of energy in their homes.Most of the students earned their knowledge of energy conservation from documentary programs and internet.

The main recommendation of the study can be summarized as following:

The energy conservation facilities andestablishments should improve and further their efforts to let more people involved in their activities specially the university and school students.

The school and university curriculum should include scientific materials that improve students’ knowledge of energy conservation issues and practices.The importance of energy conservation should be addressed as well as it’s relation with environment and national economy.

The governmental and non-governmental establishments and facilities that care about energy conservation should cooperate and coordinate with each other. The ministry of high education should be strongly involved with the activities of energy conservation.

REFERENCES

[1] B. Yaseen and H. Hamed, 2007. Palestine country report, Promotion of a new generation of solar thermal systems in medeternean partener countries.

[2] B. Yaseen ,2008.”Energy Efficiency Improvement and Cost Saving Measures in Some Different Industries in Palestine”. Master thesis, An-najah univeristy,Nablus,Palestine.

[3] B. Da'as,2008.”Energy Management Procedures and Audit Results of Electrical, Thermal and Solar Applications in Hospitals Sector in Palestine”. Master thesis, An-najah univeristy,Nablus,Palestine

[4] I. Ibrik and M. Mahmoud,Energy efficiency improvement procedures and audit results of electrical, thermal and solar applications in Palestine, Energy Policy 33 (2005) 651–658

0%20%40%60%80%

100%Pe

rcen

tage

of r

espo

nden

ts

No

Yes

0%20%40%60%80%

100%

city

Villa

ge

Scie

ntifi

cLi

tera

ture

Leve

l 1Le

vel 2

Leve

l 3Le

vel4

Perc

enta

ge o

f re

spon

dent

s

general info.

curriculum

Page 107: The Fifth International Energy Conference - Palestine -

104

Figure 11. The percentage of respondents to the question: “Do you know

the appliances that consume the highest amount of energy in your home?”

Most of the students earned their energy conservation culture from documentary TV programs and internet. This is depicted in Figure in Figure 12.

Figure 12. The percentage of respondents to the question: “What it is the source of your information about energy conservation?”

IV. CONCLUSION AND RECOMMENDATION The students were aware to the importance of energy

conservation and were acquainted with the energy situation in Palestine.

The students had no idea about energy conservations establishments and facilities that interested in dissemination of energy conservation in Palestine.The students turned off the appliances after use in their homes.

About 25% of the surveyed students didn’t turn off the appliances in the university. The students’ sense of responsibility should be inspired towards their university and the public property in general.

The ethical factor was the main motivation for turning off the appliances in the university. The economic and environmental factor had less effect in the students’ behavior.

The students didn’t constantly unplugging (turn off completely) appliances after use, the main reason for this was that some students thought that unplugging the appliances didn’t save energy.

The students had no idea about energy labels, this is an indication of lack of awareness of the students in a very important measure of energy conservation.

The students were aware to the importance of energy conservation in reducing gas emissions and protect environment in general.

Half of surveyed students knew the appliances that consume the highest amount of energy in their homes.Most of the students earned their knowledge of energy conservation from documentary programs and internet.

The main recommendation of the study can be summarized as following:

The energy conservation facilities andestablishments should improve and further their efforts to let more people involved in their activities specially the university and school students.

The school and university curriculum should include scientific materials that improve students’ knowledge of energy conservation issues and practices.The importance of energy conservation should be addressed as well as it’s relation with environment and national economy.

The governmental and non-governmental establishments and facilities that care about energy conservation should cooperate and coordinate with each other. The ministry of high education should be strongly involved with the activities of energy conservation.

REFERENCES

[1] B. Yaseen and H. Hamed, 2007. Palestine country report, Promotion of a new generation of solar thermal systems in medeternean partener countries.

[2] B. Yaseen ,2008.”Energy Efficiency Improvement and Cost Saving Measures in Some Different Industries in Palestine”. Master thesis, An-najah univeristy,Nablus,Palestine.

[3] B. Da'as,2008.”Energy Management Procedures and Audit Results of Electrical, Thermal and Solar Applications in Hospitals Sector in Palestine”. Master thesis, An-najah univeristy,Nablus,Palestine

[4] I. Ibrik and M. Mahmoud,Energy efficiency improvement procedures and audit results of electrical, thermal and solar applications in Palestine, Energy Policy 33 (2005) 651–658

0%20%40%60%80%

100%

Perc

enta

ge o

f res

pond

ents

No

Yes

0%20%40%60%80%

100%

city

Villa

ge

Scie

ntifi

cLi

tera

ture

Leve

l 1Le

vel 2

Leve

l 3Le

vel4

Perc

enta

ge o

f re

spon

dent

s

general info.

curriculum

105

Use of solid waste In production of electricity in the areas of the Palestinian National Authority

( Sakhnin model )

Khalil Kurd Researcher specialized in solid wast

[email protected] 00972592555972

Majdi Kurdi Researcher in educational & human science

[email protected] 00972599311268

Abstract Middle East faces many problems, one of the main problems is search for alternative resources of energy, on the top of researchers priority saving energy in manner of economic and non-harmful to the environment. This study came to participate in this 5th international energy conference -palestine which focus in alternative energy. The researchers, one of them Dr. Majdi who is specialize in the field of science and Dr. khalil is a specialist in the field of solid waste, to take Sakhnin model , to get the advantages of it in the Gaza Strip, where the generation of solid waste increasing in huge way and the consequent problems such as:

Environmental problems Health problems

The aim of our study is: 1. Attention to the issue of production alternative energy from solid waste recycling . 2. Attention to the sakhnin model as pilot plant 3. directing donor support to this field in the region 4. Realization of this project on the ground and out of being a dream to see the light the conclusions: 1. Put the idea of recycling solid waste project on the scale of priorities of the Palestinian National Authority 2. Implementation of this project in the wings of the West Bank and Gaza strip 3. Obtain alternative cheap energy and environmentally 4. to assist in Solve the problem of power in Gaza Strip 5. Provide electricity to the villages in the West Bank 6. minimizing the use of agricultural land which use in land filling I. INTRODUCTION Waste was always considered to be a huge nuisance, a municipal headache, that only got more and more expensive to dispose of. With the worldwide population growth, solid waste management has become a serious environmental challenge which needs to be addressed environmentally and economically. But now, the waste produced worldwide can be considered to be a significant resource and a commodity if it undergoes a process to recover energy from that waste. Waste has the potential to supply as much as 10% of global energy consumption. In Gaza Strip the lack of electricity supply and resources is a dilemma that requires a serious

intervention for it to be solved, for our main resources come from Israel, Egypt, and the only Gaza Power plant. Solid Waste Management in Gaza Strip is essential and vital service that is a natural and direct result of human activities. The importance of this sector comes from the fact that the environmental consequences of unsanitary practices were proven to be catastrophic, and for a one week strike, as it happened in Gaza City, the entire city drowned into tons of trash that threatened public safety and health. The pervious example would be a start for you to grasp the serious catastrophe Gaza is facing on every single domain , providing that she has been under an Israeli attack that lasted more than a month leaving the problem of solid waste to be more dangerous than ever.

Page 108: The Fifth International Energy Conference - Palestine -

106

II. Per Capita Household Waste Generation The PCBS estimated in 2005 that the total waste municipal generation in the Gaza Strip would be about 1,006 ton/day, or about 0.76 kg per person per day. From one region to the other this figure might vary from about 0.6 kg in rural or relative poor urban areas, to about 1 kg pppd in the more developed urban areas in the Gaza Strip. The Consultant believes that this was indeed a good estimate for the year 2010. it largely corresponds to the fact that the economic and living circumstances have not altered considerable. These figures also correspond to the per capita waste generation figures in the West Bank, where questionnaires performed in 2008 revealed that per capita waste generation varies from 0.68 kg within the Hebron Governorate to 1,00 kg within the Bethlehem Governorate. [1]

III. EER ( Sakhnin model ) Founded in 2000, Environmental Energy Resources Ltd. (“EER”) strategy is to deal with these challenges with a cost-effective, environmentally superior replacement to existing methods for thermal treatment of waste.

EER is an environmental technology company that has developed the PGM technology (Plasma Gasification Melting), a compelling approach to thermal treatment of solid waste.

The initial PGM technology was developed over 20 years ago near Moscow.

The first PGM plant (2 tons per day) operated since the late 80 up to 2002 and the second PGM plant (6-10 tons per day), was commissioned in 2002 and is operational to date. With these two PGM plants, the PGM technology has been successfully implemented for the treatment of LLRW.

In the recent years EER has adapted and adjusted the PGM technology for other waste applications. For this, a demonstration facility was commissioned in Sakhnin Israel with a capacity to treat 12 to 20 tons of MSW per day. This demonstration facility includes all systems and subsystems for a commercial facility including waste handling, Energy Recovery, Air Pollution Control components (see scheme below).

Along the years several patents have been granted to EER and substantial know-how has been developed forming the PGM Intellectual Property Portfolio. The expected commercial plants will be made up of two, three or four unit lines that can be configured for annual capacities of 30,000 to 150,000 tons of waste per year.

Figure 1. The PGM Demonstration Plant The Plasma Gasification Melting (PGM)

patented technology is a fixed-bed updraft–countercurrent plasma-driven gasification process. The plasma torches located at the base of the processing chamber supply the heat for the chemical reactions occurring along the height of the vessel. The syngas generated in the processing chamber exits the vessel at the top. The melted inorganics exit the vessel from the bottom, where it is cracked to small, gravel-like pieces of a vitrified solid residue, all in a single–step process.

One of the key advantages of the system is that a full column of waste is kept inside the vessel at all times with the height of the column controlled by automatic level indicators. This is the key feature ensuring the PGM pollutant load to be several orders of magnitude lower than that of other existing technologies. There are four distinct zones of chemical reactions in the one-step process. All zones thermally support each other and ensure an efficient process. As the secondary material feedstock moves down through the processing chamber, it passes through each of the four distinct reaction zones: • Drying zone - the moisture evaporates. The first region, close to the feeding pipe, is characterized by pre-heating and drying of the feedstock as a consequence of convective heat transfer from the hot gases. • Pyrolysis zone - the volatile content is released - the putrescible organics are converted into a pyrolytic gas, which together with the gasification products form a fuel gas (syngas). It is removed from the top of the processing chamber to be processed in the subsequent stages • Gasification zone - the introduction of oxidizing agents bring about the gasification of the char obtained at the pyrolysis stage. Mainly carbon monoxide (CO) and hydrogen (H2) are produced, rejoining the pyrolytic gases and enriching their overall Calorific Value (CV). • Melting zone - the plasma torches form an electric arc in the lower part of the processing

Page 109: The Fifth International Energy Conference - Palestine -

106

II. Per Capita Household Waste Generation The PCBS estimated in 2005 that the total waste municipal generation in the Gaza Strip would be about 1,006 ton/day, or about 0.76 kg per person per day. From one region to the other this figure might vary from about 0.6 kg in rural or relative poor urban areas, to about 1 kg pppd in the more developed urban areas in the Gaza Strip. The Consultant believes that this was indeed a good estimate for the year 2010. it largely corresponds to the fact that the economic and living circumstances have not altered considerable. These figures also correspond to the per capita waste generation figures in the West Bank, where questionnaires performed in 2008 revealed that per capita waste generation varies from 0.68 kg within the Hebron Governorate to 1,00 kg within the Bethlehem Governorate. [1]

III. EER ( Sakhnin model ) Founded in 2000, Environmental Energy Resources Ltd. (“EER”) strategy is to deal with these challenges with a cost-effective, environmentally superior replacement to existing methods for thermal treatment of waste.

EER is an environmental technology company that has developed the PGM technology (Plasma Gasification Melting), a compelling approach to thermal treatment of solid waste.

The initial PGM technology was developed over 20 years ago near Moscow.

The first PGM plant (2 tons per day) operated since the late 80 up to 2002 and the second PGM plant (6-10 tons per day), was commissioned in 2002 and is operational to date. With these two PGM plants, the PGM technology has been successfully implemented for the treatment of LLRW.

In the recent years EER has adapted and adjusted the PGM technology for other waste applications. For this, a demonstration facility was commissioned in Sakhnin Israel with a capacity to treat 12 to 20 tons of MSW per day. This demonstration facility includes all systems and subsystems for a commercial facility including waste handling, Energy Recovery, Air Pollution Control components (see scheme below).

Along the years several patents have been granted to EER and substantial know-how has been developed forming the PGM Intellectual Property Portfolio. The expected commercial plants will be made up of two, three or four unit lines that can be configured for annual capacities of 30,000 to 150,000 tons of waste per year.

Figure 1. The PGM Demonstration Plant The Plasma Gasification Melting (PGM)

patented technology is a fixed-bed updraft–countercurrent plasma-driven gasification process. The plasma torches located at the base of the processing chamber supply the heat for the chemical reactions occurring along the height of the vessel. The syngas generated in the processing chamber exits the vessel at the top. The melted inorganics exit the vessel from the bottom, where it is cracked to small, gravel-like pieces of a vitrified solid residue, all in a single–step process.

One of the key advantages of the system is that a full column of waste is kept inside the vessel at all times with the height of the column controlled by automatic level indicators. This is the key feature ensuring the PGM pollutant load to be several orders of magnitude lower than that of other existing technologies. There are four distinct zones of chemical reactions in the one-step process. All zones thermally support each other and ensure an efficient process. As the secondary material feedstock moves down through the processing chamber, it passes through each of the four distinct reaction zones: • Drying zone - the moisture evaporates. The first region, close to the feeding pipe, is characterized by pre-heating and drying of the feedstock as a consequence of convective heat transfer from the hot gases. • Pyrolysis zone - the volatile content is released - the putrescible organics are converted into a pyrolytic gas, which together with the gasification products form a fuel gas (syngas). It is removed from the top of the processing chamber to be processed in the subsequent stages • Gasification zone - the introduction of oxidizing agents bring about the gasification of the char obtained at the pyrolysis stage. Mainly carbon monoxide (CO) and hydrogen (H2) are produced, rejoining the pyrolytic gases and enriching their overall Calorific Value (CV). • Melting zone - the plasma torches form an electric arc in the lower part of the processing

107

chamber. The air flowing through the torch is ionized, forming a plasma jet, which extends beyond the tip of the torch. The plasma jet melts the inorganic fraction of the waste that reaches the lower part of the processing at about 1500° C. Internal heat exchange in the counter-flow gasifier gives the gas a high proportion of chemical energy. The sensible heat in the product gas is used for devolatilization and other endothermic reactions, which increase the gas calorific value.

IV. Waste to Energy Waste-to-energy (WtE), also know as energy-from-waste (EfW) is the process that generates energy from the treatment of waste. Waste collected from urban areas contains energy embedded within the waste and it can be extracted and turned into valuable energy.

The main WtE technology is Mass Burn (or Incineration), but these processes are not efficient energy producers. Even worse, they emit pollutants into the soil and atmosphere. With the increasing regulatory constraints, much additional capital needs to be invested to make these types of technologies meet the criteria of a clean, non-polluting process. Table 1. comparison between incineration and PGM INCINERATION PGM

Main chemical principle

• Combustion (High oxygen)

• Gasification (Oxygen starved )

Gaseous products

• Carbon Dioxide, Water

• Carbon monoxide, Hydrogen

Gas

• Flue gas: Low Calorific Value

• Syngas: High Calorific Value

Energy recovery

• Low efficiency

• High efficiency

Solid residues

• Ash (40% of original volume) • Need to be treated, disposed

• Slag (<4% of original volume) • Inert, marketable product

A WTE process that is capable of

eliminating waste while generating fuel without

contaminating the environment is a superior solution to incineration. Non-incineration technology has reached the tipping point of technology acceptance, gaining market momentum as a highly sought-after, environmentally friendly alternative to incineration and landfill. The growing global waste disposal problem, tighter environmental regulation, increasing public pressure against conventional waste treatment techniques and widening supportive legislation, have led to increasingly wide-spread interest in alternative treatment solutions. The global market for thermal and biological WtE technologies will reach at least $6.2 billion in 2012 and grow to $29.2 billion by 2022, according to cleantech market intelligence firm forecasts. Optimistic forecasts predict market value could reach as high as $80.6 billion by 2022.

Today over 1,000 thermal WtE plants operate around the globe, treating an estimated 200 million tons of municipal solid waste (MSW) with an estimated output of 130 terawatt hours (TWh) of electricity.

V. Power Generation The PGM process provides a zero waste

solution while generating a renewable energy. Various solid waste streams can be treated and the chemical energy embedded in the waste is recovered in the most efficient pathway by the mean of a unique processing chamber configuration. Plasma is used as a heat source and the reactions occur throughout the processing chamber, energically sustaining each other. The organic matter volatilizes during the thermal process is diverted as the syngas at the top of the vessel to an energy recovery system. Non volatile matter is melted and vitrified at the bottom and the obtained slag can be used for marketable purposes. Energy is recovered electricity and heat are transmitted to the neighborhood. 500 tons waste treated can supply 12,000 household, the use of fossil resources is avoided.

Page 110: The Fifth International Energy Conference - Palestine -

108

Figure 2. POWER GENERATION CYCLE

VI. Cost Effective

A streamlined, simple plant design supports the technology requirements and offers a great economical advantage when building the facility. The PGM plant accepts "as is" waste and does not require any extensive pre treatment. And, due to the low pollutant load carried by the syngas at the exit of the processing chamber, the gas cleaning system saves money since it needs minimal maintenance. The PGM is an efficient process for energy conservation as the electricity savings and the energy recovery are increased. Energy consumed in the process represents just 30% of the energy that is generated allowing for more than 60% to be sold.

VII. Sustainability The PGM technology is to offer a

sustainable solution for the ever growing waste problem. The PGM technology revolutionizes most of the environmental issues that exist and that waste treatment facilities are facing. Environmentally friendly

The extremely low air emissions, below all the governmental regulatory standards, prevent greenhouse emissions and contamination of nearby water sources. Small footprint suitable for urban environments

Since land is a scare resource, particularly in urban areas, and transportation of waste is a major concern, the PGM facility provides an excellent solution and can be located close to urban or city centers.

The PGM technology offers a small environmental footprint for a sustainable future with land savings, low transportation costs, no fossil fuel consumption, and gas emissions and other contaminations minimized. [2]

ABBREVIATIONS PCBS Palestinian Central Bureau of Statistics EER Environmental Energy Resources PGM Plasma Gasification Melting LLRW Low Level Radioactive Waste WtE Waste-to-Energy EfW Energy-from-waste MSW Municipal Solid Waste TWh Terawatt Hours

REFERENCES

Page 111: The Fifth International Energy Conference - Palestine -

108

Figure 2. POWER GENERATION CYCLE

VI. Cost Effective

A streamlined, simple plant design supports the technology requirements and offers a great economical advantage when building the facility. The PGM plant accepts "as is" waste and does not require any extensive pre treatment. And, due to the low pollutant load carried by the syngas at the exit of the processing chamber, the gas cleaning system saves money since it needs minimal maintenance. The PGM is an efficient process for energy conservation as the electricity savings and the energy recovery are increased. Energy consumed in the process represents just 30% of the energy that is generated allowing for more than 60% to be sold.

VII. Sustainability The PGM technology is to offer a

sustainable solution for the ever growing waste problem. The PGM technology revolutionizes most of the environmental issues that exist and that waste treatment facilities are facing. Environmentally friendly

The extremely low air emissions, below all the governmental regulatory standards, prevent greenhouse emissions and contamination of nearby water sources. Small footprint suitable for urban environments

Since land is a scare resource, particularly in urban areas, and transportation of waste is a major concern, the PGM facility provides an excellent solution and can be located close to urban or city centers.

The PGM technology offers a small environmental footprint for a sustainable future with land savings, low transportation costs, no fossil fuel consumption, and gas emissions and other contaminations minimized. [2]

ABBREVIATIONS PCBS Palestinian Central Bureau of Statistics EER Environmental Energy Resources PGM Plasma Gasification Melting LLRW Low Level Radioactive Waste WtE Waste-to-Energy EfW Energy-from-waste MSW Municipal Solid Waste TWh Terawatt Hours

REFERENCES

109

EER Company, " Introduction to EER",

February 2012.

Hefa C, Yuanan H. Municipal solid waste (MSW) as a renewable source of energy: Current and future practices in China. Bioresour

Technol 2010;101(11):3816-24. Qinglin Zhang, "Mathematical modeling of

municipal solid waste plasma gasification in a fixed-bed melting reactor" Doctoral Dissertation, Stockholm 2011.

UNDP – PAPP, and DHV ENFRA TECC," Feasibility Study and Detailed Design for Solid Waste Management in the Gaza Strip" .Gaza, pp. 44, October 2011.

Page 112: The Fifth International Energy Conference - Palestine -

110

Work in Progress – A Master Program in Renewable Energy Engineering and Management at Al-Quds

University Salaheddin Odeh and Labib Arafeh

Faculty of Engineering, Al-Quds University, Abu Dies, Jerusalem, Palestine. Emails: sodeh @eng.alquds.edu, [email protected]

Abstract—This contribution describes the work-in-progress joint master program JAMILA (Joint mAster of Mediterranean Initiatives on renewable and sustainable energy), which is cooperation within the Tempus Joint European Project and aims at establishing a new master courses on renewable and sustainable energy at the College of Engineering at Al-Quds University (AQU) and / or partner local universities such as PPU and European Universities such as Cadez, Newcastle and Sapienza universities. To achieve this, it was of great significance to carry out a survey with a distinguish goals to examine market conditions and determine the needs for renewable energy qualifications in the labor market, in touch with companies and institutional bodies operating in this field in Palestine. A multidisciplinary curriculum has been developed to cover and address the latest trends in the field of renewable energy.

Keywords-Renewable Energy, Energy Management, Analysis and Recommendations, Cirreculum Design.

I. INTRODUCTION Educational programs in renewable and clean energy are

relatively new and rare, and are generally offered as engineering degrees [1], [2], [3]. Internationally, graduate certificate programs in renewable energy are becoming more available, as are concentrations in renewable energy within environmental and policy management graduate degrees. Degree programs typically take two years of full-time study to complete, and a thesis or project is usually required for graduation [4]. One of these successfully implemented master programs to address the renewable energy and energy efficiency demands for the Middle East and North Africa (MENA) Region, is REMENA, depleting fossil fuels, increasing energy costs and the growing energy demand call for a substantial change in the energy policy of the corresponding countries [5]. This program is aimed at educating German and international students in measures for a sustainable energy sector where the students are expected to have working experience in a corresponding area to be obtained in different disciplines, e.g. law, economic, social, engineering or natural sciences. Another example focusing on management issues is SEMAC (Sustainable Energy Management Advanced Certificate), a Canadian program designed to support employment opportunities in the emerging field of sustainable energy management, with focus on the energy demands of commercial, institutional, industrial and community facilities [6].

Regionally, for example in Jordan, several studies and approached have been started in order to study the market analysis and needs for renewable energy and energy efficiency (REEE), serving as analysis and recommendations for curricula development [7]. This study was based on one-on-one interviews with staff working in REEE related areas and had the following objectives: to determine the concentration of business activities of companies working in REEE in Jordan within sales/installations, to find out the difficulties in finding qualified persons with skills related to technical aspects and to general knowledge of REEE, to locate companies with a clear need for qualified engineers with multidisciplinary skills covering finance, marketing, or economics.

In Palestine, An-Najah National University offers a master program in renewable energy entitled as “Clean Energy and Energy Conservation Engineering”, which provides basic and advanced education in the fields of clean energy and energy efficiency, in both areas: economic and environmental sustainability [8]. It is cooperation within the Tempus Joint European Project with the leading technical university Kungilia Tekniska Hogskolan (KTH) in Sweden, and the Berlin Technical University in Germany.

This contribution describes the work-in-progress joint master program JAMILA (Joint mAster of Mediterranean Initiatives on renewable and sustainable energy), which is cooperation within the Tempus Joint European Project and aims at establishing a new master courses on renewable and sustainable energy at the College of Engineering both at Al-Quds University (AQU) and / or partner local and international universities such as PPU and European Universities such as Cadez, Newcastle and Sapienza universities. This master program must satisfy the current and the future market needs from highly qualified engineers to lead the advancement in renewable energy in Palestine.

The MREEM program is distinguished from other national master program in several points: First, the location of the future location of the Master program is in the middle region of Palestine (Jerusalem, Ramallah and Bethlehem), which will simplify the students’ mobility and reduces the resulted costs to join the program. Second, it will contribute to solve the energy problems in this area in such a way that, on the one hand, students will be educated in current and future technologies of renewable energy systems for integrating energy-related technologies with the economics and financial considerations required to implement them,

Page 113: The Fifth International Energy Conference - Palestine -

110

Work in Progress – A Master Program in Renewable Energy Engineering and Management at Al-Quds

University Salaheddin Odeh and Labib Arafeh

Faculty of Engineering, Al-Quds University, Abu Dies, Jerusalem, Palestine. Emails: sodeh @eng.alquds.edu, [email protected]

Abstract—This contribution describes the work-in-progress joint master program JAMILA (Joint mAster of Mediterranean Initiatives on renewable and sustainable energy), which is cooperation within the Tempus Joint European Project and aims at establishing a new master courses on renewable and sustainable energy at the College of Engineering at Al-Quds University (AQU) and / or partner local universities such as PPU and European Universities such as Cadez, Newcastle and Sapienza universities. To achieve this, it was of great significance to carry out a survey with a distinguish goals to examine market conditions and determine the needs for renewable energy qualifications in the labor market, in touch with companies and institutional bodies operating in this field in Palestine. A multidisciplinary curriculum has been developed to cover and address the latest trends in the field of renewable energy.

Keywords-Renewable Energy, Energy Management, Analysis and Recommendations, Cirreculum Design.

I. INTRODUCTION Educational programs in renewable and clean energy are

relatively new and rare, and are generally offered as engineering degrees [1], [2], [3]. Internationally, graduate certificate programs in renewable energy are becoming more available, as are concentrations in renewable energy within environmental and policy management graduate degrees. Degree programs typically take two years of full-time study to complete, and a thesis or project is usually required for graduation [4]. One of these successfully implemented master programs to address the renewable energy and energy efficiency demands for the Middle East and North Africa (MENA) Region, is REMENA, depleting fossil fuels, increasing energy costs and the growing energy demand call for a substantial change in the energy policy of the corresponding countries [5]. This program is aimed at educating German and international students in measures for a sustainable energy sector where the students are expected to have working experience in a corresponding area to be obtained in different disciplines, e.g. law, economic, social, engineering or natural sciences. Another example focusing on management issues is SEMAC (Sustainable Energy Management Advanced Certificate), a Canadian program designed to support employment opportunities in the emerging field of sustainable energy management, with focus on the energy demands of commercial, institutional, industrial and community facilities [6].

Regionally, for example in Jordan, several studies and approached have been started in order to study the market analysis and needs for renewable energy and energy efficiency (REEE), serving as analysis and recommendations for curricula development [7]. This study was based on one-on-one interviews with staff working in REEE related areas and had the following objectives: to determine the concentration of business activities of companies working in REEE in Jordan within sales/installations, to find out the difficulties in finding qualified persons with skills related to technical aspects and to general knowledge of REEE, to locate companies with a clear need for qualified engineers with multidisciplinary skills covering finance, marketing, or economics.

In Palestine, An-Najah National University offers a master program in renewable energy entitled as “Clean Energy and Energy Conservation Engineering”, which provides basic and advanced education in the fields of clean energy and energy efficiency, in both areas: economic and environmental sustainability [8]. It is cooperation within the Tempus Joint European Project with the leading technical university Kungilia Tekniska Hogskolan (KTH) in Sweden, and the Berlin Technical University in Germany.

This contribution describes the work-in-progress joint master program JAMILA (Joint mAster of Mediterranean Initiatives on renewable and sustainable energy), which is cooperation within the Tempus Joint European Project and aims at establishing a new master courses on renewable and sustainable energy at the College of Engineering both at Al-Quds University (AQU) and / or partner local and international universities such as PPU and European Universities such as Cadez, Newcastle and Sapienza universities. This master program must satisfy the current and the future market needs from highly qualified engineers to lead the advancement in renewable energy in Palestine.

The MREEM program is distinguished from other national master program in several points: First, the location of the future location of the Master program is in the middle region of Palestine (Jerusalem, Ramallah and Bethlehem), which will simplify the students’ mobility and reduces the resulted costs to join the program. Second, it will contribute to solve the energy problems in this area in such a way that, on the one hand, students will be educated in current and future technologies of renewable energy systems for integrating energy-related technologies with the economics and financial considerations required to implement them,

111

with the ability to expose students to a combination of local and European academic and corporate experience in energy-related systems. On the other, it will provide graduates with the necessary skills and knowledge of renewable energy management principles, approaches, techniques, and tools, for being able to function quickly and effectively in the position of energy manager or energy coordinator at their company, building or facility. Finally, graduates will be equipped with leadership and decision-making skills to implement energy systems in the private or public sectors of the local, regional as well as the global market.

II. ANALYSIS AND RECOMMENDATIONS OF THE PALESTINIAN CURRENT STATUS ON RENEWABLE ENERGY

The proposed Master in Renewable Energy Engineering and Management Program (MREEM) has been designed to satisfy the current and the future market needs from highly qualified Engineers to lead the advancement in renewable energy in Palestine. To determine these needs, it was of great significance to carry out a survey with a distinguish goals that are aimed at knowing the current market of the renewable energy experts and M.Sc. engineers, knowing the working scope and type of companies/institutions and whether they being adopted to renewable energy, estimating the future need by determining the growth rate of their employment, sending distinguished engineers to join the M.Sc. program, taking part in the events of M.Sc. program as conference days, workshops, carrier days, etc., proposing and co-supervising topics for the M.Sc. thesis, and support program sustainability throughout partially funding and working together for fundraising etc. The stakeholders of the survey include companies of the renewable energies and vendors, companies that deal with energy production in its two forms: conventional and renewable energy, the renewable energy authority, the electrical supply authority, the environmental authorities, research centers, universities and higher education institutions, trading & consulting companies, and renewable energies associations and NGOs.

In order to collect information about the Palestinian labor market, it was necessary to focus the survey on highly qualified engineers that can work as:

Technical manager for companies of renewable energies.

Sales manager for companies of renewable energies.

System designer and analyzer.

Developer and researcher for the renewable energies.

Lecturer at universities.

Researcher at universities or research centers.

Establish his/her own renewable energy related business.

Technical manager at renewable and related associations, government, authorities and NGOs.

A survey questionnaire with several questions and measure classifications was carried out. The survey questions

was classified in groups in order to expose the characteristics of the interviewed company, the qualifications of its employees, its readiness for building MREEM capacity, and support and collaboration with the MREEM program. After having analyzed the results of the survey, the following findings can be observed:

It is obvious that the all areas of the Palestinian territories need more focus to be developed in the area of Renewable Energies.

Most of the companies specialized in RE are small ones and their business and market are carried out locally or regionally.

The number of domestic experts specialized in RE technologies including software tools and equipment are modest.

The willingness and readiness of the private sector in the field of RE is insubstantial for acquiring Master graduates in RE or supporting their Bachelor engineers to attend the Master program.

As such, collaboration with the RE private sector is of great significance to increase their awareness of the necessity of RE Master graduates as key contributors to the development of RE in Palestine. Moreover, the skills and engineering knowledge acquired through the Master graduates must be concentrated on:

Business, management and finance of renewable energies including sales and marketing, and energy auditing.

Renewable power systems including power production and generation, power transmission.

Process control of renewable energy systems including monitoring, control, fault diagnoses, as well as inspections and maintenance.

More in-depth research and development of renewable systems

It is necessary to tackle policies and economics of renewable energies

It is also important to have experts specialized in capacity building programs on renewable energy for providing vocational training for professionals and policy makers with deep and up-to-date knowledge on renewable system technologies including energy and climate change, thermo-solar energy, photovoltaic systems, biogas agro waste biogas, waste technologies, wind energy, energy efficiency in buildings, etc.

III. OBJECTIVES OF THE MREEM PROGRAM The Master program MREEM integrates the technology

side of renewable energy (RE) systems development with the management and financial planning needed to implement them effectively. The goal of the MREEM is to create a high-level signature, interdisciplinary cross-faculty and cross-university graduate program for the engineer, who is pursuing an industrial or public planning based career.

Page 114: The Fifth International Energy Conference - Palestine -

112

The curriculum is flexibly designed with core and elective courses in renewable energies engineering knowledge, finance and management. It is possible that the electives can be taken from any department within the College of Engineering both at Al-Quds University (AQU) and / or partner universities. More detailed information about the MREEM program are covered in Section VIII. A joint research-based thesis will be offered to ensure the university-private sector component is involved. Through this curriculum and interaction with visiting practitioners and stakeholders, the students will be equipped with the advanced interdisciplinary skills required to design, optimize and evaluate the technical and economic viability of renewable energy schemes. Furthermore, they will be prepared to integrate renewable energy system development effectively over a broad spectrum of technologies with the management and financial requirements to implement them successfully and to compete in the local, regional and global energy market.

Following the huge business incentives, markets and a wide variety of employment opportunities throughout the world can be expected with the development of renewable energy resources as a substitute for fossil fuel technology. Thus, the purpose of the MREEM program is also to help meet this demand by cultivating qualified and skilled professionals with specialist knowledge into the relevant technology within the renewable energy sector.

Graduates of the MREEM program will be involved in the decision-making or policy planning that will deliver sustainable, energy efficient systems to the global market. They will have the basic training necessary to lead efforts within companies to plan and implement new energy generation investments, realize energy efficiency improvements specifically at the system level, and participate in energy and environmental markets such as, power purchase agreements, energy management monitoring and cap-and-trade systems. In brief, the various MREEM program objectives include the following:

Heightening the responsibility of MREEM program graduates through the broad knowledge in renewable energies, electric power systems, management/finance of energy systems, as well as computerized systems for renewable energy in industry and research.

Providing the students with the necessary scientific, engineering, business and economic expertise and knowledge in renewable energies for being able to conceptualize, design and operate of existing technical/business systems as well as to invent new solutions and techniques.

Supplying the industry, research institutions, colleges and universities, nationally and internationally, with engineers and experts with a high level of in-depth knowledge and expertise in a selected range of advanced topics in renewable energies.

Equipping the students with the necessary knowledge and self-confidence coupled to an understanding of the process of technological and economical innovation and

of the key factors in the strategic and operational management to establish a start-up enterprise.

Encouraging hard working students with extraordinary professional qualities in pursuing further knowledge and experience in renewable energies at universities or research institutions.

IV. EMPLOYABILITY The governments of many countries have made

renewable energy a priority area in their energy policies, and graduates of the MREEM program are likely to go onto successful careers in management, particularly at the technical-business interface. Thus, the MREEM graduates’ employability opportunities locally, regionally and globally include:

Government and Local Authorities;

Energy related NGOs such as Energy Authority, Renewable Energy Federation Union, etc.

Establish a Renewable Energy business / firm;

Renewable Energy Researcher and Tutor;

Electrical and Energy Generated / Distributed Companies such as Jerusalem District Electricity Company, Northern Electricity Company and Southern Electricity Company;

Related Industries;

V. GRADUATES’ SPECIFICATIONS AND INTENDED LEARNING OUTCOMES (ILOS) OF THE MREEM PROGRAM

The concept of the MREEM program aims at enabling students to promote themselves by acquiring knowledge and skills for being able to innovate in the field of renewable energy, in addition to their ability to implement the concept of renewable energy development for practical business purposes. This is strengthened by additional management qualifications oriented on technical knowledge as well as multidisciplinary abilities in terms of team development, presentation and project management. At the end, the MREEM’s graduates are experts with a context sensitive first-class training in the field of renewable energy engineering and management with the ability to plan and design projects.

The various attributes and specifications of the MREEM program’s graduates after successfully completing the program are tabulated in Table 1 and Table 2. It is worth noting that the proposed MREEM program is a multidisciplinary one and designed to be offered to students coming from different engineering fields including Electrical, Electronics, Communications, Computer, Mechanical and Industrial Engineering. The various ILOs of the proposed MREEM program are shown in table 1 and table 2.

Page 115: The Fifth International Energy Conference - Palestine -

112

The curriculum is flexibly designed with core and elective courses in renewable energies engineering knowledge, finance and management. It is possible that the electives can be taken from any department within the College of Engineering both at Al-Quds University (AQU) and / or partner universities. More detailed information about the MREEM program are covered in Section VIII. A joint research-based thesis will be offered to ensure the university-private sector component is involved. Through this curriculum and interaction with visiting practitioners and stakeholders, the students will be equipped with the advanced interdisciplinary skills required to design, optimize and evaluate the technical and economic viability of renewable energy schemes. Furthermore, they will be prepared to integrate renewable energy system development effectively over a broad spectrum of technologies with the management and financial requirements to implement them successfully and to compete in the local, regional and global energy market.

Following the huge business incentives, markets and a wide variety of employment opportunities throughout the world can be expected with the development of renewable energy resources as a substitute for fossil fuel technology. Thus, the purpose of the MREEM program is also to help meet this demand by cultivating qualified and skilled professionals with specialist knowledge into the relevant technology within the renewable energy sector.

Graduates of the MREEM program will be involved in the decision-making or policy planning that will deliver sustainable, energy efficient systems to the global market. They will have the basic training necessary to lead efforts within companies to plan and implement new energy generation investments, realize energy efficiency improvements specifically at the system level, and participate in energy and environmental markets such as, power purchase agreements, energy management monitoring and cap-and-trade systems. In brief, the various MREEM program objectives include the following:

Heightening the responsibility of MREEM program graduates through the broad knowledge in renewable energies, electric power systems, management/finance of energy systems, as well as computerized systems for renewable energy in industry and research.

Providing the students with the necessary scientific, engineering, business and economic expertise and knowledge in renewable energies for being able to conceptualize, design and operate of existing technical/business systems as well as to invent new solutions and techniques.

Supplying the industry, research institutions, colleges and universities, nationally and internationally, with engineers and experts with a high level of in-depth knowledge and expertise in a selected range of advanced topics in renewable energies.

Equipping the students with the necessary knowledge and self-confidence coupled to an understanding of the process of technological and economical innovation and

of the key factors in the strategic and operational management to establish a start-up enterprise.

Encouraging hard working students with extraordinary professional qualities in pursuing further knowledge and experience in renewable energies at universities or research institutions.

IV. EMPLOYABILITY The governments of many countries have made

renewable energy a priority area in their energy policies, and graduates of the MREEM program are likely to go onto successful careers in management, particularly at the technical-business interface. Thus, the MREEM graduates’ employability opportunities locally, regionally and globally include:

Government and Local Authorities;

Energy related NGOs such as Energy Authority, Renewable Energy Federation Union, etc.

Establish a Renewable Energy business / firm;

Renewable Energy Researcher and Tutor;

Electrical and Energy Generated / Distributed Companies such as Jerusalem District Electricity Company, Northern Electricity Company and Southern Electricity Company;

Related Industries;

V. GRADUATES’ SPECIFICATIONS AND INTENDED LEARNING OUTCOMES (ILOS) OF THE MREEM PROGRAM

The concept of the MREEM program aims at enabling students to promote themselves by acquiring knowledge and skills for being able to innovate in the field of renewable energy, in addition to their ability to implement the concept of renewable energy development for practical business purposes. This is strengthened by additional management qualifications oriented on technical knowledge as well as multidisciplinary abilities in terms of team development, presentation and project management. At the end, the MREEM’s graduates are experts with a context sensitive first-class training in the field of renewable energy engineering and management with the ability to plan and design projects.

The various attributes and specifications of the MREEM program’s graduates after successfully completing the program are tabulated in Table 1 and Table 2. It is worth noting that the proposed MREEM program is a multidisciplinary one and designed to be offered to students coming from different engineering fields including Electrical, Electronics, Communications, Computer, Mechanical and Industrial Engineering. The various ILOs of the proposed MREEM program are shown in table 1 and table 2.

113

TABLE 1: THE GRADUATE ATTRIBUTES (KNOWLEDGE, UNDERSTANDING, SKILLS, ABILITIES AND ATTITUDES) AND THEIR CORRESPONDING ILOS AFTER

SUCCESSFULLY COMPLETING THE MREEM PROGRAM

Graduate Attributes Intended Learning Outcomes (ILOs)

Know

ledge, Understanding, Skills, A

bilities & A

ttitudes

1) A graduate-level understanding of basic disciplinary concepts as well as identifying the different aspects of renewable energies with regard to management and finance.

1. Designing, developing and implementing renewable energy systems belonging to a diverse range of energy resources such as solar, thermal, electrical, wind, tidal, wave, hydroelectricity, geothermal, biomass and waste technology, hydrogen, bioprocessing and bio-based materials.

2. Identifying, analyzing and solving technical problems of renewable energies related to computer engineering, for example, computational techniques and system modeling, knowledge-based systems and artificial intelligence, computer simulations for engineering design.

3. Having a minimum computer programming knowledge, understanding and skills to solve practical engineering problems related to renewable energies.

4. Applying mathematical techniques to model and solve engineering, business, and finance problems related to renewable energies.

5. Appreciating and identifying all kind of issues of renewable energies related to product design, management and finance, as well as generating and evaluating design management and finance solutions to solve a specific problem.

TABLE 2: ALL-ROUNDEDNESS ATTRIBUTES (INTELLECTUAL SKILLS, PROFESSIONAL PRACTICAL SKILLS, TRANSFERABLE/KEY SKILLS) AND

CORRESPONDING ILOS AFTER SUCCESSFULLY COMPLETING THE MREEM PROGRAM

Graduate Attributes Intended Learning Outcomes (ILOs)

All-roundedness attributes such as Intellectual

Professional Practical and Transferable Key Skills

1. Analyzing, modeling and simulating systems at various levels.

2. Applying fundamental principles, advanced knowledge and methods of engineering, business and finance successfully to solve different kind of problems of renewable energy systems.

3. Utilizing relevant engineering design tools such as Microsoft .NET, NetBeans, MATLAB, LabVIEW, PSCADE, ETAP, HOMER, RETSCREEN, POWERSYS etc.

4. Planning, controlling and executing of renewable energy projects.

5. Communicating effectively and presenting ideas and findings clearly in oral and written forms acquired through semester activities, projects and research theses.

6. Thinking critically and creatively.

7. Demonstrating self-learning and collaborating effectively with other members in a team.

8. Recognizing social and national responsibility, regulations and ethics.

9. Planning, designing, carrying out, evaluating and reporting research, engineering, business and finance projects of systems of renewable energies.

VI. ADMISSION REQUIREMENTS Graduates with a Bachelor of Science, B.Sc. / B.Eng.

degree in one of related Engineering disciplines Electrical, Electronics, Communications, Computer, Mechanical and Industrial Engineering fields awarded by a locally and internationally recognized academic institution, is eligible to apply for the MREEM program.

Transcripts and References: All applicants who wish to apply for the MREEM program should provide original transcripts and three faculty references from the most recent academic institution.

Grade Point Standing: Applicant’s record should exhibit adequate achievement as indicated both by accumulative average and quality of courses covered during her/his entire academic record. Normally, applicants should have a good grade in her/his Engineering B.Sc. /B.Eng. degree.

Graduate Record Examination (GRE) (counts as extra credit for the applicant): Applicants to the MREEM program are recommended to submit their GRE scores.

TOFEL Scores (counts as extra credit for the applicant): Applicants to the MREEM program must have a score higher than 500 in their Test of English as Foreign Language (TOFEL) scores as a requirement for graduation.

Provisional Admittance: Provisional admittance may be granted on a case-by-case basis, and indicates that although an applicant shows adequate potential, the applicant does not meet all the requirements. The required collateral work as well as completion dates shall be indicated in the letter of admission.

Admission Process: A complete application consists of the following: Al-Quds University Graduate Application Form, Faculty of Engineering Supplemental Application Form, Application Fee, Two official Transcript of all Academic Institution work (undergraduate and graduate), TOFEL scores (recommended), GRE Scores (recommended), Three letters of recommendation, A statement of purpose for graduate study, and An interview.

VII. TEACHING APPROACH Due to interdisciplinary nature of the MREEM program,

the teaching approach will have an innovative one to share

Page 116: The Fifth International Energy Conference - Palestine -

114

and converge all fields academically and practically for the interest of the students. This teaching approach involve potential stakeholders including:

Involvement of private sector (Jerusalem District Electricity Company, Energy Authority, Renewable Energy Federal Union, etc.)

Al-Quds University Faculties of Engineering, Science and Management Faculty Members

The Local and European Partners Palestine Polytechnique University (PPU), University of Cadez, University of Newcastle and Sapienza University Resources, including Faculty Members, Laboratories, Libraries, etc.

The MREEM practical capacity includes: Practical Capacity of:

Local Universities: AQU and PPU;

Local Energy Stakeholders;

European Universities: Cadez, Newcastle and Sapienza universities.

VIII. MREEM CURRICULUM A. Topics of MREEM

The proposed MREEM program is multidisciplinary and covers the latest trends in the field of renewable energies including the following major components:

1) Renewable Technologies technicalities that includes:

a) Renewable energies technologies, policy and markets: solar thermal and electricity systems, wind, hydrogen, tidal, wave, geothermal, hydroelectricity, biomass and waste technology, bioprocessing and bio-based materials.

b) Grid systems, renewable heating and cooling; energy storage, structural integrity of renewable energy systems;

c) Energy conversion technologies, thermodynamics machines and their application to energy conversion and management in buildings (refrigeration plant, energy conversion plant and energy management, etc.)

d) Energy system analysis and optimization: Energy use in buildings/Zero emission buildings; Sustainable Heat Pumping Processes and Systems; Gas technology

2) Technical Support Topics that includes:

a) Advanced Topics in power electronics and machines;

b) Control systems, optimization, decision-making, business models and operations; energy management and audit;

c) Risk and reliability engineering.

3) Management and finance that includes:

a) Environment and sustainability that includes:

b) Management/Finance: Principles, regulation, economic procedures, Computational methods, emissions trading, and operation of energy systems;

c) Renewable Energies for built environment: Environmental legislation ( Energy and Environmental Review and Audit, environmental regulations, hands-on environmental review and audit, environmental management systems, establishing a monitoring and targeting scheme;

4) Energy Sustainability that includes energy consumptions, sustainable development applications and corporate environmental management.

5) Applied Computations that includes:

a) Computational techniques and system modeling;

b) Knowledge-based systems & artificial intelligence: Basics of Knowledge-based Systems, Representing design process as a space of states, Relating design artefact, designing intent & designing rationale and building ontology & applying an agent-based architecture as a solution of a problem.

c) Computer Simulations for Engineering Design.

B. MREEM Program Regulations The Faculty of Engineering at Al-Quds University offers

a graduate program leading to the degree of Master of Science (M.Sc.) in Electronic and Computer Engineering, MREEM. The general and program requirements are described in the following subsections:

General Requirements Transfer Credits: Graduate credit hours earned by an

applicant in other closely related graduate programs might be accepted by the MREEM’s program committee up to a maximum of 9 credits (excluding research, thesis independent study credits).

Grade-Point Average (GPA): An admitted student must maintain GPA higher that 75% on all work as specified in the “MREEM’s Degree Program”. Failure to do so will result in dismissal from the MREEM’s program. Collateral and transferred credits are not included in calculating the GPA. Repeated work, grades and credits for all courses attempted are to be included in the calculation.

Probational Status: A student having an overall GPA below 70% will be placed on Probational Status. In such status, the candidate will not be allowed to register more than 6 credit hours per semester.

Annual Evaluation: Both the academic progress and the professional potential of the student are to be evaluated

Page 117: The Fifth International Energy Conference - Palestine -

114

and converge all fields academically and practically for the interest of the students. This teaching approach involve potential stakeholders including:

Involvement of private sector (Jerusalem District Electricity Company, Energy Authority, Renewable Energy Federal Union, etc.)

Al-Quds University Faculties of Engineering, Science and Management Faculty Members

The Local and European Partners Palestine Polytechnique University (PPU), University of Cadez, University of Newcastle and Sapienza University Resources, including Faculty Members, Laboratories, Libraries, etc.

The MREEM practical capacity includes: Practical Capacity of:

Local Universities: AQU and PPU;

Local Energy Stakeholders;

European Universities: Cadez, Newcastle and Sapienza universities.

VIII. MREEM CURRICULUM A. Topics of MREEM

The proposed MREEM program is multidisciplinary and covers the latest trends in the field of renewable energies including the following major components:

1) Renewable Technologies technicalities that includes:

a) Renewable energies technologies, policy and markets: solar thermal and electricity systems, wind, hydrogen, tidal, wave, geothermal, hydroelectricity, biomass and waste technology, bioprocessing and bio-based materials.

b) Grid systems, renewable heating and cooling; energy storage, structural integrity of renewable energy systems;

c) Energy conversion technologies, thermodynamics machines and their application to energy conversion and management in buildings (refrigeration plant, energy conversion plant and energy management, etc.)

d) Energy system analysis and optimization: Energy use in buildings/Zero emission buildings; Sustainable Heat Pumping Processes and Systems; Gas technology

2) Technical Support Topics that includes:

a) Advanced Topics in power electronics and machines;

b) Control systems, optimization, decision-making, business models and operations; energy management and audit;

c) Risk and reliability engineering.

3) Management and finance that includes:

a) Environment and sustainability that includes:

b) Management/Finance: Principles, regulation, economic procedures, Computational methods, emissions trading, and operation of energy systems;

c) Renewable Energies for built environment: Environmental legislation ( Energy and Environmental Review and Audit, environmental regulations, hands-on environmental review and audit, environmental management systems, establishing a monitoring and targeting scheme;

4) Energy Sustainability that includes energy consumptions, sustainable development applications and corporate environmental management.

5) Applied Computations that includes:

a) Computational techniques and system modeling;

b) Knowledge-based systems & artificial intelligence: Basics of Knowledge-based Systems, Representing design process as a space of states, Relating design artefact, designing intent & designing rationale and building ontology & applying an agent-based architecture as a solution of a problem.

c) Computer Simulations for Engineering Design.

B. MREEM Program Regulations The Faculty of Engineering at Al-Quds University offers

a graduate program leading to the degree of Master of Science (M.Sc.) in Electronic and Computer Engineering, MREEM. The general and program requirements are described in the following subsections:

General Requirements Transfer Credits: Graduate credit hours earned by an

applicant in other closely related graduate programs might be accepted by the MREEM’s program committee up to a maximum of 9 credits (excluding research, thesis independent study credits).

Grade-Point Average (GPA): An admitted student must maintain GPA higher that 75% on all work as specified in the “MREEM’s Degree Program”. Failure to do so will result in dismissal from the MREEM’s program. Collateral and transferred credits are not included in calculating the GPA. Repeated work, grades and credits for all courses attempted are to be included in the calculation.

Probational Status: A student having an overall GPA below 70% will be placed on Probational Status. In such status, the candidate will not be allowed to register more than 6 credit hours per semester.

Annual Evaluation: Both the academic progress and the professional potential of the student are to be evaluated

115

annually by the student’s advisor. A copy of this evaluation will be communicated to the student and a copy shall be placed in the student’s file. A student whose performance does not meet the standards of quality will be not permitted to continue to enroll in the MREEM program and the dean of Graduate Studies and the MREEM’s program committee will take an appropriate action.

Credit Load: The minimum credit load requirement for all semesters except the last one is 6 credit hours.

Program Filing: All MREEM students, with the help of their advisors, must file a formal faculty of engineering master’s degree program, before the completion of 6 credit hours of graduate work.

Modification in MREEM Degree Program: Given the approval of their advisors, students may make changes in their faculty master’s degree program subject to the following conditions:

o No change in the program will be approved that adds or deletes a course for which a grade (including “incomplete”) has already been received.

o No course in the program in which a passing grade (60.0) has been obtained can be repeated in the program.

o Normally, no changes in the program will be allowed during the final term in which the student is to receive the MREEM degree.

Limitations: The requirements for the MREEM degree must be completed within four calendar years of the date of enrolment in the first course included for degree certification. Normally, teaching assistantship support for students in MREEM program is limited to two years.

As mentioned previously, engineers with a Bachelor of Science, B.Sc. / B.Eng. degree graduated of one of the engineering disciplines such as Electrical, Electronics, Communications, Computer, Mechanical and Industrial Engineering fields awarded by an locally and internationally recognized academic institution, are capable to study in the MREEM program, necessitating to align MREEM’s Degree Program. This is achieved by offering several specialized courses such as Fundamentals of Electrical Power Engineering, Thermodynamics, Fundamentals in Electronics and Power Electronics etc. that are developed specifically to prepare bachelor’s degree holders for Renewable Energies high-demand industries.

C. MREEM Program Requirements and Courses In accordance with one of the two tracks “Thesis” or

“Comprehensive Exam and Project”, the student must complete a minimum of 36 credit hours of the MREEM courses that are concentrated in the specialization of renewable energies. Enrolling in this track, the student is required to take 36 credit hours of the courses of the MREEM program. A master student enrolled in the thesis track must complete the six core courses listed in Table 3, in

addition to the master thesis with six credit hours, and three courses with twelve credit hours selected from Table 4. Similarly, a master student enrolled in the Comprehensive Exam track must complete also the six core courses listed in Table 3, in addition to a research project credited with three hours, and five elective courses that can be selected from Table 4. Table 5 and Table 6 show the course offering schedules for both tracks “Thesis” and “Comprehensive Exam and Project”.

TABLE 3: MREEM CORE COURSES IRRESPECTIVE OF THE “THESIS” OR “COMPREHENSIVE EXAM & PROJECT” TRACK

Course Name

Applied Scientific Programming for Renewable Energy

Energy Management, Economics and Finance

Solar and Wind Energy Plants

Solar Thermal, Geothermal and Biofuels

Renewable Energy Regulations and Policies

Renewable Energy Conversion, Transmission, and Storage

TABLE 4: ELECTIVE COURSES INDEPENDENT OF THE TRACK

Elective Courses

Electric Power Systems

Power Electronics

Smart Grids

Energy Efficiency

Bio Energy

Electric Energy Generation

High Voltage Engineering

Electric Drive Systems

Measurements and Instrumentation in Electric Power Systems

Automation of Electric Power Systems

Control Engineering of Electric Power Systems

Modelling and Simulation of Renewable Energy

Energy in Buildings

Strategic Management

Decision Making

Change Management

Operations Management

Codes and Standards

Energy Auditing

Special Topics in Renewable Energies

Selected Topics in Renewable Energies

Page 118: The Fifth International Energy Conference - Palestine -

116

TABLE 5: COURSE OFFERING SCHEDULE FOR THE TRACK “THESIS”

First Semester Second Semester

First Year

CORE I 3 CORE II 3

CORE III 3 CORE IV 3

CORE V 3 ELECTIVE (SPECIAL TOPICS) 3

Second Year

CORE VI 3 ELECTIVE II 3

ELECTIVE III 3 ELECTIVE IV 3

THESIS I 3 THESIS II 3

TABLE 6: COURSE OFFERING SCHEDULE FOR THE TRACK “COMPREHENSIVE EXAM AND PROJECT”

First Semester Second Semester

First Year

CORE I 3 CORE II 3

CORE III 3 CORE IV 3

CORE V 3 ELECTIVE (SPECIAL TOPICS) 3

Second Year

CORE VI 3 ELECTIVE II 3

ELECTIVE III 3 ELECTIVE IV 3

ELECTIVE IV 3 Project 3

IX. CONCLUSION The approach to design the multidisciplinary MREEM

curriculum at Al-Quds University has been developed to cover and address the needs for renewable energy needs in the Palestinian labor market and to solve the energy

problems in this area. It was based on a survey with a distinguish goals to examine market conditions and the need for renewable energy qualifications in the labor market. In the future after realizing the MREEM program, several studies must be carried out in order to provide feedback about its strengths and weaknesses for improvement purposes.

REFERENCES [1] Bass, R.B., A Bachelor Degree Program in Renewable Energy

Engineering. In: 36th ASEE/IEEE Frontiers in Education Conference, 27-31 October, San Diego, CA, USA, pp. S1H 13-16, 2006

[2] Singh, P., Suri, R., Ortega, A., Lorenz, B., Work in Progress - An Innovative Sustainable Energy Engineering Graduate Curriculum. In: 38th ASEE/IEEE Frontiers in Education Conference, October 22 – 25, Saratoga Springs, NY, USA, pp. pp. S1E 1-2, 2008.

[3] Thomassian, J.-C., Desai, A., Work in Progress - Developing a Curriculum for a Minor in ‘Sustainability’ by the Incorporation of Quality Function Deployment (QFD) Techniques. In: 39th ASEE/IEEE Frontiers in Education Conference, October 18 - 21, San Antonio, TX, pp. W2D:1-2, 2009.

[4] Educational Portal: Renewable Energy Masters and Graduate Degree Program Information. Available at: http://education-portal.com/articles/Renewable_Energy_Masters_and_Graduate_Degree_Program_Information.html

[5] REMENA - International Master Program. Available at: http://www.uni-kassel.de/eecs/remena/home.html

[6] SEMAC: Sustainable Energy Management Advanced Certificate. Available at: http://www.bcit.ca/study/programs/5070adcert

[7] Abu Al-Rub, F. A., Kiwan, S., Khasawneh, Q., Emtairah, T., Jordan Current Status on Renewable Energy and Energy Efficiency: Analysis and Recommendations for Curricula Development. In: ICREGA’14 ­ Renewable Energy: Generation and Applications (Springer Proceedings in Energy 2014), pp. 525-534, Springer, 2014.

[8] Master Program in Clean Energy and Energy Conservation Engineering at An-Najah National University in Palestine. Available at: http://www.najah.edu/page/1417

Page 119: The Fifth International Energy Conference - Palestine -

116

TABLE 5: COURSE OFFERING SCHEDULE FOR THE TRACK “THESIS”

First Semester Second Semester

First Year

CORE I 3 CORE II 3

CORE III 3 CORE IV 3

CORE V 3 ELECTIVE (SPECIAL TOPICS) 3

Second Year

CORE VI 3 ELECTIVE II 3

ELECTIVE III 3 ELECTIVE IV 3

THESIS I 3 THESIS II 3

TABLE 6: COURSE OFFERING SCHEDULE FOR THE TRACK “COMPREHENSIVE EXAM AND PROJECT”

First Semester Second Semester

First Year

CORE I 3 CORE II 3

CORE III 3 CORE IV 3

CORE V 3 ELECTIVE (SPECIAL TOPICS) 3

Second Year

CORE VI 3 ELECTIVE II 3

ELECTIVE III 3 ELECTIVE IV 3

ELECTIVE IV 3 Project 3

IX. CONCLUSION The approach to design the multidisciplinary MREEM

curriculum at Al-Quds University has been developed to cover and address the needs for renewable energy needs in the Palestinian labor market and to solve the energy

problems in this area. It was based on a survey with a distinguish goals to examine market conditions and the need for renewable energy qualifications in the labor market. In the future after realizing the MREEM program, several studies must be carried out in order to provide feedback about its strengths and weaknesses for improvement purposes.

REFERENCES [1] Bass, R.B., A Bachelor Degree Program in Renewable Energy

Engineering. In: 36th ASEE/IEEE Frontiers in Education Conference, 27-31 October, San Diego, CA, USA, pp. S1H 13-16, 2006

[2] Singh, P., Suri, R., Ortega, A., Lorenz, B., Work in Progress - An Innovative Sustainable Energy Engineering Graduate Curriculum. In: 38th ASEE/IEEE Frontiers in Education Conference, October 22 – 25, Saratoga Springs, NY, USA, pp. pp. S1E 1-2, 2008.

[3] Thomassian, J.-C., Desai, A., Work in Progress - Developing a Curriculum for a Minor in ‘Sustainability’ by the Incorporation of Quality Function Deployment (QFD) Techniques. In: 39th ASEE/IEEE Frontiers in Education Conference, October 18 - 21, San Antonio, TX, pp. W2D:1-2, 2009.

[4] Educational Portal: Renewable Energy Masters and Graduate Degree Program Information. Available at: http://education-portal.com/articles/Renewable_Energy_Masters_and_Graduate_Degree_Program_Information.html

[5] REMENA - International Master Program. Available at: http://www.uni-kassel.de/eecs/remena/home.html

[6] SEMAC: Sustainable Energy Management Advanced Certificate. Available at: http://www.bcit.ca/study/programs/5070adcert

[7] Abu Al-Rub, F. A., Kiwan, S., Khasawneh, Q., Emtairah, T., Jordan Current Status on Renewable Energy and Energy Efficiency: Analysis and Recommendations for Curricula Development. In: ICREGA’14 ­ Renewable Energy: Generation and Applications (Springer Proceedings in Energy 2014), pp. 525-534, Springer, 2014.

[8] Master Program in Clean Energy and Energy Conservation Engineering at An-Najah National University in Palestine. Available at: http://www.najah.edu/page/1417

117

Zero Carbon HouseMother Alawne

Philadelphia University Jordan

[email protected]

Mohammed Hussein

Philadelphia University Jordan

[email protected]

What is a zero carbon home?

Zero energy homes, zero carbon homes, zero emission homes, carbon neutral or positive homes, hybrid homes and autonomous homes are just a few of the terms used to describe the same basic concept. All are talking about super energy efficient houses,

designed to work in harmony with the local climate. They are full of energy efficient appliances and equipment, and generate electricity on or near the building with renewable technologies.

Zero Carbon Houses

Passive House Design

A Passive House design is one that is designed to a high enough standard to reduce the energy consumption enough to relinquish the need for a conventional heating system. On average a Passive house will require between 70 and 90% less energy than a house built to the minimum requirements for building regulations. Combining this principle of reduced consumption with the generation of green electricity can effectively give a building a net Zero Carbon status.

Climate change is one of the biggest threats we face today. Clearly we need to reduce CO2 emissions

globally to zero, or to less than zero, to address climate change. And architecture in the anthropogenic must change to address this challenge; Buildings must emit radically less CO2 during construction and occupation. This often leads to the assumption that we should be delivering „Zero-Carbon Buildings‟. However, this is the wrong target for buildings; radical energy efficiency is the right target for buildings.

Zero carbon rating

To achieve the zero carbon rating we shall use grey water recycling, triple glazed windows, enhanced insulation, and the latest energy efficient appliances.

The energy needs of the homes will be met using five different types of micro generation, including air and ground source heat pumps, a biomass boiler, solar thermal panels and photovoltaic tiles.

To further enhance the green credentials of the development, there will be a communal garden with space to grow vegetables, and residents will share the use of an electric car.

Page 120: The Fifth International Energy Conference - Palestine -

1182

The Larch House is the UK‟s first zero carbon (code 6), low cost, Certified Passive house, built as prototype social housing and launched at the 2010 National Eisteddfod for Wales.

Indeed the Larch House generates as much energy from the sun in the summer months as it uses for the whole year making it Zero Carbon by UK definition and showing how we can live comfortably with minimal impact on the natural world. The Larch House has an estimated income from the feed-in tariff over expenditure, of £1300 a year.

It is important that we build houses that reduce their tenants‟ household energy bills and protect people from fuel poverty.

The Larch House incorporates sustainable features both in the finished product and in the building process.

We are striving for a perfect balance; incorporating greener methods of building and offering benefits to tenants through lower energy bills and improved comfort.

Andrew Knox wanted to “walk the walk” of energy efficiency, so he and his wife, Elizabeth, had some decisions to make. To attain zero net annual energy consumption, the home would need solar panels.

The lot is only 3,500 square feet, and the surface area of the roof was about 600 square feet plus another few hundred square feet on a detached garage/shed. With its inefficient HVAC (heating, ventilation and air conditioning) systems, the two-story structure with a basement was going to need more square footage of solar panels than the Knoxes had in roof area.

“HVAC contractors repeatedly recommended that I go with a high-efficiency natural gas-fired boiler, and domestic hot water tank, but that wouldn‟t have fixed my summertime cooling load,” Knox told me. His existing air conditioner used more than 2,500 kilowatt hours in 2010, well over half of all the electricity consumed in the home.

Andrew needed to get his summertime usage down, and reduce CO2 emissions. Going with a high-efficiency air-source heat pump (heat pumps provide both heating and cooling, unlike the cooling-only air-conditioners) wasn‟t going to be enough. In addition, Andrew notes that his boiler was responsible for half of his house‟s 15,000 pounds of CO2 emissions, and simply had to be eliminated if they were going to attain true net-zero carbon and energy.

Page 121: The Fifth International Energy Conference - Palestine -

1182

The Larch House is the UK‟s first zero carbon (code 6), low cost, Certified Passive house, built as prototype social housing and launched at the 2010 National Eisteddfod for Wales.

Indeed the Larch House generates as much energy from the sun in the summer months as it uses for the whole year making it Zero Carbon by UK definition and showing how we can live comfortably with minimal impact on the natural world. The Larch House has an estimated income from the feed-in tariff over expenditure, of £1300 a year.

It is important that we build houses that reduce their tenants‟ household energy bills and protect people from fuel poverty.

The Larch House incorporates sustainable features both in the finished product and in the building process.

We are striving for a perfect balance; incorporating greener methods of building and offering benefits to tenants through lower energy bills and improved comfort.

Andrew Knox wanted to “walk the walk” of energy efficiency, so he and his wife, Elizabeth, had some decisions to make. To attain zero net annual energy consumption, the home would need solar panels.

The lot is only 3,500 square feet, and the surface area of the roof was about 600 square feet plus another few hundred square feet on a detached garage/shed. With its inefficient HVAC (heating, ventilation and air conditioning) systems, the two-story structure with a basement was going to need more square footage of solar panels than the Knoxes had in roof area.

“HVAC contractors repeatedly recommended that I go with a high-efficiency natural gas-fired boiler, and domestic hot water tank, but that wouldn‟t have fixed my summertime cooling load,” Knox told me. His existing air conditioner used more than 2,500 kilowatt hours in 2010, well over half of all the electricity consumed in the home.

Andrew needed to get his summertime usage down, and reduce CO2 emissions. Going with a high-efficiency air-source heat pump (heat pumps provide both heating and cooling, unlike the cooling-only air-conditioners) wasn‟t going to be enough. In addition, Andrew notes that his boiler was responsible for half of his house‟s 15,000 pounds of CO2 emissions, and simply had to be eliminated if they were going to attain true net-zero carbon and energy.

1193

Geothermal Heating and Solar Power Together

What‟s equally important in this process is that the home is also carbon neutral, producing no net CO2 emissions. Though many don‟t necessarily understand the importance of CO2 emissions reduction,

Andrew Knox eats, sleeps, and breathes this data in his position as manager of energy initiatives and integration with Naval Facilities Engineering Command.

“It‟s critical we get CO2 emissions under control,” Andrew explained. “CO2 emissions have a three-tier scope for reduction:

1- CO2 emissions from direct fossil fuel use (like combustion heating),

2- CO2 emissions as a result of electrical power consumed (from electrical power plants providing electricity), and

3- Indirect CO2 for all other purchased items and services, including air travel and food.”

Overall, though, house emissions have dropped 30 percent, from about 15,000 pounds a year to 10,000 pounds a year, with the CO2 emissions offset from PV generation at about 11,000 lbs /year.

(The Knox family currently has one electric and one diesel vehicle and is on target to reduce net vehicle greenhouse gas emissions to zero early next year).

Birmingham Zero Carbon House Wins RIBA Award -2010

A unique zero carbon houses have been built in inner city Birmingham, to meet the stringent requirements of Level 6 of the UK Code for Sustainable Homes. It‟s an eco-house that will produce at least as much energy as it consumes, and it‟s been built around an existing house!

Page 122: The Fifth International Energy Conference - Palestine -

1204

Code for Sustainable Homes

The design conforms to Level 6 (the highest level) of the new Code for Sustainable Homes. It‟s not the first Level 6 house under the sun, but it‟s arguably the first in the UK to incorporate an existing building, and may be the first to be lived in.

Architectural flair, user-friendliness, and a pleasing living space are as much a part of the design as the demands of the Code.

CSH level 6

Some of the features which enabled the house to reach CSH level 6 are - thermal insulation: the new roof and walls will be 20 times better insulated than the existing ones: Air tightness: sealed to a level 28 times better than existing, but retaining vapor permeability to stop condensation. This includes using a special membrane in the walls.

Limiting warm air leakage, even through concrete walls, is an essential element of radically reducing heating needs.

The windows are triple glazed, being 12 times more insulating than the current windows.

Heavy construction: thermal mass keeps house warm in winter and cool in the summer. Passive solar: carefully oriented glazing to provide winter solar gains.

Summer shading with the existing ash tree

Solar roof: photovoltaic (PV) panels will convert the sun‟s energy into electricity and any surplus can be exported to the national grid.

This offsets the electricity that will import (for example at night).

Solar hot water: roof panels use the sun to heat hot water, stored in a large cylinder.

Ventilation system: supplies fresh air warmed by recovering 95% of the heat from extracted stale air.

Another essential element in preventing heat loss Wood-burning stove: top-up space and water heating fuelled by wood from the garden. The heating needs

are so low that pruning from 2 large ash trees will be sufficient.

The re growth of the trees captures the carbon dioxide emitted by the stove.

New homes should be carbon-neutral by 2016

Described as a milestone in the history of eco-homes and energy-efficient buildings in the UK – seven years ahead of the government target, which decrees that all new homes should be carbon-neutral by 2016

Its creators see it as a contribution to the groundswell towards green lifestyles and the enjoyment of a sustainable way of life, in the shadow of global warming caused by human emissions of carbon dioxide and other greenhouse gases. It‟s designed to protect the environment and enable its occupants to enjoy the environment.

Getting practical with push for zero carbon homes

Page 123: The Fifth International Energy Conference - Palestine -

1204

Code for Sustainable Homes

The design conforms to Level 6 (the highest level) of the new Code for Sustainable Homes. It‟s not the first Level 6 house under the sun, but it‟s arguably the first in the UK to incorporate an existing building, and may be the first to be lived in.

Architectural flair, user-friendliness, and a pleasing living space are as much a part of the design as the demands of the Code.

CSH level 6

Some of the features which enabled the house to reach CSH level 6 are - thermal insulation: the new roof and walls will be 20 times better insulated than the existing ones: Air tightness: sealed to a level 28 times better than existing, but retaining vapor permeability to stop condensation. This includes using a special membrane in the walls.

Limiting warm air leakage, even through concrete walls, is an essential element of radically reducing heating needs.

The windows are triple glazed, being 12 times more insulating than the current windows.

Heavy construction: thermal mass keeps house warm in winter and cool in the summer. Passive solar: carefully oriented glazing to provide winter solar gains.

Summer shading with the existing ash tree

Solar roof: photovoltaic (PV) panels will convert the sun‟s energy into electricity and any surplus can be exported to the national grid.

This offsets the electricity that will import (for example at night).

Solar hot water: roof panels use the sun to heat hot water, stored in a large cylinder.

Ventilation system: supplies fresh air warmed by recovering 95% of the heat from extracted stale air.

Another essential element in preventing heat loss Wood-burning stove: top-up space and water heating fuelled by wood from the garden. The heating needs

are so low that pruning from 2 large ash trees will be sufficient.

The re growth of the trees captures the carbon dioxide emitted by the stove.

New homes should be carbon-neutral by 2016

Described as a milestone in the history of eco-homes and energy-efficient buildings in the UK – seven years ahead of the government target, which decrees that all new homes should be carbon-neutral by 2016

Its creators see it as a contribution to the groundswell towards green lifestyles and the enjoyment of a sustainable way of life, in the shadow of global warming caused by human emissions of carbon dioxide and other greenhouse gases. It‟s designed to protect the environment and enable its occupants to enjoy the environment.

Getting practical with push for zero carbon homes

1215

How do we define a zero carbon home?

There are a few important issues that help us communicate what we mean.

For example: should we measure performance in energy or carbon terms;

Should the calculation be on an annual basis or for the life of the building; and

Should the building be self sufficient or connected to the local electricity grid?

So how zero carbon is a zero carbon house?

The energy performance in periods of peak summer heat waves is outstanding.

Electricity demand is not only appreciably less but - due to the excellent level of thermal comfort - the demand peaks later in the day, helping to flatten the Adelaide-wide electricity load profile.

Due to the production of renewable electricity by the solar photovoltaic panels, many are operating at or near the performance expected by net zero carbon homes.

Detailed monitoring will help us to understand which elements of the guidelines could be improved to deliver, on average, a cost effective net zero carbon standard for all new residential construction.

Zero carbon hotels – fantasy or necessity?

It has been announced that the 2016 Building Regulations in England and Wales will require all new houses to be zero carbon, followed with the same requirement for all new non-residential buildings in 2019. Therefore, no new hotel will be built from 2019 onwards, unless it produces net zero carbon dioxide emissions.

As general building design practice needs to go through a huge culture change in order to implement zero carbon design on a regular basis, the time to plan and effectively implement a transition to the 2019 Building Regulations is already now.

Zero Carbon Homes

This is achieved in a number of ways:

1. Orientation / passive solar gain. 2. Super insulating the walls, floor and roof. 3. Increased air tightness to minimize the amount of warm air escaping the building. 4. Good thermal mass to retain heat in the building.

Page 124: The Fifth International Energy Conference - Palestine -

1226

5. Using a mechanical heat recovery ventilation system to maintain air quality and retain 80% of internally dispensed heat.

6. Advanced window technology with low e, gas filled, triple glazing to achieve greater heat gains through the sun than the heat losses. 7. Renewable energy space and water heating such as solar water heating and ground source heat pumps. 8. Renewable energy power generation such as wind turbines, solar PV panels and micro hydro systems

Energy efficient house or Passive house

We believe that an energy efficient house , or Passive house not only means less impact on the environment by decreasing the impact on global warming but also gives a better quality of life with fresh, clean air, a consistent internal temperature, a more open living space with under floor heating and a massively reduced running cost.

Hawkes also as one of the first zero carbon houses in the UK. The house is harnessing solar energy to

generate all its own electricity and thermal energy. The building demonstrates how contemporary design can celebrate local materials and crafts and integrate new technologies to produce a highly sustainable building that sits lightly on the Earth.

Zero energy houses

Page 125: The Fifth International Energy Conference - Palestine -

1226

5. Using a mechanical heat recovery ventilation system to maintain air quality and retain 80% of internally dispensed heat.

6. Advanced window technology with low e, gas filled, triple glazing to achieve greater heat gains through the sun than the heat losses. 7. Renewable energy space and water heating such as solar water heating and ground source heat pumps. 8. Renewable energy power generation such as wind turbines, solar PV panels and micro hydro systems

Energy efficient house or Passive house

We believe that an energy efficient house , or Passive house not only means less impact on the environment by decreasing the impact on global warming but also gives a better quality of life with fresh, clean air, a consistent internal temperature, a more open living space with under floor heating and a massively reduced running cost.

Hawkes also as one of the first zero carbon houses in the UK. The house is harnessing solar energy to

generate all its own electricity and thermal energy. The building demonstrates how contemporary design can celebrate local materials and crafts and integrate new technologies to produce a highly sustainable building that sits lightly on the Earth.

Zero energy houses

1237

1. What exactly are ‘Zero-Carbon Buildings’?

There is no one clear definition for „Zero-Carbon Buildings‟, and it is sometimes mixed up with the idea of a „Net Zero Energy Building‟. In the UK there is an official definition given by the Zero Carbon Hub for a Zero-Carbon Buildings

Even so, the definition for a „Zero Carbon Home‟ exclude plugs load (that is, unregulated energy consumption such as appliances, computers, TVs and entertainment equipment etc..) and includes the concept of “allowable solutions ” to offset (or pay for offsetting) a portion of the CO2 emissions of the home. This means that a „Zero Carbon Home‟ will continue to emit CO2, in some cases notionally offset by „allowable solutions‟ and in other cases simply not accounted for.

This clearly acknowledges that in many cases it will not be practical or economic to supply all the energy needs of a house with on site carbon neutral energy generation so some form of offsetting (or omission from the accounting!) is needed to balance the equation to zero.

2. ‘Zero-Carbon Buildings’ are not an efficient use of resources

Without a doubt, we need to urgently scale-up renewable energy generation and radically reduce the CO2 emissions of energy generation. However, at the scale of a single building, especially a house, renewable energy generation is expensive and inefficient use of materials and technology. Photovoltaic systems, wind turbines, hydroelectric

power stations are more efficient and cost effective at a larger scale than a single building.

And when these technologies are installed on a building there is an opportunity cost incurred. The same money would in many cases be better spent on increasing the building energy efficiency and thereby reliably reducing CO2 emissions by design. Building energy efficiency is more resource efficient, can radically reduce CO2 emissions and almost always has the best return on investment.

3. ‘Zero-Carbon Buildings'; only in the right location?

Not all locations are suitable for generating renewable energy, that is, for a building to be a power station. And therefore not all locations will accommodate buildings that can be „Zero-Carbon‟.

Urban locations often come with multiple constraints imposed by the surroundings. The proximity of adjacent buildings may rule out wind turbines. The same buildings may shade the site compromising opportunities for photovoltaic systems. And in urban locations, how often is hydroelectric generation a realistic option?

The other aspect most commonly associated with urban locations is density. A high-rise apartment building or office block has considerable energy demand but limited land, or roof-top area, to match demand with on-site renewable energy generation.

Rural locations may seem to offer good conditions for photovoltaic systems, wind turbines or hydroelectric generation to all be considered. However, even then site constraints will often rule out or reduce the effectiveness and efficiency of these systems.

This raises the question; if one location is particularly suitable for renewable energy generation, should a (grid-tied) building in this location be potentially counted as „Zero-Carbon‟, effectively penalizing buildings in less-suitable locations?

Or would it be better if the renewable energy generation from this location counted towards reducing the overall CO2 emissions of the energy grid?.

Page 126: The Fifth International Energy Conference - Palestine -

1248

“Just because we are lucky enough to be building next to a river with a small hydro plant doesn‟t make our building zero carbon.”

– Nick Grant

Renewable energy generation and hence „Zero-Carbon Buildings‟ are very location and site dependent. Building energy efficiency works reliably in all locations, on all sites.

4. „Zero-Carbon Buildings‟ may increase national CO2 emissions

„Zero-Carbon Buildings‟ require buildings to run predominantly on electricity since this is what all building-mounted or on-site renewable energy generation provides. There are some exceptions to this (solar hot water for example) but even then electrical systems still need to make up the majority of the building services.

While there is a good match between the energy generated on-site and the energy demand this doesn‟t necessarily present a problem. However, this is only likely to be part of any one day, and certainly only part of the year, and in many cases not consistent or reliable. There are several reasons for a mismatch and here are three:

Many buildings have significant performance gap, that is, how much actual energy is used in the building can be considerably more than what was predicted in the design. In this case the on-site renewable generation sized to suit the design may never keep up with the actual demand and the building will be constantly drawing electricity from the grid.

The time of the day when energy is being generated will not necessarily match when energy is required in the building. A house, for example, is likely to use more energy in the early morning and in the evening during the week, while photovoltaic system is more likely to generate electricity during the middle of the day.

Energy demand

Energy demand is at its greatest in winter when buildings need more light and heat.

Unfortunately many renewable energy systems generate the least during winter. This has a significant impact in the UK particularly where the majority of heating to buildings is currently provided by gas.

The problem with this mismatch is that it leads to more demand on the national electricity grid. And in UK, as in many other countries, the electrical grid actually is quite carbon intensive.

That is to say, using electricity from the grid emits more CO2 than using on-site renewable generation. It also emits more CO2 than using (conventional) natural gas.

This is due to the amount of coal burning power stations that provide electricity for the grid in the UK. Coal has roughly twice the CO2 emissions than (conventional) natural gas.

So electrically heating a „Zero-Carbon Building‟ in winter may in fact emit more CO2 than heating an energy-efficient building using (conventional) natural gas! Multiply that across several „Zero-Carbon Buildings‟ and national CO2 emissions rise.

Genuine building energy efficiency reduces energy demand and consumption, and thereby CO2 emissions, regardless of the energy source.

5. „Zero-Carbon Buildings‟ don‟t reduce peak demand on the national grid

In the dark freezing depths of winter, with a gale howling outside, everyone has their heating turned up high and all the lights switched on … and since the sun isn‟t shining the photovoltaic systems on the „Zero-Carbon Buildings‟ aren‟t generating electricity.

And since the wind is gale force and highly changeable the wind turbines have switched to safety-mode and aren‟t generating electricity!

So all the „Zero-Carbon Buildings‟ are back to drawing electricity from the national grid, like every other building

And if the „Zero-Carbon Buildings‟ are only mildly above-average energy efficient, they present quite a demand for electricity!

Page 127: The Fifth International Energy Conference - Palestine -

1248

“Just because we are lucky enough to be building next to a river with a small hydro plant doesn‟t make our building zero carbon.”

– Nick Grant

Renewable energy generation and hence „Zero-Carbon Buildings‟ are very location and site dependent. Building energy efficiency works reliably in all locations, on all sites.

4. „Zero-Carbon Buildings‟ may increase national CO2 emissions

„Zero-Carbon Buildings‟ require buildings to run predominantly on electricity since this is what all building-mounted or on-site renewable energy generation provides. There are some exceptions to this (solar hot water for example) but even then electrical systems still need to make up the majority of the building services.

While there is a good match between the energy generated on-site and the energy demand this doesn‟t necessarily present a problem. However, this is only likely to be part of any one day, and certainly only part of the year, and in many cases not consistent or reliable. There are several reasons for a mismatch and here are three:

Many buildings have significant performance gap, that is, how much actual energy is used in the building can be considerably more than what was predicted in the design. In this case the on-site renewable generation sized to suit the design may never keep up with the actual demand and the building will be constantly drawing electricity from the grid.

The time of the day when energy is being generated will not necessarily match when energy is required in the building. A house, for example, is likely to use more energy in the early morning and in the evening during the week, while photovoltaic system is more likely to generate electricity during the middle of the day.

Energy demand

Energy demand is at its greatest in winter when buildings need more light and heat.

Unfortunately many renewable energy systems generate the least during winter. This has a significant impact in the UK particularly where the majority of heating to buildings is currently provided by gas.

The problem with this mismatch is that it leads to more demand on the national electricity grid. And in UK, as in many other countries, the electrical grid actually is quite carbon intensive.

That is to say, using electricity from the grid emits more CO2 than using on-site renewable generation. It also emits more CO2 than using (conventional) natural gas.

This is due to the amount of coal burning power stations that provide electricity for the grid in the UK. Coal has roughly twice the CO2 emissions than (conventional) natural gas.

So electrically heating a „Zero-Carbon Building‟ in winter may in fact emit more CO2 than heating an energy-efficient building using (conventional) natural gas! Multiply that across several „Zero-Carbon Buildings‟ and national CO2 emissions rise.

Genuine building energy efficiency reduces energy demand and consumption, and thereby CO2 emissions, regardless of the energy source.

5. „Zero-Carbon Buildings‟ don‟t reduce peak demand on the national grid

In the dark freezing depths of winter, with a gale howling outside, everyone has their heating turned up high and all the lights switched on … and since the sun isn‟t shining the photovoltaic systems on the „Zero-Carbon Buildings‟ aren‟t generating electricity.

And since the wind is gale force and highly changeable the wind turbines have switched to safety-mode and aren‟t generating electricity!

So all the „Zero-Carbon Buildings‟ are back to drawing electricity from the national grid, like every other building

And if the „Zero-Carbon Buildings‟ are only mildly above-average energy efficient, they present quite a demand for electricity!

1259

6-Zero Carbon buildings need to generate more than gust own demand

Actually to balance CO2 emissions „Zero-Carbon Buildings‟ need to generate much more than just what they use. As discussed in point 4 above, the national electricity grid is carbon intensive; in addition there are also losses in generating and distributing the electricity.

7. „Zero-Carbon Buildings‟ are the wrong scale for repairs and maintenance

Zero-Carbon Buildings‟ sounds perfect doesn‟t it? A lovely round „Zero‟ for each building. Until you have to maintain or repair the renewable energy generation system yourself. Or pay someone to do it for you.

When each individual building is treated as a power station, this is what we face: a hugely inefficient and unreliable repair and maintenance requirement. Economies of scale that community level or national level power stations benefit from are lost. So is the specialist workforce that looks after larger scale power stations.

Or at least a major shift has to take place, but even then individual building owners will need to pay for repairs and maintenance. Or the „Zero‟ will soon change to another number as systems lose efficiency, break down and fail, matched by CO2 emissions rising once again.

Renewable „Zero-Carbon‟ energy generation should be at a scale where repairs and maintenance can be reliably and efficiently managed.

8. „Zero-Carbon Buildings‟ is an abstract and unreliable idea

Balancing out how much renewable „Zero-Carbon‟ energy is consumed, how much is offset against carbon-intensive grid consumption and what this means in terms of CO2 emissions is complex and abstract. It‟s also unreliable as there are many different and changing factors involved. When energy is used, the source of the energy and what it is used for, can all impact on the actual CO2 emissions. Add offsetting between these into the mix and the complexity increases even further!

Energy consumption targets are simple, understandable and reliable, whether for buildings or other areas of energy consumption.

9. Are „Zero-Carbon Buildings‟ always comfortable?

Balancing energy demand and generation doesn‟t inherently provide any comfort for the people who occupy the building. A leaky old shed or a tent could notionally be „Zero Carbon Buildings‟ provided energy demand is balanced by building-mounted or on-site „Zero-Carbon‟ energy generation.

Radical building energy efficiency can ensure a comfortable building and reliably low CO2 emissions for the lifetime of the building.

Not „Zero-Carbon Buildings‟, Radically Energy Efficient Buildings

This is particularly so when it comes to something as abstract as CO2 emissions, regardless of how concrete the consequences are. So it is important to focus on doing what we can at a scale that we can understand and approach without getting overwhelmed.

For architects and their clients, and others in the construction industry, the right scale is almost certainly at a single building, site or project scale. However, we should be focused on radical energy efficiency, not on balancing complex CO2 accounts.

Page 128: The Fifth International Energy Conference - Palestine -

126

Zero Net Energy Buildings The future of a sustainable Palestine

Karim Farah HammadAlKhatib, Architect Member of the American Institute of Architects, AIA

LEED Accredited Professional San Francisco, California USA

[email protected]

Abstract -Globally, the Building Sector consumes nearly 50% of all energy produced and accounts for the highest CO2 emissions, more than any other sector including Industry and Transportation. With Palestine importing 90% of its electricity, 75% of which is used to operate buildings, carrying on business as usual is economically and environmentally unsustainable. Zero Net Energy (ZNE) buildings (where the amount of energy used by the building on an annual basis equals the amount of onsite renewable energy produced) provide a vision of Palestine’s potential future. This paper analyzes and highlights lessons learned from a ZNE building case study that I designed. The competition entry “Folium”was selected as one of six winners of the 2013 Architecture at Zero International Design Competition, a competition to design a mixed use residential development and judged on its documented energy performance as well as the architectural integrity of the design. Specifically, I detail the methodologies and strategies employed in the design of a ZNE building and how they differ from the design approach of a traditional building. I discuss how readily available energy performance software can be used by architects and engineers to guide the design and analysis of ZNE buildings. I argue how ZNE buildings can provide developers strong financial returns; mitigate market risks while creating healthy environments that attract people looking for a better quality of life. This paper illustrates how integrated sustainability and market drivers such as the development and adoption of policies, codes and incentives that guide and promote the adoption of ZNE building will pave the way for an environmentally sustainable and energy independent Palestine.

Keywords-zero net energy; renewable energy; sustainable buildings; energy independence.

I. INTRODUCTION Buildings have a significant impact on energy use and the

environment. The International Energy Agency (IEA) estimates that commercial and residential buildings use almost 40% of the primary energy and approximately 70% of the electricity produced globally, more than any other sector. 1 Buildings’contribution to current world CO2 emissions is

1http://www.iea.org/aboutus/faqs/energyefficiency/

estimated at 40 percent, more than transportation and industry sectors. The energy used by the building sector continues to increase, primarily because new buildings are constructed faster than old ones are retired. Electricity consumption in the commercial building sector doubled between 1980 and 2000, and is expected to increase another 50% by 2025 (IEA 2013). Energy consumption in the commercial building sector will continue to increase until buildings can be designed to produce enough energy to offset the growing energy demand of these buildings.

II. ENERGY CONSUMPTION IN PALESTINE Due to the unavailability of traditional sources of energy,

Palestine imports 100% of its fuel and 90% of its electricity needs, 75% of which is used to operate buildings. This dependence, which is further complicated by its complete reliance on Israeli policies for its implementation, and the high energy demand of the building sector, requires a different approach to the way buildings are designed in Palestine. Alternative energy sources such as solar and geothermal have not been exploited to their full potential due to political and economic restraints. However, these sustainable energy sources and their integration into the design of buildings are the key elements of a sustainable and energy independent future.

III. ZERO NET ENERGY BUILDINGS A ZNE building is a high performance building were the

annual energy consumption is equal to its annual production of renewable energy. This building design approach first focuses upon reducing energy consumption through the integration of smart and energy efficient technologies. The final design step after reducing the building’s energy consumption is to install onsite renewable energy generation like solar, wind or geothermal systems.

Today, hundreds of pilot ZNE projects, encompassing commercial and residential buildings of all types (retail, office, educational, government, etc.), are being developed, many as pilot projects to showcase technology. While several pilots are

Page 129: The Fifth International Energy Conference - Palestine -

126

Zero Net Energy Buildings The future of a sustainable Palestine

Karim Farah HammadAlKhatib, Architect Member of the American Institute of Architects, AIA

LEED Accredited Professional San Francisco, California USA

[email protected]

Abstract -Globally, the Building Sector consumes nearly 50% of all energy produced and accounts for the highest CO2 emissions, more than any other sector including Industry and Transportation. With Palestine importing 90% of its electricity, 75% of which is used to operate buildings, carrying on business as usual is economically and environmentally unsustainable. Zero Net Energy (ZNE) buildings (where the amount of energy used by the building on an annual basis equals the amount of onsite renewable energy produced) provide a vision of Palestine’s potential future. This paper analyzes and highlights lessons learned from a ZNE building case study that I designed. The competition entry “Folium”was selected as one of six winners of the 2013 Architecture at Zero International Design Competition, a competition to design a mixed use residential development and judged on its documented energy performance as well as the architectural integrity of the design. Specifically, I detail the methodologies and strategies employed in the design of a ZNE building and how they differ from the design approach of a traditional building. I discuss how readily available energy performance software can be used by architects and engineers to guide the design and analysis of ZNE buildings. I argue how ZNE buildings can provide developers strong financial returns; mitigate market risks while creating healthy environments that attract people looking for a better quality of life. This paper illustrates how integrated sustainability and market drivers such as the development and adoption of policies, codes and incentives that guide and promote the adoption of ZNE building will pave the way for an environmentally sustainable and energy independent Palestine.

Keywords-zero net energy; renewable energy; sustainable buildings; energy independence.

I. INTRODUCTION Buildings have a significant impact on energy use and the

environment. The International Energy Agency (IEA) estimates that commercial and residential buildings use almost 40% of the primary energy and approximately 70% of the electricity produced globally, more than any other sector. 1 Buildings’contribution to current world CO2 emissions is

1http://www.iea.org/aboutus/faqs/energyefficiency/

estimated at 40 percent, more than transportation and industry sectors. The energy used by the building sector continues to increase, primarily because new buildings are constructed faster than old ones are retired. Electricity consumption in the commercial building sector doubled between 1980 and 2000, and is expected to increase another 50% by 2025 (IEA 2013). Energy consumption in the commercial building sector will continue to increase until buildings can be designed to produce enough energy to offset the growing energy demand of these buildings.

II. ENERGY CONSUMPTION IN PALESTINE Due to the unavailability of traditional sources of energy,

Palestine imports 100% of its fuel and 90% of its electricity needs, 75% of which is used to operate buildings. This dependence, which is further complicated by its complete reliance on Israeli policies for its implementation, and the high energy demand of the building sector, requires a different approach to the way buildings are designed in Palestine. Alternative energy sources such as solar and geothermal have not been exploited to their full potential due to political and economic restraints. However, these sustainable energy sources and their integration into the design of buildings are the key elements of a sustainable and energy independent future.

III. ZERO NET ENERGY BUILDINGS A ZNE building is a high performance building were the

annual energy consumption is equal to its annual production of renewable energy. This building design approach first focuses upon reducing energy consumption through the integration of smart and energy efficient technologies. The final design step after reducing the building’s energy consumption is to install onsite renewable energy generation like solar, wind or geothermal systems.

Today, hundreds of pilot ZNE projects, encompassing commercial and residential buildings of all types (retail, office, educational, government, etc.), are being developed, many as pilot projects to showcase technology. While several pilots are

127

1. Folium

trying to prove the investment savings in lower energy bills, a stronger driver for the adoption of ZNE is regulation. Policies like the EU’s Energy Performance of Buildings Directive (EPBD) and California’s evolving Title 24 building code are forcing ZNE markets to come into place for new commercial and residential projects. In Palestine, energy policies and financial incentives are necessary first steps for the implementation of ZNE projects. These projects are a crucial component of a long term energy efficiency strategic plan.

IV. FOLIUM Folium: A thin leaflike structure, is the name of the award

winning entry to the 2013 Architecture at Zero (AAZ) Design Competition. The AAZ competition challenged participants to design a 150 apartment mixed-use residential development with a ground floor commercial space located in San Francisco, California. The jury reviewed each entry for documentation of energy performance as well as the architectural integrity of the design.

“Form follows Performance”was the guiding principle in the design of Folium. The building’s massing and orientation were optimized, using sustainability analysis software to maximize passive heating, cooling and daylighting while reducing the building’s Energy Use Intensity (EUI). The building was oriented with the long axis running east-west for optimal passive thermal and visual comfort. This orientation minimizes energy loads while maximizing free energy from the sun. Heat gain and glare were further reduced by minimizing the number of windows facing, the difficult to control exposures of, east and west. Narrow floor plates and exterior, 4 meter wide, corridors allow for cross ventilation and daylighting on opposite sides of each apartment.

Sustainability measures are integrated into the building in the form of PV canopy that offsets a portion of the electrical load and acts as a shading device for the roof. Screens of solar thermal tubes, inspired by the delicate leaf structure of a tree, provide radiant hydronic heating, shade the building and create thermal buffer zones that induce cross ventilation and minimize heat loss. Wind turbines integrated within the building’s elevator core offset a portion of the electrical load. Waste heat generated from the commercial space is captured through a heat exchanger and used to supplement domestic hot water heating.

Open air walkways with large multi-purpose landings create opportunities for social interactions as well as children’s play areas with direct supervision from kitchen and living room windows. Roof gardens for urban agriculture reduce consumption of food with high embodied energy. Courtyard on podium level is visually connected to the streets through openings on the south and west facades providing “eyes on the

street”throughout the day. Wide and open-air stairs with views encourage residents to stay active when circulating between floors.

V. DESIGN METHODOLOGY The design approach to a Zero Net Energy project differs

from a traditional design process in that energy performance analysis has to be the driving force in the design of the project. Objectives and priorities have to be identified prior to any design work. Identifying energy resources that could be harnessed and energy uses that could be reduced or eliminated is a first step towards a NZE goal. A replicable process and design strategies are critical in sustaining such a design approach and encouraging developers and designers to adopt without fear of a learning curve. Process rather than checklist is needed to achieve results. The design methodology of ZNE buildings is a balance of high performance goals, current technology, and project specific requirements. Integration of sustainability solutions from the onsite and not plugged in after the fact is critical to achieving ZNE goals. Reducing the building’s energy demand, and by extension the amount for renewable energy needed to offset this demand, is a critical factor towards achieving ZNE. Through manipulation of massing and orientation to maximize passive heating and cooling, a building’s energy demand could be drastically reduced. Designing a traditional building and “plugging”in PV or solar thermal panels at the end of the design process is an inefficient way of offsetting the energy demands of a building and creates an insurmountable goal towards sustainability.

VI. DESIGN TOOLS There are numerous building energy analysis software

available to designers, many of which are freeware. For architects, Sefaira offers an intuitive platform that provides real time performance analysis of the building as it’s being designed. It gives the designer instant feedback on their building’s energy and daylighting metrics, guiding them towards a high performance solution.Sefaira was used in the design of Folium to optimize the building’s massing, orientation and window to wall ratio. The instant feedback made the design process and decisions associated with energy performance go much faster compared to the traditional design process were energy performance is measured after the design is completed.

VII. BENEFITS TO DEVELOPERS With the increasing cost of energy and greater awareness

of sustainability, the market is moving in the direction of high performance buildings. For developers, standing apart from the competition with so many choices for people looking for a place to buy or rent is one of the incentives for developing high performance buildings. These buildings will become the norm so any developers that start now will have the expertise to give them a leg up on the competition. High performance buildings create larger asset returns and mitigate risk.

Page 130: The Fifth International Energy Conference - Palestine -

128

Developers of such developments will have a product that appeals to people concerned about the life cycle energy costs of the building they reside in. Renters and buyers will be attracted by the utility cost savings and the healthy environment ZNE developments can provide.

VIII. TOWARDS AN ENERGY INDEPENDENT AND SUSTAINABLE FUTURE

The first step on the path towards an energy independent and sustainable future in Palestine are policies and regulations coupled with incentives that would steer public and private developments in the direction of Zero Net Energy. Investment in alternative energy is crucial in providing technologies needed to realize ZNE buildings. Many regulations around the world such as the new California T-24 Building Standards code could serve as a template. Its goal is having all residential buildings be ZNE by the year 2020 and all commercial buildings by the 2030.The current situation in Palestine will not change overnight, it is a long term strategic goal but to get there the first step towards ZNE buildings has to be taken today.

Page 131: The Fifth International Energy Conference - Palestine -

128

Developers of such developments will have a product that appeals to people concerned about the life cycle energy costs of the building they reside in. Renters and buyers will be attracted by the utility cost savings and the healthy environment ZNE developments can provide.

VIII. TOWARDS AN ENERGY INDEPENDENT AND SUSTAINABLE FUTURE

The first step on the path towards an energy independent and sustainable future in Palestine are policies and regulations coupled with incentives that would steer public and private developments in the direction of Zero Net Energy. Investment in alternative energy is crucial in providing technologies needed to realize ZNE buildings. Many regulations around the world such as the new California T-24 Building Standards code could serve as a template. Its goal is having all residential buildings be ZNE by the year 2020 and all commercial buildings by the 2030.The current situation in Palestine will not change overnight, it is a long term strategic goal but to get there the first step towards ZNE buildings has to be taken today.

Page 132: The Fifth International Energy Conference - Palestine -

51

8

XI. REFERENCE

[1] "The Ministry of National Infrastructures, Energy and Water Resources," 2013. [Online]. Available:

http://energy.gov.il/English/Subjects/OilAndGasExploration/Pages/ GxmsMniPetroleumAndNatura

lGasProspecting.aspx). [Accessed 13 02 2013]. [2] C. J. Schenk, M. A. Kirschbaum, R. R. Charpentier, T. R.

Klett, M. E. Brownfield, J. K. Pitman, T. A. Cook and M. E. Tennyson, "Assessment of undiscovered oil and gas

resources of the Levant Basin Province, Eastern Mediterranean," U.S. Geological Survey Fact Sheet,

Washington, 2010. يد يتشكل في المناو رات اإلتسرائيلية األمريكية اليونانية وبداية حلف جد" [ 2]

. p. 1 ،81 2 1182األهرام، " المتوتسط،مجلة " الواقع والتوقعات،،: غاز شرق البحر األبيض المتوتسط"خدوري، . و [ 9]

. pp. 74-84 ،1188، 19، رقم 11المجلد الدراتسات الفلسطينية، " التلرير السنوي، مشروع غاز غزة،"صندوق اإلتستثمار الفلسطيني، [ 9]

.1181اإلتستثمار الفلسطيني، رم هللا، فلسطين، صندوق [6] M. Chossudovsky, " War and Natural Gas: The Israeli

Invasion and Gaza's Offshore Gas Fields," Global Research, 8 January 2009.

" محاتسبة من أفشل مشروع تطوير الغاز قبالة شاطئ غزة،"إلدار، . ع [ 1] . 1188 11 19م الفلسطينية،، جريدة األيا

[8] "Zionoil & Gas," January 2013. [Online]. Available: https://www.zionoil.com. [Accessed 05 January 2013].

أوضاع الطاقة في إتسرائيل في غضون السنتين ، Intervieweeبركات، . ع [ 4] .1181حزيران 19[. ملابلة]:. اللادمتين تستكون تسيئة جدا

[10]

"http://www.zionoil.com/information-hub/future-projects," September 2013. [Online]. Available:

http://www.zionoil.com/information-hub/future-projects. [Accessed 10 February 2011].

[11]

RSD Baker, "Meged Field Reserves Classification. 31st December, 2010," Givot Olam Company, Jerusalem,

2010. [12

] "1.5 billion Barrels of oil discovered near Rosh Ha'Ayin.,"

August 2010. [Online]. [13

] Greensand Associates Ltd, "Probabilistic Determination

of Resources – Meged Core Area," Givot Olam, Jerusalem, 2010.

[14]

H. Koren, "Globes," 30 January 2012. [Online]. Available: - http://www.zionoil.com/information-hub/future-projects. [Accessed 13 February 2013].

[89 ]

تلرير إنتهاكات إتسرائيل "مركز المعلومات لشؤون الجدار واإلتستيطان، " البترول والغاز الطبيعي،" لسطينية في الضفة الغربيةللموارد الطبيعية الف

.1881رام هللا، [16

] T. Luskin, Interviewee, Founder &Director. [Interview].

December 2013. [17

] . A. Herman, "Why Israel will rule the new Middle East,"

Fox News, 31 January 2013. [18 D. S. Nguyen, Interviewee, Israel‘s “Black Gold”.

] [Interview]. October 2011. [19

] A. Bar-Eli, “Tamar offshore field promises even more gas

than expected". 2009-,” Haaretz., 12 08 2009. [20

] G. a. P. D. Roberts, " Hydrocarbon plays and

prospectivity of the Levantine Basin, offshore Lebanon and Syria from modern seismic data: GeoArabia, v. 12,

no. 3, p..," p. 99–124, 2007. [18

] A. Barkat ،"Modiin:133 million barrels of oil estimated at

Yam Hadera، "globes-online. ،19 December 2011 . [22

] G. Olam, "Givot Olam oil exploration," Aurion Solutions,

25 04 2011. [Online]. Available: www.givot.co.il. [Accessed 30 June 2011].

[23]

-. http://www.givot.co.il/english/show.php?id=23. [Online]. Available: -

http://www.givot.co.il/english/show.php?id=23. [24

] [Online]. Available:

http://www.givot.co.il/english/index.php. [25

] "Givot Olam oil Exploration," Aurion Solutions, 20 May

2011. [Online]. Available: http://www.givot.co.il/english/article.php?id=118.

[Accessed 11 January 2011]. [26

] THE ISRAELI-PALESTINIAN INTERIM AGREEMENT ON THE WEST BANK AND THE GAZA STRIP ANNEX III Protocol Concerning Civil Affairs, Washington, 1995.

[27]

G. Roberts and D. Peace, "Hydrocarbon plays and prospectivity of the Levantine Basin, offshore Lebanon

and Syria from modern seismic data," GeoArabia, vol. 12, no. 3, p. 99–124, 2007.

[28]

“http://www.givot.co.il/english/index.php,” 2011 2011. [Online]. Available: http://www.givot.co.il/english/.

[Accessed 1 January 2013]. [29

] Fracture Technologies Ltd, "Completion and Production Testing Meged-5 19th May – 25th July.," Givot Olam,

TelAviv, 2010. [30

] H. Koren, "Energy Ministry approves Meged 6 field

developmet.Globes," Globes, 2012. [28

] ه تلرير الفساد ومكافحت"، (أمان)اإلئتاف من أجل النزاهة والمساءلة

منشورات اإلئتاف من أجل النزاهة والمساءلة،، " التلرير الرابع،: فلسطين .1188فلسطين، -رام هللا

[21 ]

مع أشا رة إلى : مفهومه ومظاهره وأتسبابه. الفساد اإلداري"الوائلي، . ي . 1119، 11المجلد النبأ، " تجربة العراق في الفساد،

[22 ]

: تلرير الفساد ومكافحته"، (أمان)لة اإلئتاف من أجل النزاهة والمساءاإلئتاف من أجل النزاهة والمساءلة، " فلسطين، التلرير السنوي الخامس،

.1181فلسطين، -، رام هللا(أمان)[29

] شبكة اإلقتصاديين " ،.إدارة قطاع النفط والغاز في العراق"العكيلي، . ث

.1182العراقيين،

Page 133: The Fifth International Energy Conference - Palestine -

507

E. الحاجة إلى حماية هذه الموارد ووقف اتستنزاف إتسرائيل لها: عمل الغاز الطبيعي الفلسطيني وبينت الدراتسة أن حماية موارد البترول وال

ةيقتصادها من إتسرائيل يمثل أحد أهم األولويات االاتستنزافعلى وقف توصي الدراتسة بالعمل و. ة والسياتسية للشعب الفلسطيني وقيادتهتستراتيجياال

كل اإلمكانات المتوفرة والمتاحة لحماية هذه الموارد من اتستغالعلى .اإلتسرائيلي لها، من خال تسيناريوهات معدة تسلفا لذلك تستنزافاال

F. من بطش إتسرائيلالفلسطينية الشراكة الدولية مفيدة في حماية الموارد: وصلت الدراتسة إلى عبرة مهمة وهي أن أحد طرق الحماية الفعالة لموارد

هي الشراكات الدولية في أعمال حتالالبترول والغاز في فلسطين من االعليها، ودليل ذلك أن وجود عتداءب مع دول ال تلوى إتسرائيل على االالتنلي

حلوق لشركات بريطانية في الغاز الفلسطيني في بحر غزة منعوردع إتسرائيل . عليها ءاالعتدامن

G. التحول من نمط الليادة الفردية إلى منظومة الليادة الفلسطينيةالحاجة الى : قانون وتشريع، )الناجعة الليادة الفلسطينيةبينت الدراتسة غياب وجود منظومة

، واللادرة (ات، تسياتسات، قيم، قيادة جماعيةاتستراتيجيتكامل السلطات الثاث، على تحليق تناغم في أداء منظومة مكونات المجتمع الفلسطيني، مما خلق تحديات كبيرة على مستوى البنية السياتسية واإلدارية والسياتساتية الفلسطينية،

يثير تساؤالت حول قدرتها على توظيف موارد البترول والغاز في خدمة كما تستلالإلى اال حتاللا ةيقتصادقضية تحول المجتمع الفلسطيني من التبعية اال

.السياتسي

صحيح أن السلطة نجحت في خلق قيادات فردية، لكن بعضها ديكتاتورية يتاجر في الوطن وأخرى متسلطة وثالثة مستبدة، وغيرها فاتسد، حاول أن

لحساب إثراء مصالحه الشخصية، وهذا ما أفشل جهود الشعب الفلسطيني في وطني اقتصادتحرير موارده الطبيعية وتوظيفها في إحداث تنمية أو تنشيط

.فلسطيني

ال بد من تكوين منظومة قيادة فلسطينية متكاملة في المجاالت السياتسية واالتستعدادتتصف باللدرة على العمل الجماعي ةجتماعيواال ةيقتصادواال

للتضحية وتستطيع العمل بجد وجهد كبيرين من خال اللانون، الذي يشرع تدعم عملية توظيف هذه ةاجتماعيو ةياقتصادات وتسياتسات اتستراتيجيصناعة

.والسياتسية ةيقتصادالموارد في خدمة التنمية اال

H. في غزة بالتنليب عن النفط والغازموافلة إتسرائيل على قيام الفلسطينيين :تكتيك وليس إتستراتيجية

الدراتسة أن إتسرائيل لم تعارض قيام الفلسطينيين بالتنليب عن الغاز اتستنتجتة وأخرى تسياتسية اتستراتيجيةياقتصادوالبترول في بحر غزة في حينه ألهداف

ا حاولت إتسرائيل تسرقة ياقتصاد: وليس لمصلحة الفلسطينيينخاصة بها كانت تحاول صادر البترول في بحر غزة بثمن بخس، وتسياتسيا ألن إتسرائيل م

أن تعطي للفلسطينيين دولة فلسطين المستللة في حدود قطاع غزة فلط، وعندما فشلت إتسرائيل في تحليق أهدافها فإنها منعت الفلسطينيين من

.الغاز من حلول غزة اتستخراج

X. التوصيات: قانون وتشريع فلسطيني ينظم العمل ادواعتمالعمل على إعداد وإصدار (8

.بترول والغاز الطبيعي في فلسطينفي قطاع ال

التحول والتغيير من نمط الليادة الفردية للمجتمع إلى تكوين منظومة قيادة (1، إلى جانب الرؤيا ةاجتماعيو ةياقتصادفلسطينية متكاملة ذات رؤيا

حيث أن وعلى درجة من المرونة واللدرة على إدارة المخاطر، السياتسية، تستلالمن التبعية إلى اال االنتلالحسن توظيف هذه الموارد في عملية

الى ، بل يحتاج ذلك وطني فلسطين اقتصاديلتضي بناء أو تنشيط تصنع رشيدة، يحكم عملها تشريع أو قانون، ومنظومة قيادة

وتسياتسية للتعامل مع هذه ةاجتماعيو ةياداقتصات وتسياتسات اتستراتيجيمستلل والواضح بالعمل على الموارد ،وأن يكون لديها اللرار السياتسي ال

تحرير الموارد الطبيعية الفلسطينية بشكل عام وموارد البترول والغاز .حتالالطبيعي بشكل خاص من أيدي قوات اال

فمن اتستنزاينية الفلسط ةالهيدروكربونيالعمل على حماية الموارد (2الشراكات الدولية، المحاكم واللوانين : بكل الطرق المتاحةإتسرائيل لها

علما أن . الدولية، الملاومة الشعبية، المصالح المشترك مع الدول األخرىتعمل من وراء الكواليس على بيع ونلل الحلوق البريطانية بدأت إتسرائيل

إلى شركات والتي ال تلوى على االعتداء عليها في حلول الغاز في غزة .منهعليها، وهذا ما يجب الحذر عتداءبجنسيات أخري يمكنها اال

في حتالاالتتبع وتوثيق ودراتسة عمليات التنليب التي تلوم بها تسلطات (9المحتلة في العام اضيباألرارتباطهاكل فلسطين التاريخية وتحديد

األجنبية العاملة في هذا المجال والتي ، وتحديد هويات الشركات 8491لمحاكمة إتسرائيل والشركات ، وإعداد ملفات تخالف اللانون الدولي

.بتعويضات بدل ةاألجنبية والمطالب

ة كأداة للتأثير في السياتسات تستراتيجيهذه الموارد اال اتستغالالعمل على (9ا العربية الخارجية للدول لصالح اللضية الفلسطينية بشكل خاص واللضاي

.واإلتسامية واإلنسانية بشكل عام

تعزيز صمود المواطنين الفلسطينيين وتعزيز عملية الكفاح العمل على (9ملاوم يساهم في دعم اقتصادمن خال بناء تستلالالفلسطيني نحو اال

اإلتسرائيلي من األرض حتالعملية التحرر ويعمل على طرد دولة اال .الفلسطينية

األبعاد والتداعيات الجديدة التي تضيفها اتستثمارو لاتستغاالعمل على (1ات للصراع العربي اإلتسرائيلي حيث أن هناك تجاذبات كتشافهذه االوصراعات نشأت على المستوى اإلقليمي وخاصة فيما بين تومتنافرا

دول شرق المتوتسط مثل مصر، تسوريا، تركيا، اليونان وقبرص حيث أنه قد تشهد المنطلة بداية لتشكل أحاف ومحور جديدة وإتسرائيل،

قائمة على المصالح في المنطلة، من أجل الحفاظ على مصالح الطاقة . النظيفة للغاز الطبيعي

51

8

XI. REFERENCE

[1] "The Ministry of National Infrastructures, Energy and Water Resources," 2013. [Online]. Available:

http://energy.gov.il/English/Subjects/OilAndGasExploration/Pages/ GxmsMniPetroleumAndNatura

lGasProspecting.aspx). [Accessed 13 02 2013]. [2] C. J. Schenk, M. A. Kirschbaum, R. R. Charpentier, T. R.

Klett, M. E. Brownfield, J. K. Pitman, T. A. Cook and M. E. Tennyson, "Assessment of undiscovered oil and gas

resources of the Levant Basin Province, Eastern Mediterranean," U.S. Geological Survey Fact Sheet,

Washington, 2010. يد يتشكل في المناو رات اإلتسرائيلية األمريكية اليونانية وبداية حلف جد" [ 2]

. p. 1 ،81 2 1182األهرام، " المتوتسط،مجلة " الواقع والتوقعات،،: غاز شرق البحر األبيض المتوتسط"خدوري، . و [ 9]

. pp. 74-84 ،1188، 19، رقم 11المجلد الدراتسات الفلسطينية، " التلرير السنوي، مشروع غاز غزة،"صندوق اإلتستثمار الفلسطيني، [ 9]

.1181اإلتستثمار الفلسطيني، رم هللا، فلسطين، صندوق [6] M. Chossudovsky, " War and Natural Gas: The Israeli

Invasion and Gaza's Offshore Gas Fields," Global Research, 8 January 2009.

" محاتسبة من أفشل مشروع تطوير الغاز قبالة شاطئ غزة،"إلدار، . ع [ 1] . 1188 11 19م الفلسطينية،، جريدة األيا

[8] "Zionoil & Gas," January 2013. [Online]. Available: https://www.zionoil.com. [Accessed 05 January 2013].

أوضاع الطاقة في إتسرائيل في غضون السنتين ، Intervieweeبركات، . ع [ 4] .1181حزيران 19[. ملابلة]:. اللادمتين تستكون تسيئة جدا

[10]

"http://www.zionoil.com/information-hub/future-projects," September 2013. [Online]. Available:

http://www.zionoil.com/information-hub/future-projects. [Accessed 10 February 2011].

[11]

RSD Baker, "Meged Field Reserves Classification. 31st December, 2010," Givot Olam Company, Jerusalem,

2010. [12

] "1.5 billion Barrels of oil discovered near Rosh Ha'Ayin.,"

August 2010. [Online]. [13

] Greensand Associates Ltd, "Probabilistic Determination

of Resources – Meged Core Area," Givot Olam, Jerusalem, 2010.

[14]

H. Koren, "Globes," 30 January 2012. [Online]. Available: - http://www.zionoil.com/information-hub/future-projects. [Accessed 13 February 2013].

[89 ]

تلرير إنتهاكات إتسرائيل "مركز المعلومات لشؤون الجدار واإلتستيطان، " البترول والغاز الطبيعي،" لسطينية في الضفة الغربيةللموارد الطبيعية الف

.1881رام هللا، [16

] T. Luskin, Interviewee, Founder &Director. [Interview].

December 2013. [17

] . A. Herman, "Why Israel will rule the new Middle East,"

Fox News, 31 January 2013. [18 D. S. Nguyen, Interviewee, Israel‘s “Black Gold”.

] [Interview]. October 2011. [19

] A. Bar-Eli, “Tamar offshore field promises even more gas

than expected". 2009-,” Haaretz., 12 08 2009. [20

] G. a. P. D. Roberts, " Hydrocarbon plays and

prospectivity of the Levantine Basin, offshore Lebanon and Syria from modern seismic data: GeoArabia, v. 12,

no. 3, p..," p. 99–124, 2007. [18

] A. Barkat ،"Modiin:133 million barrels of oil estimated at

Yam Hadera، "globes-online. ،19 December 2011 . [22

] G. Olam, "Givot Olam oil exploration," Aurion Solutions,

25 04 2011. [Online]. Available: www.givot.co.il. [Accessed 30 June 2011].

[23]

-. http://www.givot.co.il/english/show.php?id=23. [Online]. Available: -

http://www.givot.co.il/english/show.php?id=23. [24

] [Online]. Available:

http://www.givot.co.il/english/index.php. [25

] "Givot Olam oil Exploration," Aurion Solutions, 20 May

2011. [Online]. Available: http://www.givot.co.il/english/article.php?id=118.

[Accessed 11 January 2011]. [26

] THE ISRAELI-PALESTINIAN INTERIM AGREEMENT ON THE WEST BANK AND THE GAZA STRIP ANNEX III Protocol Concerning Civil Affairs, Washington, 1995.

[27]

G. Roberts and D. Peace, "Hydrocarbon plays and prospectivity of the Levantine Basin, offshore Lebanon

and Syria from modern seismic data," GeoArabia, vol. 12, no. 3, p. 99–124, 2007.

[28]

“http://www.givot.co.il/english/index.php,” 2011 2011. [Online]. Available: http://www.givot.co.il/english/.

[Accessed 1 January 2013]. [29

] Fracture Technologies Ltd, "Completion and Production Testing Meged-5 19th May – 25th July.," Givot Olam,

TelAviv, 2010. [30

] H. Koren, "Energy Ministry approves Meged 6 field

developmet.Globes," Globes, 2012. [28

] ه تلرير الفساد ومكافحت"، (أمان)اإلئتاف من أجل النزاهة والمساءلة

منشورات اإلئتاف من أجل النزاهة والمساءلة،، " التلرير الرابع،: فلسطين .1188فلسطين، -رام هللا

[21 ]

مع أشا رة إلى : مفهومه ومظاهره وأتسبابه. الفساد اإلداري"الوائلي، . ي . 1119، 11المجلد النبأ، " تجربة العراق في الفساد،

[22 ]

: تلرير الفساد ومكافحته"، (أمان)لة اإلئتاف من أجل النزاهة والمساءاإلئتاف من أجل النزاهة والمساءلة، " فلسطين، التلرير السنوي الخامس،

.1181فلسطين، -، رام هللا(أمان)[29

] شبكة اإلقتصاديين " ،.إدارة قطاع النفط والغاز في العراق"العكيلي، . ث

.1182العراقيين،

Page 134: The Fifth International Energy Conference - Palestine -

496

VII. توالتحديا الفرص) االتستلالية إلى التبعية واقع من

الظروف والواقع الفلسطيني المحلي واإلقليمي يبدأ إعداد هذا اإلطار بدراتسة وتحليل من أجل التعرف على نلاط اللوة والضعف، الفرص والتهديدات، التي يجب التعامل

توقع أن حتال اإلتسرائيلي، إلى حالةلا قتصاديةمن حالة التبعية اال لانتلالمعها وأن تساعد على تنامي تستثمارعب هذه الموارد دور المحرك للتنمية والتطوير واالتل

توظيفها في إحداث تنمية،وتنشيط لكن عملية، قتصادياالالثروة، وتحليق التعافي للتعامل معها، وواقع التمكن اتستراتيجيإعداد إطار يتطلب الفلسطيني قتصاداال

،حتالتسياتسي بعيدا عن اال اتستلالالذي يلود إلى قتصادياال تستلالواال

A. الفرص: البترول والغاز دتوفر موارالتي يمكن أن تنشأ مع لفرص الحياةفيما يلي عرض

:نجديدة وإضافية لدولة فلسطي ةياقتصادتوفر ملومات (8 :دعمصمود الشعب الفلسطييني وتعزيز ملاومته (1 :ينيةوحماية الموارد الفلسطيقتصادبناء شراكات دولية للتعاون اال (2 : محاكمة إتسرائيل على المستوى الدولي (9 خلص من اتفاقات أوتسلواتوفر إرادة الت (9

B. التحديات: تواجه فلسطين تحديات خارجية وداخلية بنيوية كبيرة، تعترض عملية توظيف

لبترول والغاز الطبيعي، لصالح توفير بيئة تساعد في lفرصة توفر موارد اتستثماروومن أهم . السياتسي تستلالوطني نشط وفعالفي خطوة نحو تحليق اال اقتصادتنمية

:هذه التحديات

:ات أوتسلوااتفاقاإلتسرائيلي و حتالاال (8 :غياب التشربع الخاص أو قانون البترول (1 :الفساد (2 :غياب المعرفة المهنية (9 :ضعف األداء اإلداري العام (9 ضعف اللطاع الخاص الفلسطيني وتردده (9

VIII. الهيدروكربونية الموارد لتوظف ةاتستراتيجي أولويات:

A. من قبل تستنزافني من االحماية موارد البترول والغاز الطبيعي الفلسطي حتالاال

في هذه الحلول تنتمي لدول، ال طركة فلسطين لشركات تنليب عن النفمشا مثل ، إتسرائيلح لأو تتضارب مصالحها مع مصاعليها عتداءتلوى إتسرائيل على اال

وحتى . تركيا، الصين، بريطانيا، فرنسا، ألمانيا، اليابان، مصر، وغيرهاروتسيا، تتحلق نتائج إيجابية فإنه يجب إدارة اللعبة من الطرف الفلسطيني بشكل جيد وعلى

.أتساس المصالح، وان يكون هناك متابعة وتلييم متواصل

الجهد الوطني وخاصة اللطاع الخاص الفلسطيني عبر إشراكه اتستنهاضويمكنهذه ويمكن العمل على حماية .د والبحث والتنليب عنها وتشغيلهافي تحديد الموار

.الموارد بلوة الشعب المتاحة

B. التشريع أو اللانون الفلسطيني الذي ينظم ويشرع عملية التعامل واعتمادإعداد ، (ف البترول والغاز الطبيعيمل) الهيدروكربونيالملف مع

التشريع أو اللانون يعني تحديد إطار عام يعرف موارد البترول والغاز الطبيعي، وكيف يتم التنليب عنها؟ ويسمي المفوض بإدارتها، ويحدد كيف توزع

ها على اتستثمارها وصرف إيراداتها، ومن ينظم عملية اتستثمارمواردها؟ ومجاالت االنتلالي أولويات التنمية منها؟ وكيف نوظفها في عملية المستوى الوطني؟ وما ه

وبناء السيادة حتالعن اال تستلالإلى مرحلة اال حتالالتبعية لاحالة من ؟ ويحدد في التشريع دور الحكومة بوضوح وصاحيات رئيس الوزراء الفلسطينية

والوزراء وكبار المسؤولين خوفا من تفردهم بالصاحيات واللرارات،

C. بناء منظومة قيادة فلسطينية ناجعة، شفافة ومتكاملة ورشيدة، فعالة، قادرة :هااتستثمارتعمل على إعداد قانون ينظم عملية على التدبير وحماية الموارد،

والتخطيط االتستشاريتعني منظومة الليادة حكم المؤتسسات والرأي تعني ، والفرد واللرار الجماعي وليس حكموالسياتسات والبرامج تستراتيجياال

، واالنلساممحاربة الفساد، واللضاء على ظواهر الشرذمة

لرار من مؤتسسات العة كما تعني اإلدارة الفاعلة والمشاركة الواتسعة في صنا .بأطيافه المجتمع

مؤتسسات المجتمع المدني ودورها في منظومة الليادة الفلسطينية (8a) مؤتسسات التشريع الفلسطيني : b) لسطينيةاللوى السياتسية الف : c) (: السلطة)الحكومة الفلسطينية d) اللطاع الخاص : e) اللطاع األكاديمي : f) المستوى الشعبي :

IX. واإلتستنتاجات التتائج:

A. غاز، بترول وصخر )التأكيد على وجود موارد وخامات هيدروكربونيةالبترول والغاز تلدر بحوالي ) في فلسطين وبكميات تجارية واعدة ( زيتي

أربعمائة مليار من الدوالرات األمريكية، أما الصخر الزيتي فتلدر قيمتها ات هي بداية كتشافبآالف المليارات من الدوالرات هذه االاألولية المالية

تدل األرقام األولية على أنها قادرة . ويمكن أن تزيد مع أعمال التنليب الجديدة اقتصادملوماتالتنمية في فلسطين، ويمكن أن تساهم في بناء على إدارة عجلة

كما يمكن . وطني نشط للشعب الفلسطيني وعلى المديين المتوتسط والبعيدة المتاحة كأداة للتأثير في السياتسات اإلقليمية تستراتيجيهذه الموارد اال اتستغال

.الخارجية والداخلية للدول األخرى لصالح اللضية الفلسطينية

B. التوزيع الجغرافي: مئات )تتوزع جغرافيا على الضفة الغربية وجدت الدراتسة أن هذه الموارد

وهناك ( آالف المليارات) 91ومناطق ( بضع مليارات)وقطاع غزة ( الملياراتالفلسطينية في البحر المتوتسط ةيقتصادكميات كبيرة أخرى في المياه اال

.فلسطينيةأمام السواحل ال( مليارمائتين وأربعون )

C. معيلات االحتال: اإلتسرائيلي تمثل المعيق األكبر الذي يمنع حتالبينت الدراتسة أن دولة اال

مواردهم من البترول والغاز حيث تتعرض الموارد اتستغالالفلسطينيين من لموارد تستنزافاالا خطركثرها ا: ات متعددة من إتسرائيلانتهاكالفلسطينية إلى

حلل مجد فوق أراضي رنتيس والذي يمتد )ضفة الغربية البترول والغاز في ال، كما و تستنزف إتسرائيل موارد الغاز والبترول (على جانبي الخط األخضر

في عسلان بجوار ( Bماري )حلل غاز )الفلسطينية ةيقتصادفي المياه االحلل تمار اتستنزافأثناء إعداد هذه الدراتسة ب حتالغزة ، كما شرعت دولة اال

، حيث يتطلع ((مليون قدم مكعب من الغاز يوميا 21)مدينة حيفا غرب هذه الموارد بهدف حرمان الشعب الفلسطيني من حله اتستنزافإلى حتالاال

والذي يمكن يقتصاداال تستلالفي توظيف عائدات هذه الموارد في تحليق اال .تسياتسي اتستلالأن يؤدي إلى

D. ا صارخا للحلوق االنسانية انتهاكيمثل هذه الموارد، إتسرائيل لتسرقة ونهب :اتفاقية جنيفت األمم المتحدة، وااألتساتسية واللانون الدولي وقرار

صارخا انتهاكيمثل اصرار وإقدام اتسرائيل على تسرقة ونهب هذه الموارد، اية اتفاقت األمم المتحدة، واللحلوق االنسانية األتساتسية واللانون الدولي وقرار

الثروات الطبيعية اتستغالمن حتالنص صراحة على منع االجنيف، التي تية تفاقللشعوب المحتلة، كما أن هذا اإلجراء اإلتسرائيلي فيه خرق واضح ال

. أوتسلو وتعدي صارخ على حلوق الفلسطينيين

Page 135: The Fifth International Energy Conference - Palestine -

485

76و 84موارد حقول البترول والغاز الطبيعي والصخر الزيتي في أراضي : 1جدول

.الحلول البحرية وقيمة الموارد المتاحة فيها بمليارات الدوالر األمريكيحجم مخزون : 1جدول

االحتياطي تاريخ البدء الموقع الحقلالحالي

³تريليون قدم غاز طبيعي

االحتياطي ³الحالي مليار م غاز طبيعي

االحتياطي الحالي برميل بترولمليون

قيمة االحتياطي بالمليار

أمريكي والر

مليار 191 1991 9.88 0.182 1188 وتسط الضفة الغربية مجد

191111 250000000000 1189 النلب، أريحا، الخليل، بيت جبرين الاخر الزيتي

إتسم الحلل

االحتياطي تاريخ بدء اإلنتاج موقع الحلل الحالي تريليون

غاز طبيعي ³قدم

االحتياطي الحالي ³مليار م

غاز طبيعي

االحتياطيالحالي مليون برميل

بترول

االحتياطي قيمةدوالربالمليار

المصدر

[19] 99 119 4.1 1182 غرب حيفا تمار

[20] 91+ 19 600 450 89 1181 إراتوتستينس لفياثان

89+21 891 811 9.9 1189 غرب نتانيا تسارة وميرا [21]

1.9 15.5 1.99 حفر مائل شمشون

Dalit 1.9 15 1.92 غرب حيفا

9 28 8.8 عسلان نوءا ماري ب

9.9 29 8.1 تنين

191 191 8111 29.91 المجموع

496

VII. توالتحديا الفرص) االتستلالية إلى التبعية واقع من

الظروف والواقع الفلسطيني المحلي واإلقليمي يبدأ إعداد هذا اإلطار بدراتسة وتحليل من أجل التعرف على نلاط اللوة والضعف، الفرص والتهديدات، التي يجب التعامل

توقع أن حتال اإلتسرائيلي، إلى حالةلا قتصاديةمن حالة التبعية اال لانتلالمعها وأن تساعد على تنامي تستثمارعب هذه الموارد دور المحرك للتنمية والتطوير واالتل

توظيفها في إحداث تنمية،وتنشيط لكن عملية، قتصادياالالثروة، وتحليق التعافي للتعامل معها، وواقع التمكن اتستراتيجيإعداد إطار يتطلب الفلسطيني قتصاداال

،حتالتسياتسي بعيدا عن اال اتستلالالذي يلود إلى قتصادياال تستلالواال

A. الفرص: البترول والغاز دتوفر موارالتي يمكن أن تنشأ مع لفرص الحياةفيما يلي عرض

:نجديدة وإضافية لدولة فلسطي ةياقتصادتوفر ملومات (8 :دعمصمود الشعب الفلسطييني وتعزيز ملاومته (1 :ينيةوحماية الموارد الفلسطيقتصادبناء شراكات دولية للتعاون اال (2 : محاكمة إتسرائيل على المستوى الدولي (9 خلص من اتفاقات أوتسلواتوفر إرادة الت (9

B. التحديات: تواجه فلسطين تحديات خارجية وداخلية بنيوية كبيرة، تعترض عملية توظيف

لبترول والغاز الطبيعي، لصالح توفير بيئة تساعد في lفرصة توفر موارد اتستثماروومن أهم . السياتسي تستلالوطني نشط وفعالفي خطوة نحو تحليق اال اقتصادتنمية

:هذه التحديات

:ات أوتسلوااتفاقاإلتسرائيلي و حتالاال (8 :غياب التشربع الخاص أو قانون البترول (1 :الفساد (2 :غياب المعرفة المهنية (9 :ضعف األداء اإلداري العام (9 ضعف اللطاع الخاص الفلسطيني وتردده (9

VIII. الهيدروكربونية الموارد لتوظف ةاتستراتيجي أولويات:

A. من قبل تستنزافني من االحماية موارد البترول والغاز الطبيعي الفلسطي حتالاال

في هذه الحلول تنتمي لدول، ال طركة فلسطين لشركات تنليب عن النفمشا مثل ، إتسرائيلح لأو تتضارب مصالحها مع مصاعليها عتداءتلوى إتسرائيل على اال

وحتى . تركيا، الصين، بريطانيا، فرنسا، ألمانيا، اليابان، مصر، وغيرهاروتسيا، تتحلق نتائج إيجابية فإنه يجب إدارة اللعبة من الطرف الفلسطيني بشكل جيد وعلى

.أتساس المصالح، وان يكون هناك متابعة وتلييم متواصل

الجهد الوطني وخاصة اللطاع الخاص الفلسطيني عبر إشراكه اتستنهاضويمكنهذه ويمكن العمل على حماية .د والبحث والتنليب عنها وتشغيلهافي تحديد الموار

.الموارد بلوة الشعب المتاحة

B. التشريع أو اللانون الفلسطيني الذي ينظم ويشرع عملية التعامل واعتمادإعداد ، (ف البترول والغاز الطبيعيمل) الهيدروكربونيالملف مع

التشريع أو اللانون يعني تحديد إطار عام يعرف موارد البترول والغاز الطبيعي، وكيف يتم التنليب عنها؟ ويسمي المفوض بإدارتها، ويحدد كيف توزع

ها على اتستثمارها وصرف إيراداتها، ومن ينظم عملية اتستثمارمواردها؟ ومجاالت االنتلالي أولويات التنمية منها؟ وكيف نوظفها في عملية المستوى الوطني؟ وما ه

وبناء السيادة حتالعن اال تستلالإلى مرحلة اال حتالالتبعية لاحالة من ؟ ويحدد في التشريع دور الحكومة بوضوح وصاحيات رئيس الوزراء الفلسطينية

والوزراء وكبار المسؤولين خوفا من تفردهم بالصاحيات واللرارات،

C. بناء منظومة قيادة فلسطينية ناجعة، شفافة ومتكاملة ورشيدة، فعالة، قادرة :هااتستثمارتعمل على إعداد قانون ينظم عملية على التدبير وحماية الموارد،

والتخطيط االتستشاريتعني منظومة الليادة حكم المؤتسسات والرأي تعني ، والفرد واللرار الجماعي وليس حكموالسياتسات والبرامج تستراتيجياال

، واالنلساممحاربة الفساد، واللضاء على ظواهر الشرذمة

لرار من مؤتسسات العة كما تعني اإلدارة الفاعلة والمشاركة الواتسعة في صنا .بأطيافه المجتمع

مؤتسسات المجتمع المدني ودورها في منظومة الليادة الفلسطينية (8a) مؤتسسات التشريع الفلسطيني : b) لسطينيةاللوى السياتسية الف : c) (: السلطة)الحكومة الفلسطينية d) اللطاع الخاص : e) اللطاع األكاديمي : f) المستوى الشعبي :

IX. واإلتستنتاجات التتائج:

A. غاز، بترول وصخر )التأكيد على وجود موارد وخامات هيدروكربونيةالبترول والغاز تلدر بحوالي ) في فلسطين وبكميات تجارية واعدة ( زيتي

أربعمائة مليار من الدوالرات األمريكية، أما الصخر الزيتي فتلدر قيمتها ات هي بداية كتشافبآالف المليارات من الدوالرات هذه االاألولية المالية

تدل األرقام األولية على أنها قادرة . ويمكن أن تزيد مع أعمال التنليب الجديدة اقتصادملوماتالتنمية في فلسطين، ويمكن أن تساهم في بناء على إدارة عجلة

كما يمكن . وطني نشط للشعب الفلسطيني وعلى المديين المتوتسط والبعيدة المتاحة كأداة للتأثير في السياتسات اإلقليمية تستراتيجيهذه الموارد اال اتستغال

.الخارجية والداخلية للدول األخرى لصالح اللضية الفلسطينية

B. التوزيع الجغرافي: مئات )تتوزع جغرافيا على الضفة الغربية وجدت الدراتسة أن هذه الموارد

وهناك ( آالف المليارات) 91ومناطق ( بضع مليارات)وقطاع غزة ( الملياراتالفلسطينية في البحر المتوتسط ةيقتصادكميات كبيرة أخرى في المياه اال

.فلسطينيةأمام السواحل ال( مليارمائتين وأربعون )

C. معيلات االحتال: اإلتسرائيلي تمثل المعيق األكبر الذي يمنع حتالبينت الدراتسة أن دولة اال

مواردهم من البترول والغاز حيث تتعرض الموارد اتستغالالفلسطينيين من لموارد تستنزافاالا خطركثرها ا: ات متعددة من إتسرائيلانتهاكالفلسطينية إلى

حلل مجد فوق أراضي رنتيس والذي يمتد )ضفة الغربية البترول والغاز في ال، كما و تستنزف إتسرائيل موارد الغاز والبترول (على جانبي الخط األخضر

في عسلان بجوار ( Bماري )حلل غاز )الفلسطينية ةيقتصادفي المياه االحلل تمار اتستنزافأثناء إعداد هذه الدراتسة ب حتالغزة ، كما شرعت دولة اال

، حيث يتطلع ((مليون قدم مكعب من الغاز يوميا 21)مدينة حيفا غرب هذه الموارد بهدف حرمان الشعب الفلسطيني من حله اتستنزافإلى حتالاال

والذي يمكن يقتصاداال تستلالفي توظيف عائدات هذه الموارد في تحليق اال .تسياتسي اتستلالأن يؤدي إلى

D. ا صارخا للحلوق االنسانية انتهاكيمثل هذه الموارد، إتسرائيل لتسرقة ونهب :اتفاقية جنيفت األمم المتحدة، وااألتساتسية واللانون الدولي وقرار

صارخا انتهاكيمثل اصرار وإقدام اتسرائيل على تسرقة ونهب هذه الموارد، اية اتفاقت األمم المتحدة، واللحلوق االنسانية األتساتسية واللانون الدولي وقرار

الثروات الطبيعية اتستغالمن حتالنص صراحة على منع االجنيف، التي تية تفاقللشعوب المحتلة، كما أن هذا اإلجراء اإلتسرائيلي فيه خرق واضح ال

. أوتسلو وتعدي صارخ على حلوق الفلسطينيين

Page 136: The Fifth International Energy Conference - Palestine -

47

4

حقول موارد البترول المكتشفة في المنطقة االقتصادية في : 11خريطة .المتوسط

إتسرائيل-التحتيةوزارة البنية : المصدر

على الحدود الشمالية Zionoil&Gasأنشطة التنليب لشركة : 8صورة جوية .والشمالية الغربية للضفة الغربية

-http://www.zionoil.com/information-hub/future: المصدرprojects

IV. خطط) إتسرائيل مخططات على مجد حلل إتسرائيل اكتشاف تداعيات :(والمفاوضات الجدار بناء مشاريع ،تستيطاناال

ا مركز المعلومات لشؤون الجدار الدراتسات واألبحاث التي أنجزه بينتتداعيات تسياتسية كتشافأنه ترتب على هذا اال[15]في وزارة الدولة تستيطانواال

اإلتسرائيلية، وتحديد مسار الجدار وتسير تستيطانخطط اال بزيادةتجلى تأثيرها ناور ت كتشافهذا اال المفاوضات اإلتسرائيلية الفلسطينية، حيث بدأت إتسرائيل وبعد

الحلل في امتدادالتي تعلو منطلة في المنطلة 8491تعديل حدود حرب العام طلب بتكتل أو مجمع اتسموهي المنطلة التي تطلق عليها إتسرائيل أحيانا الضفة الغربية

مستوطنات أريئيل،

V. اليابسة 91 فلسطين أراضي في والغاز البترول موارد: اليابسة إلى نوعين 91والغاز الطبيعي في مناطق توزعت مصادر البترول

.حلول بترول وغاز طبيعي، وحلول الصخر الزيتي

A. الطبيعي حلول البترول والغاز : بين 8491حرب عام الهدنةحلل مجد الذي يمتد على جانبي خط هناك

-1181في البداية ر مواردهذا الحلل يتلدتم ، 91أراضي الضفة الغربية وأراضي تقدر، و[12]مليار قدم مكعب من الغاز 811مليار برميل و 8.9حوالي ب 1188

يفصل موارد البترول 8مليار دوالر أمريكي، جدول 891عوائده المالية بحوالي ارتفع تلدير الموارد 1182-1181في العام .91والغاز في اليابسة في أراضي

[16]مليار برميل 1.9 يالمتاحة في الحلل إلى حوال

B. الصخر الزيتي: ( 911-191)والغاز فيه بحوالي موارد البترولفإن كمية حسب التلديرات األولية

يتوقع أن . عام 2111حاجة إ حوالي الذي يلدر ليكفي ،وال[17]الف مليار برميل هناك مشاكل بيئية . [18]دوالرا أمريكي 91-21تصل كلفة إنتاج البرميل حوالي

.متوقعة من المشروع، لكن الشركات المستثمرة تنفي ذلك

-1189)البداية باليوم في بترول برميل 91111 حوالي تتوقع الشركة أن تنتجبرميل يوميا في بداية العلد 191111، كما يتوقع أن يرتفع اإلنتاج إلى (1111

.[18]م1111اللادم بعد العام

وفي جنوب الضفة الغربية فإن هناك مؤشرات على أن جزء من الصخور بعض رخص التنليب تمنحالزيتية قد تمتد إلى جبال الخليل، حيث شرعت إتسرائيل

أراضي قرى إذنا باللرب من( شفيا)مثال ذلك حلل عن الصخر الزيتي بجوارها .الزيتيمع الصخر وترقوميا وغيرهما وهو ما تسيتم نلاشه الحلا

VI. في مياه البحر ( اللرصنة اإلتسرائيلية)ات موارد الغاز والبترول اكتشاف :المتوتسط

ءا وحلل ن. )8444ر المتوتسط في العام لغاز الطبيعي في البحااتاكتشافبدأت . (81خريطة )والتطوير للحلول المكتشفة (88خريطة )للحلول الجديدة ،(وماري ب

A. المتوتسطالحلول المكتشفة في مياه البحر: البحر مواقع حلول البترول والغاز المكتشفة في مياه ( 81خريطة )تبين

ط والتي تمتد من الحدود الشمالية مع لبنان إلى الحدود مع مصر في الجنوب،المتوتس

مليار متر مكعب 8111الموارد حوالي أدناه مجموع التلديرات لهذه 1ول الجديبين

تلدر قيمة عوائدها المالية النفط والتيمن مليار برميلمن الغاز باإلضافة إلى حوالي

أمريكيدوالر مليار 191بحوالي

West Bank

مواقع انتشار الصخر الزيتي :81خريطة في فلسطين

Page 137: The Fifth International Energy Conference - Palestine -

463

A. أعمال التنليب عن البترول والغاز الطبيعي داخل أراضي الضفة الغربية(8411-8441.)

B. لتنليب عن البترول والغاز الطبيعي على حدود الضفة الغربية االأعم(8441-1182.)

C. موارد البترول والغاز الطبيعي من الضفة الغربية اتستنزافونهب أعمال (.1182-1181)وجوارها

A. 8411)الضفة الغربية راضيالطبيعي داخألالتنليب عن البترول والغاز-8441 ) إتسرائيلية تتعلق ةنشطأعلود السبعينات والثمانينات من اللرن المنصرم شهدت

االراضي الفلسطينية المحتلة عام داخلبالتنليب عن البترول في مواقع متعددة منها بيرزيت، المزرعة اللبلية ( 1خريطة )م، كان ذلك في عدة مواقع 8491

عابود في رام هللا، النبي إلياس، جيوس في قلليلية، جينصافوط في نابلس، حلحول و اتستكشافيةفي الخليل، وجوار البحر الميت ، حيث قامت إتسرائيل بزيادة عمق آبار

البريطاني، ويبدوا أن أن إتسرائيل االنتداببدأت أعمال الحفر بها في عهد الطبلات الهيدروكربونية في الضفة انتشارحول نتائج التنليب هذه اتستخدمت

ة، أكد هذه التاريخيفي بناء نماذج تبين التوقعات في مجمل أراضي فلسطين الغربية في موقعها اإللكتروني [8]اإلتسرائيلية (Zionoil& Gas) الحليلةأدبيات شركة

.لشركةسان مدير مشروع التنليب في اوعلى لB. 8441)عن البترول والغاز الطبيعي على حدود الضفة الغربية التنليب-

1182): تجددت فكرة التنليب والبحث عن البترول والغاز في فلسطين في التسعينات من اللرن الماضي من منطلق ان طبلات الصخور في الدول العربية المجاورة

ان المرجح كان والغاز وبالتاليلفلسطين تحتوي على مخزون كبير من البترول طبلات صخور فلسطين ايضا على هذا المورد الهام، وهناك منطلتين تحتوي

:حدوديتين يتركز التنليب فيهما عن الطبلات الهيدروكربونية

(بدرس-قلليلية)المنطلة الوتسطى في الحدود الغربية للضفة الغربية (8

.الحدود الشمالية والشمالية الغربية للضفة الغربية (1

:منطلة الوتسطى من الحدود الغربية للضفة الغربيةالتنليب في ال (8

أطلق عليه وغازتشير إلى وجود حلل بترول وتؤكد المعلومات التي جمعت على أتساس أنه صنف ،(9)اتسم مجد نسبة إلى مجدل الصادق قرب قلليلية خريطة

وغربا وعلى طول حدود العام الهدنة شرقاتجاري ويمتد على جانبي خط حلل أكد ذلكتلرير جنوبا،في المنطلة الممتدة من قلليلية شماال حتى بدرس والمدية 8491

إتسرائيلي متخصص في الطاقة والبتية لخبير ومحللتصريح مدقق بريطاني وكذلك هد اإلتسرائيلي لمركز حيث يؤكد في ملابلة له مع ملحق المش[9]التحتية، بركات

كما حاول مركز . ل إلى داخل أراضي الضفة الغربيةالحل امتدادمدار يؤكد رتسم تصور أولي من جهته في وزارة الدولة تستيطانالمعلومات لشؤون الجدار واال

على بيانات اعتمادا( 9خريطة )رقعة الحلل داخل الضفة الغربية امتدادحول توقع البريطاني وفي فترة حكم االنتدابلعمل عليها في عهد تم ا اتستكشافيةمن آبار

. األردن للضفة الغربية

والتصور حول المفهومفي تكوين اعتمادهاإتسرائيل إخفاء مسألة تعمدتكما أيضا على نتائج ( 91وأراضي 91أراضي )الجغرافي الكلي للحلل في متداداال

هللا، قلليلية، رام)يل في مناطق األخرى التي حفرتها إتسرائ االتستكشافيةحفر اآلبار امتدادوذلك حتى تتجنب الحديث عن الغربية،في داخل الضفة ( ، تسلفيتنابلس

في الضفة الغربية وما يتبع ذلك من تداعيات حلوقيا، 91الحلل في داخل أراضي خوف وهذا ما يسبب . 8491وتسياتسيا لصالح الفلسطينيين في أراضي ااقتصادي

أدلة داخل البورصة اإلتسرائيلية من جهة، ولمنع توفير أية اتهااتستثمارالشركة على الحلل داخل الضفة الغربية من جهة أخرى، وذلك حتى تتجنب امتدادإلى تشير

جزء الواقع منه تحت تلديم براهين عن وجود حلوق فلسطينية في الحلل في ال أيض،91أراضي ا إلى منطلة اللطرون هناك ما يشير إلى أن الحلل قد يمتد جنوبا

ومحافظة اللدس حيث حصلت الشركة نفسها جفعوتعوالم على رخصة حق التنليب تشير الوثائق التي تم ، [10]فيها ويبدوا أنها أي الشركة شرعت في الليام بذلك

ويعتبر [11]1كم 243تلدربحوالي 91الحصول عليها أن مساحة الحلل في اراضي هذا الجزء االصغر من الحلل، بينما تشير الدراتسات أن الجزء االكبر واالغزر من

في عمق الضفة الغربية خريطة ، وتلدر المساحة داخل الضفة 9الحلل يمتد شرقاوالموارد المتاحة فيه حتياطيـ، ويلدر مجموع اال(%11-11)الغربية بحوالي

مليار برميل نفط لهذا الجزء من الحلل،كما تلدر موارد الغاز فيه 1.5بحوالي ومن اجل اتستنفاذ كامل [12]مليار قدم مكعب من الغاز الطبيعي 811بحوالي

الغاز تستخراجبئر ال 19بئر منها 91طاقة الحلل تخطط اتسرائيل مستلبا لحفر ولغايات . 1181وذلك حسب تلرير الشركة البريطانية في [13]والبترول معا

في 1ومجد 9حفر بئر مجد تمالبترول من الحلل فلد اتستخراجتطوير عمليات وبعد 1182وفي العام [14]1189-1182في األعوام 9ة قريبة من بئر مجد منطل

ناء على بحفر مجموعة جديدة من اآلبار، فلد تم إعادة تلدير االحتياطي في الحلل مليار 1.9المعطيات الجديدة، ليرتفع تلدير حجم المخزون االحتياطي إلى حوال

.مليار برميل 2.9قدرت شركة هولندية المخزون حوالي 1189وفي العام ][برميل

خريطة )د الشمالية والشمالية الغربية للضفة الغربية التنليب على الحدو (19)

للتنليب عن امتيازعلىZion & Oil[8]حصلت شركة 1111وفي العام البترول والغاز في منطلة الساحل الشمالي الممتد بين طولكرم وحيفا، وفي العام

في منطلة إضافي 1كم 191التنليب عن النفط إلى امتيازتوتسعت منطلة 1118تم إضافة منطلة وادي عارة للرخصة األولى، 1112، وفي العام المثلث الشمالي

إضافي وشرعت 1كم81تم إضافة 1119وفي العام . 1كم 11لمساحة تمتد إلى تم 1111وفي العام . قرب أم الفحم م9111بعمق 8الشركة في حفر بئر معامي

في تركيب ( 2)تسع في منطلة التنليب وتلرر التخطيط لحفر بئر اللجة رقم التوحصلت الشركة على ترخيص 1114، وفي العام 1كم 91جيولوجي مساحته

ومنطلة ، 1كم111للتنليب عن البترول في منطلة زرعين بمساحة حوالي ابتدائي بيسان جنوب بحيرة طبريا

إلى zionoil&Gasذها شركة نشطة التي تنفيمكن تلخيص المشاريع واأل (9صورة جوية )ما يلي

كما نشرتها شركة جفعوتعوالم 44خريطة حقل مجد في أراضي : 4خريطة

47

4

حقول موارد البترول المكتشفة في المنطقة االقتصادية في : 11خريطة .المتوسط

إتسرائيل-التحتيةوزارة البنية : المصدر

على الحدود الشمالية Zionoil&Gasأنشطة التنليب لشركة : 8صورة جوية .والشمالية الغربية للضفة الغربية

-http://www.zionoil.com/information-hub/future: المصدرprojects

IV. خطط) إتسرائيل مخططات على مجد حلل إتسرائيل اكتشاف تداعيات :(والمفاوضات الجدار بناء مشاريع ،تستيطاناال

ا مركز المعلومات لشؤون الجدار الدراتسات واألبحاث التي أنجزه بينتتداعيات تسياتسية كتشافأنه ترتب على هذا اال[15]في وزارة الدولة تستيطانواال

اإلتسرائيلية، وتحديد مسار الجدار وتسير تستيطانخطط اال بزيادةتجلى تأثيرها ناور ت كتشافهذا اال المفاوضات اإلتسرائيلية الفلسطينية، حيث بدأت إتسرائيل وبعد

الحلل في امتدادالتي تعلو منطلة في المنطلة 8491تعديل حدود حرب العام طلب بتكتل أو مجمع اتسموهي المنطلة التي تطلق عليها إتسرائيل أحيانا الضفة الغربية

مستوطنات أريئيل،

V. اليابسة 91 فلسطين أراضي في والغاز البترول موارد: اليابسة إلى نوعين 91والغاز الطبيعي في مناطق توزعت مصادر البترول

.حلول بترول وغاز طبيعي، وحلول الصخر الزيتي

A. الطبيعي حلول البترول والغاز : بين 8491حرب عام الهدنةحلل مجد الذي يمتد على جانبي خط هناك

-1181في البداية ر مواردهذا الحلل يتلدتم ، 91أراضي الضفة الغربية وأراضي تقدر، و[12]مليار قدم مكعب من الغاز 811مليار برميل و 8.9حوالي ب 1188

يفصل موارد البترول 8مليار دوالر أمريكي، جدول 891عوائده المالية بحوالي ارتفع تلدير الموارد 1182-1181في العام .91والغاز في اليابسة في أراضي

[16]مليار برميل 1.9 يالمتاحة في الحلل إلى حوال

B. الصخر الزيتي: ( 911-191)والغاز فيه بحوالي موارد البترولفإن كمية حسب التلديرات األولية

يتوقع أن . عام 2111حاجة إ حوالي الذي يلدر ليكفي ،وال[17]الف مليار برميل هناك مشاكل بيئية . [18]دوالرا أمريكي 91-21تصل كلفة إنتاج البرميل حوالي

.متوقعة من المشروع، لكن الشركات المستثمرة تنفي ذلك

-1189)البداية باليوم في بترول برميل 91111 حوالي تتوقع الشركة أن تنتجبرميل يوميا في بداية العلد 191111، كما يتوقع أن يرتفع اإلنتاج إلى (1111

.[18]م1111اللادم بعد العام

وفي جنوب الضفة الغربية فإن هناك مؤشرات على أن جزء من الصخور بعض رخص التنليب تمنحالزيتية قد تمتد إلى جبال الخليل، حيث شرعت إتسرائيل

أراضي قرى إذنا باللرب من( شفيا)مثال ذلك حلل عن الصخر الزيتي بجوارها .الزيتيمع الصخر وترقوميا وغيرهما وهو ما تسيتم نلاشه الحلا

VI. في مياه البحر ( اللرصنة اإلتسرائيلية)ات موارد الغاز والبترول اكتشاف :المتوتسط

ءا وحلل ن. )8444ر المتوتسط في العام لغاز الطبيعي في البحااتاكتشافبدأت . (81خريطة )والتطوير للحلول المكتشفة (88خريطة )للحلول الجديدة ،(وماري ب

A. المتوتسطالحلول المكتشفة في مياه البحر: البحر مواقع حلول البترول والغاز المكتشفة في مياه ( 81خريطة )تبين

ط والتي تمتد من الحدود الشمالية مع لبنان إلى الحدود مع مصر في الجنوب،المتوتس

مليار متر مكعب 8111الموارد حوالي أدناه مجموع التلديرات لهذه 1ول الجديبين

تلدر قيمة عوائدها المالية النفط والتيمن مليار برميلمن الغاز باإلضافة إلى حوالي

أمريكيدوالر مليار 191بحوالي

West Bank

مواقع انتشار الصخر الزيتي :81خريطة في فلسطين

Page 138: The Fifth International Energy Conference - Palestine -

452

اقليميا على درجة عالية من الخطورة وقد يهدد االتستلرار في المنطلة إن لم .[3]يكن العالم

يبحث الجزء األول من الدراتسة في جرد هذه الموارد ثم تحاول الدراتسة جمع حول تلدير قيمة هذه الموارد المتاحة ( معلنة ومخفية)بيانات ومؤشرات

هذه الموارد، اتجاهوتعمد الدراتسة إلى فهم وتعليل تسلوك إتسرائيل فيها،حتياطيواالهذه انتشارومفهوم حول إطار تشكيل تصور باتجاهوتركز على التعمق في تحليلها

مناهج البحث الوصفي والكمي والملارنة والتحليل والتركيب باتستخدامالموارد، .واالتستنباط

موارد اتستغالوفرص توظيف على تحليليركز الجزء الثاني من الدراتسة البترول والغاز الطبيعي، ويناقش ويحلل التحديات والعلبات التي تعترض تسبيل

للدولة الفلسطينية، وتحدد أهم ةياقتصادالموارد في بناء ملومات توظيف هذه . للتعامل مع هذا الملف ةتستراتيجياالالتوجهات واألولويات

II. غزة قطاع شواطئ ملابل الفلسطينية المياه في البترول موارد: -

و بعد االنتهاء من أعمال المسح الزلزالي لمنطلة تلدر ،1111في العام

كم عن شاطئ ( 29-21) وعلى مسافة تبعد حوالي[4]1كم 8111مساحتها بحوالي Gazza) أحدهما : غزة، انتهت أعمال التنليب إلى الكشف عن حللي غاز طبيعي

Marine ) مليار متر ( 28-11)لحلل بحوالي هذا ا احتياطيوقدر 91في منطلةمليار 9-2فيه بحوالي حتياطيويلدر اال( (Noa Southمكعب أما الثاني فيدعى

91بين غزة ةيقتصاد، يمتد هذا الحلل في المنطلة البحرية اال[5]متر مكعب ةيقتصاد، يلدر مجموع موارد الحللين في المياه اال91وعسلان في مناطق مليار متر مكعب، كما وجد أن ( 91-22)بحوالي 8491الفلسطينية لحدود العام

وتلدر موارد وعائدات الكمية .خصائص الغاز فيهما جيدة و ذو قيمة حرارية عاليةيحتاج . [5]مليار دوالر( 9.9)لية بحوالي المكتشفة في قطاع غزة باألتسعار الحا

الكميات . مليون دوالر 111قد يصل إلى حوالي اتستثمارهذه الموارد إلى اتستخراج

تسنة وال 89المكتشفة لتاريخه في بحر غزة تكفي لتلبية حاجات السوق المحلي لفترة . [5]يمكن التصدير منها

A. هل يمكن أن يزداد حجم الموارد في بحر غزة: المجاورة ةيقتصادااليمكن اإلشارة إلى أن حجم الموارد الفلسطينية في المياه

لتلييدات وبفعل انليب الت اقتصرلشاطئ غزة قابلة للزيادة عن الحجم الحالي، حيث فلط من مجموع مساحة المياه [4]1كم8111على مساحة تلدر بحوالي اإلتسرائيلية

2111غزة والتي تلدر مساحتها بحوالي لشواطئالفلسطينية الملابلة ةيقتصاداال احتياطيأن حجم Chossudovsky[6]شوتسودوفسكيالبروفسورقدر كما .1كم

أن تكون إتسرائيل احتمالوبالتالي فإن هناك لنو معمما هالغاز في حلول غزة أكبر أو أنها . ت على حلول أخرى جديدة في بحر غزة دون علم أحداتستولنلبت و

.ف الموارد المكتشفة بعيدا عن العيونتستنز

B. أهداف إتسرائيل ومراوغتها: تستثمارالفلسطينية معدة اتستراتيجيةمنعت إتسرائيل باللوة العسكرية تنفيذ خطة

رد الطبيعي الهام في تلبية حاجة السوق الفلسطيني من الطاقة الكهربائية، هذا الموإتسرائيل في حينه إلى منع تعمدوبدل شراء الوقود المستورد من إتسرائيل،

الفلسطينيين أيضا من إنشاء محطات إنتاج وتوليد كهرباء خاصة بهم خوفا من غير اقتصادالفلسطيني قتصاداالفلسطيني في موارد الطاقة، إلبلاء اتستلالتحليق

شار إليه المحلل اإلتسرائيلي، ال بد من التأكيد على ما أ قتصادلامستلل وتابعا اتستغالمن أن السبب الحليلي لمنع الفلسطينيين من [7]إلدارلييالعسكري اإلتسرائ

ل الفلسطينيون هذا خشيت إتسرائيل من أن يستغموارد الغاز في غزة يعود إلى يدعم ياقتصادالهام في إحداث تنمية وتطوير تستراتيجيوااليقتصاداالالمورد

واإلعداد للتصدي االحتالصمود الفلسطينيين و تصلب عظم الملاومة في مواجهة .له

C. عوائد وتوفيرات الخزينة: بأن حجم المردود العائد على الشعب [5]الفلسطيني تستثمارقدر صندوق اال

الغاز الفلسطيني المكتشف في بحر غزة يلارب اتستغالالفلسطيني في حال تم تسنة من عمر المشروع 89مليار دوالر خال 2من األرباح أي حوالي % 91

كما قدر الصندوق أن تطوير حللي الغاز في غزة . لتكون رافد أتساتسي للموازنةمليون دوالر تسنويا 991سلطة الوطنية الفلسطينية حوالي تسيوفر على خزينة ال

عن توريد الطاقة الكهربائية من إتسرائيل، االتستغناءتسنة من خال 89ولمدة .مليار دوالر 81وبمجموع كلي يلدر بحوالي

D. عبرة لحماية موارد البترول والغاز الطبيعي الفلسطيني: د الغاز الطبيعي الفلسطيني في وجدت هذه الدراتسة بعد البحث والتحلق أن موار

المتوتسط والتي تلع في بحر غزة هي المورد الطبيعي الفلسطيني الوحيد الذي شرق لم تستنزفه أو تنلض عليه إتسرائيل، فما هو السبب وراء ذلك؟ لعل الجواب هو أن

التي شاركت في ( بريتيش غاز)جزء من هذا المورد أصبح حق للشركة البريطانية المورد، وعليه هذا ، أي أن هناك حلوق بريطانية في ملكية ويرليب والتطعملية التن

أيضا على بريطانيا، وإتسرائيل اعتداءعلى هذا الموارد أصبح يمثل عتداءاالفإن على بريطانيا أو الحلوق البريطانية وال تجرأ على ذلك، ولعل عتداءاالعاجزة عن

علم منها بأن يتجه الفلسطينيون إلى العبر والت اتستخاصما حصل هنا مسألة تستحق أو تكتيكية مع شركات من الدول األخرى الكبرى التي /و ةاتستراتيجيخلق شراكات

هي خيار ممكن لحماية الموارد الطبيعية فعليها عتداءاالال تلوى إتسرائيل على . لها اإلتسرائيلي تستنزافاالأو عتداءاالالفلسطينية من

III. الغربية الضفة في الطبيعي الغازو البترول موارد: الزمان تتوزع حسبأنها بينت نتائج التحليل لموارد البترول والغاز الطبيعي

ألعمال التنليب امتدادوهي ،أنها كانت في إطار ممنهج ومرتسوم بعمقووالمكان، وأضافت عليها النلطة الرابعة ،البريطاني في فلسطين االنتدابالتي بدأت في عهد

لضفة الغربية في في ا بعض أعمال التنليب في فترة الحكم األردني (األمريكية)الخمسينات، حيث يمكن تصنيف موارد البترول والغاز الطبيعي حسب المكان

:والزمان إلى األنماط الزمانية والمكانية التالية

الشرقي الشامي في المتوسط الحقل: 1خريطة [2]: المصدر

Page 139: The Fifth International Energy Conference - Palestine -

441

موارد البترول والغاز الطبيعي في فلسطين... وتحدي ... فرص ...واقع

يةتستلالمن التبعية إلى اال

(حرزهللا)عبدهللا عدهللا

دائرة الجغرافيا جامعة بيرزيت رام هللا، فلسطين

[email protected]

حقول البترول والغاز الطبيعي الجديدة في فلسطين، اكتشافحملت أنباء وأخبار :الملخصالخانقة التي يعاني منها ةيقتاا االقلق، آمال، وتطلعات ألنها تشكل مفتاح لحل األزمة

توظيفها اتاستراتيجيوحول فرص وتحديات جدية تساؤالت مثلت الشعب الفلسطيني، واإلسرائيلي إلى مرحلة حتالللال ولة فلسطين من مرحلة التبعية انتقالفي عملية

.ية والسيا ةستقاللاال

ميداني، التحليلي، عد من المناهج البحثية الوصفي، التاريخي، الالدراسة هذهاعتمدتمعلومات حول موار وتحرت صحة و قة التقات كما والعاف الذهني، االستنباطي

في فلسطين، من ماا ر متنوعة، رئيسة الجديدة المكتشفة( البترول والغاز الطبيعي)إعا ة قراءتها من منظور تم ، (إسرائيلية، أر نية، فلسطينية، بريطانية وغيرها)وثانوية

يزيمتوالزماني، و( المكاني)تحليل معمق لتوزيعها الجغرافي وإجراء انيفهاتوفلسطيني،تكوين ، و(ز طبيعي، صخور زيتيةبترول، غا) يالهيدروكربونتكتالتها في الفضاء

البترول والغاز الطبيعي وتحديد دراسة موار المفاهيماألساسية، وتحديد العناصر الهامة لطبيعة العالقة بين هذه العناصر، عملت الدراسة على الربط بين المشاهدات والمقارنة

التحليل في والتركيب لعناصر المشهد وتقييم النتائج، وركزت على التعمق في واالستنتاجر جزء كبير إسرائيل عن نش( تمتنع)محاولة للوصول للمكنون المعلوماتي الذي تتحفظ

األراضي المحتلة منه، وخاصة ما يتعلق منه بموار البترول والغاز الطبيعي المكتشفة في على خطط اتكتشافاالتداعيات هذه خوفا من ( الضفة الغربية وقطاع غزة)7691عام

اإلسرائيلي ومشاريع بناء جدار الضم والتوسع وإ ارة ستيطاناالفي توجيه حتالل ولة االتبا ل ما يسمى لة اإلسرائيليبالمناورة و ما يرتبط منها مع الفلسطينيين ت المفاوضا . األراضي

( البيئة المحلية واإلقليمية)تحليل الواقع استكشاف وركز الجزء الثاني من الدراسة على فلسطين من حالة التبعية ولة في عملية نقل ( الهيدروكربونية)توظيف هذه الموار ل

ةيقتاا اال، وفي سياق ذلك عرضت الدراسة الفرص والسيا ة يهستقاللإلى اال حتالللالوناقشت أهم التحديات هذه الموار ، استغاللمعتتاح للفلسطينيينوالسياسية المتوقع أن

، والفسا وغياب قانون البترول وضعف حتاللاال) في المشهد السياسي العام والمعقد،ة، ستراتيجييات االواألول ت حد،و(الهيدروكربونيةالخبرة في مجال إ ارة الموار

إجراء منظومة قيا ة فلسطينية جماعية قا رة على التحدي وعلى الحاجة إلى أكدت التيمجموعة مبا ئ توجيهية الدراسة اقترحت، حيث التركيب البنيوي للمجتمعفي إصالح

.هذه الموار توظيفللتعامل مع

تتوزع جغرافيا على ، جديدةبترو ل وغاز طبيعي وار موجو إلى حقيقة الدراسة خلات، وبكميات واعدة وتجارية تقدر 84الضفة الغربية وقطاع غزة والمناطق المحتلة عام

وطني اقتاا قيمتها بآالف المليارات من الدوالرات وهي كافية ليتم توظيفها في بناء هذه الموار كفايةعلى وهذا مؤشر واضح ،لمئات السنين القا مة ونشطفلسطيني قوي

إلى حالة حتاللالتبعية لالالمساهمة في نقل ولة فلسطين من حالة ارة عجلة التنمية وإلسياسي، يجسد السيا ة الفلسطينية استقاللالذي يمكن أن يؤ ي إلى يقتاا اال ستقاللاال

السياسي للتأثير هااستغالليمكن فإنه ة استراتيجيالبترول سلعة أنوحيث على األرض، ح القضية الفلسطينية، لعلى المستوى اإلقليمي في سياسات الدول األخرى لاا

موار البترول والغاز الطبيعي الفلسطيني، موار طبيعية فلسطينية، :كلمات مفتاحية .ةياقتاا مقومات

I. ملدمة: لفلسطين التاريخية في هااحتالشرعت إتسرائيل وبشكل ممنهج ومنذ بدايات

من ف الثروات والموارد الطبيعية الفلسطينية، اتستنزاف، العمل على 8491ام عمياه وحجر ومعادن وخامات وأماح البحر الميت والتي منها أيضا البترول والغاز

أنشأت إتسرائيل وحدة البترول، كما أعدت قانون البترول 8498ففي العام الطبيعي، التنليب عن البترول والغاز في المناطق حيث بدأت بعدها أعمال . 8491في العام

في جنوب السهل الساحلي قرب حدود قطاع غزة، وفي منطلة 91المحتلة عام البحر الميت وشمال النلب، حيث عثرت على كميات محدودة من الغاز ،وفي العلد

تسرقت ونهبت إتسرائيل البترول المصري من تسيناء 8491السابع وبعد حرب عام إتسرائيل بالتنليب عن البترول في داخل انشغلت، وفي العلدين الثامن والتاتسع [1]

على التنليب حتالاالالضفة الغربية، وفي العلد األخير من اللرن المنصرم ركز عن البترول على حدود الضفة الغربية ومحيطها، وفي العلد األول من اللرن الحالي ركزت إتسرائيل على التنليب عن الغاز في البحر المتوتسط، وفي العلد الثاني منه

بدأ داخل األراضي السورية، التنليب عن البترول في الجوالن المحتلالبدء بقررت في فلسطين قبل عشرة ين للغاز الطبيعي في بحر غزة، حلل اكتشافالحديث عن خبار من األجديدة األعوام األربعة األخيرة كان هناك مجموعة فيأعوام فلط ،

والتطوير تستنزافواالكتشافواالالتي تتحدث عن التنليب المهنية الصحفية والتلارير الضفة الغربية لمكامن البترول والغاز الطبيعي في مناطق متعددة من فلسطين مثل

حيفا وقيسارية، عكا، ، بحر 1119، 8444، بحر غزة عسلان 8411-1182نتائج بحث أمريكي لتلدير موارد البترول والغاز أكدت، وقد 1181، 1114

الطبيعي المكتشفة في شرق المتوتسط والذي نفذته هيئة المسح الجيولوجي األميركي بير وواعد، يطلق عليه حلل الشرق ان هناك حلل غاز طبيعي وبترول ك 1181عام

تريليون 811يحتوي تلريبا على يلدر أنه ، والذي( 8) الشامي للمتوتسط خريطة وكما تبين الخرائط فإن .[2]مليار برميل من النفط 8.1قدم مكعب من الغاز ونحو

في ةيقتصاداالاألرض والمياه )الحلل يغطي تلريبا الثلثين الشماليين من فلسطين .(المتوتسط

موارده على من السيطرةبحرمان الشعب الفلسطيني اإلتسرائيلي الحتالاتسببملوماته جزء هام من ، ففلد الشعب الفلسطيني هااتستغاله من الطبيعية، ومنع

.اإلتسرائيلي قتصادلاالفلسطيني تابعا قتصاداال، وأصبح ةيقتصاداال

موارد البترول والغاز في المرحلة الحالية في اكتشافالفلسطينيون أن يرى ةيقتصاداالفلسطين قد يمثل فرصة لحل مشكلة توفر الموارد المالية والملومات

انتلاللى يساعد ع ياقتصادلدولة فلسطين، وتوظيفها في إحداث تنمية وتطوير والسياتسي يقتصادالتستلاالاالإلى مرحلة حتاللادولة فلسطين من مرحلة التبعية

.ثم السيادة على أرضه لصناعة مستلبل أكثر إشراقا وازدهارا

ال بد من اإلشارة أيضا إلى أن وجود مثل هذه الموارد الكبيرة في شرق ، مما اإلتسرائيليلعربي المتوتسط أصبح يضيف أبعاد وتداعيات جديدة للصراع ا

يولد فرص للتجاذب والتناحر اإلقليمي بسبب عدم وجود ترتسيم واضح للحدود احتماالتالمشتركة ووجود تباينات حول المفاهيم األتساتسية المتعللة بها، ما يخلق

ويمكن ان يشكل ذلك نزاعا . البترول اتاتستثمارلتداعيات حروب إقليمية بسبب

452

اقليميا على درجة عالية من الخطورة وقد يهدد االتستلرار في المنطلة إن لم .[3]يكن العالم

يبحث الجزء األول من الدراتسة في جرد هذه الموارد ثم تحاول الدراتسة جمع حول تلدير قيمة هذه الموارد المتاحة ( معلنة ومخفية)بيانات ومؤشرات

هذه الموارد، اتجاهوتعمد الدراتسة إلى فهم وتعليل تسلوك إتسرائيل فيها،حتياطيواالهذه انتشارومفهوم حول إطار تشكيل تصور باتجاهوتركز على التعمق في تحليلها

مناهج البحث الوصفي والكمي والملارنة والتحليل والتركيب باتستخدامالموارد، .واالتستنباط

موارد اتستغالوفرص توظيف على تحليليركز الجزء الثاني من الدراتسة البترول والغاز الطبيعي، ويناقش ويحلل التحديات والعلبات التي تعترض تسبيل

للدولة الفلسطينية، وتحدد أهم ةياقتصادالموارد في بناء ملومات توظيف هذه . للتعامل مع هذا الملف ةتستراتيجياالالتوجهات واألولويات

II. غزة قطاع شواطئ ملابل الفلسطينية المياه في البترول موارد: -

و بعد االنتهاء من أعمال المسح الزلزالي لمنطلة تلدر ،1111في العام

كم عن شاطئ ( 29-21) وعلى مسافة تبعد حوالي[4]1كم 8111مساحتها بحوالي Gazza) أحدهما : غزة، انتهت أعمال التنليب إلى الكشف عن حللي غاز طبيعي

Marine ) مليار متر ( 28-11)لحلل بحوالي هذا ا احتياطيوقدر 91في منطلةمليار 9-2فيه بحوالي حتياطيويلدر اال( (Noa Southمكعب أما الثاني فيدعى

91بين غزة ةيقتصاد، يمتد هذا الحلل في المنطلة البحرية اال[5]متر مكعب ةيقتصاد، يلدر مجموع موارد الحللين في المياه اال91وعسلان في مناطق مليار متر مكعب، كما وجد أن ( 91-22)بحوالي 8491الفلسطينية لحدود العام

وتلدر موارد وعائدات الكمية .خصائص الغاز فيهما جيدة و ذو قيمة حرارية عاليةيحتاج . [5]مليار دوالر( 9.9)لية بحوالي المكتشفة في قطاع غزة باألتسعار الحا

الكميات . مليون دوالر 111قد يصل إلى حوالي اتستثمارهذه الموارد إلى اتستخراج

تسنة وال 89المكتشفة لتاريخه في بحر غزة تكفي لتلبية حاجات السوق المحلي لفترة . [5]يمكن التصدير منها

A. هل يمكن أن يزداد حجم الموارد في بحر غزة: المجاورة ةيقتصادااليمكن اإلشارة إلى أن حجم الموارد الفلسطينية في المياه

لتلييدات وبفعل انليب الت اقتصرلشاطئ غزة قابلة للزيادة عن الحجم الحالي، حيث فلط من مجموع مساحة المياه [4]1كم8111على مساحة تلدر بحوالي اإلتسرائيلية

2111غزة والتي تلدر مساحتها بحوالي لشواطئالفلسطينية الملابلة ةيقتصاداال احتياطيأن حجم Chossudovsky[6]شوتسودوفسكيالبروفسورقدر كما .1كم

أن تكون إتسرائيل احتمالوبالتالي فإن هناك لنو معمما هالغاز في حلول غزة أكبر أو أنها . ت على حلول أخرى جديدة في بحر غزة دون علم أحداتستولنلبت و

.ف الموارد المكتشفة بعيدا عن العيونتستنز

B. أهداف إتسرائيل ومراوغتها: تستثمارالفلسطينية معدة اتستراتيجيةمنعت إتسرائيل باللوة العسكرية تنفيذ خطة

رد الطبيعي الهام في تلبية حاجة السوق الفلسطيني من الطاقة الكهربائية، هذا الموإتسرائيل في حينه إلى منع تعمدوبدل شراء الوقود المستورد من إتسرائيل،

الفلسطينيين أيضا من إنشاء محطات إنتاج وتوليد كهرباء خاصة بهم خوفا من غير اقتصادالفلسطيني قتصاداالفلسطيني في موارد الطاقة، إلبلاء اتستلالتحليق

شار إليه المحلل اإلتسرائيلي، ال بد من التأكيد على ما أ قتصادلامستلل وتابعا اتستغالمن أن السبب الحليلي لمنع الفلسطينيين من [7]إلدارلييالعسكري اإلتسرائ

ل الفلسطينيون هذا خشيت إتسرائيل من أن يستغموارد الغاز في غزة يعود إلى يدعم ياقتصادالهام في إحداث تنمية وتطوير تستراتيجيوااليقتصاداالالمورد

واإلعداد للتصدي االحتالصمود الفلسطينيين و تصلب عظم الملاومة في مواجهة .له

C. عوائد وتوفيرات الخزينة: بأن حجم المردود العائد على الشعب [5]الفلسطيني تستثمارقدر صندوق اال

الغاز الفلسطيني المكتشف في بحر غزة يلارب اتستغالالفلسطيني في حال تم تسنة من عمر المشروع 89مليار دوالر خال 2من األرباح أي حوالي % 91

كما قدر الصندوق أن تطوير حللي الغاز في غزة . لتكون رافد أتساتسي للموازنةمليون دوالر تسنويا 991سلطة الوطنية الفلسطينية حوالي تسيوفر على خزينة ال

عن توريد الطاقة الكهربائية من إتسرائيل، االتستغناءتسنة من خال 89ولمدة .مليار دوالر 81وبمجموع كلي يلدر بحوالي

D. عبرة لحماية موارد البترول والغاز الطبيعي الفلسطيني: د الغاز الطبيعي الفلسطيني في وجدت هذه الدراتسة بعد البحث والتحلق أن موار

المتوتسط والتي تلع في بحر غزة هي المورد الطبيعي الفلسطيني الوحيد الذي شرق لم تستنزفه أو تنلض عليه إتسرائيل، فما هو السبب وراء ذلك؟ لعل الجواب هو أن

التي شاركت في ( بريتيش غاز)جزء من هذا المورد أصبح حق للشركة البريطانية المورد، وعليه هذا ، أي أن هناك حلوق بريطانية في ملكية ويرليب والتطعملية التن

أيضا على بريطانيا، وإتسرائيل اعتداءعلى هذا الموارد أصبح يمثل عتداءاالفإن على بريطانيا أو الحلوق البريطانية وال تجرأ على ذلك، ولعل عتداءاالعاجزة عن

علم منها بأن يتجه الفلسطينيون إلى العبر والت اتستخاصما حصل هنا مسألة تستحق أو تكتيكية مع شركات من الدول األخرى الكبرى التي /و ةاتستراتيجيخلق شراكات

هي خيار ممكن لحماية الموارد الطبيعية فعليها عتداءاالال تلوى إتسرائيل على . لها اإلتسرائيلي تستنزافاالأو عتداءاالالفلسطينية من

III. الغربية الضفة في الطبيعي الغازو البترول موارد: الزمان تتوزع حسبأنها بينت نتائج التحليل لموارد البترول والغاز الطبيعي

ألعمال التنليب امتدادوهي ،أنها كانت في إطار ممنهج ومرتسوم بعمقووالمكان، وأضافت عليها النلطة الرابعة ،البريطاني في فلسطين االنتدابالتي بدأت في عهد

لضفة الغربية في في ا بعض أعمال التنليب في فترة الحكم األردني (األمريكية)الخمسينات، حيث يمكن تصنيف موارد البترول والغاز الطبيعي حسب المكان

:والزمان إلى األنماط الزمانية والمكانية التالية

الشرقي الشامي في المتوسط الحقل: 1خريطة [2]: المصدر

Page 140: The Fifth International Energy Conference - Palestine -

43

مدى رضى مشتركينا عن أداء المحطات وأداء الشركة وللتأكد من [2] وبعد االطالع على تجارب مشابهةفي المنطقة والشركات العاملة

الرضى العام عن يدرس ل تصميم استبيانب لتحليل رضى المشتركين قمناوبعد األداء واخذ تغذية راجعة عن الرضا العام لتطوير النظام لألفضل،

:9على النتائج التاليةحصلنا تحليله اإلدارية كانرضا المشتركين عن أداء الشركة اإلجراءات

امتنع % 0سيئ و% 0ومقبول % 2جيد و% 00وممتاز 20% عن االجابة

02وممتاز %20رضا المشتركين عن أداء الشركات المنفذة % امتنع عن اإلجابة% 2سيئ و% 0ومقبول % .جيد و

جهون ضعف في الجهد نسبة المشتركين الذين يوامنهم تم معالجة المشكلة % 0.حيث % 02( الفولطية)الكهربائي

لديهم

اعتقادهم ان قطاع الطاقة على( نعم)أجابوا نسبة المشتركين الذينوكانت % 20( ال) اأجابو اما نسبة الذين % 20في ازدهار

:األسباب حسب التوزيع التالي

o 00 %الرتفاع كلفة المحطات.

o 00 % فلسطينجود خبرات في لعدم و.

o 2. % لعدم وجود قرارات مشجعة بخصوص هذا الموضوع من .الفلسطينيةقبل السلطة

o 07 % لعدم وجود قرارات مشجعة بخصوص هذا الموضوع من .قبل شركات التوزيع

جائالنت 0

مفتاح النجاح يكمن في قدرة الشركة على فهم وتطبيق تجارب سابقة مع يينمستو اليها الشعور بالمسؤولية على ابتكار طرق جديدة مضافا ال

جعل منها سلما تلوجهات النظر المختلفة محترمين. والجماعيالشخصي ر وعزيمة ال يفت نجاح هذ التجربة نتاجا عن مجهود فكان ،أهدافهالتحقيق

التي في قطاع الطاقة المتجددة ومن تجربتنا ،كل وايمان ال يهتزال ت ه ينبغي النظر بتمعن لكافة النواحي وعدم ان ا، وجدن0200عام ولدت

:النتائجوتتلخص الوقوف مكتوفي االيدي حيال أي مشكلة باستخدام الطاقة توليد انشاء وحدات وفر اقتصادي ملموس نتيجة

.$ 306,153رت على االقتصاد الفلسطينية حيث وف الشمسية

عينات االستبيان من خالل نسخ ورقية تم جمع 9

ية انتاج وحدات الطاقة الشمس تحقيق مكاسب اقتصادية من خالل .سنويا$ 112,856المملوكة للشركة بمقدار

الكربونطن من ثاني أكسيد 2,180توفير.

لبحث اوتقبل المجتمع لتكنولوجيا الطاقة المتجددة من خالل رواج .وتحليليهاأسباب عزوف الناس عن

الكهربائيةتقليل الفاقد الفني على الشبكات.

الشبكاترفع الجهد الكهربائي في نهايات.

شكلة تذبذب الفولتية في مناطق االحمال الخفيفة الناتج من حل م .الشمسيةشبك وحدات الطاقة

شبك وحدات الطاقة عنحل مشكلة تدني معامل القدرة الناتج .الشمسية

التوصيات 2

o وبأسعارإعادة استئناف المبادرة الفلسطينية للطاقة الشمسية .من قبل سلطة الطاقةتشجيعية

o ى المستوى الوطني الختبار األنواع الجديدةتشكيل لجنة فنية عل .األسواقها في حقبل طر وتحديد قوائم معتمدة بأسماء المعدات

o تكثيف الحمالت االعالنية بخصوص الطاقة المتجددة.

المراجع 7

[

0 ] ] Tubas District Electricity Co 8 ،" www.tdeco.ps ، "0200 8 [

0 ] ] powerauthority،http://microfit.powerauthority.on.ca /،" [

2] ] PRRC ،" http://www.perc.ps

الخطوات المتبعة لتركيب وحدات لتولد باستخدام الطاقة الشمسية: 0 الرسم

Page 141: The Fifth International Energy Conference - Palestine -

42

الفولطية في محول الصافح بعد: 2 الرسم

معامل القدرة 08080

اليا الشمسية وجد ان معامل قدرة خمن خالل دراستنا ومتابعة ال(PF)اثناء الفترات التشغيلية للوحدات الشمسية المحوالت في انخفاض

تركيب وحدات الطاقة الشمسيةمعامل القدرة في محول الصافح قبل : 7الرسم

التالية لمحول الصافح ةالدارس .و7في الرسم رقم ويظهر ذلك جليا ، 8بطبيعة احمال مسائية هذا المحول يتميز( الموظفين اسكان)لشمالي

ا باقتراح عدد من المكثفات الكهربائية ولحل هذ المشكلة قمن(Capacitor Banks ) لتحسين معامل القدرة في المحوالت التي تعاني

.من انخفاض في معامل القدرة

هي االحمال التي تكون اغلب الساعات التشغيلية لها خالل فترات ليلية 8

لنظام اإلداري المتبع ا 082

على أفضل وأسرع خدمة للحصوللتسهيل النظام اإلداري يهدف دوما ا. بهذا الخصوص ولهذا سارعت الشركة للترتيبات الالزمة. للمواطنين

حيث قامت سلطة الطاقة وبالتعاون مع شركات التوزيع بوضع الخطوط واألوراقوالتأكد من استيفاء كافة الشروط العريضة لتنفيذ واحدت التوليد،

توليد كهرباء باستخدام الطاقة وحدةتركيب لالالزمة للحصول على اذن .الشمسية

–ونتاريو في أ [2]مشابهة ودراسة تجاربرة للجمهور دبعد طرح المباو كان البد من مراجعة وتطوير كندا وتجارب أوروبية بهذا الخصوص

حيث يتم اتباع ISO9001:2008وبما يتناسب مع مواصفة ،النظام .شمسية وحدةأي لتنفيذ 0الموضحة في الرسم رقمالخطوات

موضح من خالل الرسم المرحل التي يمر بها المشترك منذ تقديم الطلب التواصل بين ولتسهيل الشمسية على شبكة الكهرباء الوحدة وحتى شبك

دالمواطن قائمة بالشركات المؤهلة بعالمواطن والشركات المنفذة نزود حصوله على كافة التراخيص لدينا ليتمكن الحصول على عروض أسعار ويتم أيضا تزويد الشركات العاملة بهذا المجال قائمة باألسماء الموافق

.الشمسيةهم لتركيب أنظمة توليد باستخدام الطاقة علي

بعد تركيب وحدات الطاقة الشمسيةمعامل القدرة في محول الصافح : 8 الرسم

لعل المدة لمقترحة وكما هو وارد بالرسم طويلة نسبيا حيث ان هذ الحد ال ابالغ بقولي ان كل من المرحلة األولى مرحلة، وربمااألقصى لكل

تم وحداتمن يومين وبعض ال أكثري معظم األحيان ال تتجاوز فوالثانية وكما نالحظ وجود إجراءات سلسة وواضحة أسبوع،تنفيذها خالل اقل من

أحدكان هذا االخير فسهل على المواطنين الكثير من التعقيدات اإلدارية، ع الطاقة الشمسية في منطقة اهم األسباب التي شجعت االستثمار في قطا

.طوباس

43

مدى رضى مشتركينا عن أداء المحطات وأداء الشركة وللتأكد من [2] وبعد االطالع على تجارب مشابهةفي المنطقة والشركات العاملة

الرضى العام عن يدرس ل تصميم استبيانب لتحليل رضى المشتركين قمناوبعد األداء واخذ تغذية راجعة عن الرضا العام لتطوير النظام لألفضل،

:9على النتائج التاليةحصلنا تحليله اإلدارية كانرضا المشتركين عن أداء الشركة اإلجراءات

امتنع % 0سيئ و% 0ومقبول % 2جيد و% 00وممتاز 20% عن االجابة

02وممتاز %20رضا المشتركين عن أداء الشركات المنفذة % امتنع عن اإلجابة% 2سيئ و% 0ومقبول % .جيد و

جهون ضعف في الجهد نسبة المشتركين الذين يوامنهم تم معالجة المشكلة % 0.حيث % 02( الفولطية)الكهربائي

لديهم

اعتقادهم ان قطاع الطاقة على( نعم)أجابوا نسبة المشتركين الذينوكانت % 20( ال) اأجابو اما نسبة الذين % 20في ازدهار

:األسباب حسب التوزيع التالي

o 00 %الرتفاع كلفة المحطات.

o 00 % فلسطينجود خبرات في لعدم و.

o 2. % لعدم وجود قرارات مشجعة بخصوص هذا الموضوع من .الفلسطينيةقبل السلطة

o 07 % لعدم وجود قرارات مشجعة بخصوص هذا الموضوع من .قبل شركات التوزيع

جائالنت 0

مفتاح النجاح يكمن في قدرة الشركة على فهم وتطبيق تجارب سابقة مع يينمستو اليها الشعور بالمسؤولية على ابتكار طرق جديدة مضافا ال

جعل منها سلما تلوجهات النظر المختلفة محترمين. والجماعيالشخصي ر وعزيمة ال يفت نجاح هذ التجربة نتاجا عن مجهود فكان ،أهدافهالتحقيق

التي في قطاع الطاقة المتجددة ومن تجربتنا ،كل وايمان ال يهتزال ت ه ينبغي النظر بتمعن لكافة النواحي وعدم ان ا، وجدن0200عام ولدت

:النتائجوتتلخص الوقوف مكتوفي االيدي حيال أي مشكلة باستخدام الطاقة توليد انشاء وحدات وفر اقتصادي ملموس نتيجة

.$ 306,153رت على االقتصاد الفلسطينية حيث وف الشمسية

عينات االستبيان من خالل نسخ ورقية تم جمع 9

ية انتاج وحدات الطاقة الشمس تحقيق مكاسب اقتصادية من خالل .سنويا$ 112,856المملوكة للشركة بمقدار

الكربونطن من ثاني أكسيد 2,180توفير.

لبحث اوتقبل المجتمع لتكنولوجيا الطاقة المتجددة من خالل رواج .وتحليليهاأسباب عزوف الناس عن

الكهربائيةتقليل الفاقد الفني على الشبكات.

الشبكاترفع الجهد الكهربائي في نهايات.

شكلة تذبذب الفولتية في مناطق االحمال الخفيفة الناتج من حل م .الشمسيةشبك وحدات الطاقة

شبك وحدات الطاقة عنحل مشكلة تدني معامل القدرة الناتج .الشمسية

التوصيات 2

o وبأسعارإعادة استئناف المبادرة الفلسطينية للطاقة الشمسية .من قبل سلطة الطاقةتشجيعية

o ى المستوى الوطني الختبار األنواع الجديدةتشكيل لجنة فنية عل .األسواقها في حقبل طر وتحديد قوائم معتمدة بأسماء المعدات

o تكثيف الحمالت االعالنية بخصوص الطاقة المتجددة.

المراجع 7

[

0 ] ] Tubas District Electricity Co 8 ،" www.tdeco.ps ، "0200 8 [

0 ] ] powerauthority،http://microfit.powerauthority.on.ca /،" [

2] ] PRRC ،" http://www.perc.ps

الخطوات المتبعة لتركيب وحدات لتولد باستخدام الطاقة الشمسية: 0 الرسم

Page 142: The Fifth International Energy Conference - Palestine -

41

إضافة الخاليا بعد 0قبل إضافة الخاليا الشمسية ورسم رقم 2الرسم رقم الشمسية

تمثل دراسة لفاقد المحوالت الفني إضافة الى أثر تكنولوجيا هذ الحالة تمتحيث . الشبكاتجهد الشبكات وخصيصا نهاية لى الطاقة الشمسية ع

يوضح معلومات 7 محول الكراج في مدينة طوباس جدول رقم دراسة تفصيلية للحالة التي تم دراساتها

الفاقد الفني لمحول الكراج: 7جدول

(Voltage)الجهد 08082

:الجهد تتلخص فيما يليأثر وحدات التوليد على 2كما هو موضح في الرسم رقم الشبكاترفع الجهد وال سيما نهايات .لدراسة محول الكراج 0و لوحظت هذ الحالة في المحوالت ذات حيث( الفولطية)تذبذب الجهد

ارتفاع وانخفاض )في الجهد تذبذب عالي حيث يظهراالحمال الخفيفة فولط على شبكة الضغط 07يصل في بعض المناطق الى (الجهد

بإعادة توزيع االحمال وخصوصا هذ المشكلة قمنا لولح. المنخفض للجهدكيب منظم وتر ،على الفازات التي تغذيها وحدات الطاقة الشمسية

%15-للجهد لدى بعض المشتركين إضافة الى خفض الحد األدنى

PSفي االنفيرتر بما يتالءم مع المواصفة الفلسطينية %10+ورفعه

2707 p3. برنامج الوفيما يلي تفاصيل الدراسة الفنية للمحول باستخداملصافح الشمالي محول ا هذ الظاهرة التي ظهرت فيدراسة ل

يوضح معلومات .جدول رقمالمدينة طوباس في 250KVAبقدرةيوضح الدراسة على 2و0والرسم رقم تفصيلية للحالة التي تم دراساتها الفولتية لمحول الصافح الشمالي

تذبذب الفولتية على محول الصافح الشمالي: .جدول 45% (LF)لمعامل التحميل للمحو

78 عدد المشتركين على المحول 4 طاقة الشمسية عدد مشتركي ال

20KWp القدرة الكلية للمحطات الشمسية 0.86 (PF before)الشمسية معامل القدرة قبل تركيب المحطات 0.80 (PF After)الشمسية معامل القدرة بعد تركيب المحطات

221.8V (V before)الشمسية الجهد على نهاية الشركة قبل إضافة الخاليا 238.8V (V before)الشمسية كة بعد إضافة الخاليا الجهد على نهاية الشر 17V (V∆)مقدار الرفع في الجهد

الفولطية في محول الصافح قبل تركيب: 0 الرسم

الكراج اسم المحول KVA 400 قدرة المحول

77 % (L.F)معامل التحميل للمحول 423 لى المحولعدد المشتركين ع

7 عدد مشتركي الطاقة الشمسية KWp 35 القدرة الكلية للوحدات الشمسية

9 % نسبة الوحدات الشمسية مقارنة مع قدرة المحول 1.25 % المحول قبل إضافة الخاليا الشمسيةفاقد نسبة

0.87 % نسبة فاقد المحول بعد إضافة الخاليا الشمسية V 209.0 بل إضافة الخاليا الشمسيةكة قبنهاية الشجهد

V 210.3 كة بعد إضافة الخاليا الشمسيةبجهد نهاية الش

الكراج قبل تركيب الخاليا الشمسية الفاقد في محول : 2 الرسم

الفاقد في محول الكراج بعد تركيب الخاليا الشمسية : 0 الرسم

Page 143: The Fifth International Energy Conference - Palestine -

40

(Photovoltaic module) ليتم فحصها ومطابقتها من خالل المواصفات 0ورقم 0المقاييس الفلسطينية وكما هو موضح في الجدول رقم

(Inverter)الكهربائي المواصفات للعاكس: 0جدول

Inverter standard Palestinian Standard

International Standard Description

PS 2707 p2 AS 4777 p2 Inverters requirements

PS 2707 p3 AS 4777 p3 Grid Protection requirements

AS 3100 General requirements for electrical

PS 2683 IEC 61727 Photovoltaic (PV) system characteristics of the utility interface

EN61000-6 Electromagnetic compatibility (EMC)

المواصفات للخاليا الشمسية: 0جدول Photovoltaic standard

Palestinian Standard

International Standard Description

PS 2684 IEC61730-1 Safety qualification(requirements for construction)

PS 2685 IEC61730-2 Safety qualification(requirements for testing)

PS 2676 IEC 61215

Crystalline silicon terrestrial photovoltaic (PV) modules-Design qualification and type approval

لتركيب وحدات التوليد بما يتألم مع المواصفة المواصفات العامة :ثانيا

جدول المواصفة األولى في والفلسطينية وكما هو موضح في األسترالية 2رقمتوحيد الشكل العام للوحات التحذيرية وكما هو موضح في المواصفة :ثالثا

2الثانية في جدول رقم

المواصفات العامة للتركيب: 2جدول

Palestinian Standard

International Standard Description

PS 2707 p1 AS 4777 p1 Installation requirements

AS 1319 Safety signs for the occupational environment

قمنا باالجتهاد لتوحيد نظام الحمايات في الوحدة حيث تلخصت :رابعا

م شمسي ظاليشمل كل ن 0كما هي موضحة في الرسم بأربع سناريوهات حماية للتيار عقواط( DC circuit breaker)قواطع حماية للتيار الثابت

مانعة صواعق لكل من التيار الثابت و( AC circuit breaker)المتردد . (DC and AC surge protector)والمتردد

ولزيادة موثوقية المواطن بالشركة وضمان أفضل مواصفة قمنا باإلشراف عدد لفات الفنية اثناء التركيب إضافة الى اخضاع المحطة على المواص

:وهيمن الفحوصات قبل استالم الوحدة ومنها Open circuit test Short circuit test Functional test Operational test Earthing test

(Technical Losses)الفاقد الفني 08080

االحمال واحد من اهداف تركيب وحدات التوليد أقرب ما يمكن من مراكز مصمم الشبكات؛ لما له من اثار لتقليل الفاقد في الشبكات الكهربائية التي

ما يتضح جليا في الدراسة وهذا. تقليلهبرهنت هذ التكنولوجيا نجاحها في وهو برنامج متخصص يدمج -ELECTROGISاستخدام برنامج بالتالية

بكات الكهربائية للضغط بين نظم المعلومات الجغرافية وتحليل الشموضح في وكما هو -طوباسالمتوسط والمنخفض مصمم لشركة كهرباء

نظام الحمايات على األنظمة الشمسية :2 الرسم

41

إضافة الخاليا بعد 0قبل إضافة الخاليا الشمسية ورسم رقم 2الرسم رقم الشمسية

تمثل دراسة لفاقد المحوالت الفني إضافة الى أثر تكنولوجيا هذ الحالة تمتحيث . الشبكاتجهد الشبكات وخصيصا نهاية لى الطاقة الشمسية ع

يوضح معلومات 7 محول الكراج في مدينة طوباس جدول رقم دراسة تفصيلية للحالة التي تم دراساتها

الفاقد الفني لمحول الكراج: 7جدول

(Voltage)الجهد 08082

:الجهد تتلخص فيما يليأثر وحدات التوليد على 2كما هو موضح في الرسم رقم الشبكاترفع الجهد وال سيما نهايات .لدراسة محول الكراج 0و لوحظت هذ الحالة في المحوالت ذات حيث( الفولطية)تذبذب الجهد

ارتفاع وانخفاض )في الجهد تذبذب عالي حيث يظهراالحمال الخفيفة فولط على شبكة الضغط 07يصل في بعض المناطق الى (الجهد

بإعادة توزيع االحمال وخصوصا هذ المشكلة قمنا لولح. المنخفض للجهدكيب منظم وتر ،على الفازات التي تغذيها وحدات الطاقة الشمسية

%15-للجهد لدى بعض المشتركين إضافة الى خفض الحد األدنى

PSفي االنفيرتر بما يتالءم مع المواصفة الفلسطينية %10+ورفعه

2707 p3. برنامج الوفيما يلي تفاصيل الدراسة الفنية للمحول باستخداملصافح الشمالي محول ا هذ الظاهرة التي ظهرت فيدراسة ل

يوضح معلومات .جدول رقمالمدينة طوباس في 250KVAبقدرةيوضح الدراسة على 2و0والرسم رقم تفصيلية للحالة التي تم دراساتها الفولتية لمحول الصافح الشمالي

تذبذب الفولتية على محول الصافح الشمالي: .جدول 45% (LF)لمعامل التحميل للمحو

78 عدد المشتركين على المحول 4 طاقة الشمسية عدد مشتركي ال

20KWp القدرة الكلية للمحطات الشمسية 0.86 (PF before)الشمسية معامل القدرة قبل تركيب المحطات 0.80 (PF After)الشمسية معامل القدرة بعد تركيب المحطات

221.8V (V before)الشمسية الجهد على نهاية الشركة قبل إضافة الخاليا 238.8V (V before)الشمسية كة بعد إضافة الخاليا الجهد على نهاية الشر 17V (V∆)مقدار الرفع في الجهد

الفولطية في محول الصافح قبل تركيب: 0 الرسم

الكراج اسم المحول KVA 400 قدرة المحول

77 % (L.F)معامل التحميل للمحول 423 لى المحولعدد المشتركين ع

7 عدد مشتركي الطاقة الشمسية KWp 35 القدرة الكلية للوحدات الشمسية

9 % نسبة الوحدات الشمسية مقارنة مع قدرة المحول 1.25 % المحول قبل إضافة الخاليا الشمسيةفاقد نسبة

0.87 % نسبة فاقد المحول بعد إضافة الخاليا الشمسية V 209.0 بل إضافة الخاليا الشمسيةكة قبنهاية الشجهد

V 210.3 كة بعد إضافة الخاليا الشمسيةبجهد نهاية الش

الكراج قبل تركيب الخاليا الشمسية الفاقد في محول : 2 الرسم

الفاقد في محول الكراج بعد تركيب الخاليا الشمسية : 0 الرسم

Page 144: The Fifth International Energy Conference - Palestine -

39

00 % من العينات فقط تفضل استخدام الطاقة الشمسية تسكن في المدن

00فئة الشباب تشجع الطاقة النظيفة حيث بلغ نسبتهم%

.. %طرق تحفيزية لديها علم مسبق بوجود ليس من العينات الستخدام هذ الطاقة مثل القروض الخضراء المقدمة من خالل البنوك

لديها عوائق من استخدام الطاقة التي شكلت نسبة العيناتلعدم % 02و% 20 المتجددة ألسباب تتعلق بعدم توفر مساحات كافية

لمعتقدات خاص بهم% .وجود تمويل و :التالي اترتب عليهوبعد دراسة فاحصة لالستبيان المدنفي اوال سيمإعادة الحملة الدعائية.

ة لترويج العاملة في مجال الطاقة المتجدد توجيه الشركات .بشكل أكبر بضائعها

م طرق ميسرة للتسديد ابرام اتفاقيات مع الشركات العاملة لتقدي .من خالل عائدات انتاج الخاليا الشمسية

بنوك لتسهيل اإلجراءات بخصوص هذا ابرام اتفاقيات مع ال .مقترحين تكثيف الحمالت الدعائية الخاصة بهم

من جمع شهور 2بعد نشر االستبيان مرة أخرى بعد مرور : النتائجاد نسبة االقبال لتركيب محطات طاقة يازد عينات االستبيان االول

%.00بمقدار شمسية

موافقات من الهيئات المختصة 082

وافقات من قبل مجلس تنظيم قطاع الكهرباء لتركيب عدم الحصول على متوليد كهرباء باستخدام الطاقة الشمسية للقطاع المنزلي ضمن وحدات

اخر رفعت العقبات، حيث أحد الشمسية كانالمبادرة الفلسطينية للطاقة من الراغبين في االنضمام بالمبادرة الفلسطينية للطاقة الشمسية قائمتين

ترك العنان لنا الستقبال ولو .عليهاولم يتم الرد 0202 أكتوبرمنذ شهر منزل يولد طاقة 022لدينا ال يقل عن ألصبحالمزيد من الطلبات

ومن هنا توجهت KWp 0222 الشمسية أيكهربائية باستخدام الطاقة بها واضحة المعالم سيعلن مكانية عمل مبادرة خاصة الشركة لدراسة إ

.عنها في القريب العاجل

شركات العاملة في قطاع الطاقة الشمسيةالتأهيل 080

البحث عن -وقبل فتح األبواب الستقبال المواطنين -كان البد من جال قطاع الطاقة الشمسية وتأهيلها في م المحلية التي تعمل شركاتال

حيث تم حسب مواصفات الشركة الفنية للعمل في منطقة امتياز الشركة الطاقة وحداتت وبعد تسارع طلب على تأهيل شركتين فقط في البدايا

ا المجال للعمل في الشمسية اشتد االقبال لدى الشركات العاملة في هذما حاليا المؤهلة لدينا المحلية الشركات عدد حيث أصبح نا،منطقة امتياز

ةالخبر حيث تمتلك من مختلف محافظات الضفةشركات عشرال يقارب

توليد باستخدام الطاقة وحداتلتنفيذ الفنية الكافية والمقدرة الالزمة .التحديوهنا كان . الشمسية

ما هي الطريقة التي سيتم اختيارهم حتى يتمكن مشتركينا من تنفيذ مناسبة؟الشمسية وبمواصفات فنية وحداتال

الشركة بوضع بعض اإلجراءات التي يتوجب على ولهذا الغرض اجتهدتقبل البدء بتنفيذ تحقيقهامتجددة الالشركات العاملة في مجال الطاقة

:المشاريع صورة عن شهادة تسجيل الشركة

صورة عن شهادة خصم المصدر

صورة عن شهادة المطابقة الصادرة عن المواصفات والمقاييس للمعدات المستخدمة الفلسطينية

السيرة الذاتية للشركة مرفقة بصور المشاريع التي تم تنفيذها

على أكدنا والمواطنين، حيثكات العاملة برام العقود بين الشر إ .وجود بند للصيانة على التركيب وكفالة المعداتأهمية

شمسية تخضع لكافة وحدةوتنتهي إجراءات التأهيل بعد استالم اول المواصفات الفنية الخاصة بالشركة وفي حالة عدم تجاوب الشركة المنفذة

مه من قائمة الشركات المؤهلة للتعليمات الفنية يتم الغاء تأهيله وحذف اسنتقاء اكسبتهم الثقة الة االختيار و يللمواطنين حر سمحت الخطوة هذ .لدينا

مع ولتسهيل التواصل ،مع ضمان كفاءة عالية في التنفيذ العروضالمواطنين والشركات قمنا بابتكار طريقة مميزة من خالل توفير قوائم

بناء على رغبة –طاقة الشمسية ال وحداتللمشتركين الراغبين في تنفيذ بيئة هذ الخطوة خلقت المنفذة للشركات-المشترك في تعميم رقم الهاتف

في السوق المحلي أدى لرفع المستوى العام في تنافسية بين الشركات .المنطقة

فنيةالالشؤون 080

،رضيةهي اهم محطة توجب علينا االعتناء بها للحصول على نتائج م بتحضير دليل فني ارشادي ية بأهمية هذ الخطوة قمناوعي منذ البداور

وتعميمها ليحصل المواطن على كفاءة وجودة الشمسية وحداتلتركيب العلى وحداتهذ ال أثربدراسة عالية لألنظمة الشمسية، وقمنا ايضا

على كل من الفاقد وحداتهذ ال أثرالشبكة الكهربائية وفيما يلي سنتناول .ومعامل القدرة من خالل امثلة واقعية الفني والفولتية

الدليل االرشادي الفني 08080

تم اعداد الدليل االرشادي الفني لتركيب الخاليا الشمسية في منطقة امتياز تركيب الخاليا لايجاد مناخ متجانس طوباس، بهدفشركة كهرباء

:فقد شملالعالمية تالمواصفاالشمسية بمواصفات تلبي الحد االدنى من نوعية البضائع التي سيتم توردها كان ينبغي تحضير قائمة ضمان :أوال

والخاليا الشمسية ( Inverter)لكل من العاكس بأهم الفحوصات

Page 145: The Fifth International Energy Conference - Palestine -

38

توليد باستخدام الطاقة الشمسية إلنارة القرى النائية وحدات 28080

مربوطة على شمسيةاليد كهرباء باستخدام الطاقة تولل وحداتعدة تم تنفيذ بالتعاون مع جامعة النجاح للتخزين باستخدام وحداتالشبكة وأخرى

في مناطق ريفية مثل عاطوف ويرزا وابزيق بقدرة SEBA الوطنية و 50,400 س.و.كانتاجية سنوية وبقدرة .KWp 0اجمالية حوالي

.من استهالك الشركة% 0.06حوالي

نظام صافي ضمنتوليد باستخدام الطاقة الشمسية حداتو 28082 القياس

فكانت 112KWpبقدرة اجمالية عدد من المحطاتحيث تم تركيب

احداها لخدمة القطاع التجاري لصالح االتصاالت الفلسطينية في مدينة طوباس واألخرى لالستخدام الحيواني في قرية ام التوت قضاء جنين

لتشكل هذ الوحدات .ربية االمريكية وغيرهاوأخرى في الجامعة الع . س.و.ك202,000 بأي ما يقار من انتاج الشركة % 2800

للقطاع الخاص وحدات 28080

سمحت الشركة للمستثمرين في قطاع الطاقة تثمار لإلسراع من عجلة االس وحدة إلنشاءالمستثمرين أحدحيث تم توقيع اتفاقية شراء مع المتجددة

والتي استكملت جميع 3MWpلطاقة الشمسية بقدرة توليد باستخدام اأي ما س.و.ك 5,400,000 الموافقات الالزمة لتنتج سنويا ما يقارب

من استهالك الشركة % 6.67يعادل

:في الشركةلي االحنلخص اجمالي المحطات يقدر اإلنتاج السنوي لكافة الوحدات و KWp 1,275 قدرة المحطات الكلياضافة الى خفض فاقد الشبكة بمقدار $ 306,153دلالشمسية اي ما يعا

وتقليل اشعاع $ 3,400تقريبا سنويا أي ما يعادل س.و.ك 25,600 .طن 2,180ثاني أكسيد الكربون بمقدار

إجراءات ومحاوالت طموحة للخروج من أزمة الطاقة 0 باالعتماد على الطاقة الشمسي ة

لك، ولكن نا نجحنا في تعل م ال تخلو أي بداية من صعوبة، كل نا ن درك ذ

نجاز، لنجاح كيف ن ذل ل تلك الصعوبة، وكيف نقلب العقبة إلى تحد ي وا أي تجربة ال بد من وجود بعض المحطات التي يجب اجتيازها في سبيل الوصول الى األهداف المرجوة وهنا البد من الوقوف لسرد ومناقشة بعض

الصعوبات والتحديات

اريةقرارات الشركة اإلد 080

رؤية الشركة منذ البداية هي اول خطوة في طريق النجاح، حيث وضوحبالبحث عن مشاريع في قطاع الطاقة 0220عام بدأت الشركة منذ

للشركة واتخاذ بعض اإلجراءات التحضرية التحتية يةالبن المتجددة وتهيئة :والتي تتلخص تدريب وتأهيل المهندسينمن خالل تنمية المصادر البشرية

.والفنين وتهيئتهم قبل البدء بالمشاريع

مصادر التمويل والتعاون المشترك بين من عددالبحث عنالشركة ووكالة التنمية التشيكية وجامعة النجاح الوطنية ووكالة

.SEBAالتنمية االسبانية

ومرونة التعامل وتقليل شركة لدى المواطنينللموثوقية بناء .االداريةالتعقيدات

القبال على المشاريع الطاقة المتجددةقلة ا 080

ربما من لو .تالقي االستغراب مكان وزمانجديدة في أي الالتكنولوجيا شح االقبال كما هو الحال في تكنولوجيا توليد الكهرباء البديهي توقع

باشرت الشركة منذ هذ المشكلة الشمسية، ولنتخطىباستخدام الطاقة لشركة من ل التابعة مراكزالن في كافة بحمالت توعية للمواطني البداية

لتنتشر بسرعة هائلة في خالل توزيع المنشورات وتثبيت لوحات دعائية تكتمل الصورة لدينا، ولنخطو خطوات واثقة في سبيل ولكي .المنطقة

نشر هذ التكنولوجيا كان البد من اعداد بعض االستبياناتالسير قدما لشهور من الحملة ستةيث قمنا بعد ح. تقييم الوضع الحالي ودراستهل

مدى رواج تكنولوجيا ةلمعرف [1] الدعائية األولى بتصميم اول استبيانليدرس الوعي العام عن م االستبيانم ص الطاقة الشمسية في المنطقة حيث

وبعد تحليله. ورغبة المواطنين في استخدامها الطاقة المتجددة وتجاوب :7على النتائج التاليةحصلنا عينة من مختلف مناطق امتياز الشركة 02.بلغ عدد العينات

22وعي عام عن الطاقة المتجددة العينات لديهمنسبة%

.تم جمع عينات االستبيان من خالل نسخ ورقية 7

نسبة انتاج المحطات الى استهالك الشركة :0الرسم

39

00 % من العينات فقط تفضل استخدام الطاقة الشمسية تسكن في المدن

00فئة الشباب تشجع الطاقة النظيفة حيث بلغ نسبتهم%

.. %طرق تحفيزية لديها علم مسبق بوجود ليس من العينات الستخدام هذ الطاقة مثل القروض الخضراء المقدمة من خالل البنوك

لديها عوائق من استخدام الطاقة التي شكلت نسبة العيناتلعدم % 02و% 20 المتجددة ألسباب تتعلق بعدم توفر مساحات كافية

لمعتقدات خاص بهم% .وجود تمويل و :التالي اترتب عليهوبعد دراسة فاحصة لالستبيان المدنفي اوال سيمإعادة الحملة الدعائية.

ة لترويج العاملة في مجال الطاقة المتجدد توجيه الشركات .بشكل أكبر بضائعها

م طرق ميسرة للتسديد ابرام اتفاقيات مع الشركات العاملة لتقدي .من خالل عائدات انتاج الخاليا الشمسية

بنوك لتسهيل اإلجراءات بخصوص هذا ابرام اتفاقيات مع ال .مقترحين تكثيف الحمالت الدعائية الخاصة بهم

من جمع شهور 2بعد نشر االستبيان مرة أخرى بعد مرور : النتائجاد نسبة االقبال لتركيب محطات طاقة يازد عينات االستبيان االول

%.00بمقدار شمسية

موافقات من الهيئات المختصة 082

وافقات من قبل مجلس تنظيم قطاع الكهرباء لتركيب عدم الحصول على متوليد كهرباء باستخدام الطاقة الشمسية للقطاع المنزلي ضمن وحدات

اخر رفعت العقبات، حيث أحد الشمسية كانالمبادرة الفلسطينية للطاقة من الراغبين في االنضمام بالمبادرة الفلسطينية للطاقة الشمسية قائمتين

ترك العنان لنا الستقبال ولو .عليهاولم يتم الرد 0202 أكتوبرمنذ شهر منزل يولد طاقة 022لدينا ال يقل عن ألصبحالمزيد من الطلبات

ومن هنا توجهت KWp 0222 الشمسية أيكهربائية باستخدام الطاقة بها واضحة المعالم سيعلن مكانية عمل مبادرة خاصة الشركة لدراسة إ

.عنها في القريب العاجل

شركات العاملة في قطاع الطاقة الشمسيةالتأهيل 080

البحث عن -وقبل فتح األبواب الستقبال المواطنين -كان البد من جال قطاع الطاقة الشمسية وتأهيلها في م المحلية التي تعمل شركاتال

حيث تم حسب مواصفات الشركة الفنية للعمل في منطقة امتياز الشركة الطاقة وحداتت وبعد تسارع طلب على تأهيل شركتين فقط في البدايا

ا المجال للعمل في الشمسية اشتد االقبال لدى الشركات العاملة في هذما حاليا المؤهلة لدينا المحلية الشركات عدد حيث أصبح نا،منطقة امتياز

ةالخبر حيث تمتلك من مختلف محافظات الضفةشركات عشرال يقارب

توليد باستخدام الطاقة وحداتلتنفيذ الفنية الكافية والمقدرة الالزمة .التحديوهنا كان . الشمسية

ما هي الطريقة التي سيتم اختيارهم حتى يتمكن مشتركينا من تنفيذ مناسبة؟الشمسية وبمواصفات فنية وحداتال

الشركة بوضع بعض اإلجراءات التي يتوجب على ولهذا الغرض اجتهدتقبل البدء بتنفيذ تحقيقهامتجددة الالشركات العاملة في مجال الطاقة

:المشاريع صورة عن شهادة تسجيل الشركة

صورة عن شهادة خصم المصدر

صورة عن شهادة المطابقة الصادرة عن المواصفات والمقاييس للمعدات المستخدمة الفلسطينية

السيرة الذاتية للشركة مرفقة بصور المشاريع التي تم تنفيذها

على أكدنا والمواطنين، حيثكات العاملة برام العقود بين الشر إ .وجود بند للصيانة على التركيب وكفالة المعداتأهمية

شمسية تخضع لكافة وحدةوتنتهي إجراءات التأهيل بعد استالم اول المواصفات الفنية الخاصة بالشركة وفي حالة عدم تجاوب الشركة المنفذة

مه من قائمة الشركات المؤهلة للتعليمات الفنية يتم الغاء تأهيله وحذف اسنتقاء اكسبتهم الثقة الة االختيار و يللمواطنين حر سمحت الخطوة هذ .لدينا

مع ولتسهيل التواصل ،مع ضمان كفاءة عالية في التنفيذ العروضالمواطنين والشركات قمنا بابتكار طريقة مميزة من خالل توفير قوائم

بناء على رغبة –طاقة الشمسية ال وحداتللمشتركين الراغبين في تنفيذ بيئة هذ الخطوة خلقت المنفذة للشركات-المشترك في تعميم رقم الهاتف

في السوق المحلي أدى لرفع المستوى العام في تنافسية بين الشركات .المنطقة

فنيةالالشؤون 080

،رضيةهي اهم محطة توجب علينا االعتناء بها للحصول على نتائج م بتحضير دليل فني ارشادي ية بأهمية هذ الخطوة قمناوعي منذ البداور

وتعميمها ليحصل المواطن على كفاءة وجودة الشمسية وحداتلتركيب العلى وحداتهذ ال أثربدراسة عالية لألنظمة الشمسية، وقمنا ايضا

على كل من الفاقد وحداتهذ ال أثرالشبكة الكهربائية وفيما يلي سنتناول .ومعامل القدرة من خالل امثلة واقعية الفني والفولتية

الدليل االرشادي الفني 08080

تم اعداد الدليل االرشادي الفني لتركيب الخاليا الشمسية في منطقة امتياز تركيب الخاليا لايجاد مناخ متجانس طوباس، بهدفشركة كهرباء

:فقد شملالعالمية تالمواصفاالشمسية بمواصفات تلبي الحد االدنى من نوعية البضائع التي سيتم توردها كان ينبغي تحضير قائمة ضمان :أوال

والخاليا الشمسية ( Inverter)لكل من العاكس بأهم الفحوصات

Page 146: The Fifth International Energy Conference - Palestine -

37

مملوكة للشركة توليد وحدات 280

مشاريع في قطاع 0202منحت الحكومة التشيكية الصديقة الشركة عام :الى جزئيين قسمة مالطاقة الشمسية

470KWpتوليد باستخدام الطاقة الشمسية بقدرة وحدة 28080

:مرحلتينتم تنفيذها على نهاء تنفيذها في بداية شهر إتم التي KWp 002 بقدرة :األولىالمرحلة

تحت رعاية دولة الرئيس هاوكانت مراسم افتتاح 0202لعام حزيرانوبدعم ومساندة راديك روبش الدكتور سالم فياض والسفير التشيكي السيد

مرحلة من رئيس سلطة الطاقة الدكتور عمر كتانة حيث بلغت تكلفة هذ ال 216,000حيث تنتج سنويا 3000m2ومنفذة على مساحة$ 020,222

ثاني أكسيد طن 020الوحدة وتوفر هذ $28,814أي ما يعادل 5س.و.ك 6الكربون

الشمسية بقدرة وحدةال شاءألن$ 700,000رصد مبلغتم :الثانيةالمرحلة KWp 272 لتنتج 0200بداية في وحدةال تنفيذسيتم االنتهاء من حيث

توفر هذ ل $84,042أي ما يعادلس .و.ك 630,000 بما يقار سنويا .ثاني أكسيد الكربون طن 600 وحدةال

س أي ما .و.ك 846,000 بما يقار السنوي وحدةانتاج الويلخص من استهالك الشركة % 1.05وحدةل انتاج اليمثحيث س $112,856يعادل

.0 البياني رقموكما هو موضح في الرسم

توليد باستخدام الطاقة الشمسية لخدمة القطاع الزراعي وحدات 28080

:تم تنفيذ هذ الوحدات على مرحلتينتوليد كهرباء باستخدام الطاقة الشمسية وحداتعبارة عن ىاألول المرحلة

تضمنت ثالث والتي في محافظة طوباس انفيذهمربوطة على الشبكة تم ت نوحدات توليد مربوطة مع الشبكة؛ لتغطية احتياجات الكهرباء للمزارعي

المستفيدين من المنحة أحدهم في مجال االنتاج الزراعة واآلخرتين لخدمة تم في محافظة طوباس والتي KWp 00 اإلنتاج الحيواني بقدرة اجمالية

.0202نهاية شهر كانون األول ية هاء تنفيذها في بداتان في العاملين نلعدد من المزارعي لتغطية احتياجات الكهرباء ةالثاني مرحلةال

اجمالية بقدرةاإلنتاج الزراعي والحيواني في محافظتي جنين وطوباس

KWp 02الى تمس ق طرح عطاءها في القريب العاجل، و تم سي ، والتي :التالي

.الطاقة الكهربائية عني كيلو واط ساعة واحدة قياسس ت.و.ك 5غرام ثاني أكسيد 052كل واحد كيلو واط ساعة من الطرق التقليدية ينتج ثاني 6

.الكربون

توليد كهرباء باستخدام الطاقة الشمسية مربوطة ةعشرة وحد ةخمس :األولى .لكل وحدة KWp 0 بقدرةعلى الشبكة

مربوطة توليد كهرباء باستخدام الطاقة الشمسية توحدا ةخمس :الثانية .لكل وحدة KWp 2 بقدرة (بطاريات) تخزين على وحدات

%2.02ات الزراعيةالوحدكافة انتاج لث م تين سي بعد االنتهاء من المرحلما أي .0من استهالك الشركة وكما هو موضح في الرسم البياني رقم

.الكربونثاني أكسيد طن 180تقريباوتوفر هذ الوحدة $25,213يعادل

Power Purchaseتوليد خاضع التفاقية شراء الطاقة توحدا 280Agreement

كان أحد اهم العوامل التي ساعدت في نشر تكنولوجيا الطاقة الشمسية

التدرج في التعرفة الكهربائية حيث بدأنا بتعرفة تفضيلية بأسعار مغرية هيللطاقة الشمسية وبدعم من ةللقطاع المنزلي وذلك ضمن المبادرة الفلسطيني

السلطة الوطنية الفلسطينية وكانت على مرحلتين ثم انتقلنا الى نظام نتهاء ا( المنزلي والتجاري والصناعي)لجميع القطاعات صافي القياس

. ات شراء لمستثمري القطاع الخاصيباتفاق

Feed In Tariff (FIT)التعرفة التفضيلية 28080

ضمن استراتيجية الطاقة المتجددة بإطالق قامت سلطة الطاقة الفلسطينية Palestinian)الشمسية المبادرة الفلسطينية للطاقة "تم تسميتها مبادرة

Solar Initiative (PSI)") االستثمار في قطاع الطاقة تحفيز لتهدفشركات مع قامت بالتعاونحيث القطاع المنزلي لتستهدفالمتجددة

التوزيع في الوطن بتحضير الدليل االرشادي للمبادرة الفلسطينية الطاقة . التنفيذقبل ان تدخل حيز ورسم الخطوط العريضة لهذ المبادرة الشمسية

ل في الضفة الغربية بسعر طلقت الشريحة األولى ألول مئة منز أ حيثمشترك من منطقة امتياز .0 انضمو ( $2820)شيكل 0827تفضيلي

من الشريحة % .0لهذ الشريحة أي ما يعادل شركة كهرباء طوباس وتم افتتاح اول منزل في الضفة الغربية تحت رعاية معالي رئيس األولى

بعد تهافت ، وفيما0202سلطة الطاقة الدكتور عمر كتانة في شهر اذار .28اقبال مشتركينا لالنضمام رغم إطالق الشريحة الثانية بسعر تفضيلي

عدد مشتركي القطاع المنزلي االن ضمن هذ لليص( $28020)شيكل سنويا وحداتانتاجنا المحلي من هذ ال صبحلي .منزل 000المبادرة

تم استثمار محليا بدال $134,467أي ما يعادل 1,008,000 س.و.كمن % 1.25وحداتيمثل انتاج الحيث ن دعم لالقتصاد اإلسرائيليم

إضافة الى ذلك .1استهالك الشركة وكما هو موضح في الرسم البياني رقم . ثاني أكسيد الكربونطن 957يقارب ما وحداتر هذ التوف

Page 147: The Fifth International Energy Conference - Palestine -

36

محطات الطاقة الشمسية من زاوية اقتصادية 0

ال يمكننا التي تحققه وحدات الطاقة الشمسية اضافة الى الهدف الوطني ان نغفل عن المكاسب المادية العائدة من خالل االستثمار في هذا

االستثمار نتائج المذهلة من ال 0سيعرض جدول رقم حيث القطاع،مع سعر الكيلو واط ساعة المنتج من خالل مقارنة 1MWpقدرة ب ةلمحط

، لنجد ان سعر الكيلو واط ساعة المولد من خالل ةاإلسرائيليسعر القطرية في نظير 0.4527NISبينما كان 0.4262NISالطاقة الشمسية يكلف ض األرباح السنوية لمثل هذ االستثمارات اخذين اإلسرائيلي، إضافة لعر

بعين االعتبار كل من سعر المحطة األساسي وسعر األرض واعمال كما هو موضح في (Interest)الصيانة السنوية وقيمة الزمنية للمال

0جدول رقم مقارنة سعر التعرفة للطاقة المولدة من وحدات الطاقة الشمسية : 0جدول

.إلسرائيليةاوتعرفة القطرية

(Cash flow component)عناصر التدفق المالي : 2جدول

اضافة الى تفوق هذ المحطات على مماثلها فإنها تتفوق أيضا على يسلط الضوء على 2الجدول رقم نظيرها باالستثمارات حيث يسلط

ع مشروع استثماري مقارنة ماالستثمار في قطاع الطاقة الشمسية عائداتبكثير أقصرتقليدي حيث يظهر جليا ان فترة الزمنية السترداد رأس المال

.سكنيةمن بناء عمارة

الطاقة عدة أنواع من التعرفة لوحدات في االستثمار بين مقارنة: 2جدول تقليدي ياستثمار الشمسية ومشروع

بذة عامةن 2

اال انها 0222تأسست شركة كهرباء منطقة طوباس المساهمة العامة عام هيئة أربعون حاليا تزود الشركة، 0220باشرت عملها الفعلي منذ عام

.بالكهرباء محلية في محافظتي جنين وطوباسوبتمويل من الحكومة التشيكية بتأسيس مركز لصيانة قامت الشركة

دخال عدد من البرامج لرفع مستوى 0202المحوالت في عام وتجميع وا ونظام المراقبة (GIS)وأداء الشركة ومنها نظم المعلومات الجغرافية

بالرغم من انشاء هذ المشاريع الفريدة . (SCADA)والتحكم عن بعد تصنيفها تم الطاقة الشمسية قد تصد رتها، حيث والمميزة اال ان مشاريع

:كالتالي مملوكة للشركة توليد وحدات :أوال القطاعات كافةشمل لت الطاقةخاضع التفاقية شراء توليد توحدا: ثانيا

.3.45NIS= $ 1سعر 1لطابقين $ 022,222متر مربع 082تكلفة المشروع لعمارة تجارية جاهز 2

.شامل لسعر قطعة األرض في منطقة جنين .5KWpوحدة شمسية بقدرة 3 .1800KWh/KWpمعدل اإلنتاج السنوي 4

Payment description

Annual Revenue

(NIS)

Annual Revenue

($)

Tariff (NIS)

Tariff ($)

Owned to the company

88,418 30,504 0.4262 0.1470

30% cash yearly installments for 5 years

71,698 24,736 0.4768 0.1645

Israeli Electricity Company

0 0 0.4527 0.1562

Description NIS Capital cost 7,600,000 Ground cost 1,060,000 maintenance cost 76,000 inverter replacement cost in (n=12) 1,520,000 Interest 5% n (number of years) 25 Annual Production in KWh 169,460 Annual degradation in PV production 1% Total cost in year (n=0) 10,256,000

وحدة شمسية

بتعرفةNIS70.1

1(0.31$)

وحدة شمسية

عرفة بتNIS 0.8

(0.232$)

وحدة شمسية بتعرفة

NIS 0.6 (0.174$)

عمارة تجارية متر 2280

مربع

كلفةالت(Cost/unit)

2$\Wp 2$\Wp 2$\Wp 1,070$/m2

تكلفة المشروع (Capital cost) 10000$3 10000$ 10000$ 299,600$

العائد السنوي(Annual revenue)

2,790$4 2,088$ 1,566$ 28,000$

استرجاع راسفترة

المال(Payback period)

3 y.7m 4y.9m 6y.5m 10y.8m

37

مملوكة للشركة توليد وحدات 280

مشاريع في قطاع 0202منحت الحكومة التشيكية الصديقة الشركة عام :الى جزئيين قسمة مالطاقة الشمسية

470KWpتوليد باستخدام الطاقة الشمسية بقدرة وحدة 28080

:مرحلتينتم تنفيذها على نهاء تنفيذها في بداية شهر إتم التي KWp 002 بقدرة :األولىالمرحلة

تحت رعاية دولة الرئيس هاوكانت مراسم افتتاح 0202لعام حزيرانوبدعم ومساندة راديك روبش الدكتور سالم فياض والسفير التشيكي السيد

مرحلة من رئيس سلطة الطاقة الدكتور عمر كتانة حيث بلغت تكلفة هذ ال 216,000حيث تنتج سنويا 3000m2ومنفذة على مساحة$ 020,222

ثاني أكسيد طن 020الوحدة وتوفر هذ $28,814أي ما يعادل 5س.و.ك 6الكربون

الشمسية بقدرة وحدةال شاءألن$ 700,000رصد مبلغتم :الثانيةالمرحلة KWp 272 لتنتج 0200بداية في وحدةال تنفيذسيتم االنتهاء من حيث

توفر هذ ل $84,042أي ما يعادلس .و.ك 630,000 بما يقار سنويا .ثاني أكسيد الكربون طن 600 وحدةال

س أي ما .و.ك 846,000 بما يقار السنوي وحدةانتاج الويلخص من استهالك الشركة % 1.05وحدةل انتاج اليمثحيث س $112,856يعادل

.0 البياني رقموكما هو موضح في الرسم

توليد باستخدام الطاقة الشمسية لخدمة القطاع الزراعي وحدات 28080

:تم تنفيذ هذ الوحدات على مرحلتينتوليد كهرباء باستخدام الطاقة الشمسية وحداتعبارة عن ىاألول المرحلة

تضمنت ثالث والتي في محافظة طوباس انفيذهمربوطة على الشبكة تم ت نوحدات توليد مربوطة مع الشبكة؛ لتغطية احتياجات الكهرباء للمزارعي

المستفيدين من المنحة أحدهم في مجال االنتاج الزراعة واآلخرتين لخدمة تم في محافظة طوباس والتي KWp 00 اإلنتاج الحيواني بقدرة اجمالية

.0202نهاية شهر كانون األول ية هاء تنفيذها في بداتان في العاملين نلعدد من المزارعي لتغطية احتياجات الكهرباء ةالثاني مرحلةال

اجمالية بقدرةاإلنتاج الزراعي والحيواني في محافظتي جنين وطوباس

KWp 02الى تمس ق طرح عطاءها في القريب العاجل، و تم سي ، والتي :التالي

.الطاقة الكهربائية عني كيلو واط ساعة واحدة قياسس ت.و.ك 5غرام ثاني أكسيد 052كل واحد كيلو واط ساعة من الطرق التقليدية ينتج ثاني 6

.الكربون

توليد كهرباء باستخدام الطاقة الشمسية مربوطة ةعشرة وحد ةخمس :األولى .لكل وحدة KWp 0 بقدرةعلى الشبكة

مربوطة توليد كهرباء باستخدام الطاقة الشمسية توحدا ةخمس :الثانية .لكل وحدة KWp 2 بقدرة (بطاريات) تخزين على وحدات

%2.02ات الزراعيةالوحدكافة انتاج لث م تين سي بعد االنتهاء من المرحلما أي .0من استهالك الشركة وكما هو موضح في الرسم البياني رقم

.الكربونثاني أكسيد طن 180تقريباوتوفر هذ الوحدة $25,213يعادل

Power Purchaseتوليد خاضع التفاقية شراء الطاقة توحدا 280Agreement

كان أحد اهم العوامل التي ساعدت في نشر تكنولوجيا الطاقة الشمسية

التدرج في التعرفة الكهربائية حيث بدأنا بتعرفة تفضيلية بأسعار مغرية هيللطاقة الشمسية وبدعم من ةللقطاع المنزلي وذلك ضمن المبادرة الفلسطيني

السلطة الوطنية الفلسطينية وكانت على مرحلتين ثم انتقلنا الى نظام نتهاء ا( المنزلي والتجاري والصناعي)لجميع القطاعات صافي القياس

. ات شراء لمستثمري القطاع الخاصيباتفاق

Feed In Tariff (FIT)التعرفة التفضيلية 28080

ضمن استراتيجية الطاقة المتجددة بإطالق قامت سلطة الطاقة الفلسطينية Palestinian)الشمسية المبادرة الفلسطينية للطاقة "تم تسميتها مبادرة

Solar Initiative (PSI)") االستثمار في قطاع الطاقة تحفيز لتهدفشركات مع قامت بالتعاونحيث القطاع المنزلي لتستهدفالمتجددة

التوزيع في الوطن بتحضير الدليل االرشادي للمبادرة الفلسطينية الطاقة . التنفيذقبل ان تدخل حيز ورسم الخطوط العريضة لهذ المبادرة الشمسية

ل في الضفة الغربية بسعر طلقت الشريحة األولى ألول مئة منز أ حيثمشترك من منطقة امتياز .0 انضمو ( $2820)شيكل 0827تفضيلي

من الشريحة % .0لهذ الشريحة أي ما يعادل شركة كهرباء طوباس وتم افتتاح اول منزل في الضفة الغربية تحت رعاية معالي رئيس األولى

بعد تهافت ، وفيما0202سلطة الطاقة الدكتور عمر كتانة في شهر اذار .28اقبال مشتركينا لالنضمام رغم إطالق الشريحة الثانية بسعر تفضيلي

عدد مشتركي القطاع المنزلي االن ضمن هذ لليص( $28020)شيكل سنويا وحداتانتاجنا المحلي من هذ ال صبحلي .منزل 000المبادرة

تم استثمار محليا بدال $134,467أي ما يعادل 1,008,000 س.و.كمن % 1.25وحداتيمثل انتاج الحيث ن دعم لالقتصاد اإلسرائيليم

إضافة الى ذلك .1استهالك الشركة وكما هو موضح في الرسم البياني رقم . ثاني أكسيد الكربونطن 957يقارب ما وحداتر هذ التوف

Page 148: The Fifth International Energy Conference - Palestine -

35

ةالكهروشمسيشبكة كهرباء منطقة طوباس وتغذيتها بالطاقة

(الواقع والمستقبل)

إشراق سرحان رضا جرار. م المساهمة العامة شركة كهرباء منطقة طوباس-رئيس قسم التخطيط والتطوير

فلسطين-طوباس [email protected]

لملخصا

تبر األساس في حيث يع الخدماتية،قطاعات القطاع الكهرباء من اهم اذ بانقطاع التيار الكهربائي يصبح المجتمع األخرى،ديمومة القطاعات

ةولغاي .هذه القطاعات كليا او جزئيا نظرا لتوقف؛ في سبات تامالبحث عن طرق لتوفير الطاقة توجبالمحافظة على هذا القطاع

ية ستمرار المحافظة اعتمادية النظام الكهربائي و لالكهربائية االمنة و سنتناول أهمية االستثمار في قطاع الطاقة الشمسية حيث . التزويد

قي الضوء على اهم إنجازات لوكما سن ،الوطنية واالقتصادية والبيئية الشمسية، واإلجراءاتشركة كهرباء منطقة طوباس في قطاع الطاقة

خروج من أزمة الطاقة باالعتماد على الطاقة لمحاولة ال التي تم اتباعها، مشيرين الى اهم اإلرشادات الفنية المتعلقة باألنظمة سيةالشم

في ( Power Quality) طاقةالشمسية وأثر هذه األخيرة على جودة ال .الشبكة

المنهجية

الطاقة قطاع تم تحضير المادة العلمية من خالل تجربة واقعية فيحيث تم الوقوف على اهم الصعوبات لشركة كهرباء طوباس، الشمسية

عدد تحليلالجتيازها من خالل المتبعةتحديات لكل مرحلة واالجراءات والوالتحرك على ضوء نتائجها للوصول الى نتائج مرضية، من االستبيانات

وكما قمنا بدراسة جودة الطاقة الكهربائية للشبكة بعد تركيب عدد من .األغراضالمحطات من خالل برامج متخصصة لهذه

الطاقة؛ الدليل شراء قي؛ اتفاقيةطا نأم: مفتاحيةكلمات

االرشادي؛ المبادرة الفلسطينية للطاقة الشمسية؛ صافي .استبيان؛ ؛ جودة الطاقةالقياس

المقدمة

هدف في جديدة ورخيصة هومصادر طاقة الحصول على االمن الطاقي و . السياسيةله من أثار االقتصادية اغاية األهمية ألية دولة؛ لم

االحتالل أوال ومن ناجمة من وجود ي ظل ظروف صعبةونظرا لعيشنا فنقص حاد في كثير من الجوانب وال سيما نقص في مصادر الطاقة

حيث اننا نستورد معظم احتياجات الطاقة من الدول المجاورة ،التقليدية مثل إسرائيل واألردن ومصر شكل لدينا الكثير من المخاوف بخصوص

ذنا الوحيد هو االتجا الى الطاقة كان مالف امن الطاقة في فلسطينفي فلسطين قد حباها هللا بوجودها ن أل ؛لقوانينع التي ال تخضالمتجددة

ع في إنتاج الطاقة من منطقة الحزام الشمسي الذي يعطيها فرص التوس والن الشعب الفلسطيني تميز بصمود ، الشمس أكثر من الدول األوروبي ة

وضع كل شبل من اشبالنا وساما مكتوب الذي وتحديه ألصعب الظروف .المعركة هذ ول د لنا هذا الرغبة لدخول" الحاجة ام االختراع"عليه

تمتلك الشركة نقطة بربط أعوام، حيث ذبدأت قصتنا مع النقص الحاد منتم ثالثة سنوات أكثر منذ، رغم اننا و ميجا فولت امبير حاليا 02بقدرة

ط الربط مع شركة الكهرباء القطرية قديم مقترح لعدة نقاتجهيز وتولكن لم يتحرك ساكنا، وألننا وكما هو الحال باقي شركات اإلسرائيلية،

.بديلة لتعويض هذا النقصالخطط لجأنا للالتوزيع الفلسطينية عدد من الخطط لتوليد الكهرباء باستخدام الطاقة بدراسةباشرت الشركة ف

ية استراتيجية واضحة المعالم؛ لتعميم الشمسية فكان نصب اعيننا منذ البداونشر الوعي استخدامها كمصدر جديد للكهرباء وفي جميع القطاعات فشملت القطاع المنزلي وذلك من خالل المبادرة الفلسطينية للطاقة الشمسية والقطاع الزراعي من خالل تقديم بعض المنح في هذا المجال

حاليا وحدات الطاقة الشمسية لتشكل انتاج ،الخ... والتجاري والصناعي .0202من استهالك الشركة في عام %02 لتصل الى% 08.2

Page 149: The Fifth International Energy Conference - Palestine -

34

رواتهلملس ميوف خليي ار هلس واهلروي وايتهمي م ه وامت ه روابلره .رواميوف وا مال

ههيريد ههرفالي ئههي ا جمالههن ير ههيرا ع الهه تاههل د وتهه خلوي وامالههلد مالههههههلد وام ههههههلي إلرهههههههللد وتهههههه خلومال الهههههههيي روا يرالهههههه رخ ويهههههههلس

.الماللدواميومالض من وت خلوي واب ن وا مال وامرفيد

رفالمهههل الخهههص تاهههل د وتههه خلوي وا ل ههه فلام هههليي وامليتهههال واجلالهههلد جالههل اتياههل و مبهه وابههالي وام لر هه متهها واههلاال مع راهه شههت

وإليشهللي الم ههليي واخ هيو فههي فلته ال روا ههي الجها ووا هه وي اههل .من وت ات ل واملويق ار ن خ الل شمتال ا راالل وا ل

شههجالن وافتههلي وإل لورالهه ر الهه وا بيالههلس واملال هه تهه ام الجهها ال عهليض مهن وايهرومي م اج مبال اف مالي ر يااله مهل و

.وا الئال رال م بلال وت ا م وامرويل

عالمراج عناصررا تصتصررمام شتء ررا : 0212الحرستتتانير ربتتين ي نتت رر

الحرستتتتانير دار األ تتتام ربيع: وإعتتتدادر ترجمتتتة تصمعمرررا .سور ا-دمشقللطباعة والنشرر

–تصرريصاا تء درراد صةبناررر تص ررات : 0212نقابتتة المدندستتينر –نقابتة المدندستين : ر الطبعة األولىر إصداردشصر فلسطان

.فلسطين والمجلسالفلسطينياألعلىللبناءاألخضرتصكترا تءصصرا ا تصتابرا تصسرنا صلعرام : وزارة التربية والتعليم

؛ 0222/0222و 0222/0222؛ 0211/0210) تصي تسرررا .فلسطين –ر رام هللا (1991/1992؛ 0222/0221ميت س تصمستقبا فرا 8991صاا د: 0222والتعليمر وزارة التربية .ر منظمة اليونسكور رام هللار فلسطينفلسطان

أش تق علمار شمل صات

ماتصفات تصمبنى تصمي سرا : 0210فتحية سالم مختارر . الشلبير أ 12-11الملتقتتتى التتتوطني األوب للتربيتتتة والتعلتتتيمر . تصجاررري

.ليبيا-طرابلس؛ 0210سبتمبرر

جنبار تصماتجع تألErnest, 2002: Neufert Architects' Data, 3rd

Edition, ed.by BousmahaBaiche& Nicholas Walliman, Blackwell Science Ltd.

Gahala, Jan., 2001; Critical Issue: Promoting Technology Use in Schools, North Central

Regional Educational Laboratory, (Accessed 2013-11-06), Available from:

www.ncrel.org Ministry of Education – Ontario, 2010; Green

schools Resource Guide - A Practical Resource for Planning and Building Green Schools in Ontario, January, available from:http://www.edu.gov.on.ca/eng/policyfunding/greenschools_guide.pdf

Nair, 2006; Planning Technology Friendly School Buildings, Prakash, (Accessed 2013-03-10), available from: http://www.designshare.com/index.php/articles/planning-technology-friendly-school-buildings/

Noschis, Kaj: The Impact of the Improved School Design on the Academic Achievement of Students in the Palestinian Territories: Empirical Study, Cahier du LaSUR 13, ENAC – Impressum, April- 2009; (Accessed 2013-08-26), available from: http://www.mohe.gov.ps/ShowArticle.aspx?ID=170

Ozmehmet, Ecehan: Design Attitudes Towards Sustainability in school Buildings, The world Sustainable Building Conference in Tokyo, Sep 27-29, 2005, No. 01-074.

PSNC, 2000; Public School of North Carolina, "Making Current Trends in School Design Feasible" State of Board Education, Department of Public Instruction, NC, (Accessed 2012-10-10), Available from: http://www.schoolclearinghouse.org/pubs/small.PDF

The collaborative for high performance schools, 2006;Best Practice Manual, Vol. II Design, (Accessed 2013-08-26), Available from: http://www.chps.net/dev/Drupal/node/31

The collaborative for high performance schools, 2006; Best Practice Manual, Vol. I Planning, (Accessed 2013-08-26), Available from:

35

ةالكهروشمسيشبكة كهرباء منطقة طوباس وتغذيتها بالطاقة

(الواقع والمستقبل)

إشراق سرحان رضا جرار. م المساهمة العامة شركة كهرباء منطقة طوباس-رئيس قسم التخطيط والتطوير

فلسطين-طوباس [email protected]

لملخصا

تبر األساس في حيث يع الخدماتية،قطاعات القطاع الكهرباء من اهم اذ بانقطاع التيار الكهربائي يصبح المجتمع األخرى،ديمومة القطاعات

ةولغاي .هذه القطاعات كليا او جزئيا نظرا لتوقف؛ في سبات تامالبحث عن طرق لتوفير الطاقة توجبالمحافظة على هذا القطاع

ية ستمرار المحافظة اعتمادية النظام الكهربائي و لالكهربائية االمنة و سنتناول أهمية االستثمار في قطاع الطاقة الشمسية حيث . التزويد

قي الضوء على اهم إنجازات لوكما سن ،الوطنية واالقتصادية والبيئية الشمسية، واإلجراءاتشركة كهرباء منطقة طوباس في قطاع الطاقة

خروج من أزمة الطاقة باالعتماد على الطاقة لمحاولة ال التي تم اتباعها، مشيرين الى اهم اإلرشادات الفنية المتعلقة باألنظمة سيةالشم

في ( Power Quality) طاقةالشمسية وأثر هذه األخيرة على جودة ال .الشبكة

المنهجية

الطاقة قطاع تم تحضير المادة العلمية من خالل تجربة واقعية فيحيث تم الوقوف على اهم الصعوبات لشركة كهرباء طوباس، الشمسية

عدد تحليلالجتيازها من خالل المتبعةتحديات لكل مرحلة واالجراءات والوالتحرك على ضوء نتائجها للوصول الى نتائج مرضية، من االستبيانات

وكما قمنا بدراسة جودة الطاقة الكهربائية للشبكة بعد تركيب عدد من .األغراضالمحطات من خالل برامج متخصصة لهذه

الطاقة؛ الدليل شراء قي؛ اتفاقيةطا نأم: مفتاحيةكلمات

االرشادي؛ المبادرة الفلسطينية للطاقة الشمسية؛ صافي .استبيان؛ ؛ جودة الطاقةالقياس

المقدمة

هدف في جديدة ورخيصة هومصادر طاقة الحصول على االمن الطاقي و . السياسيةله من أثار االقتصادية اغاية األهمية ألية دولة؛ لم

االحتالل أوال ومن ناجمة من وجود ي ظل ظروف صعبةونظرا لعيشنا فنقص حاد في كثير من الجوانب وال سيما نقص في مصادر الطاقة

حيث اننا نستورد معظم احتياجات الطاقة من الدول المجاورة ،التقليدية مثل إسرائيل واألردن ومصر شكل لدينا الكثير من المخاوف بخصوص

ذنا الوحيد هو االتجا الى الطاقة كان مالف امن الطاقة في فلسطينفي فلسطين قد حباها هللا بوجودها ن أل ؛لقوانينع التي ال تخضالمتجددة

ع في إنتاج الطاقة من منطقة الحزام الشمسي الذي يعطيها فرص التوس والن الشعب الفلسطيني تميز بصمود ، الشمس أكثر من الدول األوروبي ة

وضع كل شبل من اشبالنا وساما مكتوب الذي وتحديه ألصعب الظروف .المعركة هذ ول د لنا هذا الرغبة لدخول" الحاجة ام االختراع"عليه

تمتلك الشركة نقطة بربط أعوام، حيث ذبدأت قصتنا مع النقص الحاد منتم ثالثة سنوات أكثر منذ، رغم اننا و ميجا فولت امبير حاليا 02بقدرة

ط الربط مع شركة الكهرباء القطرية قديم مقترح لعدة نقاتجهيز وتولكن لم يتحرك ساكنا، وألننا وكما هو الحال باقي شركات اإلسرائيلية،

.بديلة لتعويض هذا النقصالخطط لجأنا للالتوزيع الفلسطينية عدد من الخطط لتوليد الكهرباء باستخدام الطاقة بدراسةباشرت الشركة ف

ية استراتيجية واضحة المعالم؛ لتعميم الشمسية فكان نصب اعيننا منذ البداونشر الوعي استخدامها كمصدر جديد للكهرباء وفي جميع القطاعات فشملت القطاع المنزلي وذلك من خالل المبادرة الفلسطينية للطاقة الشمسية والقطاع الزراعي من خالل تقديم بعض المنح في هذا المجال

حاليا وحدات الطاقة الشمسية لتشكل انتاج ،الخ... والتجاري والصناعي .0202من استهالك الشركة في عام %02 لتصل الى% 08.2

Page 150: The Fifth International Energy Conference - Palestine -

33

ميلتهه ا ارالهه وا يفهه روام ههر رلهه ههلي ميلتهها مهه واميويد روامالر رلالال ررلي فبلويال و و تليس هه د وايتها

.وت ي م ه و وامعل وا تههههههل مهههههه يررالهههههه وامههههههرول :المااااااوادفقل لااااااةفاالنبعاااااا

وامتههه خلم فهههي وا شههه ال لس والوخلالههه روامهههيص رلههه و تهههر خلاالههه مههه وامهههرول وام هههلاليد واتهههلم رور هههل مالههه

رههه و ولا ههل مههل مههيص شهه الل تلفالهه ا ارالهه وام يهه هه .وار ويد رلال

متا واليوت واتل ب رواملا واليوتال :االن رةفالطب ع ة يهس و واروجاه واشهي ال ملجه واه شت خلص وا هي ال

تلتهههيوس رمرلالههه راالتهههس وفبالههه ور جهههلوي ومهههلمي تهههل ا تلتهههههيوس وفبالههههه رووف ههههه و تهههههر واجير الهههههرواروجاههههه

م ميتهه ل لهه ال عههلال فههي ورال اههل الهه متي ههلخر وشههع .واشمق لامبلوي واميلتا

واعهههه وا ههههر ي وامتهههه خلي ال ههههي :الجااااودةفالصااااوح ةر شهههت مم هههل راتههه فهههي واممهههيوس روا اهههوا هههاال العمههه

ايجال ور ي ل ههههلس وايئالتههههي ملجهههه واهههه ر ههههن مههههرول وتهههه . خ يو وم لص وو روس وس وا يللوس وابلالل

را خاال وو رهلي ر الهللد وم هلص وا هرس فهإ معرهي واممههيوس رواتههلملس والوخلالهه المههلويق واملال هه ههي ر ههن

ههلص رههل ااههرو مهه وااالههل واي ل الهه وس معلمهه وم ر هل اتهامس فهي (4)ال رس تمل هر م هال فهي واشهت

خاالههه وا ر هههل والهههي و هههه د وا يالبههه هههل و تهههر وايتههههها مههههه مالههههه وا تلاههههه روالو رواميرهههههي واجمهههههلاي رالمتهههه وتهههه عمل مههههرول اخههههيا وس شههههت اف هههه رالو سامتهه مهه مالهه خاالهه وا ر ههل فههي جمالههن هه ل

الجا و التهر هيهلم تلمه مهل هال وا همالي ر . وا رسوا ر ي رواعم وامعمهليي ماله ريهل ر الهن هه د والهروئل

من وا همالي يوامل ال رس تر مر ر مال .رو تر ري ي يلفي فال

متا واليوت رواشير وام لر و التر :ال راريفحاالرح راتههه % 01هيهههلم ي ههه رهههلي مههه ههه وا ل ههه و البههه رههه

متهها واليوتههه وا ملاللالههه رواممرتهه ومريهههل و وايتههه بههه

ريال متا وا مالي واميا راته مهن عهلال وا همالي ماله ال ههه ل متهههها وا رجالهههه ووم هههه ي مههههر و ههههه د وايتهههه الههههل

اه و ر هي . مه وولها والهلي واعهلي واليوتهي% 01ا وا امههل اهه هه الي ووم هه الم يهه وامليتههي وا رجالهه وا لم هه ليوتهه

ماهههههي فهههههي وايومههههه واميويالههههه لوخههههه وا هههههي وا هههههاال روام يههههه . وامليتي شت رلي

فف:الحوص موففالنح ئج

م وارو ل ا هيلام مملروس جللد م ر ويد وا ي اله روا علهالي متههال وا يههل وامليتههي رم ل ب اههل المعههلالالي وا ههمالمال مهه اجهه

الهه عههض واجرويهها واخ ههيو رلاالهه واتاههل د ر اههم مهه خهه رخل ه وا هي المته الباهل هم وإلج ليال لام ل لس ووا وير

.وامللال وا تال وإلمتلياللس

معهههلالالي وا يهههل رالر هههر إاههه ي هههلئج اف ههه فإييهههل ير هههي الههه مياههل رجالهه وام يهه وامليتههي يمههر واجيههرا مههن اممتيهه ر واخ ههي و

ليوتهههه تهههه ملاهههه رريرفاههههل ر مههههل و ال عههههليض مههههن يرههههلي وإليههههليد ههههيريد فهههه ل وامجههههل امههههلي وامج مههههن ير ههههي راال ههههل . وا العالهههه

وامملهههي رخل ههه ل ههه وامليتههه لتههه خلوي مهههل و البههه رههه ههه

لواح امتاا الاو في المدرسة صورة أل (:1)شكل

التركية بالخليل

Page 151: The Fifth International Energy Conference - Palestine -

32

ههل واخلالهه رهه يالهه وتهه مههيويد ههل وايض (Geothermal ) جههههر وا يفهههه رههههه د ر تالالهههه فههههي لفئهههه

راهي اله ي ليوته مهلا يجلماهل وا ياالهوامليت مل واس الل . عل رل واملا واب الي روا عالل

فالموادفوالموارد:فالبندفالرابع روامرويلوام ل لس ووج ليال ا يل وامرول (: 1)جلر

المت الب

م :وصففالمحطلبفاالجب ري (و/ يعي)

و يعي

رفالي مي ب خلي وام ي المت وار ر واالال تارا إلرللدوالي واخ يد ر خ ال وامرولمخ اجمن

لراليهل مل في ام رل وا وايالاللس واري ال رواري راال ل خ الص . وامبرا روا جلي روا ت الم روامعلل

مي ب اجمن ر خ ال بلالل واي ل لس وامش وو و و تل .وامر ن و ال م واي ل لس

1

و يعي

وامخلالس و يل رملال وويشل روا ش ال إللويد ييلمج مال المب ه و وا ييلمج وامل وولي م ورللد لرالي

م مخلالس وا يل رواالي % 21ور ويبل مل يت ره د وايت و شم وايالاللس واخ يد . لار ور وامجي

.وا ي الجا معلاج ال معلاج خل

2

يعي

رلي وت خلوي وامرول واخ يد ر ام المل م عيض ر بلال تلات ت رقشلولي وام ي المرول واخ يد

وا اليوس واتلم ا ييالخلس تيرملس وايملق وامت خلم .في معلاج واخشا رل وايلق روا الئ

3

واعم شت والجل ي ا ال وام ل لس ووج ليال في ه و وا يهل مه م تلملههه علمههه مهههن متريهههلس وا يهههل روويشهههل خههه ر هههن خ ههه

رتالاالهه وام ههر رلالاههل رولويد مخلاههلس وويشههل مالهه ي ههم و هه .وو يوي لا الئ رو هلي المرول وا العال واخلي

ف:البنودفالارع ة

العهه ريمهه وا يههل وامليتههي وامع مههل فههي ر ويد وا ي الهه روا علههالي مال مي وامليت معمليالل رويشلئالل رل شت ش ت بالهلق

مالهه شههت فيووههلس وامليتهه ( وا لالههلس) ي X 1.9ي 1.9وامخ لا يل رل ه د واش ت راله ي وا همالي وويشهلئي ور مهللو

وته خلوم شهتال وااهيوو رورهللد إلرهللدرلالال ره و لا هلاي ال هالل . ررالا وخيا رل واملا وا عالل

وه مههلي رمههيص ر ويد وا ي الهه روا علههالي رلهه الهه وامههل ووليهه

م م ل لس وا مالي وا ا واي الع هي الم يه لالمرمه روته لوم و ههلف واهه ويهه مهه واممتهه وتهه خلومال تم جهه فههي وامههلوس

.وا ليئ و تمل هللا

وا ههل وتهه خلوي واههلهل وا ال ههي فههي وامههليوق روتهه لوا لاههلهل وس ووتلق واملئي مال و والهل وا ال هي الم هري رله مهرول

ر م ههلي واهه مههيري عههض (VOC’s)م ههلاليد ههليد لا ههم .وار س ال خلص ميال

فالب ئةفالحعل م ةفالداخل ة:فالبندفالخ مس

وام ل لس ووج ليال ا يل وا الئ وا علالمال والوخلال (:1)جلر

المتهههههههه الب

م :وصففالمحطلبفاالجب ري (و/يعي)

و يعي

مري وا لخال فهي وام يه ر ملالهل اي واميهل ي ر 31وامخ ال لخال مل و الب ر

مهههلوخ وامتالاهههلس رالا ههه مرهههي وا هههلخال فهههي .واملويق

1

يعي

اهدلو وا هر ي مه خه مباله وامل واليه ا هههههههه متهههههههه را ال ر ههههههههل فههههههههي واا ههههههههر

11واليوتهههههال رواليههههههل مالههههه و ال جهههههلر رههههه .لالتال

2

ووا هه وي يههل مرههي وا ههلخال هههر م لهها وج ههليي المتهه ياالهه د لر

رجالهههه ومههههي ولويي مهههه هههه ر ويد لإلمتههههل تههههلاال مللالهههه مالهههه وا ي الهه روا علههالي االبههري وامليتههال روولويالههال مي الههي ووجالههل ههلوا وي

لرد رم هل مته ا ل ه وامته ب ماله و هه و وا هي واالترير .وامليتي العل ش لا وامت ب رجال وا ل

:البنودفالارع ةف هال ووت ال يت ف ملس مهل: مالي ايررال هرو جاللد

مهههههه متههههههلم وا يفهههههه وا ههههههاال هههههههي يتهههههه % 31-31

33

ميلتهه ا ارالهه وا يفهه روام ههر رلهه ههلي ميلتهها مهه واميويد روامالر رلالال ررلي فبلويال و و تليس هه د وايتها

.وت ي م ه و وامعل وا تههههههل مهههههه يررالهههههه وامههههههرول :المااااااوادفقل لااااااةفاالنبعاااااا

وامتههه خلم فهههي وا شههه ال لس والوخلالههه روامهههيص رلههه و تهههر خلاالههه مههه وامهههرول وام هههلاليد واتهههلم رور هههل مالههه

رههه و ولا ههل مههل مههيص شهه الل تلفالهه ا ارالهه وام يهه هه .وار ويد رلال

متا واليوت واتل ب رواملا واليوتال :االن رةفالطب ع ة يهس و واروجاه واشهي ال ملجه واه شت خلص وا هي ال

تلتهههيوس رمرلالههه راالتهههس وفبالههه ور جهههلوي ومهههلمي تهههل ا تلتهههههيوس وفبالههههه رووف ههههه و تهههههر واجير الهههههرواروجاههههه

م ميتهه ل لهه ال عههلال فههي ورال اههل الهه متي ههلخر وشههع .واشمق لامبلوي واميلتا

واعهههه وا ههههر ي وامتهههه خلي ال ههههي :الجااااودةفالصااااوح ةر شهههت مم هههل راتههه فهههي واممهههيوس روا اهههوا هههاال العمههه

ايجال ور ي ل ههههلس وايئالتههههي ملجهههه واهههه ر ههههن مههههرول وتهههه . خ يو وم لص وو روس وس وا يللوس وابلالل

را خاال وو رهلي ر الهللد وم هلص وا هرس فهإ معرهي واممههيوس رواتههلملس والوخلالهه المههلويق واملال هه ههي ر ههن

ههلص رههل ااههرو مهه وااالههل واي ل الهه وس معلمهه وم ر هل اتهامس فهي (4)ال رس تمل هر م هال فهي واشهت

خاالههه وا ر هههل والهههي و هههه د وا يالبههه هههل و تهههر وايتههههها مههههه مالههههه وا تلاههههه روالو رواميرهههههي واجمهههههلاي رالمتهههه وتهههه عمل مههههرول اخههههيا وس شههههت اف هههه رالو سامتهه مهه مالهه خاالهه وا ر ههل فههي جمالههن هه ل

الجا و التهر هيهلم تلمه مهل هال وا همالي ر . وا رسوا ر ي رواعم وامعمهليي ماله ريهل ر الهن هه د والهروئل

من وا همالي يوامل ال رس تر مر ر مال .رو تر ري ي يلفي فال

متا واليوت رواشير وام لر و التر :ال راريفحاالرح راتههه % 01هيهههلم ي ههه رهههلي مههه ههه وا ل ههه و البههه رههه

متهها واليوتههه وا ملاللالههه رواممرتهه ومريهههل و وايتههه بههه

ريال متا وا مالي واميا راته مهن عهلال وا همالي ماله ال ههه ل متهههها وا رجالهههه ووم هههه ي مههههر و ههههه د وايتهههه الههههل

اه و ر هي . مه وولها والهلي واعهلي واليوتهي% 01ا وا امههل اهه هه الي ووم هه الم يهه وامليتههي وا رجالهه وا لم هه ليوتهه

ماهههههي فهههههي وايومههههه واميويالههههه لوخههههه وا هههههي وا هههههاال روام يههههه . وامليتي شت رلي

فف:الحوص موففالنح ئج

م وارو ل ا هيلام مملروس جللد م ر ويد وا ي اله روا علهالي متههال وا يههل وامليتههي رم ل ب اههل المعههلالالي وا ههمالمال مهه اجهه

الهه عههض واجرويهها واخ ههيو رلاالهه واتاههل د ر اههم مهه خهه رخل ه وا هي المته الباهل هم وإلج ليال لام ل لس ووا وير

.وامللال وا تال وإلمتلياللس

معهههلالالي وا يهههل رالر هههر إاههه ي هههلئج اف ههه فإييهههل ير هههي الههه مياههل رجالهه وام يهه وامليتههي يمههر واجيههرا مههن اممتيهه ر واخ ههي و

ليوتهههه تهههه ملاهههه رريرفاههههل ر مههههل و ال عههههليض مههههن يرههههلي وإليههههليد ههههيريد فهههه ل وامجههههل امههههلي وامج مههههن ير ههههي راال ههههل . وا العالهههه

وامملهههي رخل ههه ل ههه وامليتههه لتههه خلوي مهههل و البههه رههه ههه

لواح امتاا الاو في المدرسة صورة أل (:1)شكل

التركية بالخليل

Page 152: The Fifth International Energy Conference - Palestine -

31

مهه واجههلر وا ههلاي ي مههر ا وايبههل ووج ليالهه م بهه فههي اولهها وامههلويق رههلا وايب هه واخلمتهه فاههي والههي م بهه اتهه ال وراامههل رلي ملج وامليت اماللد معلاج ر ليالامهل ههر رهلي هرفي مم هلس

.المج من وامملي واماللدمعلاج ماللد بري الن م ه د رمل المت الب وا لييوام ل لس ووج ليال ال يل ( 3)جلر

يمكن :وصف المتطلب االجباري مطبق تطبيقه

تمل الي مه معهل المه % 31خاض وت ا م واماللد وا لام الشيا يت ووتههه ا م فهههي ف ههه وا هههال تمعالهههلي اتلتهههي رهههه و واخاهههض هههل الشهههم اي

:مجمرر م واعيل ي وا لاال

.وايروع واي ل ال وامت خلم في واميل واخ يو رلم -4 يعي إرللد وت خلوي ماللد وام لي -3 يعي تال د وايي -2 يعي .وامعلل لراليهل رمعلاج ال وت خلوي واماللد واعللم -1 و ال وت خلوي واماللد وامعلاج وام رفيد -1 و

كا ءةفاسحخدامفالط قة:فالبندفالث ل

:وا يل هي متا واجلر وا لايوام ل لس ووج ليال اا و

.وام ل لس ووج ليال اتال د وت خلوي وا ل (:2)جلر المت الب

م (و/عيي)

:ر وام لا ووج ليي

يجب أن تكون جميع أنظمة الطاقة تحقق اساسيات :التصميم واالنشاء السليم وهذه األنظمة تشمل

1

والتبريد وتسخين المياه أنظمة االنارة والتدفئة نعم 4 .وأنظمة الطاقة المتجددة

2 .الوصول الى الحد األدنى الستهالك الطاقة ال نعم

نعمغير )

(مستعمل

التبريد في المبنى والتأكد من عدم ألنظمةالتخطيط استخدام كافة االنظمة واالجهزة التي تحتوي على

CGC.

3

الم ي وا مالي وام تلم : وا يرل واايرال وا ي لويق وا واخليجي الم: ح س تفالغ ففالخ رج فللمبنى

واخاليا واتب والي شت رلي ملال ل مع را جاللو ايشئسرالجا هيل وا بالل لابالي واممللد .اف ملج وا ر ميويي

. لالاال فالمحجددة وت وا ل هيلام إمتليال رجلرا في :الط قة

وام جللد في راالل وا ل م خ وت خلوي واخ الل واشمتال

ات لوامرالد ال ل مال المت يتالا ه د واخ الل رل الن واملويق والي وامت ل ررالاالل ر وس متلم ت اليد مال المت

ه د وا ل اشيتلس واتاي ل ر ال يت ت اليد م وا ل ر لا لاي مملرا وار ر إا معل يالا واتاي لئال وامت الت

رالمت وت ج Near Zero Energy Netم وا اي الال في االلي وامي من رفي اشع واميور ميال في ش ال .واشمق يتا رلاال

تههخليلس واملال هه ههرفي فههي جمالههن وامههلويق : السااخ ن م

تههههه امالهههههلد وام ههههه فبههههه واتهههههلخيلسشمتهههههال رهههههه د .ال ل في وامململس اال ل رفاليهلر ي ري

وو ههل د وا ههيلرال وامتهه خلم فههي وامههلويق : االضاا ءةمههلال ل وس يررالهه مم ههل د مههرفيد ال ل هه ر وس تلاهه لاللهه

مهههههن وويهههههليد ر تلمههههه T-5رلههههه وامهههههلا وا رالههههه رههههههي .جالل شت وا العال

و الرجهههل هيهههلم لرهههلد ه الههه :األمثااالفللمبناااىفالحوج ااا

وا رجالههههه وام يههههه وامليتهههههي مالههههه الخ لههههه هههههه و ا رجالههههه ليوتههه تههه ر لإلمتهههل هههلخ وامر هههن ر العههه وويض

ووم ههه ااههه د وامليتههه وا رجالههه امعيفههه د مر هههن رلههه مهههلوامب يمههه يهههل رلههه رمههه مملتهههلد فهههي ميملههه وا هههمالي امعيف لا ه مهل ههر ووف ه اته ملاه راته مليته

. وا ياال مهل و ف هيد واهلروي وامليتهي م هل مه رات ر شت رلي ر

شهههاي االلهههر رم ههه يالالههه شهههاي االهههلي رهههه د شهههم والهههلي مع لا واميويد واه هليلد رماله و لخهر وشهع واشهمق

مملراه هلي وومتهل و ر اهم وا وام ي ميوهرا فالاهل يمر واجيرا من وته خلوي تلتهيوس شمتهال وا رجال التر

اي الخاهه رالهه رههه و لا ههلوفبالهه ر جههلي مشهه س اليروفهه واعل .رل وات ريدم ملر ووي الي روالمعل

و مليوتيل جمالعال و الرجهل :أنظمةفحبر دفع ل ةفالكا ءة اههل ايرمهه يالههل ور تالهه اتهه هيههلم جي هه لمههس اههل ر ويد وا ي الههههه عمههههه تالالههههه ام يههههه مليتههههه رول وام الهههههي

Page 153: The Fifth International Energy Conference - Palestine -

30

رتهه ام ملالههل واعيل ههي واخ ههيو وا ههي المتهه ا مبهه لام ههليي وا ههي ع هه ي واههر ويد إيشههل هل ومبههل إ ههلف إاهه واعيل ههي رواجرويهها ال وا ههي يع بههل ايهه مهه وا ههعا مبالباههل ي الجهه الرههير وو ههلل

رمملرلالهههه وايض روابالههههرل وا ههههي الاي ههههال وومهههه رلهههه رملالهههه .وا يل في ميل روتع م واميل واالت اليال

خ الي روت لوم وامر ن: وا يل وار

:وام ل لس ووج ليال وام ل لس ووج ليال ال يل وور رمل المت الب (: 4)جلر

المت الب

م (و/يعي)

:ووج ليير وام لا

يعي ميهههن فبهههلو وا ي ههه ا يهههل رخههه رملالههه وا يهههل رمملالههه

وتهه خلومال إلرههللدوا ي ه واتهه مال ره يالهه خ الياهل .في وامر ن

1

2 مين لر واارو وايل ج ر رملال وا يل و يعي

يعي

بههالي وامر ههن مهه وايلمالهه وا الئالهه روا تههل مهه رههلي رجههرل .وامر نملر لس والي آمي في

3

م بهواتل و وام ل لس ووج ليال ومل وياهل ي مر م واجلر . تلا مملرلد جلوتارا ر لار المت مبالبا

وخ اللي وامر ن شت رهلي ههر خهليي تهال يد واهر ويد :الموقعاخح رفيرهيو ابله وويو ههي وام لمه ررهلي ههرفي وومتليالهلس وامللاله وات الههيد اشهههيو عههه ويوض ههه ي مهههن تلفههه واشهههير راتههه الجههها رلههه واههههههر ويد وامملراهههههه ههههههلي وومتههههههل لو عههههههلل رهههههه وويو ههههههي وس

وا ليالخاله ور ر رراهل وا يال وا يوري ور وس ووهمال وا يو اله وررلهه مجههيا مههلئي العههي رهههر فعهه مههل مههلر واههر ويد وابالههلي هه

ض رليوتههههه ال ههههه هههههي ر هههههل ريهههههلمل ههههه ي معلاليههههه عههههه ووي .وا مالي

وار ويد بري عمه مماله مه عرهالي : دعمفالب ئةفوالك ئن مفالم ل ةوامتهههههلملس واخ هههههيو ر يور اهههههل هههههلايروع وامملالههههه مههههه ووشهههههجلي

مهه متههلم ويض وامليتههه % 41رواي ل ههلس ر يتهه و بهه رهه .واتلال

مر ههن وامليتهه شههت رههلي رخل هه فههي وامههل مهه ئي : المواصاا ممن مرو الس رشير وامرو س مال هرفي فهي واملاليه وجمهلو

مله راته جهيق ر لا هلاي لإلمتهل رلل ت الي م وامهلويق اته مي

ار ويتهههههاي تهههههاليو رلههههه وو هههههلوي وا ل ههههه وار هههههر واههههه مل اول الههههه 3.1رتههههي ال ههههار ووتلتههههال 4.3 متههههلف بهههه رهههه واههههليوجلس

تهه ام الهه ي ههرفالي مرو هه اتههالليوس الهه روي ور . لل ههار وا ليرالهه تمتهههالليوس فهههي جمالهههن وامهههلويق رهههه د 1المعلمهههال عهههلل و البههه رههه

وامرو ههه تهههر عالهههلد رههه وومهههلت وامخ ههه العلههها ور جمهههن .وا ل مل و ف يد والروي وامليتي لا : المن خ ةفالم طةفب لمبنىالرا ةف

م شاي االلر م يالاله شهاي االهلي رههي ف هيد وس ميهلل مع هل وا ليل فل وا رجال وام وا ي ع ملد واهر ويد يمهر واشهمل والهي

يمههر واجيهرا مههن ر هن تلتههيوس شمتههال وا رجالهه مم ه هه الا ه لشههيد مههن يورهه ووشههجلي فههي خاهه مهه لخههر وشههع واشههمق وام

واجاهه واجير الهه ر لا ههلاي ل هه مهه وااههرو ر ع ههي ميرههي جمههلاي .المليت رواممال

و الع هه لههم وورارالهه وام ههلي جمالههن مالههلد ئههي:الماا ئ ال صاا دفلوئمهههل رالع مهههل اهههم رلههه وامال ويالهههه وام هههرفيد المشهههيرع اههه و ر ههههي

و يهه تههمل هه ام مهه تهه وامر اههي رو ووارارالههل وا لم هه جعلهه مهه واممت م لا وامج من وامملي لامشليت ر بلالي واهلري ماله مه واممتهه و و التهههر هههه و وا ئههي مب هههي فبههه رلهه وامليتههه رويمهههل وال ههل الممال ههال راتهه مهه خهه يتههال متهه مههن ولويد وامليتهه

.رواملاليال وا ل ع المليت واههر ويد روولويد وامليتههال رمرمههل ي ل هه : الضااوئ ال اادفمااتفالحلااو ف

إ اههل وويههليد عههل وي اههل واههلروي وامليتههي مالهه و ههمالي شهه ت وويليد تلمل تر مي ر مبه ق رومهل المته و الئاهل ه خهيري تههههتي الي وامليتهههه ور وامههههلالي مياههههل ر لا ههههلاي ههههه و وا ههههمالي التهههها

.مين وا لر وا رئي ميال رالتلرل فيوامهرول وامته خلم ملاالهل ات هيووتهالس مه الع هي :الجزرفال رار ة

اه و . تهر واجه ي واميوياله روا ي م ص ميويد واشمق ر هللي واه مه واه ووتهمي ي مهن الهللد متهلم ممتيه ات يوت خلوي الجا

متههلم وومههروض وا يورالهه مالهه متهه وا ل هه وال ههل مهه واجلههرق .وال لمراال رفي ممال ووشجلي

فالم هكا ءةفاسحخدامف:ف البندفالث ن

31

مهه واجههلر وا ههلاي ي مههر ا وايبههل ووج ليالهه م بهه فههي اولهها وامههلويق رههلا وايب هه واخلمتهه فاههي والههي م بهه اتهه ال وراامههل رلي ملج وامليت اماللد معلاج ر ليالامهل ههر رهلي هرفي مم هلس

.المج من وامملي واماللدمعلاج ماللد بري الن م ه د رمل المت الب وا لييوام ل لس ووج ليال ال يل ( 3)جلر

يمكن :وصف المتطلب االجباري مطبق تطبيقه

تمل الي مه معهل المه % 31خاض وت ا م واماللد وا لام الشيا يت ووتههه ا م فهههي ف ههه وا هههال تمعالهههلي اتلتهههي رهههه و واخاهههض هههل الشهههم اي

:مجمرر م واعيل ي وا لاال

.وايروع واي ل ال وامت خلم في واميل واخ يو رلم -4 يعي إرللد وت خلوي ماللد وام لي -3 يعي تال د وايي -2 يعي .وامعلل لراليهل رمعلاج ال وت خلوي واماللد واعللم -1 و ال وت خلوي واماللد وامعلاج وام رفيد -1 و

كا ءةفاسحخدامفالط قة:فالبندفالث ل

:وا يل هي متا واجلر وا لايوام ل لس ووج ليال اا و

.وام ل لس ووج ليال اتال د وت خلوي وا ل (:2)جلر المت الب

م (و/عيي)

:ر وام لا ووج ليي

يجب أن تكون جميع أنظمة الطاقة تحقق اساسيات :التصميم واالنشاء السليم وهذه األنظمة تشمل

1

والتبريد وتسخين المياه أنظمة االنارة والتدفئة نعم 4 .وأنظمة الطاقة المتجددة

2 .الوصول الى الحد األدنى الستهالك الطاقة ال نعم

نعمغير )

(مستعمل

التبريد في المبنى والتأكد من عدم ألنظمةالتخطيط استخدام كافة االنظمة واالجهزة التي تحتوي على

CGC.

3

الم ي وا مالي وام تلم : وا يرل واايرال وا ي لويق وا واخليجي الم: ح س تفالغ ففالخ رج فللمبنى

واخاليا واتب والي شت رلي ملال ل مع را جاللو ايشئسرالجا هيل وا بالل لابالي واممللد .اف ملج وا ر ميويي

. لالاال فالمحجددة وت وا ل هيلام إمتليال رجلرا في :الط قة

وام جللد في راالل وا ل م خ وت خلوي واخ الل واشمتال

ات لوامرالد ال ل مال المت يتالا ه د واخ الل رل الن واملويق والي وامت ل ررالاالل ر وس متلم ت اليد مال المت

ه د وا ل اشيتلس واتاي ل ر ال يت ت اليد م وا ل ر لا لاي مملرا وار ر إا معل يالا واتاي لئال وامت الت

رالمت وت ج Near Zero Energy Netم وا اي الال في االلي وامي من رفي اشع واميور ميال في ش ال .واشمق يتا رلاال

تههخليلس واملال هه ههرفي فههي جمالههن وامههلويق : السااخ ن م

تههههه امالهههههلد وام ههههه فبههههه واتهههههلخيلسشمتهههههال رهههههه د .ال ل في وامململس اال ل رفاليهلر ي ري

وو ههل د وا ههيلرال وامتهه خلم فههي وامههلويق : االضاا ءةمههلال ل وس يررالهه مم ههل د مههرفيد ال ل هه ر وس تلاهه لاللهه

مهههههن وويهههههليد ر تلمههههه T-5رلههههه وامهههههلا وا رالههههه رههههههي .جالل شت وا العال

و الرجهههل هيهههلم لرهههلد ه الههه :األمثااالفللمبناااىفالحوج ااا

وا رجالههههه وام يههههه وامليتهههههي مالههههه الخ لههههه هههههه و ا رجالههههه ليوتههه تههه ر لإلمتهههل هههلخ وامر هههن ر العههه وويض

ووم ههه ااههه د وامليتههه وا رجالههه امعيفههه د مر هههن رلههه مهههلوامب يمههه يهههل رلههه رمههه مملتهههلد فهههي ميملههه وا هههمالي امعيف لا ه مهل ههر ووف ه اته ملاه راته مليته

. وا ياال مهل و ف هيد واهلروي وامليتهي م هل مه رات ر شت رلي ر

شهههاي االلهههر رم ههه يالالههه شهههاي االهههلي رهههه د شهههم والهههلي مع لا واميويد واه هليلد رماله و لخهر وشهع واشهمق

مملراه هلي وومتهل و ر اهم وا وام ي ميوهرا فالاهل يمر واجيرا من وته خلوي تلتهيوس شمتهال وا رجال التر

اي الخاهه رالهه رههه و لا ههلوفبالهه ر جههلي مشهه س اليروفهه واعل .رل وات ريدم ملر ووي الي روالمعل

و مليوتيل جمالعال و الرجهل :أنظمةفحبر دفع ل ةفالكا ءة اههل ايرمهه يالههل ور تالهه اتهه هيههلم جي هه لمههس اههل ر ويد وا ي الههههه عمههههه تالالههههه ام يههههه مليتههههه رول وام الهههههي

Page 154: The Fifth International Energy Conference - Palestine -

29

ألبنية المدرسية الخضراء في الضفة الغربيةل يةتقييم دراسة معتصم بعباع. د بسمه سعادة. م

قسم هندسة البناء امة لألبنية اإلدارة الع جامعة النجاح الوطنية وزارة التربية والتعليم العالي

فلسطين-نابلس فلسطين –رام هللا [email protected] [email protected]

ملخص

شههههالس واتههههيروس واخالههههيد ممههههلروس رلالههههلد مهههه هههه ر ويد وا ي الهههه وامليتهههال مههه خههه يهههل ا متهههال وام هههلييروا علهههالي فهههي فلتههه ال

مهههلويق ب ههههيا مههه مرو ههههالس رشهههير وامههههلويق واخ هههيو اهههه و وا ههي وي تهه س رلهه هه روا بالالمالههجههل س ههه د واليوتهه وا ملاللالهه

جرويهها اتلتههال واجليهها وار يههلر وامههلويق وامترمالهه ر ريهههل وامعمهههليي فهههي روو لمهههلي روا هههريفهههي رهههلد جرويههها مياهههل وارهههلول

إاهه واالههري راال ههل وا ههري فهههي 4991مليتههال ميهه رههلي وا يالهه وا .وا مالي وإليشلئي رمرول وا يل وامت خلم رهالت وا يل

امهل واجليها وا هليي وي ته رله ملالهل مرو هالس رشهير وامههلويق واخ هههيو وتههه يللو إاههه رهههلد ميوجهههن وس ر ههه لا يالههه واخ هههيو

لص ر اههم مهه شههت رههلي ر لا يالهه وامليتههال واخ ههيو شههت خههخههه وو ههه ع رلههه رهههلد معهههلالالي مياهههل خ هههالي روتههه لوم مر هههن وامليتههه رتاهههل د وتههه خلوي وامالهههلد روا ل ههه روامهههرول روامهههرويل رجهههرلد

.وا الئ وا علالمال والوخلال

رفههي واجليهها وا لاهه واجليهها وا ملاللههي مهه ههه د واليوتهه مالهه ههي متا رجاه يرهي ملال رليوت رالي م وا يال وامليتال وايوئلد

ر ويد وا ي ال روا علالي ر ام وت يللو رل وامعلالالي روامرو الس وا ي . ي يل إاالال شت ما في واجليا وا ليي م ه د واليوت

وامت يلد رل يتلا واملجت الي وا ي مم ريهرو ري واعم ه د" وامترمالههه واخ هههيو فهههي وا ههها وا ي الههه بالمالاللمهههلويقليوتههه "

ي ههن واههلت ري مع ههي ع ههلع فههي جلمعهه وايجههل وار يالهه إشههيو

فههههي رهههه ر ههههلاخصمشهههتل واليوتهههه مهههه اهمالهههه وا يهههل واخ ههههي وامليتههههه المتههههه ا ا ريرفيهههههل واخل ههههه فهههههي فلتههههه ال رمالههههه

راال هههل م ليمر جهههل مالهههل علالمالهههل امااهههري وا يهههل واخ هههي راهمال ههه واههههر ويد ا مبالهههه مههههلا يجههههل واممههههلروس وا ههههي لمههههس اههههل يههههل

وامرو هههههالس رمعهههههلالالي وا يهههههل وامليتهههههي واخ هههههي وتههههه يللو رلههههه .وامعلالالي روامرو الس واعلامال

هههر رلهه اي ليجهه يبهه فههي جليهها ليوتهه رواتههلو واهه ي يل شهه وا ال وا يل وامليتي واخ هي فهي ملويتهيل وامترماله فهي وا ها

.لوامت ب لال وا ي المت مبالبا روإلمتلياللسوا ي ال

وامههلويق واخ ههيو وام ههليي وام ههليي وامليتههال : ةكلماا مفماح اا وامت لوم

ف:مقدمة ههلي ر ويد وا ي الهه روا علههالي رميهه رههلد تههيروس وه ملمههل رو ههمل فههي ههري وام هههليي واايلتهههال مهههل المبهه شهههير واتههه م رجهههرلد وا الئههه

ريرهههههيو اعهههههلي هههههرفي معهههههلالالي رو هههههم امااهههههري وام هههههليي . والوخلالههههه واخ هههيو فهههي فلتههه ال فإييهههل يجهههل ا هههه د واممهههلروس هههل مببهههس

مههه مبالههه جرويههها اخهههيا جرويههها إالجل الههه راوالهههس ار اهههي ههه مت . ع ال الع ي اتلتالل روا عض وآلخي ليرالل

واههلاال وويشههللي الم ههليي واخ ههيو فههي فلتهه ال روآل مههن ههلري فهههي واههه ي ا هههليد وامجلهههق واالتههه اليي وارلههه الم هههليي الخ هههيو

روامعهههههلالالي روامرو هههههالس واخل ههههه لامهههههلويق 3142يالالههههه رهههههلي وو يالههه وامشهههليالن وايوئهههلد مههه ملالههه ر بالهههاليفإييل تهههيبري واخ هههيو

. وا هههي هههي مبالباهههلواخ هههيو وامليتهههال واملال ههه ا ملالهههل واعيل هههي

Page 155: The Fifth International Energy Conference - Palestine -

28

لطبعفففففة األولفففففى، مجلفففففس البنفففففال الفففففو ني كفففففود تشويفففففد المبفففففاني بالميفففففاه، ا

.1911األردني،عمان،األردن، المواصرة الرلسطينية لمياه الشرض، مؤسسة المواصرات و المقفاييس الرلسفطينية

.1990،رام هللا، فلسطين ، مواصرة تشويد مركش لغاز بترولي مسال ألبنيفة غيفر مخصصفة للصفناعة أو

المقفففاييس الرلسفففطينية ، رام هللا ، المهفففن أو الشراعفففة، مؤسسفففة المواصفففرات و .1990فلسطين،

ASHRAE, 2011

Munir Sad,(2006).Developing an Environmental Management System for Birzeit University,M.Sc. Thesis, Birzeit University,Palestine

:ذات العالقة دوائر و مكاتب الجامعة

. المكتب الهندسي • .ئرة الخدمات العامةدا • .دائرة المالية • .مركش مختبرات جامعة بيرزيت للرحو • .عمادة شؤون الطلبة • مكتب التخطيط و التطوير •

توصياتال هي جشل من السياسة الشفاملة التفي تتبعهفا الجامعفةهذه الورتة التوصيات في

.وتأتي هنا من باض التأكيد عليها تحقيقها في المستقباعلى او التي تعما و ستعم

يتعرض لجميع ض الجامعة اختيار مسا تدريسي إستحداث .للق ايا البيئية و يسلط ال ول عليها

تخصففيص يففوم فففي األسففبو لعمففا نشففا جففامعي للطفف ض و المففوظرين .بخصو البيئة

هميفة البيئفة و سفبا الحرفاظ تح ير برامج إذاعية في إذاعة الجامعة عن أ .عليها

لناد البيئي للطلبة في الجامعة دعم نشا ات ا. تدريب الرنيين و العمال في الجامعة بالقدر الكافي للعما على ثماية

.البيئة ووتايتها و ذلك في مجال البنال و صيانة المباني دارة تنميففة كففادر األسففاتذة وتطففوير تففدراتهم ليتمكنففوا مففن تبنففي مرهففوم اإل

. البيئية في مساتاتهم سن توانين جامعية لحماية البيئة من اإلعتدالات و ترعيا عقوبفة علفى مفن

.يتسبب بها العما على زراعة األشجار ففي األمفاكن التفي لفن يفتم فيهفا بنفال مسفتقبلي

.و العما على زيادة الحدائ الجامعية جففا إعففادة مففن أا العمففا علففى آليففة فصففا المخلرففات الصففلبة كففا علففى ثففد

.تدويرها ال الميفاه منهفا زيادة عدد آبفار تجميفع ميفاه األمطفار ففي الجامعفة و اسفتعم

.الر ز أعمال التنظيف بصورة عامةفي استخدام معدات موفرة لمياه الشرض في امغاسا و المطاب. وتفود ثراتفات تعمفا علفى التوجه الى تغيير ثراتات بويلرات التدفئة الى

. من السوعرالغاز السائا بدع الطاتففة الشمسففية فففي إنففارة الحففرم تعمففا علففى التففي اتتطبيقففاسففتخدام ال

.الجامعي اسفففتخدام التركيفففش علفففى التقليفففا مفففن اسفففتخدام المنظرفففات الكيماويفففة و

.مستح رات صديقة للبيئة البيئة تختصمن الحوافشالتشجيعية للط ض لعما مشاريع . دارة البيئي الالسعي نحو الحصول على شهادة نظام اإل ISO 14001 السففعي نحففو تطبيفف برنففامج الريففادة فففي الطاتففة و التصففميم البيئففي فففي

LEEDمشاريع الجامعة و الحصول على شهادة ال العمففا علففى توأمففة وشففراكة علميففة مففع الجامعففات العالميففة الرائففدة التففي

. تطب نظام اإلدارة البيئي خارج الحرم الجامعي سياراتو نقا مواتف الالعما على إنشال.

المراجع و المصادر

الكود الرلسطيني لقبنية المفوفرة للطاتفة، الطبعفة األولفى، وزارة الحكفم المحلفي .2331الرلسطيني، رام هللا ،فلسطين،

الكود األردنفي للمبفاني المفوفرة للطاتفة، الطبعفة األولفى، مجلفس البنفال الفو ني .2313مان،األردن،األردني،ع

كفففود العفففشل الحفففرار األردنفففي ، الطبعفففة ال انيفففة، مجلفففس البنفففال الفففو ني .2331األردني،عمان،األردن،

الكففود األردنففي للتهويففة الميكانيكيففة و تكييففف الهففوال، الطبعففة األولففى، مجلففس .1911البنال الو ني األردني،عمان،األردن،

29

ألبنية المدرسية الخضراء في الضفة الغربيةل يةتقييم دراسة معتصم بعباع. د بسمه سعادة. م

قسم هندسة البناء امة لألبنية اإلدارة الع جامعة النجاح الوطنية وزارة التربية والتعليم العالي

فلسطين-نابلس فلسطين –رام هللا [email protected] [email protected]

ملخص

شههههالس واتههههيروس واخالههههيد ممههههلروس رلالههههلد مهههه هههه ر ويد وا ي الهههه وامليتهههال مههه خههه يهههل ا متهههال وام هههلييروا علهههالي فهههي فلتههه ال

مهههلويق ب ههههيا مههه مرو ههههالس رشهههير وامههههلويق واخ هههيو اهههه و وا ههي وي تهه س رلهه هه روا بالالمالههجههل س ههه د واليوتهه وا ملاللالهه

جرويهها اتلتههال واجليهها وار يههلر وامههلويق وامترمالهه ر ريهههل وامعمهههليي فهههي روو لمهههلي روا هههريفهههي رهههلد جرويههها مياهههل وارهههلول

إاهه واالههري راال ههل وا ههري فهههي 4991مليتههال ميهه رههلي وا يالهه وا .وا مالي وإليشلئي رمرول وا يل وامت خلم رهالت وا يل

امهل واجليها وا هليي وي ته رله ملالهل مرو هالس رشهير وامههلويق واخ هههيو وتههه يللو إاههه رهههلد ميوجهههن وس ر ههه لا يالههه واخ هههيو

لص ر اههم مهه شههت رههلي ر لا يالهه وامليتههال واخ ههيو شههت خههخههه وو ههه ع رلههه رهههلد معهههلالالي مياهههل خ هههالي روتههه لوم مر هههن وامليتههه رتاهههل د وتههه خلوي وامالهههلد روا ل ههه روامهههرول روامهههرويل رجهههرلد

.وا الئ وا علالمال والوخلال

رفههي واجليهها وا لاهه واجليهها وا ملاللههي مهه ههه د واليوتهه مالهه ههي متا رجاه يرهي ملال رليوت رالي م وا يال وامليتال وايوئلد

ر ويد وا ي ال روا علالي ر ام وت يللو رل وامعلالالي روامرو الس وا ي . ي يل إاالال شت ما في واجليا وا ليي م ه د واليوت

وامت يلد رل يتلا واملجت الي وا ي مم ريهرو ري واعم ه د" وامترمالههه واخ هههيو فهههي وا ههها وا ي الههه بالمالاللمهههلويقليوتههه "

ي ههن واههلت ري مع ههي ع ههلع فههي جلمعهه وايجههل وار يالهه إشههيو

فههههي رهههه ر ههههلاخصمشهههتل واليوتهههه مهههه اهمالهههه وا يهههل واخ ههههي وامليتههههه المتههههه ا ا ريرفيهههههل واخل ههههه فهههههي فلتههههه ال رمالههههه

راال هههل م ليمر جهههل مالهههل علالمالهههل امااهههري وا يهههل واخ هههي راهمال ههه واههههر ويد ا مبالهههه مههههلا يجههههل واممههههلروس وا ههههي لمههههس اههههل يههههل

وامرو هههههالس رمعهههههلالالي وا يهههههل وامليتهههههي واخ هههههي وتههههه يللو رلههههه .وامعلالالي روامرو الس واعلامال

هههر رلهه اي ليجهه يبهه فههي جليهها ليوتهه رواتههلو واهه ي يل شهه وا ال وا يل وامليتي واخ هي فهي ملويتهيل وامترماله فهي وا ها

.لوامت ب لال وا ي المت مبالبا روإلمتلياللسوا ي ال

وامههلويق واخ ههيو وام ههليي وام ههليي وامليتههال : ةكلماا مفماح اا وامت لوم

ف:مقدمة ههلي ر ويد وا ي الهه روا علههالي رميهه رههلد تههيروس وه ملمههل رو ههمل فههي ههري وام هههليي واايلتهههال مهههل المبهه شهههير واتههه م رجهههرلد وا الئههه

ريرهههههيو اعهههههلي هههههرفي معهههههلالالي رو هههههم امااهههههري وام هههههليي . والوخلالههههه واخ هههيو فهههي فلتههه ال فإييهههل يجهههل ا هههه د واممهههلروس هههل مببهههس

مههه مبالههه جرويههها اخهههيا جرويههها إالجل الههه راوالهههس ار اهههي ههه مت . ع ال الع ي اتلتالل روا عض وآلخي ليرالل

واههلاال وويشههللي الم ههليي واخ ههيو فههي فلتهه ال روآل مههن ههلري فهههي واههه ي ا هههليد وامجلهههق واالتههه اليي وارلههه الم هههليي الخ هههيو

روامعهههههلالالي روامرو هههههالس واخل ههههه لامهههههلويق 3142يالالههههه رهههههلي وو يالههه وامشهههليالن وايوئهههلد مههه ملالههه ر بالهههاليفإييل تهههيبري واخ هههيو

. وا هههي هههي مبالباهههلواخ هههيو وامليتهههال واملال ههه ا ملالهههل واعيل هههي

Page 156: The Fifth International Energy Conference - Palestine -

27

مواقف السيارات تتميفففش المبفففاني الجامعيفففة ففففي جامعفففة بيرزيفففت بوجفففود مواتفففف خاصفففة للمفففوظرين

ن الجامعففة مواتففف خاصففة لسففيارات الطلبففة داخففا و األسففاتذة و الطفف ض ،ثيفف تففؤمالحففرم الجففامعي وذلففك بحسففب األمففاكن التففي يقررهففا المكتففب الهندسففي فففي و خففارج

موتففف و تشففما مواتففف لففذو اإلثتياجففات 090الجامعففة ، وتشففما عففدد المواتففف .الخاصة

رات لسفيا اكبيفر اموتفف خفارج الحفرم الجفامعي ، ليكفون مجمعف لبنفال تخطط الجامعفة و الباصففات و سففيارات الطفف ض و سففيارات ال ففيوو مففن خففارج الجامعففة األجففرة

و سيتسفع الفى .مفن المفدخا الغربفي بفالقرضو يقع هذا الموتف . و لرث ت المدارس .سيارة و با 133ما يقارض

حدائق الجامعة

هفذه يوجد في جامعة بيرزيت أماكن عديدة مشروعة باألشجار و الفورود و يوجفد ففيففي هفذا المجفال وهنفا تجفدر ،مظ ت لجلوس الط ض أو الموظرين األماكن مقاعد و

دونمففا فففي مففدخلها 11اإلشففارة الففى الحديقففة النياتيففة التففي خصصففت لهففا الجامعففة و تفد عملفت .الجنوبي و المتوتع أن ت م ثين إكتمالها كاففة أصفناو نباتفات فلسفطين

:لحدائ و اهمهاعما على إنشال اتو مازالت الجامعة

.الحديقة األلمانية ما بين مبنيي العلوم و الدراسات العليا -1 .ثديقة الحرش -2 .ثديقة مبنى التجارة-0 .ثديقة سمير عوي ة-1 .ثديقة الرياسة-0 .وهي في ور اإلنشال( Botanical Garden)الحديقة النباتية -0

ذوي االحتياجات الخاصة األشخاصخدمات تفففولي و. و اعثتياجفففات الخاصفففة، فئفففة هامفففة مفففؤثرة ففففي مجتمعنفففا ،يعتبفففر ذو

و كفا العفون .جامعة هذه الشفريحة اعجتماعيفة كفا اعهتمفام والتقفدير الفذ تسفتحقهالالمفففاد والتعليمفففي والنرسفففي،و تفففوفر لهفففم المسفففتلشمات ال زمفففة تسفففها لهفففم هفففذه

.ال كغيرهمالمشاركة وتشعرهم بأنهم مازالوا تادرين على البنال والعط

و تلتفففشم الجامعفففة بتفففوفير الرفففر التعليميفففة المماثلفففة للطلبفففة ذو اعثتياجفففات ويسفففتخدم مصفففطل اعثتياجفففات الخاصفففة لوصفففف . الخاصفففة كغيفففرهم مفففن الطلبفففة

األفراد الفذين يحتفاجون إلفى المسفاعدة بسفبب هفذه اعثتياجفات ا الررديفة التفي تشفتما كا اللغويفففة، والمشفففاكا الجسفففدية، علفففى تصفففور البصفففر، وتصفففور النطففف ، والمشفففا

والحالففة النرسففية، وتصففور السففمع، والمشففاكا التعليميففة، ومشففكلة سففعف التركيففش، وتشففتما هففذه التسففهي ت، علففى سففبيا الم ففال ع الحصففر، علففى . والمشففاكا الصففحية

اسففتخدام التقنيففات المسففاندة م ففا تففوفير ثمامففات خاصففة لهففم و ممففرات و منحففدرات واتفففف خاصفففة و مصفففاعد داخفففا المبفففاني، باإلسفففافة الفففى و م( Ramps)خاصفففة

.تخصيص تسم اإلرشاد في مساعدتهم

النتائجمفن خف ل تبنففي سياسفات مففوفرة للطاتفة فففي البنفال و التشففغيا و سياسفات ترشففيد :اإلسته م فقد تمكنت الجامعة من تحقي مستويات جيدة نلخصها على النحو التالي

للمتر المربع سنويا$ 13 إسته م وتود التدفئة لم يتعدل.

كيلففووات سففاعة للمتففر 02اسففته م الكهربففال لمختلففف اإلسففتعماعت بلفف .المربع سنويا

لتفر لكفا الفب 11استه م المياه المشتراه من مصلحة الميفاه لفم يتعفدل أو موظف ففي اليفوم و بقيفة اسفته م الميفاه يفأتي مفن تجميفع ميفاه المطفر

. ةو معالجة المياه العادم

فففي مجففال المشففهد العففام مففن ثففدائ و نظافففة عامففة فقففد ثققففت الجامعففة .جيد مقارنة بالموارد المالية المتاثة مستول

اإلعتبففار وففرت الجامعفة بيئفة مناسفبة للدراسفة و العمفا مفع األخفذ بعفين .ألفراد ذو اإلثتياجات الخاصةا

تعما الجامعة على اسفتخدام الموتتفات (Timers) ذلفك ففي تعييفر و .تقريبا ساعات 13مدة إنارة الكشافات الليلية و التي تعما لمدة

يففتم إ رففال جميففع المبففاني و ذلففك بإنتهففال دوام الطفف ض و المففوظرين .الساعة الخامسة مسالا ثوالي

بحيفف يففتم الففتحكم الففى دوائففريففتم تقسففيم نظففام اإلنففارة داخففا المبففاني .أشعة الشمس الخارجيةيدويا بتشغيا ما يلشم بحسب إنارة

يتم التحكم بعما نظام التدفئفة بحيف يفتم تشفغيا بفويلرات التدفئفة مفنالسففاعة ال امنففة صففباثا و يففتم إيقففاو التشففغيا و ذلففك بحسففب درجففة

.الحرارة الخارجية

كفاءة استخدام الطاقة الشمسيةأو ينتج النظام الشمسفي الحفرار اتفة ثراريفة تسفتخدم مباشفرة علفى شفكا ثفرارة

يمكن تحويلها إلى اتة كهربائية، ويعتبر تسخين المياه بالطاتة الشمسية اعستخدامخ لتقنيففة الطاتففة الشمسففية الحراريففة فففي المبففاني فففي فلسففطين بشففكا عففام األك ففر شففيوعاثي يمكن أن يفؤمن جميفع اثتياجفات اعسفتخدام الشخصفي مفن الميفاه السفاخنة أثنفال

خ وثوالي .من اثتياجات المال الساخن على مدار العام% 93أشهر الصيف تقريباتسفففتخدم جامعفففة بيرزيفففت نظفففام تسفففخين الميفففاه و ذلفففك إلسفففتعماعت الميفففاه ففففي الكافتيريا المركشية الموجودة في مبنى المكتوم، ثي يتم اسفتخدام الميفاه السفاخنة ففي

تسفففتوعب و تنظيفففف أ بفففا الطهفففي و التقفففديم و معفففدات المطفففب و مسفففتلشماته، .شخص من الط ض و الموظرين 1333كافتيريا المركشية ما يقارض ال

:كفا ة است دام الرا ة الشمسية كالتال

التوفير في استه م الطاتة ال زمة لتسخين المياه في الكافتيريا. يوفر مياه ساخنة على مدار اليوم بوجود خشانات لحرظ المال الساخن. سفففاهم ففففي خرففف تلويففف البيئفففةاسفففتخدام الطاتفففة الشمسفففية المتجفففددة ت

.و إنبعاثات غاز ثاني أكسيد الكربون يعتبر نموذج تعليمي لط ض كلية الهندسة.

كفاءة استخدام المخلفات الصلبة مخلرفات تفد أتعما جامعة بيرزيت على أن يكفون الحفرم الجفامعي نظيرفا خاليفا مفن

المشعجة و ذلك للحراظ على بيئةتشوه المنظر العام للجامعة أو تتسبب بالروائ ع يوجد فصا للمواد الموجودة في المخلرات الصلبة بفداخا الجامعفة . نظيرة و صحية

:،و لكن يوجد استخدامات للمخلرات الصلبة كالتالي يففففتم تجميفففففع األورا المسففففتخدمة ففففففي العمليففففة التعليميفففففة و ففففففي

ت عنفد اإلستخدامات اإلدارية في س ت خاصفة ،و ترفره هفذه السف امت ئها في ثاوية كبيرة خلف مبنى الهندسة ليتم شفحنها الفى مصفنع

و تففففد بلفففف وزن األورا المسففففتخدمة . لففففقورا ليعففففاد تففففدويرها .2311-2310العام خ لكجم و ذلك 010203

مخلرات الحرريات ففي المشفاريع ، يفتم اإلسفترادة منهفا بعمفا مفادة الBasecourse مفففم الشفففوار و مفففم التفففي تسفففتخدم ففففي أعمفففال

.لقواعد البنال في الجامعة

استخدام موقع الجامعة اإللكتروني تسفففتخدم جامعفففة بيرزيفففت موتعهفففا اإللكترونفففي علفففى شفففبكة اإلنترنفففت و هفففو

www.birzeit.edu و الففذ مفن خ لففه يفتم وسففع أخبفار الجامعففة و إع ناتهففالكترونففي الخففا بهففا إلرسففال كمففا و تسففتخدم الجامعففة البريففد اإل.لطلبتهففا و موظريهففا

األخبففار و الففدعوات و التعليمففات و اإلع نففات لموظريهففا و أسففاتذتها، كمففا و يحتففو خ على موتع وهو البوابفة األكاديميفة واإلداريفة لجامعفة بيرزيفت، و الفذ Ritaj أي ا

تسفجيا بفرامجهم األكاديميفة و معفام تهم أجفا من خ لفه يفتم التعامفا مفع الطلبفة مفنالمساتات التدريسية و ثجفش الكتفب مفن بص تإليهم كا ما يخ األساتذةالية و إرسال الم

األمفور اإلداريفة الخاصفة ففيكمفا و يتعامفا الموتفع مفع المفوظرين . مكتبات الجامعفة بهفففم مفففن ثيففف المعلومفففات الوظيريففففة و الماليفففة و التقييمفففات و لبفففات اإلجففففازات

.و ثجش القاعات و غير ذلك و المغادرات و لبات الصيانة إن اسففتخدام موتففع الجامعففة اإللكترونففي يعمففا علففى إيصففال المعلومففات بشففكا سففريع

يفوفر ك يفراخ مفن اعستخدامو منظم و يعتبر و يعما على أرشرة ملرات متعددة ، و هذا . استخدام األورا الخاصة بكا تلك المهمات

Page 157: The Fifth International Energy Conference - Palestine -

26

عملت الجامعة و ما زالت تعما على ترشيد استه م المياه فيها بكرالةاستخدامها بطريقة اتتصادية بحي توفر من كميات مياه الشرض و مياه صرو و

:الر ت و ذلك بعدة ر كالتالي إنشففال خشانففات لتخففشين ميففاه الشففرض و ذلففك إلمففداد الجامعففة بالكميففات

متفر مكعفب 0333بحجفم .المطلوبة من المياه خف ل أيفام العمفا الرسفمي . يوم متتالي 23 ثتىو الذ يكري الجامعة

متر مكعب و استعماله لتشويد 033نشال الخشان المرفو بحجم إالجامعة بالمياه عن ري الجاذبية األرسية و بالتالي يعما كخشان

مكافحة لتخشين كميات اسافية من المياه عستعماعتها كالشرض وو يعما على التوفير من استه م كما ،صرو الر ت و الحري ال زمة لتشغيا م خات سغط المياه التي كانت تشغا سابقا تبا الطاتة

.انشال الخشان المرفو تشويفد أعلفى نقطفة بال فغط المطلفوض ففي الشفبكة و ذلفك المحافظة علفى

.سغط جو 2في مباني الجامعة ب غط ع يقا عن تففوفر أجهففشة و معففدات ا رففال الحريفف فففي المبففاني و السففاثات العامففة

.الس مة العامة متطلبات الجامعة و ذلك تماشيا معو شوار تصريف المياه العادمة الى محطة التنقية التي تقع في منطقة منخر ة

.لمعالجتها عففادة اسففتخدام الميففاه العادمففة بعففد تنقيتهففا و ذلففك ألغففراض الففر و هففذا إ

خ 120333يوفر مبل .دوعراخ سنويا متففر مكعففب 0033 يبلفف كلففيإنشففال آبففار لتجميففع ميففاه األمطففار بحجففم

خ 100333و يوفر مبل .دوعر سنويا استخدام مياه األمطار في تصريف الر ت من المراثي و المباول

المراثي منرصلة عن شبكة ثي أن شبكة مياه في الوثدات الصحية .المغاسا في معظم بنايات الجامعة

ذلك سم بخلو أ نظرا لتوفر خشانات مركشية في الجامعة ، فإنخشانات على أسط المباني و هذا ي ري جانب جمالي بعيدا عن امت ل

.الصغيرةاألسط بالخشانات

كفاءة استخدام الطاقة الكهربائيةيتم ت ويد الجامعة الكهر طا نطة رريطق شطركة كهر طا ماا قطة القطد و ذلطو مطة

تهالو الجامعطة السطلو مجمطوع اسط لط . ثطة ماطوالت مو نطة ط الجامعطة الا ثالkWh/year 2,800,000 كميططة الرا ططة اططذ ت ططدم مجمططوع. 0283 طط نططام

و مؤشططر أدا رططا 2م 154474 يبططا الططم اجمططال مططة مسططااة م ططال الجامعططةوالر تشط يا مولطدات سجامعة ير يت و ود ال دمتست . kWh/m233 يساو

اإلضططا ة الططم كهر ططائ مططة مبططدر لقرططاع التيططار الالكهر ططا التطط تعمططا طط اططاا ا . تش يا ويلرات التد ئة شتا ا

.اللس ة المئوية إلستهالو الرا ة الجامعة( 2.8)شكا

و تفدوم لرتفرة عمفر نفوا مختلرفةمفن أ موفرة للطاتة تستخدم الجامعة لمبات •فففي المبففاني LEDوتتجففه الجامعففة الففى اسففتخدام لمبففات .أ ففول مففن اللمبففات العاديففة

. LEDبنظام ال الجديدة و استبدال اللمبات في المباني القديمة أعلى نسب اإلسفته م مفن الكهربفال هفي لةنفارة ثيف مفا يقفرض مفن نصفف •

و للتوفير في استه م الكهربفال ففإن المكتفب الهندسفي استه م الكهربال هو لةنارة، لةنفارة (T8) بفدع مفن نظفام ال (T5) في الجامعة توجه الى استخدام نظفام ال

مففن الطاتففة و تففم اسففتخدام هففذا النظففام فففي مبنففى تكنولوجيففا % 20و الففذ يففوفر ثتففى الففوفر خفف ل ظففة تيمففةو سففيتم م ث 2310 ي بدايففة عففام المعلومففات الففذ افتففت ففف

.الكهربال ترالات عداد

لصفففوو الصفففخر ، االبوليسفففتيرينمفففواد العازلفففة المسفففتخدمة ففففي الجامعفففة هفففي ال السففقف المعلفف ،الحففوائط المررغففة ،العازلففة سففمنتيةالبلوكففات اإل ،الصففوو الشجففاجي

:و يمكن تلخيص كرالة استخدام نظام التدفئة في الجامعة كالتالي

تسفاعد ففي الحفد مفنالداخلية للمباني، بحي الحراظ على الحرارة خ، ومفن وانتقال الحرارة من خارج المبنفى تسرض إلفى داخلفه صفيرا

.داخله إلى خارجه شتالخ اعسترادة من األسقف المعلقة لغايات العشل الحرار و العشل

.ال وسالتخريف الصدل و و الصوتي

االلتقالية الارارية جدار ارج( 8.8)شكا

كفاءة استخدام المياه

المدن و البلدات الرلسطينية من أزمة المياه باتي تعاني جامعة بيرزيت م لها م او خاصة في فصا الصيف ، ويبل معدل استه م المياه للررد في الجامعة في أيام

و هذا رتم ، الواردة من مصلحة المياه المياه مناليوم / لتر( 11) الدوام الرسمي اسع جدا مقارنة بالمعايير العالمية و يعود ذلك لترشيد استه م المياه النقيةمتو

و تجميع مياه األمطار يرة في الر على المياه المعالجةكب بصورة و اععتمادمن 0م( 103) استه م الجامعة اليومي و يبل معدل .و استخدامها للحمامات

في تصريف المياه العادمة من المراثي % 03ما نسبته تستهلك . المياه المشتراهو في المختبرات تخدامات المياه كالشرض و التنظيفلباتي اس% 03و المباول ، و

متر مكعب إلستقبال و تخشين المياه الواردة من 0333توجد خشانات بحجم .العلميةيتم والذ (Elevated Tank)باإلسافة الى وجود خشان مرفو مصلحة المياه

و يتم توزيع المياه في بم خة تعما على عوامة أوتوماتيكية، ه اليهايرفع الم الى كافة المباني و الذ ي من وصول المياه المباني من خ ل الخشان المرفو

يتم الحراظ منها على 0م 033 ثي أن سعته العامةو يغذ شبكة مكافحة الحري يا ي لمكافحة الحري و بذلك أمكن اإلستغنال عن في الخشان كإثت 0م 233ثوالي

بقدرة يوجد لدل الجامعة محطة لمعالجة المياه العادمة .م خات الحري و توابعهافي اليوم، و تعما على تكنولوجيا المعالجة الهوائية 0م 033عظمى تصا الى

.(Activated Sludge)باستخدام الحمأة المنشطة

أنظمة المياه و الصرف الصحي في جامعة بيرزيت.نظام نقا و توزيع مياه الشرض ومياه الحري -1 .نظام الصرو الصحي -2 .نظام جمع مياه األمطار -0

27

مواقف السيارات تتميفففش المبفففاني الجامعيفففة ففففي جامعفففة بيرزيفففت بوجفففود مواتفففف خاصفففة للمفففوظرين

ن الجامعففة مواتففف خاصففة لسففيارات الطلبففة داخففا و األسففاتذة و الطفف ض ،ثيفف تففؤمالحففرم الجففامعي وذلففك بحسففب األمففاكن التففي يقررهففا المكتففب الهندسففي فففي و خففارج

موتففف و تشففما مواتففف لففذو اإلثتياجففات 090الجامعففة ، وتشففما عففدد المواتففف .الخاصة

رات لسفيا اكبيفر اموتفف خفارج الحفرم الجفامعي ، ليكفون مجمعف لبنفال تخطط الجامعفة و الباصففات و سففيارات الطفف ض و سففيارات ال ففيوو مففن خففارج الجامعففة األجففرة

و سيتسفع الفى .مفن المفدخا الغربفي بفالقرضو يقع هذا الموتف . و لرث ت المدارس .سيارة و با 133ما يقارض

حدائق الجامعة

هفذه يوجد في جامعة بيرزيت أماكن عديدة مشروعة باألشجار و الفورود و يوجفد ففيففي هفذا المجفال وهنفا تجفدر ،مظ ت لجلوس الط ض أو الموظرين األماكن مقاعد و

دونمففا فففي مففدخلها 11اإلشففارة الففى الحديقففة النياتيففة التففي خصصففت لهففا الجامعففة و تفد عملفت .الجنوبي و المتوتع أن ت م ثين إكتمالها كاففة أصفناو نباتفات فلسفطين

:لحدائ و اهمهاعما على إنشال اتو مازالت الجامعة

.الحديقة األلمانية ما بين مبنيي العلوم و الدراسات العليا -1 .ثديقة الحرش -2 .ثديقة مبنى التجارة-0 .ثديقة سمير عوي ة-1 .ثديقة الرياسة-0 .وهي في ور اإلنشال( Botanical Garden)الحديقة النباتية -0

ذوي االحتياجات الخاصة األشخاصخدمات تفففولي و. و اعثتياجفففات الخاصفففة، فئفففة هامفففة مفففؤثرة ففففي مجتمعنفففا ،يعتبفففر ذو

و كفا العفون .جامعة هذه الشفريحة اعجتماعيفة كفا اعهتمفام والتقفدير الفذ تسفتحقهالالمفففاد والتعليمفففي والنرسفففي،و تفففوفر لهفففم المسفففتلشمات ال زمفففة تسفففها لهفففم هفففذه

.ال كغيرهمالمشاركة وتشعرهم بأنهم مازالوا تادرين على البنال والعط

و تلتفففشم الجامعفففة بتفففوفير الرفففر التعليميفففة المماثلفففة للطلبفففة ذو اعثتياجفففات ويسفففتخدم مصفففطل اعثتياجفففات الخاصفففة لوصفففف . الخاصفففة كغيفففرهم مفففن الطلبفففة

األفراد الفذين يحتفاجون إلفى المسفاعدة بسفبب هفذه اعثتياجفات ا الررديفة التفي تشفتما كا اللغويفففة، والمشفففاكا الجسفففدية، علفففى تصفففور البصفففر، وتصفففور النطففف ، والمشفففا

والحالففة النرسففية، وتصففور السففمع، والمشففاكا التعليميففة، ومشففكلة سففعف التركيففش، وتشففتما هففذه التسففهي ت، علففى سففبيا الم ففال ع الحصففر، علففى . والمشففاكا الصففحية

اسففتخدام التقنيففات المسففاندة م ففا تففوفير ثمامففات خاصففة لهففم و ممففرات و منحففدرات واتفففف خاصفففة و مصفففاعد داخفففا المبفففاني، باإلسفففافة الفففى و م( Ramps)خاصفففة

.تخصيص تسم اإلرشاد في مساعدتهم

النتائجمفن خف ل تبنففي سياسفات مففوفرة للطاتفة فففي البنفال و التشففغيا و سياسفات ترشففيد :اإلسته م فقد تمكنت الجامعة من تحقي مستويات جيدة نلخصها على النحو التالي

للمتر المربع سنويا$ 13 إسته م وتود التدفئة لم يتعدل.

كيلففووات سففاعة للمتففر 02اسففته م الكهربففال لمختلففف اإلسففتعماعت بلفف .المربع سنويا

لتفر لكفا الفب 11استه م المياه المشتراه من مصلحة الميفاه لفم يتعفدل أو موظف ففي اليفوم و بقيفة اسفته م الميفاه يفأتي مفن تجميفع ميفاه المطفر

. ةو معالجة المياه العادم

فففي مجففال المشففهد العففام مففن ثففدائ و نظافففة عامففة فقففد ثققففت الجامعففة .جيد مقارنة بالموارد المالية المتاثة مستول

اإلعتبففار وففرت الجامعفة بيئفة مناسفبة للدراسفة و العمفا مفع األخفذ بعفين .ألفراد ذو اإلثتياجات الخاصةا

تعما الجامعة على اسفتخدام الموتتفات (Timers) ذلفك ففي تعييفر و .تقريبا ساعات 13مدة إنارة الكشافات الليلية و التي تعما لمدة

يففتم إ رففال جميففع المبففاني و ذلففك بإنتهففال دوام الطفف ض و المففوظرين .الساعة الخامسة مسالا ثوالي

بحيفف يففتم الففتحكم الففى دوائففريففتم تقسففيم نظففام اإلنففارة داخففا المبففاني .أشعة الشمس الخارجيةيدويا بتشغيا ما يلشم بحسب إنارة

يتم التحكم بعما نظام التدفئفة بحيف يفتم تشفغيا بفويلرات التدفئفة مفنالسففاعة ال امنففة صففباثا و يففتم إيقففاو التشففغيا و ذلففك بحسففب درجففة

.الحرارة الخارجية

كفاءة استخدام الطاقة الشمسيةأو ينتج النظام الشمسفي الحفرار اتفة ثراريفة تسفتخدم مباشفرة علفى شفكا ثفرارة

يمكن تحويلها إلى اتة كهربائية، ويعتبر تسخين المياه بالطاتة الشمسية اعستخدامخ لتقنيففة الطاتففة الشمسففية الحراريففة فففي المبففاني فففي فلسففطين بشففكا عففام األك ففر شففيوعاثي يمكن أن يفؤمن جميفع اثتياجفات اعسفتخدام الشخصفي مفن الميفاه السفاخنة أثنفال

خ وثوالي .من اثتياجات المال الساخن على مدار العام% 93أشهر الصيف تقريباتسفففتخدم جامعفففة بيرزيفففت نظفففام تسفففخين الميفففاه و ذلفففك إلسفففتعماعت الميفففاه ففففي الكافتيريا المركشية الموجودة في مبنى المكتوم، ثي يتم اسفتخدام الميفاه السفاخنة ففي

تسفففتوعب و تنظيفففف أ بفففا الطهفففي و التقفففديم و معفففدات المطفففب و مسفففتلشماته، .شخص من الط ض و الموظرين 1333كافتيريا المركشية ما يقارض ال

:كفا ة است دام الرا ة الشمسية كالتال

التوفير في استه م الطاتة ال زمة لتسخين المياه في الكافتيريا. يوفر مياه ساخنة على مدار اليوم بوجود خشانات لحرظ المال الساخن. سفففاهم ففففي خرففف تلويففف البيئفففةاسفففتخدام الطاتفففة الشمسفففية المتجفففددة ت

.و إنبعاثات غاز ثاني أكسيد الكربون يعتبر نموذج تعليمي لط ض كلية الهندسة.

كفاءة استخدام المخلفات الصلبة مخلرفات تفد أتعما جامعة بيرزيت على أن يكفون الحفرم الجفامعي نظيرفا خاليفا مفن

المشعجة و ذلك للحراظ على بيئةتشوه المنظر العام للجامعة أو تتسبب بالروائ ع يوجد فصا للمواد الموجودة في المخلرات الصلبة بفداخا الجامعفة . نظيرة و صحية

:،و لكن يوجد استخدامات للمخلرات الصلبة كالتالي يففففتم تجميفففففع األورا المسففففتخدمة ففففففي العمليففففة التعليميفففففة و ففففففي

ت عنفد اإلستخدامات اإلدارية في س ت خاصفة ،و ترفره هفذه السف امت ئها في ثاوية كبيرة خلف مبنى الهندسة ليتم شفحنها الفى مصفنع

و تففففد بلفففف وزن األورا المسففففتخدمة . لففففقورا ليعففففاد تففففدويرها .2311-2310العام خ لكجم و ذلك 010203

مخلرات الحرريات ففي المشفاريع ، يفتم اإلسفترادة منهفا بعمفا مفادة الBasecourse مفففم الشفففوار و مفففم التفففي تسفففتخدم ففففي أعمفففال

.لقواعد البنال في الجامعة

استخدام موقع الجامعة اإللكتروني تسفففتخدم جامعفففة بيرزيفففت موتعهفففا اإللكترونفففي علفففى شفففبكة اإلنترنفففت و هفففو

www.birzeit.edu و الففذ مفن خ لففه يفتم وسففع أخبفار الجامعففة و إع ناتهففالكترونففي الخففا بهففا إلرسففال كمففا و تسففتخدم الجامعففة البريففد اإل.لطلبتهففا و موظريهففا

األخبففار و الففدعوات و التعليمففات و اإلع نففات لموظريهففا و أسففاتذتها، كمففا و يحتففو خ على موتع وهو البوابفة األكاديميفة واإلداريفة لجامعفة بيرزيفت، و الفذ Ritaj أي ا

تسفجيا بفرامجهم األكاديميفة و معفام تهم أجفا من خ لفه يفتم التعامفا مفع الطلبفة مفنالمساتات التدريسية و ثجفش الكتفب مفن بص تإليهم كا ما يخ األساتذةالية و إرسال الم

األمفور اإلداريفة الخاصفة ففيكمفا و يتعامفا الموتفع مفع المفوظرين . مكتبات الجامعفة بهفففم مفففن ثيففف المعلومفففات الوظيريففففة و الماليفففة و التقييمفففات و لبفففات اإلجففففازات

.و ثجش القاعات و غير ذلك و المغادرات و لبات الصيانة إن اسففتخدام موتففع الجامعففة اإللكترونففي يعمففا علففى إيصففال المعلومففات بشففكا سففريع

يفوفر ك يفراخ مفن اعستخدامو منظم و يعتبر و يعما على أرشرة ملرات متعددة ، و هذا . استخدام األورا الخاصة بكا تلك المهمات

Page 158: The Fifth International Energy Conference - Palestine -

25

تطبيقات جامعة بيرزيت في مجال اإلدارة البيئية

الدكتور بشارة أبو غنام مدير المكتب الهندسي جامعة بيرزيت

فلسطين -بيرزيت [email protected]

المهندس منير سعدالمكتب الهندسي -المهندس الميكانيكي

جامعة بيرزيتفلسطين -بيرزيت

[email protected]

والداخليفة علفى ،درجة صفرر مئفو الخارجية يتم اعتمادها على ميةالحرارة التصميسعار السوالر المضطررد ابط ه الالطو توجط أرتفاع إو مع . درجة مئوية 81-02

لططدا الجامعططة للتاططوا الططم اسططت دام ال ططا المسططاا ططدال مططة السططوالر طط التد ئططة .المرك ية

ال في التدفئة له جوانفب بيئيفة ثيف الجامعة بأن التوجه الى استخدام الغاز المستدرو أن اسففته م مصففادر الطاتففة يتشايففد بشففكا م ففطرد سففوالخ فففي القطففا الخففا أو

ن نظفام التدفئفة المركشيفة الفذ إ. الصناعي ومع هذه الشيادة زاد انبعاث ملوثات البيئةبالمائففة مففن 03يعتمففد علففى الغففاز بففدي عففن السففوعر هففو نظففام فعففال ويففوفر ثففوالي

ن التحفول إلفى اسفتخدام الغفاز يفأتي ففي سفيا أو .السوعر مع بالمقارنةالتشغيا ةكلرتكرالة التشغيا،وفي التفوفير ففي اسفتخدام مصفادر الطاتفة التقليديفة وسفمان اسفتدامتها

اسفتخدام نظفام ترشفيدو يمكن تلخيص .والتقليا من نسب التلوث إلى أدنى المستويات :التدفئة في الجامعة كالتالي

نة التحكم في تشغيا بويلرات التدفئة و ذلك بحسفب درجفات الحفرارة مرو .الخارجية

التحكم بإغ محابس راديترات الحمامات و الممفرات مفن أجفا التفوفير .وتود المن استه م

اسففتخدام الغففاز المسففال بففدي عففن السففوعر فففي التدفئففة ممففا التحففول الففى .من ثمن الوتود% 03ته بيوفر ما نس

استخدام العزل الحراريكفاءة يتم عشل المباني ففي الجامعفة و ذلفك بعفشل الجفدران الخارجيفة جميعهفا بحيف تكفون

، و هفذا ي فري علفى المبفاني فاعليفة عفشل عمف سم مفن ثيف ال 03مقطع يصا الى و تبلف تيمفة . تحترظ بحفرارة المبفاني ففي الشفتال ممفا يعمفا علفى تفوفير نرقفات التدفئفة

. (W/m2.K) 0.82للجدران الخارجية ( U-value)ية اإلنتقالية الحرار

القيم المعتمدة ل نتقالية الحرارية في عناصر البنال في الجامعة( 1.1)جدول

)U-value ( اإلنتقالية الحرارية

(W/m2.K) العنصر

8 أرضية را ق تسوية 0.04

0 سقف را ق لهائ 4..8

3 جدار ارج 2.10

4 جدار دا ل 2..0

5 جدار يت درج 0.42

. لا ذة جاج م دوج 3.32

7 اب ش 3.22

1 اب معدل 5.12

9 جاج مفرد اب ألمليوم 7.22

مقدمةخ في كونهاأمنذ ت ول المؤسسفات التعليميفة أ مفن سيسها لعبت جامعة بيرزيت دوراخ مهما

بانيهفا علفى أسفس في فلسطين التي انتهجت مبدأ المباني الخ رال بحي تفم تصفميم مو شكلت الجامعفة و مازالفت تشفكا . مدروسة و تخ ع لمعايير المباني الصديقة للبيئة

ثالفففة فلسفففطينية مميفففشة أخفففذت علفففى عاتقهفففا رسفففالة مقدسفففة بفففإع ل شفففأن الفففو ن . و الموا ن، وذلك بشرعها تيم محبة األرض و الحراظ عليها و الدفا عنها

خ إن ثماية البيئة وا ففي سياسفة جامعفة بيرزيفت لمحافظة عليها تشفك ن محفورا رئيسفياخ وأن اهتمففام الجامعفففة بالشفففؤون والق فففايا البيئيفففة و تطبيقاتهفففا يم فففا خ انعكاسفففا ثقيقيفففا

و مفن هنفا . إلستراتيجية جدية نحفو رففع مسفتول الفوعي البيئفي لفدل مجتمفع الجامعفةيفات متطفورة وثلفول متكاملفة لآجامعة على اعتمفاد أهفداو والينصب اهتمام وتركيش

لمشاريع إدارة المياه و الطاتة، تت من هذه اإلستراتيجية عدة محاور يفتم تطبيقهفا مفن أجا ترشفيد اسفتخدام المفوارد المتاثفة والتنميفة والتطفوير ففي مجفاعت أخفرل لترعيفا مرهوم التنمية المستدامة من خ ل است مار كافة أدوات التنميفة بجانفب المحافظفة علفى

هذه الورتفة نقفدم تجربفة جامعفة بيرزيفت ففي مجفال اإلدارة البيئيفةفي . البيئة المحليةالجامعفة الفى تبنفي البنال األخ ر كم ال واتعي في المجتمع الرلسطيني بحي تسعىو

اني ، كما و تتبنى تحسفين نوعيفة ثيفاة األشفخا بم اإلدارة البيئية و استدامة الممرهوفففي مبانيهففا وتعمففا بنشففا مففن أجففا تعشيففش وعففي تطففا الففذين يعيشففون أو يعملففون

.بروائدها اإلنشالات

المجاالت البيئية في جامعة بيرزيتالمجاعت البيئية في جامعة بيرزيت هي مجموعة النشا ات التفي تقفوم بهفا الجامعفة

لحراظ على البيئة أوع و ترشيد اعسته م مفن المفوارد ال زمفة ل من خ لها و تسعىو عليفففه يمكفففن تقسفففيم . شفففغيا المبفففاني و بالتفففالي التفففوفير و الحفففد مفففن الهفففدر ثانيفففالت

:جامعة الىالالنشا ات البيئية في

.استخدام تدفئة المباني • .استخدام العشل الحرار • .استخدام المياه • .استخدام الطاتة الكهربائية • .استخدام الطاتة الشمسية • .استخدام المخلرات الصلبة • .مواتف السيارات • .ثدائ الجامعة • ذو اعثتياجات الخاصةألشخا اخدمات •

كفاءة استخدام نظام تدفئة المباني متفففرا 003تقفففع جامعفففة بيرزيفففت ففففي منطقفففة جبليفففة و ترترفففع عفففن سفففط البحفففر

وأمفا فصفا الشفتال ، أنظمفة تدفئفة مختلرفة ففي تسفتخدم المعتدل فإنهفا مناخها و بسبب خ فيسفتخدم ففي تاعفات المفؤتمرات ، مختبفرات الحاسفوض و بعف تكييف الهوال صفيرا

تسففتخدم أنظمففة التدفئففة المركشيففة و التففي الجامعففة فففإن المبففاني، تدفئففةفففي .المكاتففبتتعامففا مففع المبنففى كوثففدة واثففدة بحيفف أن أغلففب المبففاني تعمففا علففى نظففام التدفئففة

م الففتحكم بتشففغيله بحسففب درجففات الحففرارة يففت الففذو بوتففود السففوعر بالمففال السففاخنالحففرارة انخرففاض درجففةالخارجيففة، ثيفف أنففه ع يففتم تشففغيا نظففام التدفئففة اع عنففد

ةدرج. درجة مئوية، و ذلك ل تتصاد في استه م الوتود 11الخارجية الى أتا من

Page 159: The Fifth International Energy Conference - Palestine -

247

في المواد استخدام في التكلفة مراعاة بمكان االهمية من اخر وامر

.العامة والصحة االقتصاد مهمين مساريين في لتعمل االنشاء مراحل

الموفرة الفيزيوحرارية والحلول المقترحات من كثير وضعت فلقد

للجدران الحراري العزل طريقة خالل ومن المباني في للطاقة

الناجحة للتجارب الشمسية الطاقة استعملت كما... والسقوف الخارجية

العلمية والمؤتمرات الندوات البحوث من كثير في التوصيات وتمت

الحفاظ اجل من ذلك كل.. طبيعي مصدر ذات بناء مواد الستخدام

.األخرى الناحية من البيئي التلوث من والتقليل ناحية من الطاقة على

: المجال هذا في تنفيذها يمكن التي العملية التصميمية الحلول

يهدد خطر ناقوس على الماضي القرن منتصف في العالم أفاق إن بعد

الكرة يغزو بدأ الذي البيئي التلوث هو أولهما ، باتجاهين البشرية

الحكومات به أحست الذي العجز هو وثانيهما ، داخلها من األرضية

المباني أصبحت والتي المطلوبة الطاقة من العالم احتياجات تلبية في

المباني مثل آنذاك جديدة مصطلحات وظهرت مرتفعة بنسب تهدرها

-:هي سلبيات ثالث تمتلك بأنها وصفت والتي. المريضة والمدن

سلبيات ثالث تمتلك بأنها وصفت والتي. المريضة والمدن المباني

-:هي

. والموارد الطاقة في استنزاف -7 غازية أنبعاثات من منها يخرج بما البيئة تلويث -2

. وصلبة سائلة فضالت أو وأدخنة نتيجة المباني مستعملي صحة على السلبي التأثير -3

أخرى ملوثات أو التشطيبات كيماوية مواد استخدام .مختلفة أنفة المخاطر ادراك حجم و السلبيات، هذه على ءوبنا

البيئي، التلوث خالل من البشرية تواجه التي الذكر والحلول البحوث سارت فقد الطاقة، مصادر وتناقص .لألخر مكمل أحدهما باتجاهين

تقليل االعتبار في األخذ مع البيئة يحترم بأسلوب المباني تصميم -أ

واالستعمال اإلنشاء تأثيرات تقليل مع ، والموارد الطاقة استهالك

هو جديد مصطلح لدينا فنشأ البيئة مع االنسجام تعظيم مع البيئة على

على للحصول جديدة أساليب ابتكار إلى نادت والتي الخضراء العمارة

وإعادة المياه استهالك ترشيد إلى إضافة ، والمتجددة الجديدة الطاقة

يقلل مما والتشجير الزراعة بأعمال واالهتمام الصلبة المخلفات تدوير

الداخلية والبيئة عام بشكل البيئة جودة من ويحسن الكربون انبعاث من

. خاص بشكل المباني داخل والهواء

أثر له للمباني المتميز التصميم أصبح ، ناجحة كثيرة محاوالت في

تأتي الكبيرة المباني في الحرارة الن ، التدفئة احتياجات على هائل

واألجهزة الناس من تتولد التي الحرارة - داخلية مصادر من أساسا

. وغيرها اإلضاءة والمعدات

الكامنة الحرارة باستغالل التدفئة احتياجات في التحكم يمكن فأنه

أثناء للتدفئة واستعمالها النهار أثناء الزائدة الحرارة تخزين مثل للمبنى

العقود في المهندسون مارسها التي الحلول في المالحظ ومن. الليل

ال أصبح الطاقة لحفظ فعالة كفاءة ذي مبنى إنشاء أن الماضية الثالثة

حجم بتقليص انه والسبب. أقل بكفاءة مبنى إنشاء من أكثر يكلف

المفرد النوافذ زجاج استعمال من والتخلص التكييف ومعدات

المواد تكاليف توفير أمكن فأنة الزائدة اإلضاءة وحدات من والتخلص

للجدران الجيد العزل واستعمال المزدوج الزجاج مثل العازلة

خمسين مدى على واإلنارة التدفئة نفقات احتساب تم وقد. والسقوف

58 وفرت قد كبيرة أدارية مباني تمتلك دولة بان االستنتاج فتم عام

. دوالر باليين ثالث أو بليونان الواحدة كلفة الكهرباء لتوليد محطة

.جدا كبير بمقدار الوقود توفير وأمكن

كمية بكفاءة االستمرارية صفة للطبيعة يعطى بأن التفكير تم وبهذا

عالية كمنظومة الخضراء العمارة وأصبحت... للحياة المصادر

. جانبية أضرار بأقل الحيوي محيطها مع متوافق الكفاءة

المباني باستخدام التقنيات المتقدمة جدا والتي تسمى تصميم - ب

High-Tech وأنظمة األتمتة عالية التطور(e-Home

Automation «للحصول على منازل ذكية ( «إي هوم أوتوميشن

اإلنسان تحافظ على صحة وسالمة

أن تكون على درجة عالية في مقاومتها لإلجهاد الناتج عن -4-

.الفروق الكبيرة في درجات الحرارة

25

تطبيقات جامعة بيرزيت في مجال اإلدارة البيئية

الدكتور بشارة أبو غنام مدير المكتب الهندسي جامعة بيرزيت

فلسطين -بيرزيت [email protected]

المهندس منير سعدالمكتب الهندسي -المهندس الميكانيكي

جامعة بيرزيتفلسطين -بيرزيت

[email protected]

والداخليفة علفى ،درجة صفرر مئفو الخارجية يتم اعتمادها على ميةالحرارة التصميسعار السوالر المضطررد ابط ه الالطو توجط أرتفاع إو مع . درجة مئوية 81-02

لططدا الجامعططة للتاططوا الططم اسططت دام ال ططا المسططاا ططدال مططة السططوالر طط التد ئططة .المرك ية

ال في التدفئة له جوانفب بيئيفة ثيف الجامعة بأن التوجه الى استخدام الغاز المستدرو أن اسففته م مصففادر الطاتففة يتشايففد بشففكا م ففطرد سففوالخ فففي القطففا الخففا أو

ن نظفام التدفئفة المركشيفة الفذ إ. الصناعي ومع هذه الشيادة زاد انبعاث ملوثات البيئةبالمائففة مففن 03يعتمففد علففى الغففاز بففدي عففن السففوعر هففو نظففام فعففال ويففوفر ثففوالي

ن التحفول إلفى اسفتخدام الغفاز يفأتي ففي سفيا أو .السوعر مع بالمقارنةالتشغيا ةكلرتكرالة التشغيا،وفي التفوفير ففي اسفتخدام مصفادر الطاتفة التقليديفة وسفمان اسفتدامتها

اسفتخدام نظفام ترشفيدو يمكن تلخيص .والتقليا من نسب التلوث إلى أدنى المستويات :التدفئة في الجامعة كالتالي

نة التحكم في تشغيا بويلرات التدفئة و ذلك بحسفب درجفات الحفرارة مرو .الخارجية

التحكم بإغ محابس راديترات الحمامات و الممفرات مفن أجفا التفوفير .وتود المن استه م

اسففتخدام الغففاز المسففال بففدي عففن السففوعر فففي التدفئففة ممففا التحففول الففى .من ثمن الوتود% 03ته بيوفر ما نس

استخدام العزل الحراريكفاءة يتم عشل المباني ففي الجامعفة و ذلفك بعفشل الجفدران الخارجيفة جميعهفا بحيف تكفون

، و هفذا ي فري علفى المبفاني فاعليفة عفشل عمف سم مفن ثيف ال 03مقطع يصا الى و تبلف تيمفة . تحترظ بحفرارة المبفاني ففي الشفتال ممفا يعمفا علفى تفوفير نرقفات التدفئفة

. (W/m2.K) 0.82للجدران الخارجية ( U-value)ية اإلنتقالية الحرار

القيم المعتمدة ل نتقالية الحرارية في عناصر البنال في الجامعة( 1.1)جدول

)U-value ( اإلنتقالية الحرارية

(W/m2.K) العنصر

8 أرضية را ق تسوية 0.04

0 سقف را ق لهائ 4..8

3 جدار ارج 2.10

4 جدار دا ل 2..0

5 جدار يت درج 0.42

. لا ذة جاج م دوج 3.32

7 اب ش 3.22

1 اب معدل 5.12

9 جاج مفرد اب ألمليوم 7.22

مقدمةخ في كونهاأمنذ ت ول المؤسسفات التعليميفة أ مفن سيسها لعبت جامعة بيرزيت دوراخ مهما

بانيهفا علفى أسفس في فلسطين التي انتهجت مبدأ المباني الخ رال بحي تفم تصفميم مو شكلت الجامعفة و مازالفت تشفكا . مدروسة و تخ ع لمعايير المباني الصديقة للبيئة

ثالفففة فلسفففطينية مميفففشة أخفففذت علفففى عاتقهفففا رسفففالة مقدسفففة بفففإع ل شفففأن الفففو ن . و الموا ن، وذلك بشرعها تيم محبة األرض و الحراظ عليها و الدفا عنها

خ إن ثماية البيئة وا ففي سياسفة جامعفة بيرزيفت لمحافظة عليها تشفك ن محفورا رئيسفياخ وأن اهتمففام الجامعفففة بالشفففؤون والق فففايا البيئيفففة و تطبيقاتهفففا يم فففا خ انعكاسفففا ثقيقيفففا

و مفن هنفا . إلستراتيجية جدية نحفو رففع مسفتول الفوعي البيئفي لفدل مجتمفع الجامعفةيفات متطفورة وثلفول متكاملفة لآجامعة على اعتمفاد أهفداو والينصب اهتمام وتركيش

لمشاريع إدارة المياه و الطاتة، تت من هذه اإلستراتيجية عدة محاور يفتم تطبيقهفا مفن أجا ترشفيد اسفتخدام المفوارد المتاثفة والتنميفة والتطفوير ففي مجفاعت أخفرل لترعيفا مرهوم التنمية المستدامة من خ ل است مار كافة أدوات التنميفة بجانفب المحافظفة علفى

هذه الورتفة نقفدم تجربفة جامعفة بيرزيفت ففي مجفال اإلدارة البيئيفةفي . البيئة المحليةالجامعفة الفى تبنفي البنال األخ ر كم ال واتعي في المجتمع الرلسطيني بحي تسعىو

اني ، كما و تتبنى تحسفين نوعيفة ثيفاة األشفخا بم اإلدارة البيئية و استدامة الممرهوفففي مبانيهففا وتعمففا بنشففا مففن أجففا تعشيففش وعففي تطففا الففذين يعيشففون أو يعملففون

.بروائدها اإلنشالات

المجاالت البيئية في جامعة بيرزيتالمجاعت البيئية في جامعة بيرزيت هي مجموعة النشا ات التفي تقفوم بهفا الجامعفة

لحراظ على البيئة أوع و ترشيد اعسته م مفن المفوارد ال زمفة ل من خ لها و تسعىو عليفففه يمكفففن تقسفففيم . شفففغيا المبفففاني و بالتفففالي التفففوفير و الحفففد مفففن الهفففدر ثانيفففالت

:جامعة الىالالنشا ات البيئية في

.استخدام تدفئة المباني • .استخدام العشل الحرار • .استخدام المياه • .استخدام الطاتة الكهربائية • .استخدام الطاتة الشمسية • .استخدام المخلرات الصلبة • .مواتف السيارات • .ثدائ الجامعة • ذو اعثتياجات الخاصةألشخا اخدمات •

كفاءة استخدام نظام تدفئة المباني متفففرا 003تقفففع جامعفففة بيرزيفففت ففففي منطقفففة جبليفففة و ترترفففع عفففن سفففط البحفففر

وأمفا فصفا الشفتال ، أنظمفة تدفئفة مختلرفة ففي تسفتخدم المعتدل فإنهفا مناخها و بسبب خ فيسفتخدم ففي تاعفات المفؤتمرات ، مختبفرات الحاسفوض و بعف تكييف الهوال صفيرا

تسففتخدم أنظمففة التدفئففة المركشيففة و التففي الجامعففة فففإن المبففاني، تدفئففةفففي .المكاتففبتتعامففا مففع المبنففى كوثففدة واثففدة بحيفف أن أغلففب المبففاني تعمففا علففى نظففام التدفئففة

م الففتحكم بتشففغيله بحسففب درجففات الحففرارة يففت الففذو بوتففود السففوعر بالمففال السففاخنالحففرارة انخرففاض درجففةالخارجيففة، ثيفف أنففه ع يففتم تشففغيا نظففام التدفئففة اع عنففد

ةدرج. درجة مئوية، و ذلك ل تتصاد في استه م الوتود 11الخارجية الى أتا من

Page 160: The Fifth International Energy Conference - Palestine -

236

بذلك لينتج المخلفات لهذه الالهوائي التخمير مبدأ على فتقوم الثانية أما

من يمكننا خاصة لمحركات كوقود أيضا يستخدم الذي و الحيوي الغاز

مصحوبا يكون أن يجب الطرق هذه استخدام. الكهرباء توليد خاللها

أي من وخلوه الهواء صحة على تحافظ التي اإلجراءات من بالعديد

.التخمير أو الحرق عملية عن ينتج قد تلوث

في المتجددة النظيفة الطاقة لتوليد شهرة األكثر المصادر هي هذه

الطاقة لتوليد تستخدم أن يمكن نفسها المصادر. اآلن حتى العالم

الوقت في. الطهي لعملية أو المياه لتسخين الالزمة الحرارية

أبسط من والتبريد التدفئة ألغراض األرض حرارة استخدام يعد الذي

.الطرق أنجع و

الذكي؟ المنزل ماهو - ةالذكي المنازل

كلمة تذكر وعندما الذكي المنزل هو ما تحديد في الكثير اختلف

أن يعتقد البعض. مختلفة أمور عدة الناس من الكثير يأتي" أتوميشن"

والبعض الحديثة التقنية على يعتمد المنزل أو بالمبنى ما كل نجعل

ما شرح هي مهمتنا. التفسيرات من وغيرها فقط الرفاهية هو يعتقد

التقنيات على واستنادا الحديثة العصرية بالطريقة الذكي المنزل هو

.الذكي المبنى أو المنزل معنى يأتينا الشامل والتحكم الحديثة

أو التدفئة اجل من تقليدية طاقة إي إلى تحتاج ال تكاد المنازل هذه

الشمس ضوء من الطاقة من احتياجها على تحصل أنها حيث التبريد

حياتهم ومتطلبات ساكنيها إعمال وتستهل سكانها ومن األرض ومن

. غيابهم في وحتى ، اليومية

والمقدرة كلها للدولة الكهرباء تكاليف من% 15 المباني في: اكبر

. دوالر بليون751 بمبلغ

:يلي بما يبدأ الشامل التحكم

, الدخان, الزجاج كسر, الصوت, الحركة: حساسات) الحماية نظام

األبواب على والخروج بالدخول التحكم - والمياه الغاز تسرب

شبكات - مخفية وغير مخفية مراقبة كاميرات - والمخارج الرئيسية

(. الممنوعة والمناطق الخزن وأماكن األسوار الختراق آر اآلي

" الطاقة حفظ( "ثيرموستات) الحرارة ودرجات بالتكييف التحكم نظام

.اإلضاءة ودرجات اإلنارة نظام

.والمرئيات الصوتيات نظام

المعلومات تقنية ليست) التقنية تستخدم التي المباني هي الذكية المباني

: مثل المنزل، في متعددة مكونات في للتحكم( فقط اإلنترنت أو

. إلخ...المراقبة وكاميرات اإلنذار، وأجهزة واإلضاءة، التكييف،

أي بناء أو شراء في الراغبين من لكثير مطلبا التقنية هذه وأصبحت

:منها أسباب لعدة وذلك جديد تجاري أو سكني مبنى

تشغيل ذلك على مثال بعد، عن أجهزةالمبنى بعض في التحكم إمكانية

.اإلنارة أو التكييف

الشمسية الطاقة تقنية استخدام طريق عن الكهربائية الطاقة توفير

.اآللية التكييف إدارة وأنظمة

.بعد عن استخدامها الممكن ومن ومراقبة، أمن أنظمة

.بها والتحكم التلفزيونية القنوات بث توزيع

السوق في المستحق الحجم أخذت الذكية المباني تقنية تكون ال وقد

تتجاوز ال مدة خالل مبنى أي في أساسية تكون سوف ولكنها حاليا،

باإلضافة. تكاليفها وخفض التقنية هذه تقدم بسبب وذلك سنوات، خمس

السنوات خالل الممكنة الخدمات من الكثير تضاف سوف ذلك إلى

معلومات إيصال الممكن من المثال، سبيل فعلى القادمة، القليلة

يتم بحيث( سوبرماركت) التسوق شركات بإحدى المنزلية الثالجة

.آلية بطريقة والتوصيل الطلب

: الذكية المباني فوائد أهم

المبنى لتنسيق العمل فيما بينها وزيادة التحكم أنظمة وتكامل توحيد .البيئي الفردي

.قيمة أعلى من الربح الناتج من بناء المباني الذكيةإدارة تكاليف االستهالك من خالل التحكم بجميع أجزاء المبنى طوال

.فترة اليومالمبنى عن بعد تحكم أفراد العائلة في أنظمة المبنى بعد إغالقه لمراقبة

.وذلك عن طريق الحاسب اآللي . الطاقة ومصادرخفض تكاليف التشغيل

استخدام في المباني كفاءة لتحسين الفعالة االستخدامات آفاق

:الطاقة

البناء في المتطورة التقنيات ستخدامالالمتاحة الذهبية الفرص استخدام

البناء اساليب لتطوير باالسباب هم بتخذ المعماريين لمساعدة هي انما

كبيرا تلوثا تحث التي المواد تتركها التى السلبية االثار من للتخلص

ومعالجتها مسارها لتغيير االوان ان طويلة لمدد البشرية منه عانت

. المستدامة والبيئة الخضراء العمارة الى للوصول

Page 161: The Fifth International Energy Conference - Palestine -

22

5

للطاقة موفر الملوثات من نظيف اخضر بيت لبناء المطلوبة الدقة الى

نستطيع هذا مفهومنا ومن الكربون اكسيد ثاني غاز انبعاثات في لومق

عمليات واستخدام هياكل انشاء تعكس انما الخضراء المباني ان القول

بدءا المشاريع تنفيذ مراحل طيلة الموارد استخدام في عالية كفاءة ذات

وانتهاء والصيانة والتشغيل والتنفيذ والتصمبم البناء موقع دراسة من

خالي من الى الوصول لنتيجة مجزية نحو بناء صحي افضل ومحيط

.االمراض

والبناء العزل

الدولية المقاييس وحسب المواصفات عالي الجيد العزل استخدام ان

في يستخدم كان ما بعكس اطول لمدة المباني ديمومة على يحافظ انما

في تستخدم كانت التي العزل فمواد اواخرها حتي السبعينات ئلاوا

تلصق المقطرن كالخيش بدائية مواد كانت العربي والخليج السعودية

. بالحرارة المنصهر باالسفلته لصق بواسطة الخرساني السطح على

التي والمرونة االستطالة مواصفات له ليس الخيش ان المعلوم ومن

وكذلك شتاء عهدها سابق الى تعود والتي صيفا بالتمدد للمواد تسمح

ابتدا الخصوصية المواد هذه و تتكسر ال شتاء انكماشها عند فانه

.السابق القرن من الثمانينيات اوائل في بريطانيا في استعمالها

من لتزيد الجديدة المواد هذه استخدام االستطاعة في اصبح لذلك نتيجة

المياه وتسرب والحرارة الرطوبة ضد عليها والمحافظة المباني كفاءة

.واضح بشكل بيوتنا في تقل العفن ظاهرة واصبحت االسطح من

. المستدام المعماري التصميم

Arch. Sustainable Design

من امكن ما التقليل هو المستدام المعماري التصميم مبادئ اهم من ان

المباني لقاطني العامة الصحة على والمحافظة الطاقة استخدام

الخضراء المباني لتصميم العامة االسس

الذي والمجتمع للسكان العامة الصحة على المحافظة .7

فيه يعيشون

الطبيعية المواردو والمياه الطاقة على المحافظة .2

انشاء في واالقتصاد المباني في االستدامة مفهوم تحقيق .3

المباني وتشغيل وصيانة

سواء البيئة على سلبي تاثير لها ليس التي المواد استعمال .4

استخدامها او نقلها او تصنيعها في اكان

فتنبعث حرقها في ال تدويرها باعادة المخلفات من التخلص .5

البيئة لتلوث نتيجة االمراض في تسبب التي الغازات منها

الطبيعية الطاقات استخدام

اجل من الباردة او الحارة المناطق في سواء الطاقة استخدام ان

مناطقها بحسب المبنية والبيئة االنسان على اثار لها اوالتدفئة يدرالتب

المواد وتوفير النتائج واستخالص التاثيرات هذه دراسة وان المناخية

تسميتها ونستطيع حراريا مريحا المكان من يجعل المواصفات سبح

او الحرارية الراحة تعريف وبامكاننا.المبنى داخل الحرارية بالراحة

والراحة والعقلي( الجسدي)الفسيولوجي باالحساس المناخية الراحة

البدنية الراحة بجانب الفكرية

الطاقة مصادر

كل و مشتقاته و البترول عن بعيدا للطاقة دائمة و نظيفة مصادر

الطاقة، لتوليد البترول مشتقات حرق على القائمة التقليدية المصادر

الكهربائية الطاقة لتوليد حرارية، طاقة أو كهربائية طاقة كانت سواء

و شمس من المختلفة الطبيعية البيئة عناصر عن الحديث نستطيع

!النفايات عن الحديث نستطيع و كما أرض، و ماء و هواء

األرض؟ باطن في الكامنة الحرارة عن ماذا

أنه هو الجواب الكهرباء؟ لتوليد األخرى هي استغاللها يمكن هل

والتي- عليها الحصول يمكن التي الحرارة فمقدار ذلك يمكن بالطبع

قد جدا عالية درجات إلى المياه بتسخين كفيلة -العمق زاد كلما تزداد

داخل في أنابيب عبر المياه بتمرير قمنا ما إذا الغليان حد إلى تصل

لتوليد البخار أو الساخنة المياه استخدام ذلك بعد يمكن األرض،

.الكهرباء

للطاقة مصدرا لجعلها النفايات تدوير اعادة

تكون أن يمكنها األخشاب و النباتات بقايا ذلك في بما النفايات

و أمثال استغالال استغاللها تم ما إذا الطاقة مصادر من مجديا مصدرا

على باألساس يقوم ذلك و ،"الحيوية الكتلة طاقة" ب تعرف ما هي

بتقنيات المخلفات هذه حرق على تعتمد األولى معتمدتين طريقتين

عن الناتجة الحرارة استخدام على تقوم التي تلك أشهرها مختلفة

لتحريك يستخدم بخار إلى تحويلها و المياه لتسخين الحرق عملية

.الكهرباء لتوليد توربينات

236

بذلك لينتج المخلفات لهذه الالهوائي التخمير مبدأ على فتقوم الثانية أما

من يمكننا خاصة لمحركات كوقود أيضا يستخدم الذي و الحيوي الغاز

مصحوبا يكون أن يجب الطرق هذه استخدام. الكهرباء توليد خاللها

أي من وخلوه الهواء صحة على تحافظ التي اإلجراءات من بالعديد

.التخمير أو الحرق عملية عن ينتج قد تلوث

في المتجددة النظيفة الطاقة لتوليد شهرة األكثر المصادر هي هذه

الطاقة لتوليد تستخدم أن يمكن نفسها المصادر. اآلن حتى العالم

الوقت في. الطهي لعملية أو المياه لتسخين الالزمة الحرارية

أبسط من والتبريد التدفئة ألغراض األرض حرارة استخدام يعد الذي

.الطرق أنجع و

الذكي؟ المنزل ماهو - ةالذكي المنازل

كلمة تذكر وعندما الذكي المنزل هو ما تحديد في الكثير اختلف

أن يعتقد البعض. مختلفة أمور عدة الناس من الكثير يأتي" أتوميشن"

والبعض الحديثة التقنية على يعتمد المنزل أو بالمبنى ما كل نجعل

ما شرح هي مهمتنا. التفسيرات من وغيرها فقط الرفاهية هو يعتقد

التقنيات على واستنادا الحديثة العصرية بالطريقة الذكي المنزل هو

.الذكي المبنى أو المنزل معنى يأتينا الشامل والتحكم الحديثة

أو التدفئة اجل من تقليدية طاقة إي إلى تحتاج ال تكاد المنازل هذه

الشمس ضوء من الطاقة من احتياجها على تحصل أنها حيث التبريد

حياتهم ومتطلبات ساكنيها إعمال وتستهل سكانها ومن األرض ومن

. غيابهم في وحتى ، اليومية

والمقدرة كلها للدولة الكهرباء تكاليف من% 15 المباني في: اكبر

. دوالر بليون751 بمبلغ

:يلي بما يبدأ الشامل التحكم

, الدخان, الزجاج كسر, الصوت, الحركة: حساسات) الحماية نظام

األبواب على والخروج بالدخول التحكم - والمياه الغاز تسرب

شبكات - مخفية وغير مخفية مراقبة كاميرات - والمخارج الرئيسية

(. الممنوعة والمناطق الخزن وأماكن األسوار الختراق آر اآلي

" الطاقة حفظ( "ثيرموستات) الحرارة ودرجات بالتكييف التحكم نظام

.اإلضاءة ودرجات اإلنارة نظام

.والمرئيات الصوتيات نظام

المعلومات تقنية ليست) التقنية تستخدم التي المباني هي الذكية المباني

: مثل المنزل، في متعددة مكونات في للتحكم( فقط اإلنترنت أو

. إلخ...المراقبة وكاميرات اإلنذار، وأجهزة واإلضاءة، التكييف،

أي بناء أو شراء في الراغبين من لكثير مطلبا التقنية هذه وأصبحت

:منها أسباب لعدة وذلك جديد تجاري أو سكني مبنى

تشغيل ذلك على مثال بعد، عن أجهزةالمبنى بعض في التحكم إمكانية

.اإلنارة أو التكييف

الشمسية الطاقة تقنية استخدام طريق عن الكهربائية الطاقة توفير

.اآللية التكييف إدارة وأنظمة

.بعد عن استخدامها الممكن ومن ومراقبة، أمن أنظمة

.بها والتحكم التلفزيونية القنوات بث توزيع

السوق في المستحق الحجم أخذت الذكية المباني تقنية تكون ال وقد

تتجاوز ال مدة خالل مبنى أي في أساسية تكون سوف ولكنها حاليا،

باإلضافة. تكاليفها وخفض التقنية هذه تقدم بسبب وذلك سنوات، خمس

السنوات خالل الممكنة الخدمات من الكثير تضاف سوف ذلك إلى

معلومات إيصال الممكن من المثال، سبيل فعلى القادمة، القليلة

يتم بحيث( سوبرماركت) التسوق شركات بإحدى المنزلية الثالجة

.آلية بطريقة والتوصيل الطلب

: الذكية المباني فوائد أهم

المبنى لتنسيق العمل فيما بينها وزيادة التحكم أنظمة وتكامل توحيد .البيئي الفردي

.قيمة أعلى من الربح الناتج من بناء المباني الذكيةإدارة تكاليف االستهالك من خالل التحكم بجميع أجزاء المبنى طوال

.فترة اليومالمبنى عن بعد تحكم أفراد العائلة في أنظمة المبنى بعد إغالقه لمراقبة

.وذلك عن طريق الحاسب اآللي . الطاقة ومصادرخفض تكاليف التشغيل

استخدام في المباني كفاءة لتحسين الفعالة االستخدامات آفاق

:الطاقة

البناء في المتطورة التقنيات ستخدامالالمتاحة الذهبية الفرص استخدام

البناء اساليب لتطوير باالسباب هم بتخذ المعماريين لمساعدة هي انما

كبيرا تلوثا تحث التي المواد تتركها التى السلبية االثار من للتخلص

ومعالجتها مسارها لتغيير االوان ان طويلة لمدد البشرية منه عانت

. المستدامة والبيئة الخضراء العمارة الى للوصول

Page 162: The Fifth International Energy Conference - Palestine -

214

التي البقعة واتساع السكان عدد الزدياد نتيجة الطاقة استهالك زيادة

السياق هذا في اخرى وكلمة بعضها عن المسافات وبعد فيها يعيشون

الكلي الطاقة استهالك ربع لوسائل النقل الطاقة استهالك بلغ لقد نقول

وهذا مؤشر خطير لدق الكربون اكسيد ثاني غاز انبعاث من زاد مما

ناقوس الخطر عن تدهور في المستوى المطلوب للحفاظ على البيئة

نلجأ منها التقليل االقل على او للمركبات السلبية االثار مشكلة ولحل

:يلي ما الى

المسافات تقارب على التركيز

حجمها من التصغير لةومحاو النقل وسائط في التنوع

وسهولة بسرعة النقل وسائل مجمعات الى الوصول

الحضرية للمناطق االستراتيجي التخطيط

معها التعامل واساليب التنمية في مستفيضة دراسة

لها جذرية حلول ووضع العقبات دراسة

المستدامة المدن في االجتماعية ملالعوا دراسة

العام الوعي مستوى لرفع المستقبلية الخطط

المجتمع عامة لدى مستواه من والرفع للتوعية مستقبلية خطط وضع

كفاءات برفع المتعلقة الموضوعات تجاه العمرية الشرائح جميع من

المدني المجتمع دور وتفعيل لها والمقنن المتزن واالستخدام الطاقة

وادخال الطاقة استهالك بترشيد الخاصة المحلية المبادرات ودعم

التعليمية بمناهجنا ودمجها الخضراء والعمارة النظيفة الطاقة مفاهيم

بنا يحيط ما كل على مطلعا واعيا جيال لننشئ وجامعاتنا لمدارسنا

طبيعي ومناخ سليمة بيئية حياة خلق في قدما مضيوال بايدينا لالخذ

صفر وتقريبا كربون صفر شعارنا ولنجعل الكربون من خالي نظيف

.طاقة

صفر كربون وتقريبا صفر طاقة

المستدامة المدن او المستدامة المدينة

مدينة والحضارية البيئية المقاييس جميع من نموذجية مدينة هي

تقليل في متخصص شعب يقطنها والتي البيئي االثر بمراعاة صممت

والنفايات الغذائية والمواد والمياه الطاقة انتاج من المطلوبة المدخالت

الكربون اكسيد ثاني غاز انبعاث من الهواء وتلوث الحرارة من

المياه وتلوث والميثان

العام في بريكلي ريتشارد قاله ما الى االشارة من البد السياق هذا وفي

على بناء البيئية المدن مصطلح بصياغة قام من اول وهو 7891

.معافى سليم صحي مستقبل اجل من مدن لبناء السابقة المعطيات

بشكل تتضمنه ان ينبغي ما لمكونات نمودج المستدامة التنمية ان قال

تلبي ان يجب المستدامة التنمية ان على يتفقون والخبراء عام

وعلى المقبلة االجيال بمقدرات التضحية دون الحاضر احتياجات

.ايضا مستدامة بيئة لتكون البيئة احتياجات

والمتواصلة المستدامة التنمية مفهوم

المتواصلة بالتنمية عنها نقول ان نستطيع ما او المدى البعيدة التنمية

يةقالحقي المراقبة اصول عن مستفيضة بمعرفة اال تحقيقها يمكن ال

توجيها للبيئة السليمة واالدارة البيئة على المحافظة ضوابط لتطبيق

شرائع او تسن قوانين من بها يتعلق ما لكل سليما وتقييما وعمال

.توضع

التنمية مفهوم على التعرف االهتمام من وبكثير نستطيع هنا ومن

:يلي ما وتشمل المستدامة

يترك ال حتى فقرا االشد والدول المدنية والمجتمعات الهيئات معاونة

.المعيشية البيئة تدمير في الخيار لها

والقدرات االمكانيات المحدودة الذات على المعتمدة المجتمعات تشجيع

امامهم المتاحة والموارد

على وانتاجياتها البيئة نوعية على تحافظ التي المجتمعاث تشجيع

البعيد المدي

في الذاتي واالكتفاء المالئمة والتكنولوجيا العامة الصحة مراعاة

المناسبين والسكن اءغذال

والهدف االول المورد هو االنسان الن الشعبية المبادرات تشجيع

يجمع شامال مفهوما المستدامة التنمية مفهوم اصبح ولقد للتنمية االخير

.واالقتصادية والبيئية االجتماعية االهداف

مراعاة مع مكثف عمل منظومة وضع المستدامة التنمية تحقيق يتطلب

والدولية والتكنولوجية واالنتاجية واالجتماعية االقتصادية النظم

.االكاديمي والنظام التعليمي النظام واخيرا االدارية والنظم

الخضراء االبنية معايير

بالعوامل وثيق ارتباط مرتبط الخضراء االبنية معايير تعريف ان

مرتبط فهو كذلك اخضرا بناء البناء من تجعل التي الرئيسية

بالمعنى نصل حتى بعناية واتباعها وضعها يجب ومقاييس بمواصفات

Page 163: The Fifth International Energy Conference - Palestine -

20

3

ليس الحراري العزل استخدام لنا يوفرها التي هي المناخية فالراحة

وكذلك الطاقة استهالك فاتورة فتقل جيوبنا لراحة ايضا هو انا كله هذا

فاتورة ارتفاع من لبالدنا مادية راحة عنها نقول او اقتصادية راحة

.الخزينة من الصعبة للعملة نفاذتواس الطاقة رادياست

وشدتها والرياح الشمس لحركة بدراسة القيام علينا تقدم لما باالضافة

من ونجعل ومستداما سليما بيئيا مكانا ابنيتنا من نجغل حتى ذلك ونحو

.صحية بيوتا البيوت هذه

والعمارة للبيئة الصديقة المباني مفاهيم لدينا تتبلور بدات هنا ومن

ذلك ونحو الخضراء والمدن البيئية والمدن النظيفة والطاقة الخضراء

اال الدفاع خط لتكون مؤخرا لنا ظهرت ومصطلحات مترادفات من

ومستقبل مواردنا الطبيعية لنكون اشد وصحتنا ومبانينا بيئتنا عن ول

.حرصا للحفاظ عليها وتنميتها لمصلحة االجيال القادمة

يجب التي المستدامة التنمية فكرة من نابعة والمفاهيم االفكار هذه تأتي

تحقيق الى الرامية االقتصادية للنظرة الضيقة المفاهيم تتجاوز ان

باالمراض اصال المهددة بيئتنا سالمة حساب على عةيسر مادية ارباح

. وكوكبنا المهدد باالنقراض

الملحة االمور من بالفعل وهي البيئية السالمة عن بعيدا قليال ولنذهب

النظرة وهي اال ايضا ملحة اخرى قضية على ولنعرج جيدا لندركها

الطبيعية مواردنا من لدينا ما على ونحافظ اقتصادنا لمستقبل البعيدة

االجيال خدمة في تكون حتى استخدامها مدة اطالة على والعمل

دراستها علينا بل المطروحة االبحاث من االستفادة ننسى وال. القادمة

تخدم لكي وتطبيقها فيها االفكار من واالستفادة مستفيضة دراسة

قابلة مستقبلية خطط لوضع بامعان نظرنو مفاهيمنا وتطور مجتماعتنا

السليم االطار في ووضعها الطبيعية الموارد هذه لتطوير للتنفيذ

. القادمة االجيال لتخدم وتستمر لتخدمنا

فيها نعيش والتي الحالية البيئية االوضاع في النظر امعنا ان بعد

ونتيقن ىنر يوم بعد يوما تنفذ موارد من نملكه لما مدرك واستيقان

من مناص ال انهايمانا عميقا ونؤمن تماما وبدون اي شك وندرك

اكثر النها المستدامة واالنشاءات الخضراء المباني تطبيق الى اللجوء

ورقتنا في وسنتطرق المتقدمة الدول من سبقنا ممن ولدولنا لنا الحاحا

.بالتفصيل الموضوع هذا عن الثانية

االستدامة

؟ االستدامة ماهي

متنوعة الحيوية النظم تبقى ان كيفية لنا يصف بيئي مصطلح هي

على القدرة هي لالنسان بالنسبة واالستدامة الوقت مرور مع منتجة

يعتمد بدوره وهذا الطويل المدى على نعيشها التي الحياة نوعية حفظ

.الطبيعية للموارد معقول واستخدام طبيعيا العالم على الحفاظ على

هي الصدد هذا في المهمة االفكار

االستدامة تعريف

والمفاهيم المبادئ

االستدامة مقياس

والهندسة المستدامة المدينة مواصفات دراسةب االهتمام الشديد كذلك

المفردة والمباني الحديث والعمران المستدامة والزراعة المعمارية

من للحد وذلك المستدام والنقل المستدامة للمدن الرثيسي والتركيز

المستدام التخطيط طريق عن الصوبية او الدفيئة الغازات انبعاث

.الحضرية المناطق في والبيئي

على تقريبا تطبيقه ويمكن النطاق واسع االستدامة مصطلح اصبح لقد

المحلي المستوى من بدءا االرض على الحياة وجوه من جهاالو كل

.نطور فيها مفاهيمنا مختلفة زمنية فترات وعلى العالمي الى

الحيوية النظم على امثلة هي ةالسليم والغابات الرطبة المناطق ان

.المستدامة

واالكسجين الماء توزيع تعيد الخفية الحيوية الكيميائية الدورات ان

.العالم في الحية وغير الحية النظم من هي والكربون والنتروجين

الطبيعية والموارد للطاقة استهالك من السنين ماليين مرور بغد

للتغيير وكان الطبيعية البيئية النظم انحدرت فقد البشر عدد وازدياد

البشر من كل على سلبية اثارا الطبيعية الدورات ميزان في

.االخرى الحية والمنظومات

النقل لوسائل السلبية االثار خفض

المدن في العام النقل وسائط الخصوص وعلى النقل وسائط اصبحت

من اثار سلبية على البيئة ناتجة لها مما البيئة على اضافية اعباء تمثل

مع دمضطر بازدياد اصبح الذي الكربون اكسيد ثاني انبعاث نم

214

التي البقعة واتساع السكان عدد الزدياد نتيجة الطاقة استهالك زيادة

السياق هذا في اخرى وكلمة بعضها عن المسافات وبعد فيها يعيشون

الكلي الطاقة استهالك ربع لوسائل النقل الطاقة استهالك بلغ لقد نقول

وهذا مؤشر خطير لدق الكربون اكسيد ثاني غاز انبعاث من زاد مما

ناقوس الخطر عن تدهور في المستوى المطلوب للحفاظ على البيئة

نلجأ منها التقليل االقل على او للمركبات السلبية االثار مشكلة ولحل

:يلي ما الى

المسافات تقارب على التركيز

حجمها من التصغير لةومحاو النقل وسائط في التنوع

وسهولة بسرعة النقل وسائل مجمعات الى الوصول

الحضرية للمناطق االستراتيجي التخطيط

معها التعامل واساليب التنمية في مستفيضة دراسة

لها جذرية حلول ووضع العقبات دراسة

المستدامة المدن في االجتماعية ملالعوا دراسة

العام الوعي مستوى لرفع المستقبلية الخطط

المجتمع عامة لدى مستواه من والرفع للتوعية مستقبلية خطط وضع

كفاءات برفع المتعلقة الموضوعات تجاه العمرية الشرائح جميع من

المدني المجتمع دور وتفعيل لها والمقنن المتزن واالستخدام الطاقة

وادخال الطاقة استهالك بترشيد الخاصة المحلية المبادرات ودعم

التعليمية بمناهجنا ودمجها الخضراء والعمارة النظيفة الطاقة مفاهيم

بنا يحيط ما كل على مطلعا واعيا جيال لننشئ وجامعاتنا لمدارسنا

طبيعي ومناخ سليمة بيئية حياة خلق في قدما مضيوال بايدينا لالخذ

صفر وتقريبا كربون صفر شعارنا ولنجعل الكربون من خالي نظيف

.طاقة

صفر كربون وتقريبا صفر طاقة

المستدامة المدن او المستدامة المدينة

مدينة والحضارية البيئية المقاييس جميع من نموذجية مدينة هي

تقليل في متخصص شعب يقطنها والتي البيئي االثر بمراعاة صممت

والنفايات الغذائية والمواد والمياه الطاقة انتاج من المطلوبة المدخالت

الكربون اكسيد ثاني غاز انبعاث من الهواء وتلوث الحرارة من

المياه وتلوث والميثان

العام في بريكلي ريتشارد قاله ما الى االشارة من البد السياق هذا وفي

على بناء البيئية المدن مصطلح بصياغة قام من اول وهو 7891

.معافى سليم صحي مستقبل اجل من مدن لبناء السابقة المعطيات

بشكل تتضمنه ان ينبغي ما لمكونات نمودج المستدامة التنمية ان قال

تلبي ان يجب المستدامة التنمية ان على يتفقون والخبراء عام

وعلى المقبلة االجيال بمقدرات التضحية دون الحاضر احتياجات

.ايضا مستدامة بيئة لتكون البيئة احتياجات

والمتواصلة المستدامة التنمية مفهوم

المتواصلة بالتنمية عنها نقول ان نستطيع ما او المدى البعيدة التنمية

يةقالحقي المراقبة اصول عن مستفيضة بمعرفة اال تحقيقها يمكن ال

توجيها للبيئة السليمة واالدارة البيئة على المحافظة ضوابط لتطبيق

شرائع او تسن قوانين من بها يتعلق ما لكل سليما وتقييما وعمال

.توضع

التنمية مفهوم على التعرف االهتمام من وبكثير نستطيع هنا ومن

:يلي ما وتشمل المستدامة

يترك ال حتى فقرا االشد والدول المدنية والمجتمعات الهيئات معاونة

.المعيشية البيئة تدمير في الخيار لها

والقدرات االمكانيات المحدودة الذات على المعتمدة المجتمعات تشجيع

امامهم المتاحة والموارد

على وانتاجياتها البيئة نوعية على تحافظ التي المجتمعاث تشجيع

البعيد المدي

في الذاتي واالكتفاء المالئمة والتكنولوجيا العامة الصحة مراعاة

المناسبين والسكن اءغذال

والهدف االول المورد هو االنسان الن الشعبية المبادرات تشجيع

يجمع شامال مفهوما المستدامة التنمية مفهوم اصبح ولقد للتنمية االخير

.واالقتصادية والبيئية االجتماعية االهداف

مراعاة مع مكثف عمل منظومة وضع المستدامة التنمية تحقيق يتطلب

والدولية والتكنولوجية واالنتاجية واالجتماعية االقتصادية النظم

.االكاديمي والنظام التعليمي النظام واخيرا االدارية والنظم

الخضراء االبنية معايير

بالعوامل وثيق ارتباط مرتبط الخضراء االبنية معايير تعريف ان

مرتبط فهو كذلك اخضرا بناء البناء من تجعل التي الرئيسية

بالمعنى نصل حتى بعناية واتباعها وضعها يجب ومقاييس بمواصفات

Page 164: The Fifth International Energy Conference - Palestine -

19

2

المستدامة والتنمية الخضراء العمارة

بحثفال موضوعنا صلب من هو بل فراغ من يات لم هذا موضوعنا

اذا ابدا اليستقيم لها اخرى مصادر عن البحث او للطاقة بدائل عن

ابقينا ما ذاا المتجددة الطاقة فائدة فما اوال البيت ترتيب اغفلنا فكرة

وهو اال الظل ثقيل زائر ستقبالال والنوافذ االبواب مشرعة مبانينا

اال وعلينا فيه نعيش الذي العصر افات من االن يعتبر والذي التلوث

فلقد كله ملالعا يهدد بل يهددنا اصبح الذي االمر هذا في نتهاون

سبب مما مريضة عنانومصا ومكاتبنا وبيوتنا مريضة بيئتنا اصبحت

ونصرف العالجية مبانينا في نتوسع فاصبحنا ايضا نحن مرضنا في

ضحايا اعتبرهم الذين لمرضانا والشفاء العالج لتامين الكثير عليها

ان الواجب من وكان عدة مجاالت من التلوث عنه نتج الذي للتقدم

وهذا التلوث مخاطر ودرء الوقاية لسب على اكثر مبالغ نصرف

لضبط الصارمة القوانين وسن االرشادية بالتوعية اال اليتاتى

درجة زيادة نقوله ما غلى مثال وخير للتلوث المسببة المخالفات

.الواضح خيالمنا واالختالف االرض حرارة

مهمين توأمين على الضوء تسليط نحو مشوارنا ابتدأ المنطلق هذا من

العمارة بتعريف ونبدا المستدامة والتنمية الخضراء العمارة هما

تنير معالم من طياتها في تحمله وما الكلمة هذه تعني وما الخضراء

ما تحمل مقدورها في ليس قادمة الجيال افضل مستقبل نحو السبل لنا

الوقت يضيق كثيرة امور من ومعاناتنا حياتنا خضم في نحن عانيناه

.فيها غوصال

Green Architecture : الخضراء العمارة

من يقلل ولذي للطاقة الموفر البناء هو الخضراء العمارة من المقصود

من خالية بيوت على بحثينا او بحثنا سينصب حيث الكربون انبعاث

.طاقة صفر تقريبا اي للطاقة ةروموف كربون صفر او نالكربو

حماية لقوانين طبقا ادارتها ويتم وتنفذ تصمم التي المباني تلك وهي

والتركيز االول همه البيئة اعتبار حسابه في يضع وباسلوب البيئة

التاثيرات من نقلل حتى البيئة على محافظةلا هيئة تعليمات اتباع على

وتشغيلها انشائها فيتكال من التقليل جانب الى البيئة على السلبية

وصيانتها

للمباني المناخي التصميم

في هي حراريا وعزلها للمباني المناخي بالتصميم االستدامة عالقة ان

السكنية االبنية خلاد الحرارية الراحة فكرة من مستمدة االصل

.العامة المباني وكذلك والمصانع والمكاتب

من للبناء الحرارية العوازل يةاحم حقيقة من مستمدة ايضا وهي

الطبيعية واردمال على والحفاظ الطاقة توقير في ومساهمته التشققات

من ورغباته االنسان حاجات لتحقيق نحرقه الذي التقليدي كالوقود

البيئة عناصر ويصيب اصاب الذي التلوث لحجم اعتبار دون

مبانينا وسالمة صحتنا على التلوث هذا تبعيات ادراك وعدم المختلفة

هذا نهاية مع لكوكبنا المتوقع الدمار حجم مخاطر اليدرك انه كما

.السحيق الماضي في الزهره لكوكب حصل كما القرن

السكنية؟ االبنية في الحرارية الراحة هي فما

نفسه حريط غايةلل مهم سؤال هذا

كما وهما المستدامة التنمية وبين بينها عالقة تقوم ان يمكن كيف

.ايضا نمتالصقي تؤامين بل مينالزمت تؤامين اسلفنا

مفهوم مع متالزم بالضرورة اصبح قد الخضراء العمارة مفهوم ان

االثار عن امكننا ما نبتعد ان منه والهدف المستدامة بنيةواال االستدامة

فاتورة زيادة بتفادي هذا ويبدأ البيئية حياتنا لمكونات الضارة السلبية

وكان كبيرة مبان لتصميم نتيجة الطاقة فاتورة وارتفاع المكلف البناء

من والتقليل ايضا والمتجددة البديلة الطاقات نحو التوجه من بد ال

من التقليل وكذلك المنزلية االستخدامات من الناتجة الغازات انبعاث

.والسائلة الصلبة الملوثات

البناء مواد

المسلحة والخرسانة كالحجر التقليدية المستخدمة البناء مواد ان

ماستخد اكان مصمتا او مفرغا اكان سواء الخرساني طوبلوا

هذا ليس الثمن باهظة التكاليف مرتفعة تكون انما االسطح او للجدران

وفي صيفا كبير بشكل الحرارة درجات بارتفاع يتسبب وانما وحده

.شتاء متدنية تكون نفسه الوقت

المانعة والمواد للحرارة زلةاالع المواد استخدام اصبح ذلك على بناء

للغاية ومهما ملحا امرا المياه لتسرب

Page 165: The Fifth International Energy Conference - Palestine -

18

العمارة الخضراء والتنمية المستدامة

دمحم حسين الدالل.د.أ

جامعة فيالديلفيا

[email protected]

منذر عالونة.د.أ

عة فيالديلفيا جام

[email protected]

المستدامة والتنمية الخضراء العمارة

الفكرة

هذا القيم مؤتمركم عقد من االساسية الفكرة من هذا بحثتا فكرة تنطلق

للطاقة الحالي السوق في واضحة ارتباكات من نعيشه ما واقع ومن

للطاقة الوحيدة بمصادرنا وثيقا ارتباطا مرتبطة اصبحت اساسا التي

التحتية للبنية االساسية الصناعات وان كما ومشتقاته النفط وهي اال

مضت قد عديدة لوالجيا الحالي واقعنا في هي البناء وصناعة

واصبح النفطية المشتقات هذه على اساسا وستعتمد وتعتمد اعتمدت

في تدور التي الصناعات في الحال هو كما مضطربا العقار سوق

التارجح بكثير ذلك من اخطر هو ما انما فقط هذا ليس. فلكه

والمخططات االقتصادية السياسات رسم في الواضحين واالرتباك

من التي واالستراتيجيات المستقبلية ومشاريعها للتنمية المستقبلية

كبير حد والى ايضا هو تأثر المستدامة التنمية حقيقلت اتباعها الواجب

الرؤيا تحجز كثيفة ضبابية من به يحيط لما الظالم في يتخبط فاصبح

.طريقنا لنشق الواضحة الرؤيا انعدام مسببة

ةبسيط تكون تكاد وهلة والول التي الكلمات هذه في ذكرناه ما جل ان

انواحفاد ابنائنا لمستقبل التخطيط وبةعص خطورة عن تعبر هي انما

في مثله مضطربا اصبح السياسات رسم الن تتبعها التي الجياللو

.الحالي االقتصاد اضطراب حالة

المقدمة

ما قراءات عنه تعبر وما السابقة القليلة االسطر خالل ومن سبق مما

المظلم النفق قولن وال النفق هذا من الخروج نستطيح السطور بين

نهتدي الذي النور بصيص نهايته في نرى الذي النفق عنه نقول انما

نحن التي المستديمة التنمية الحك مستديمة حلول الى للوصول به

هللا حباها التى الطيبة الوجوه هذه وبجهود يقين على ونحن بصددها

الى والتفتح العقل ورجاحة االبداع وثقافة الفكر وسامة وجل عز

سيجدون الذين ابنائنا لمستقبل التخطيط فيه يسهل مستنير لمستقب

الهداية مصابيح لهم ننير لم ادا الظالم في يتخبطون المحالة انفسهم

بل منها نحرمهم ال ان علينا ويجب الرفاهية على اعتادوا قد النهم

طريق الى نوجههم ان في بحقنا ودوما االحتفاط مع تطويرهال نسعى

وال للطاقة جديدة مصادر عن بالبحث اال هذا يتاتى وال المعالم واضح

في الدور سياتيها واخرى كثيرة دول فهناك استبدالها بهذا نعني

نماا لبالدها االقتصادية السياسلت رسم في ليهع فتعتمد النفط استخراج

متواجدة وهي اخرى بدائل عن والبحث االستهالك في للترشيد نهدف

عنده من هدية لنا هللا حباها التي والماء والهواء كالشمس حولنا

الحرارة استخدام وكذلك الطاقة مشاريع في الستخدامها لنا وهداية

الغاز تخراجالس النفايات تدوير واعادة االرض جوف في الكامنة

ايدينا متناول في اخرى لحلو هي الزيتية الصخور ان كما الحيوي

وسليما مهما رافدا وتعتبر النووية الطاقة وكذلك للطاقة الستخدامها

.الطاقة في استخدامه في

[email protected] [email protected]

19

2

المستدامة والتنمية الخضراء العمارة

بحثفال موضوعنا صلب من هو بل فراغ من يات لم هذا موضوعنا

اذا ابدا اليستقيم لها اخرى مصادر عن البحث او للطاقة بدائل عن

ابقينا ما ذاا المتجددة الطاقة فائدة فما اوال البيت ترتيب اغفلنا فكرة

وهو اال الظل ثقيل زائر ستقبالال والنوافذ االبواب مشرعة مبانينا

اال وعلينا فيه نعيش الذي العصر افات من االن يعتبر والذي التلوث

فلقد كله ملالعا يهدد بل يهددنا اصبح الذي االمر هذا في نتهاون

سبب مما مريضة عنانومصا ومكاتبنا وبيوتنا مريضة بيئتنا اصبحت

ونصرف العالجية مبانينا في نتوسع فاصبحنا ايضا نحن مرضنا في

ضحايا اعتبرهم الذين لمرضانا والشفاء العالج لتامين الكثير عليها

ان الواجب من وكان عدة مجاالت من التلوث عنه نتج الذي للتقدم

وهذا التلوث مخاطر ودرء الوقاية لسب على اكثر مبالغ نصرف

لضبط الصارمة القوانين وسن االرشادية بالتوعية اال اليتاتى

درجة زيادة نقوله ما غلى مثال وخير للتلوث المسببة المخالفات

.الواضح خيالمنا واالختالف االرض حرارة

مهمين توأمين على الضوء تسليط نحو مشوارنا ابتدأ المنطلق هذا من

العمارة بتعريف ونبدا المستدامة والتنمية الخضراء العمارة هما

تنير معالم من طياتها في تحمله وما الكلمة هذه تعني وما الخضراء

ما تحمل مقدورها في ليس قادمة الجيال افضل مستقبل نحو السبل لنا

الوقت يضيق كثيرة امور من ومعاناتنا حياتنا خضم في نحن عانيناه

.فيها غوصال

Green Architecture : الخضراء العمارة

من يقلل ولذي للطاقة الموفر البناء هو الخضراء العمارة من المقصود

من خالية بيوت على بحثينا او بحثنا سينصب حيث الكربون انبعاث

.طاقة صفر تقريبا اي للطاقة ةروموف كربون صفر او نالكربو

حماية لقوانين طبقا ادارتها ويتم وتنفذ تصمم التي المباني تلك وهي

والتركيز االول همه البيئة اعتبار حسابه في يضع وباسلوب البيئة

التاثيرات من نقلل حتى البيئة على محافظةلا هيئة تعليمات اتباع على

وتشغيلها انشائها فيتكال من التقليل جانب الى البيئة على السلبية

وصيانتها

للمباني المناخي التصميم

في هي حراريا وعزلها للمباني المناخي بالتصميم االستدامة عالقة ان

السكنية االبنية خلاد الحرارية الراحة فكرة من مستمدة االصل

.العامة المباني وكذلك والمصانع والمكاتب

من للبناء الحرارية العوازل يةاحم حقيقة من مستمدة ايضا وهي

الطبيعية واردمال على والحفاظ الطاقة توقير في ومساهمته التشققات

من ورغباته االنسان حاجات لتحقيق نحرقه الذي التقليدي كالوقود

البيئة عناصر ويصيب اصاب الذي التلوث لحجم اعتبار دون

مبانينا وسالمة صحتنا على التلوث هذا تبعيات ادراك وعدم المختلفة

هذا نهاية مع لكوكبنا المتوقع الدمار حجم مخاطر اليدرك انه كما

.السحيق الماضي في الزهره لكوكب حصل كما القرن

السكنية؟ االبنية في الحرارية الراحة هي فما

نفسه حريط غايةلل مهم سؤال هذا

كما وهما المستدامة التنمية وبين بينها عالقة تقوم ان يمكن كيف

.ايضا نمتالصقي تؤامين بل مينالزمت تؤامين اسلفنا

مفهوم مع متالزم بالضرورة اصبح قد الخضراء العمارة مفهوم ان

االثار عن امكننا ما نبتعد ان منه والهدف المستدامة بنيةواال االستدامة

فاتورة زيادة بتفادي هذا ويبدأ البيئية حياتنا لمكونات الضارة السلبية

وكان كبيرة مبان لتصميم نتيجة الطاقة فاتورة وارتفاع المكلف البناء

من والتقليل ايضا والمتجددة البديلة الطاقات نحو التوجه من بد ال

من التقليل وكذلك المنزلية االستخدامات من الناتجة الغازات انبعاث

.والسائلة الصلبة الملوثات

البناء مواد

المسلحة والخرسانة كالحجر التقليدية المستخدمة البناء مواد ان

ماستخد اكان مصمتا او مفرغا اكان سواء الخرساني طوبلوا

هذا ليس الثمن باهظة التكاليف مرتفعة تكون انما االسطح او للجدران

وفي صيفا كبير بشكل الحرارة درجات بارتفاع يتسبب وانما وحده

.شتاء متدنية تكون نفسه الوقت

المانعة والمواد للحرارة زلةاالع المواد استخدام اصبح ذلك على بناء

للغاية ومهما ملحا امرا المياه لتسرب

Page 166: The Fifth International Energy Conference - Palestine -

17 6

مم %09لعش ما أش م لع م لعمتجوو عحللع مم % 13لصي عحللع ) 0210 م لا لعثم ، لبستخو لعح ب لعخوب (0213تمل

.لخصلصم لعم م للع وخ لتسخبا لعمبم

ل ل لعمخيفم لعصيو لع متج لا لصي :الجفت .2لع بتلا حبث تستخو ب لعمخيفم لعم م لعفيس ب ب ل وعض لعم شآ لغيلض لعتو ئ

ما بل لعل لو يس بالبتيللح إ تمج لتسخبا لعمبم س لبم ا 222,72 – 222,12لعصيب مم وبا

.لبعك حسب ملس لع بتلاتعم ول وبي معه و للعصبا للعويل ب : البيوغاز .3

لي إ تمج بل لعغم ، وب مم لستخولممت لعول مصموي جبو إل تمج يس باتمتيك ل لععيوب محولو ،

سب إل تمج بل لعغم ، بل ل مك وعض لعتجميب لعو . يس با بل لعغم

:طاقة الرياحال تلجو بمسم مت لي لمحتي عقبم سيل لعيبمح عمعي م مما م لعيبمح لعمتل ي ، لما لعقبمسم لعت أجيب عسيل لعيبمح م ق يل هللا لص معو سيل

ث، للعت تعتوي م خفض عتلعبو لع م / 3.43لعيبمح لع هيومئب وش م فيو، سي هب م مسو عتستخول وش

بت . مشتيك مع لعختبم لعشمسب لملعو وب لستغت سيل لعيبمح عتلعبو لع م لع هيومئب ال وو ما أا

.ث/ 12-4.3ت لا سيل لعيبمح وبا

استنتاجات

ضيلي إبجمو وولئ عمصموي لليول لع م حبث أا .معظ لليولت م ما لع م ما إسيلئب

لعسخم م لعشمسب يس با مك ت م ص ومستخول .لال وو ما لضع سبمس عع بعك

، معظ لستخولمم لعسخما لعشمس عتسخبا لعمبم ق .تلج الستغت ب لعسخم م عيتو ئ لعلال وو ما

للعجف مث عل لو لعح بأال وو ما لستخول لخصلصم ملل و لعح ب عيتو ئ حبث بم ا

.لعمبم لالستفمو م هم تسخبا

م يلب لم بمسم متخصص لغيلض م لعيبمح .وش أ وي

م يلب لال تمم وش أ وي ومع م لعجل ب حبث .ل س لعتجميب عهبل لع ل ما لع م تمئج موشي

المراجعمسح .2013حصاء الفلسطيني، لإلالجهاز المركزي .1

.(3102تمل )لع تمئج للسمسب : لع م لعم ع . يس با -يل هللا

مسح .2012حصاء الفلسطيني، لإلالجهاز المركزي .0 .(3103 م لا ثم )لع تمئج للسمسب : لع م لعم ع

. يس با -يل هللا لستهتك لع م .0222دائرة اإلحصاءات العامة األردنية، .3

.لليوا –لمما . 0212 لعم م . لع ظم للل عي م لعجل ب يس با: لعسوعمله، خمعو .6

.120-97. 0211 يل هللا. مؤتمي لع م لعولع لعيلوع

6

مم %09لعش ما أش م لع م لعمتجوو عحللع مم % 13لصي عحللع ) 0210 م لا لعثم ، لبستخو لعح ب لعخوب (0213تمل

.لخصلصم لعم م للع وخ لتسخبا لعمبم

ل ل لعمخيفم لعصيو لع متج لا لصي :الجفت .2لع بتلا حبث تستخو ب لعمخيفم لعم م لعفيس ب ب ل وعض لعم شآ لغيلض لعتو ئ

ما بل لعل لو يس بالبتيللح إ تمج لتسخبا لعمبم س لبم ا 222,72 – 222,12لعصيب مم وبا

.لبعك حسب ملس لع بتلاتعم ول وبي معه و للعصبا للعويل ب : البيوغاز .3

لي إ تمج بل لعغم ، وب مم لستخولممت لعول مصموي جبو إل تمج يس باتمتيك ل لععيوب محولو ،

سب إل تمج بل لعغم ، بل ل مك وعض لعتجميب لعو . يس با بل لعغم

:طاقة الرياحال تلجو بمسم مت لي لمحتي عقبم سيل لعيبمح عمعي م مما م لعيبمح لعمتل ي ، لما لعقبمسم لعت أجيب عسيل لعيبمح م ق يل هللا لص معو سيل

ث، للعت تعتوي م خفض عتلعبو لع م / 3.43لعيبمح لع هيومئب وش م فيو، سي هب م مسو عتستخول وش

بت . مشتيك مع لعختبم لعشمسب لملعو وب لستغت سيل لعيبمح عتلعبو لع م لع هيومئب ال وو ما أا

.ث/ 12-4.3ت لا سيل لعيبمح وبا

استنتاجات

ضيلي إبجمو وولئ عمصموي لليول لع م حبث أا .معظ لليولت م ما لع م ما إسيلئب

لعسخم م لعشمسب يس با مك ت م ص ومستخول .لال وو ما لضع سبمس عع بعك

، معظ لستخولمم لعسخما لعشمس عتسخبا لعمبم ق .تلج الستغت ب لعسخم م عيتو ئ لعلال وو ما

للعجف مث عل لو لعح بأال وو ما لستخول لخصلصم ملل و لعح ب عيتو ئ حبث بم ا

.لعمبم لالستفمو م هم تسخبا

م يلب لم بمسم متخصص لغيلض م لعيبمح .وش أ وي

م يلب لال تمم وش أ وي ومع م لعجل ب حبث .ل س لعتجميب عهبل لع ل ما لع م تمئج موشي

المراجعمسح .2013حصاء الفلسطيني، لإلالجهاز المركزي .1

.(3102تمل )لع تمئج للسمسب : لع م لعم ع . يس با -يل هللا

مسح .2012حصاء الفلسطيني، لإلالجهاز المركزي .0 .(3103 م لا ثم )لع تمئج للسمسب : لع م لعم ع

. يس با -يل هللا لستهتك لع م .0222دائرة اإلحصاءات العامة األردنية، .3

.لليوا –لمما . 0212 لعم م . لع ظم للل عي م لعجل ب يس با: لعسوعمله، خمعو .6

.120-97. 0211 يل هللا. مؤتمي لع م لعولع لعيلوع

Page 167: The Fifth International Energy Conference - Palestine -

163

لإلسيلئبي ل م غ لحبث بعم ما لعحصمي لعخم ق، لحبث بش لل أ لعق م ما ي مصموي لع م قو ج ح لع ثبي ما للسي مك الستخول لعح ب

.و ثي مؤخيل للعمخيفم عألغيلض لعم عب

الطاقة المتجددة .3 :فلسطينالشمسية في السخانات

م ب ما وعبو، يس باووأ لستخول لعسخم م لعشمسب لت سلل لعسخم م لعشمسب أس ح معظ لعم م

حبث تص سو لستخول للسي لعفيس ب ب يس بالبوبا ، (0213تمل ) %40حللع عيسخما لعشمس

لعسيس لع م ب عألسي لعت تستخو لعسخما ( 6ش )م شأ 33ل مك حللع ، 0213-0221لعشمس

.إ تمج لعسخم م لعشمسب لي تعم يس باالتي تستخدم السخان فلسطينفي نسبة األسر : 4شكل

0213 - 0221، الشمسي

:(PV)الشمسية لتوليد الكهرباء األلواحغبي يس با مك وعض لعتجمعم لعس ب لعصغبي

ظيل عمل عهم أل عيظيل متصي ومعشو لععمم عي هيوم لتستخو ب ، يس بالعت تعم م هم لعخمص لعسبمسب

لعتجمعم لحول تلعبو خمص لعفتيل صبي ما لع ما ظيل ع يفتهم لعميتفع حبث غمعوم مم تستخو عسملم يبي

ما ب لعتجمعم غبي للعع ل يبتم م ب ب .عبتلعشمسب لعيلحم ل و ت لستخول يس بالعمضم

(PV) ب لعتجمعم ومسملو ملعو عيمسملو إضم .وب

102وقوي ما مشيل ت ت فبب لعميحي لللع : لوم لسبت 0216خت لع ص للل ما سمل / بيل لل

/ بيل لل 332ت فبب لعميحي لعثم ب لعمتمثي تلعبو .سمل خت لعفتي لعقموم

بيل لل 322بشم علحم لعختبم لعشمسب وقوي : أيبحم .(لل ع خيب 113ختبم وقوي 2,610)

مك لععوبو ما لعمشميبع لعصغبي لعم فب يس با ما ضم هم لعمشميبع لعم عب ما خت موموي لع م لعشمسب

مبغملل لع 3ما خت سي لع م وتي بب حللع بيللل ع م مع 3م لعضف لعغيوب وقوي

. 0213ب هم

:الطاقة الجوفيةتعتمو ب لع يبق لي يق ويجم لعحيلي وبا س ح لع ي لليضب لوم ا لليض للعت تعتمو لي يق ويجم لعحيلي وبا وم ا لليض لس حهم، لتتيللح تي

س لل حسب 4.3 – 6.0مم وبا عهب لع يبق لالستيولو . سمل 24 – 16 تي لعتشغب لعبلمب مم وبا

الوقود الحيوي في فلسطين بعتوي ل لو لعح ب وأ للل ما أشهي :الحطب .1

ما أش م لعل لو يس باللش م لعمستخوم عهبل للسي لعمستخوم حبث تص سو لعحبله

56.0 58.0 60.0 62.0 64.0 66.0 68.0 70.0 72.0 74.0

%

السنة

17 6

مم %09لعش ما أش م لع م لعمتجوو عحللع مم % 13لصي عحللع ) 0210 م لا لعثم ، لبستخو لعح ب لعخوب (0213تمل

.لخصلصم لعم م للع وخ لتسخبا لعمبم

ل ل لعمخيفم لعصيو لع متج لا لصي :الجفت .2لع بتلا حبث تستخو ب لعمخيفم لعم م لعفيس ب ب ل وعض لعم شآ لغيلض لعتو ئ

ما بل لعل لو يس بالبتيللح إ تمج لتسخبا لعمبم س لبم ا 222,72 – 222,12لعصيب مم وبا

.لبعك حسب ملس لع بتلاتعم ول وبي معه و للعصبا للعويل ب : البيوغاز .3

لي إ تمج بل لعغم ، وب مم لستخولممت لعول مصموي جبو إل تمج يس باتمتيك ل لععيوب محولو ،

سب إل تمج بل لعغم ، بل ل مك وعض لعتجميب لعو . يس با بل لعغم

:طاقة الرياحال تلجو بمسم مت لي لمحتي عقبم سيل لعيبمح عمعي م مما م لعيبمح لعمتل ي ، لما لعقبمسم لعت أجيب عسيل لعيبمح م ق يل هللا لص معو سيل

ث، للعت تعتوي م خفض عتلعبو لع م / 3.43لعيبمح لع هيومئب وش م فيو، سي هب م مسو عتستخول وش

بت . مشتيك مع لعختبم لعشمسب لملعو وب لستغت سيل لعيبمح عتلعبو لع م لع هيومئب ال وو ما أا

.ث/ 12-4.3ت لا سيل لعيبمح وبا

استنتاجات

ضيلي إبجمو وولئ عمصموي لليول لع م حبث أا .معظ لليولت م ما لع م ما إسيلئب

لعسخم م لعشمسب يس با مك ت م ص ومستخول .لال وو ما لضع سبمس عع بعك

، معظ لستخولمم لعسخما لعشمس عتسخبا لعمبم ق .تلج الستغت ب لعسخم م عيتو ئ لعلال وو ما

للعجف مث عل لو لعح بأال وو ما لستخول لخصلصم ملل و لعح ب عيتو ئ حبث بم ا

.لعمبم لالستفمو م هم تسخبا

م يلب لم بمسم متخصص لغيلض م لعيبمح .وش أ وي

م يلب لال تمم وش أ وي ومع م لعجل ب حبث .ل س لعتجميب عهبل لع ل ما لع م تمئج موشي

المراجعمسح .2013حصاء الفلسطيني، لإلالجهاز المركزي .1

.(3102تمل )لع تمئج للسمسب : لع م لعم ع . يس با -يل هللا

مسح .2012حصاء الفلسطيني، لإلالجهاز المركزي .0 .(3103 م لا ثم )لع تمئج للسمسب : لع م لعم ع

. يس با -يل هللا لستهتك لع م .0222دائرة اإلحصاءات العامة األردنية، .3

.لليوا –لمما . 0212 لعم م . لع ظم للل عي م لعجل ب يس با: لعسوعمله، خمعو .6

.120-97. 0211 يل هللا. مؤتمي لع م لعولع لعيلوع

6

مم %09لعش ما أش م لع م لعمتجوو عحللع مم % 13لصي عحللع ) 0210 م لا لعثم ، لبستخو لعح ب لعخوب (0213تمل

.لخصلصم لعم م للع وخ لتسخبا لعمبم

ل ل لعمخيفم لعصيو لع متج لا لصي :الجفت .2لع بتلا حبث تستخو ب لعمخيفم لعم م لعفيس ب ب ل وعض لعم شآ لغيلض لعتو ئ

ما بل لعل لو يس بالبتيللح إ تمج لتسخبا لعمبم س لبم ا 222,72 – 222,12لعصيب مم وبا

.لبعك حسب ملس لع بتلاتعم ول وبي معه و للعصبا للعويل ب : البيوغاز .3

لي إ تمج بل لعغم ، وب مم لستخولممت لعول مصموي جبو إل تمج يس باتمتيك ل لععيوب محولو ،

سب إل تمج بل لعغم ، بل ل مك وعض لعتجميب لعو . يس با بل لعغم

:طاقة الرياحال تلجو بمسم مت لي لمحتي عقبم سيل لعيبمح عمعي م مما م لعيبمح لعمتل ي ، لما لعقبمسم لعت أجيب عسيل لعيبمح م ق يل هللا لص معو سيل

ث، للعت تعتوي م خفض عتلعبو لع م / 3.43لعيبمح لع هيومئب وش م فيو، سي هب م مسو عتستخول وش

بت . مشتيك مع لعختبم لعشمسب لملعو وب لستغت سيل لعيبمح عتلعبو لع م لع هيومئب ال وو ما أا

.ث/ 12-4.3ت لا سيل لعيبمح وبا

استنتاجات

ضيلي إبجمو وولئ عمصموي لليول لع م حبث أا .معظ لليولت م ما لع م ما إسيلئب

لعسخم م لعشمسب يس با مك ت م ص ومستخول .لال وو ما لضع سبمس عع بعك

، معظ لستخولمم لعسخما لعشمس عتسخبا لعمبم ق .تلج الستغت ب لعسخم م عيتو ئ لعلال وو ما

للعجف مث عل لو لعح بأال وو ما لستخول لخصلصم ملل و لعح ب عيتو ئ حبث بم ا

.لعمبم لالستفمو م هم تسخبا

م يلب لم بمسم متخصص لغيلض م لعيبمح .وش أ وي

م يلب لال تمم وش أ وي ومع م لعجل ب حبث .ل س لعتجميب عهبل لع ل ما لع م تمئج موشي

المراجعمسح .2013حصاء الفلسطيني، لإلالجهاز المركزي .1

.(3102تمل )لع تمئج للسمسب : لع م لعم ع . يس با -يل هللا

مسح .2012حصاء الفلسطيني، لإلالجهاز المركزي .0 .(3103 م لا ثم )لع تمئج للسمسب : لع م لعم ع

. يس با -يل هللا لستهتك لع م .0222دائرة اإلحصاءات العامة األردنية، .3

.لليوا –لمما . 0212 لعم م . لع ظم للل عي م لعجل ب يس با: لعسوعمله، خمعو .6

.120-97. 0211 يل هللا. مؤتمي لع م لعولع لعيلوع

Page 168: The Fifth International Energy Conference - Palestine -

15

0

:فلسطينأشكال الطاقة الرئيسية المستخدمة في . 0 لعغم ، لعو با، لعسلالي، لع م : لعمشتقم لع ف ب .1

.لع م لع هيومئب .0

هيومئب ، )لع م لعشمسب : لع م م لعمتجوو .3 ح ، ح ب، جف ، )، لع ت لعحبلب (حيليب

، م لعيبمح(مخيفم

:المشتقات النفطية. 1تستليو يس با جمبع لحتبمجمتهم ما لعمشتقم لع ف ب

ل مم سمعف لعب ي، لبت لستبيلو م ما إسيلئب ق ، لعلليول ما لعمشتقم لع ف ب سو قو لصي ( 0ش )

، لما لع هيوم ما مجم لليول لع م %46حللع لبعك %1، لما لعفح للعح ب مم سوت %33حللع .0210لععم

0210 ،الواردات من الطاقة لفلسطين:0شكل

:فلسطينفي لطاقة الكهربائيةا. 0

معظ لحتبمجمتهم ما لع م لع هيومئب ما يس باتستليو لعلليول ما لصي حبث ( 3ش ) مم إسيلئب

لعلليول لصي بمم % 94لعجم ب لإلسيلئبي مم سوت ما لعجم ب ل % 0.3ما لعجم ب لعمصيه مم سوت

.0210لبعك خت لععم %1.3لليو مم سوت ( يجا واط ساعةم)الواردات من الطاقة الكهربائية : 3شكل

0210 ،في فلسطين

لعمقمو مك مح تلعبو للحو م غ ل ب لعمح لعألس تعتمو تشغبيهم لي لعسلالي

جبجم لل سمل 390لإلسيلئبي ، للعمح أ تج حللع ما يس باما مشتيبم % 7للعت تمث مم سوت

ق ما مشتيبم م غ ما % 06لع هيوم لمم سوت .0210مم لععم لع م لع هيومئب

لع يب ش صبب لعفيو ما لستهتك لع م لع هيومئب ل صبب بيل لل سمل ، وب مم 1,100حللع يس با

حللع ويغ لعفيو ما لستهتك لع م لع هيومئب لليوا .0210 لععم مم بيل لل سمل 2,230

0.00

5,000.00

10,000.00

15,000.00

20,000.00

25,000.00

30,000.00

35,000.00

المشتقات النفطية

والفحم الحطب الكهرباء

TJ

0 500,000

1,000,000 1,500,000 2,000,000 2,500,000 3,000,000 3,500,000 4,000,000 4,500,000 5,000,000

MWh

0

:فلسطينأشكال الطاقة الرئيسية المستخدمة في . 0 لعغم ، لعو با، لعسلالي، لع م : لعمشتقم لع ف ب .1

.لع م لع هيومئب .0

هيومئب ، )لع م لعشمسب : لع م م لعمتجوو .3 ح ، ح ب، جف ، )، لع ت لعحبلب (حيليب

، م لعيبمح(مخيفم

:المشتقات النفطية. 1تستليو يس با جمبع لحتبمجمتهم ما لعمشتقم لع ف ب

ل مم سمعف لعب ي، لبت لستبيلو م ما إسيلئب ق ، لعلليول ما لعمشتقم لع ف ب سو قو لصي ( 0ش )

، لما لع هيوم ما مجم لليول لع م %46حللع لبعك %1، لما لعفح للعح ب مم سوت %33حللع .0210لععم

0210 ،الواردات من الطاقة لفلسطين:0شكل

:فلسطينفي لطاقة الكهربائيةا. 0

معظ لحتبمجمتهم ما لع م لع هيومئب ما يس باتستليو لعلليول ما لصي حبث ( 3ش ) مم إسيلئب

لعلليول لصي بمم % 94لعجم ب لإلسيلئبي مم سوت ما لعجم ب ل % 0.3ما لعجم ب لعمصيه مم سوت

.0210لبعك خت لععم %1.3لليو مم سوت ( يجا واط ساعةم)الواردات من الطاقة الكهربائية : 3شكل

0210 ،في فلسطين

لعمقمو مك مح تلعبو للحو م غ ل ب لعمح لعألس تعتمو تشغبيهم لي لعسلالي

جبجم لل سمل 390لإلسيلئبي ، للعمح أ تج حللع ما يس باما مشتيبم % 7للعت تمث مم سوت

ق ما مشتيبم م غ ما % 06لع هيوم لمم سوت .0210مم لععم لع م لع هيومئب

لع يب ش صبب لعفيو ما لستهتك لع م لع هيومئب ل صبب بيل لل سمل ، وب مم 1,100حللع يس با

حللع ويغ لعفيو ما لستهتك لع م لع هيومئب لليوا .0210 لععم مم بيل لل سمل 2,230

0.00

5,000.00

10,000.00

15,000.00

20,000.00

25,000.00

30,000.00

35,000.00

المشتقات النفطية

والفحم الحطب الكهرباء

TJ

0 500,000

1,000,000 1,500,000 2,000,000 2,500,000 3,000,000 3,500,000 4,000,000 4,500,000 5,000,000

MWh

0

:فلسطينأشكال الطاقة الرئيسية المستخدمة في . 0 لعغم ، لعو با، لعسلالي، لع م : لعمشتقم لع ف ب .1

.لع م لع هيومئب .0

هيومئب ، )لع م لعشمسب : لع م م لعمتجوو .3 ح ، ح ب، جف ، )، لع ت لعحبلب (حيليب

، م لعيبمح(مخيفم

:المشتقات النفطية. 1تستليو يس با جمبع لحتبمجمتهم ما لعمشتقم لع ف ب

ل مم سمعف لعب ي، لبت لستبيلو م ما إسيلئب ق ، لعلليول ما لعمشتقم لع ف ب سو قو لصي ( 0ش )

، لما لع هيوم ما مجم لليول لع م %46حللع لبعك %1، لما لعفح للعح ب مم سوت %33حللع .0210لععم

0210 ،الواردات من الطاقة لفلسطين:0شكل

:فلسطينفي لطاقة الكهربائيةا. 0

معظ لحتبمجمتهم ما لع م لع هيومئب ما يس باتستليو لعلليول ما لصي حبث ( 3ش ) مم إسيلئب

لعلليول لصي بمم % 94لعجم ب لإلسيلئبي مم سوت ما لعجم ب ل % 0.3ما لعجم ب لعمصيه مم سوت

.0210لبعك خت لععم %1.3لليو مم سوت ( يجا واط ساعةم)الواردات من الطاقة الكهربائية : 3شكل

0210 ،في فلسطين

لعمقمو مك مح تلعبو للحو م غ ل ب لعمح لعألس تعتمو تشغبيهم لي لعسلالي

جبجم لل سمل 390لإلسيلئبي ، للعمح أ تج حللع ما يس باما مشتيبم % 7للعت تمث مم سوت

ق ما مشتيبم م غ ما % 06لع هيوم لمم سوت .0210مم لععم لع م لع هيومئب

لع يب ش صبب لعفيو ما لستهتك لع م لع هيومئب ل صبب بيل لل سمل ، وب مم 1,100حللع يس با

حللع ويغ لعفيو ما لستهتك لع م لع هيومئب لليوا .0210 لععم مم بيل لل سمل 2,230

0.00

5,000.00

10,000.00

15,000.00

20,000.00

25,000.00

30,000.00

35,000.00

المشتقات النفطية

والفحم الحطب الكهرباء

TJ

0 500,000

1,000,000 1,500,000 2,000,000 2,500,000 3,000,000 3,500,000 4,000,000 4,500,000 5,000,000

MWh

Page 169: The Fifth International Energy Conference - Palestine -

14

1

الطاقة في فلسطين

نظرة إحصائية

عبدهللا عزام

الجهاز المركزي لإلحصاء الفلسطيني

[email protected]

معظت ول لععتمع وتتل بي وبم تم لتا لع م ت تهتت :ملخص مستتتتلل لعي م بتتت لعتتتولي لعتتتبه تيعوتتت تتت ل تتت إعتتت ظتتتيل

لمستتلل لعمعبشت لال تصموهلتل بي مؤشيل حل لعلضع لوأب لعجهتتتتتتتتتم لعمي تتتتتتتتت ه ع حصتتتتتتتتتم . عتتتتتتتتتول لعمتتتتتتتتتلل با

لعفيس ب لي إ تمج لعوبم م لإلحصمئب لعخمصت ومع م ت شتتتتتت ستتتتتت له ليتتتتتت مل عتتتتتت لخصلصتتتتتتم مبتتتتتت لا لع م تتتتتت و

.(www.pcbs.gov.ps)لإلع تيل

تيق لعضتتتتتل ليتتتتت تتتتتم لع م تتتتت و ظتتتتتي ستتتتتلعلي تتتتت تتتتتب إحصمئب ، حبث ستت مل أش م لع م لعيئبسب لعمستخوم يست با لمصتموي لع م ت لعمستتخوم ، لستتت مل لعلي ت ، أ تتت لعمؤشتتتيل لعخمصتتت ومع م تتت تتت لعق ملتتتم لعمختيفتتت

همبتت ستضتتع لعلي تت مجمللتت متتا لعتلصتتبم وهتتو ل تت لع .تحسبا لضع بل لعق م

ميزان الطاقة .1 تتتتل إ تتتتمي محمستتتتو تجمبعتتتت عيوبم تتتتم حتتتتل م تجتتتتم �

لع م تت لعولخيتت للعخميجتت للعمستتتخوم ولختت حتتولو ولعتت لب وغتت أا ب تتلا مبتت لا .معب تت ختتت تتتي م بتت معب تت

ليتت جمبتتع لع م تت م تمتت تتوي لإلم تتما وحبتتث بحتتتله، لبت إ تمج ليت شت يبا للل لعلحتول تو قم لع م

( 1ش )لبوبا بل ، لعفب بمئب للعثم ولحو لعتبيل جل .0212عمب لا لع م لعفيس ب مقتضو صلي

ميزان الطاقة أغراض تع ب أ مب إحصم ل لع م ما خت تل بي

.وبم م شممي حل لع م ولخ لعويو

بع معيلمم حل لع م لعم لو للع يب . ه لضع أما لع م بؤوه إع ولخ لعويو ممم

لخصلصم بل ي وبم م حل لعم وعثم CO2.

بل ي حسمب لع فم ل ععميبم لعتحلب لعمختيف.

0212 ،ميزان الطاقة الفلسطيني بالتيراجول :1شكل

15

0

:فلسطينأشكال الطاقة الرئيسية المستخدمة في . 0 لعغم ، لعو با، لعسلالي، لع م : لعمشتقم لع ف ب .1

.لع م لع هيومئب .0

هيومئب ، )لع م لعشمسب : لع م م لعمتجوو .3 ح ، ح ب، جف ، )، لع ت لعحبلب (حيليب

، م لعيبمح(مخيفم

:المشتقات النفطية. 1تستليو يس با جمبع لحتبمجمتهم ما لعمشتقم لع ف ب

ل مم سمعف لعب ي، لبت لستبيلو م ما إسيلئب ق ، لعلليول ما لعمشتقم لع ف ب سو قو لصي ( 0ش )

، لما لع هيوم ما مجم لليول لع م %46حللع لبعك %1، لما لعفح للعح ب مم سوت %33حللع .0210لععم

0210 ،الواردات من الطاقة لفلسطين:0شكل

:فلسطينفي لطاقة الكهربائيةا. 0

معظ لحتبمجمتهم ما لع م لع هيومئب ما يس باتستليو لعلليول ما لصي حبث ( 3ش ) مم إسيلئب

لعلليول لصي بمم % 94لعجم ب لإلسيلئبي مم سوت ما لعجم ب ل % 0.3ما لعجم ب لعمصيه مم سوت

.0210لبعك خت لععم %1.3لليو مم سوت ( يجا واط ساعةم)الواردات من الطاقة الكهربائية : 3شكل

0210 ،في فلسطين

لعمقمو مك مح تلعبو للحو م غ ل ب لعمح لعألس تعتمو تشغبيهم لي لعسلالي

جبجم لل سمل 390لإلسيلئبي ، للعمح أ تج حللع ما يس باما مشتيبم % 7للعت تمث مم سوت

ق ما مشتيبم م غ ما % 06لع هيوم لمم سوت .0210مم لععم لع م لع هيومئب

لع يب ش صبب لعفيو ما لستهتك لع م لع هيومئب ل صبب بيل لل سمل ، وب مم 1,100حللع يس با

حللع ويغ لعفيو ما لستهتك لع م لع هيومئب لليوا .0210 لععم مم بيل لل سمل 2,230

0.00

5,000.00

10,000.00

15,000.00

20,000.00

25,000.00

30,000.00

35,000.00

المشتقات النفطية

والفحم الحطب الكهرباء

TJ

0 500,000

1,000,000 1,500,000 2,000,000 2,500,000 3,000,000 3,500,000 4,000,000 4,500,000 5,000,000

MWh

0

:فلسطينأشكال الطاقة الرئيسية المستخدمة في . 0 لعغم ، لعو با، لعسلالي، لع م : لعمشتقم لع ف ب .1

.لع م لع هيومئب .0

هيومئب ، )لع م لعشمسب : لع م م لعمتجوو .3 ح ، ح ب، جف ، )، لع ت لعحبلب (حيليب

، م لعيبمح(مخيفم

:المشتقات النفطية. 1تستليو يس با جمبع لحتبمجمتهم ما لعمشتقم لع ف ب

ل مم سمعف لعب ي، لبت لستبيلو م ما إسيلئب ق ، لعلليول ما لعمشتقم لع ف ب سو قو لصي ( 0ش )

، لما لع هيوم ما مجم لليول لع م %46حللع لبعك %1، لما لعفح للعح ب مم سوت %33حللع .0210لععم

0210 ،الواردات من الطاقة لفلسطين:0شكل

:فلسطينفي لطاقة الكهربائيةا. 0

معظ لحتبمجمتهم ما لع م لع هيومئب ما يس باتستليو لعلليول ما لصي حبث ( 3ش ) مم إسيلئب

لعلليول لصي بمم % 94لعجم ب لإلسيلئبي مم سوت ما لعجم ب ل % 0.3ما لعجم ب لعمصيه مم سوت

.0210لبعك خت لععم %1.3لليو مم سوت ( يجا واط ساعةم)الواردات من الطاقة الكهربائية : 3شكل

0210 ،في فلسطين

لعمقمو مك مح تلعبو للحو م غ ل ب لعمح لعألس تعتمو تشغبيهم لي لعسلالي

جبجم لل سمل 390لإلسيلئبي ، للعمح أ تج حللع ما يس باما مشتيبم % 7للعت تمث مم سوت

ق ما مشتيبم م غ ما % 06لع هيوم لمم سوت .0210مم لععم لع م لع هيومئب

لع يب ش صبب لعفيو ما لستهتك لع م لع هيومئب ل صبب بيل لل سمل ، وب مم 1,100حللع يس با

حللع ويغ لعفيو ما لستهتك لع م لع هيومئب لليوا .0210 لععم مم بيل لل سمل 2,230

0.00

5,000.00

10,000.00

15,000.00

20,000.00

25,000.00

30,000.00

35,000.00

المشتقات النفطية

والفحم الحطب الكهرباء

TJ

0 500,000

1,000,000 1,500,000 2,000,000 2,500,000 3,000,000 3,500,000 4,000,000 4,500,000 5,000,000

MWh

0

:فلسطينأشكال الطاقة الرئيسية المستخدمة في . 0 لعغم ، لعو با، لعسلالي، لع م : لعمشتقم لع ف ب .1

.لع م لع هيومئب .0

هيومئب ، )لع م لعشمسب : لع م م لعمتجوو .3 ح ، ح ب، جف ، )، لع ت لعحبلب (حيليب

، م لعيبمح(مخيفم

:المشتقات النفطية. 1تستليو يس با جمبع لحتبمجمتهم ما لعمشتقم لع ف ب

ل مم سمعف لعب ي، لبت لستبيلو م ما إسيلئب ق ، لعلليول ما لعمشتقم لع ف ب سو قو لصي ( 0ش )

، لما لع هيوم ما مجم لليول لع م %46حللع لبعك %1، لما لعفح للعح ب مم سوت %33حللع .0210لععم

0210 ،الواردات من الطاقة لفلسطين:0شكل

:فلسطينفي لطاقة الكهربائيةا. 0

معظ لحتبمجمتهم ما لع م لع هيومئب ما يس باتستليو لعلليول ما لصي حبث ( 3ش ) مم إسيلئب

لعلليول لصي بمم % 94لعجم ب لإلسيلئبي مم سوت ما لعجم ب ل % 0.3ما لعجم ب لعمصيه مم سوت

.0210لبعك خت لععم %1.3لليو مم سوت ( يجا واط ساعةم)الواردات من الطاقة الكهربائية : 3شكل

0210 ،في فلسطين

لعمقمو مك مح تلعبو للحو م غ ل ب لعمح لعألس تعتمو تشغبيهم لي لعسلالي

جبجم لل سمل 390لإلسيلئبي ، للعمح أ تج حللع ما يس باما مشتيبم % 7للعت تمث مم سوت

ق ما مشتيبم م غ ما % 06لع هيوم لمم سوت .0210مم لععم لع م لع هيومئب

لع يب ش صبب لعفيو ما لستهتك لع م لع هيومئب ل صبب بيل لل سمل ، وب مم 1,100حللع يس با

حللع ويغ لعفيو ما لستهتك لع م لع هيومئب لليوا .0210 لععم مم بيل لل سمل 2,230

0.00

5,000.00

10,000.00

15,000.00

20,000.00

25,000.00

30,000.00

35,000.00

المشتقات النفطية

والفحم الحطب الكهرباء

TJ

0 500,000

1,000,000 1,500,000 2,000,000 2,500,000 3,000,000 3,500,000 4,000,000 4,500,000 5,000,000

MWh

Page 170: The Fifth International Energy Conference - Palestine -

13

يناط باللجان احمللية مسؤولية تشجيع ادلباين اخلاصة على تطبيق .ادلعايري الفنية لكود ادلباين ادلوفرة للطاقة يف فلسطني

(8) المادةةاملسدنداث واملخططاث الواجب ارفاقها لضمان جفعيل

:-أنظمت اسخغالل الطاقت الشمسيت جيب أن تتضمن ادلشاريع ادلقدمة ألخد ادلصادقة من اللجنة ادلركزية لألبنية

وتنظيم ادلدن مبحافظات غزة وجلان التنظيم احمللية للبلديات على ادلستندات :-وادلخططات التالية

مذكرة حسابية لتصميم نظام التسخني باالضافة اىل خمططات -1تصميمية ذلذا النظام كجزء من ادلخططات التصميمية اخلاصة

.بالبناءمذكرة حسابية لتصميم نظام اإلنارة باالضافة اىل خمططات -2

تصميمية ذلذا النظام كجزء من ادلخططات التصميمية اخلاصة .بالبناء

تعهد خطي من ادلالك وادلكتب اذلندسي ادلشرف بتنفيذ -3 .ادلخططات ادلصادق عليها من اجلهات ادلعنية

(9) المادةة :-موافقت سلطت الطاقت

أي رخص بناء تقدم للجنة ادلركزية لألبنية وتنظيم ادلدنمبحافظات غزة أو جلان التنظيم احمللية للبلديات اخلاصة برتخيص

مباين عامة أو مباين متعددة الطوابق يستلزم حصوذلا على مصادقة .هنائية أو إذن بناء إبتدائي باالضافة الحضار موافقة سلطة الطاقة

يناط بسلطة الطاقة ادلتابعة ادليدانية لضمان تنفيذ وتطبيق البنود .اليت من شأهنا تفعيل ىذا النظام

(10) المادةة :-دور بلدياث قطاع غزة

يناط باللجنة احمللية تطبيق أحكام ىذا النظام وال يتم منح رخص البناء إال بعد .مراعاة الشروط الواردة بو

(12) المادةة :-دور نقابت املهندسين

يناط بنقابة ادلهندسني القيام باجراءات التدقيق الالزمة للمخططات اذلندسية .وذلك لضمان مطابقتها دلواد ىذا النظام

Page 171: The Fifth International Energy Conference - Palestine -

12

ة(3) المادةة :-أهداف النظام

:-يهدف النظام إلى ما يلي ضغ اضاثظ اإلشتشاطبد اتخط١ط١خ اف١خ اخبصخ -1

.ثبعتغالي اطبلخ اشغ١خشش اتػ١خ افىش٠خ ث١ وبفخ ششائخ اجتغ افغط١ ثذ -2

.أ١خ اعتغالي اطبلخ اشغ١خت١خ سح االثذاع سػب٠تب ػذ األفشاد اجػبد ات١ -3

.ف جبي اطبلخ اتجذدح .تشش١ذ االعتالن اؼب طبلخ اىشثبئ١خ -4تم١ و١بد اطبلخ اىشثبئ١خ اغتىخ ف اإلبسح تغخ١ -5

.ا١ب .دػ ع١بعبد اتخط١ظ اؼشا اذضش اغتذا -6 .تشج١غ االعتثبس ف جبي اطبلخ اشغ١خ -7اغبخ ف اذفبظ ػ اج١ئخ خالي تم١ االجؼبثبد -8

.اغبخ

ةة

ة(4) المادةة :لغايات تطبيق ىذا النظام تصنف أنظمة الطاقة الشمسية اىل ما يلي

:-نظام حسخين املياه - أمبوجب ىذا النظام يتم استخدام اجملمعات احلرارية الشمسية للمباين اجلديدة

:-وفقا دلا يلي من احتياجات شاغلي ادلبىن من ادلياه الساخنة يف % 100توفري .1

ادلباين السكنية العادية غري االستثمارية باستخدام الطاقة الشميسة .لرت100على أن ال تقل حصة الوحدة السكنية عن

من احتياجات شاغلي ادلبىن ادلتعدد الطوابق من % 50توفري .2ادلياه الساخنة باستخدام الطاقة الشميسة على أن ال تقل حصة

.لرت100الوحدة السكنية عن

من احتياجات شاغلي ادلباين العامة من ادلياه % 100توفري .3 .الساخنة باستخدام الطاقة الشميسة

يتم ارفاق مذكرة حسابية وخمططات تصميمية لنظام التسخنيضمن ادلخططات التصميمية اخلاصة بالبناء ويتم التأكد من تنفيذ ما ورد بادلخططات التصميمية من قبل البلدية الواقع ادلبىن داخل

.نفوذىا ونقابة ادلهندسني

يناط بالبلديات مسؤولية حتفيز اصحاب ادلباين القائمة ماديا .ومعنويا ومنحهم التشجيع على استخدام نظام التسخني

:-نظام الاناره باسخخدام الطاقت الشمسيت - بباالضافو دلا تضمنتو انظمة البناء ادلعمول هبا يف اللجنة ادلركزية و جلان التنظيم

احمللية يتم استخدام أنظمة الطاقة الشمسية يف ادلباين اجلديدة من أجل انارة :-تلك ادلباين وفقا دلا يلي

يف ادلباين ادلتعددة الطوابق يغطي النظام احلد األدىن من -1 250قدرة ال تقل عن )احتياجات انارة مجيع الوحدات السكنية

.(وات

أو أكثر ²م500مجيع أنواع ادلباين العادية اليت تكون مبساحة -2 . شقق سكنية أو أكثر3واليت حيتوي الطابق الواحد منها على

.مجيع أنواع ادلباين العامة -3

يتم ارفاق مذكرة حسابية وخمططات تصميمية لنظام االنارة ضمنادلخططات التصميمية اخلاصة بالبناء ويتم التأكد من تنفيذ ما ورد بادلخططات التصميمية من قبل البلدية الواقع ادلبىن داخل

.نفوذىا ونقابة ادلهندسني

يناط بالبلديات مسؤولية حتفيز اصحاب ادلباين القائمة مادياومعنويا ومنحهم التشجيع على استخدام نظام االنارة باستخدام

.الطاقة الشمسية

(5) المادةة :-رووف املبنى

ال يسمح بأي حال من األحوال ببناء طابق الرووف يف ادلباين ادلتعددة الطوابق وذلك لتوفري ادلساحات الالزمة لرتكيب األنظمة الالزمة لتسخني ادلياه

.واحتياجات االنارة من خالل الطاقة الشمسية (6) المادةة

:-مشاريع الطرق باالضافة دلا تضمنتو أنظمة انشاء الطرق وادلواصالت جيب انارة كل من

– الحدائق العامة – الميادين الرئيسية – الجسور –الشوارع الرئيسية ) وذلك باستخدام الطاقة ( اشاراة المرور–مرافق و مواقف السيارات

.الشمسية

(7) المادةة :-كود املباني املوفرة للطاقت في فلسطين

جيب االلتزام يف تصميم ادلباين العامة وتنفيذىا بادلعايري الفنية لكود .ادلباين ادلوفرة للطاقة يف فلسطني

أ حاكم النظام

13

يناط باللجان احمللية مسؤولية تشجيع ادلباين اخلاصة على تطبيق .ادلعايري الفنية لكود ادلباين ادلوفرة للطاقة يف فلسطني

(8) المادةةاملسدنداث واملخططاث الواجب ارفاقها لضمان جفعيل

:-أنظمت اسخغالل الطاقت الشمسيت جيب أن تتضمن ادلشاريع ادلقدمة ألخد ادلصادقة من اللجنة ادلركزية لألبنية

وتنظيم ادلدن مبحافظات غزة وجلان التنظيم احمللية للبلديات على ادلستندات :-وادلخططات التالية

مذكرة حسابية لتصميم نظام التسخني باالضافة اىل خمططات -1تصميمية ذلذا النظام كجزء من ادلخططات التصميمية اخلاصة

.بالبناءمذكرة حسابية لتصميم نظام اإلنارة باالضافة اىل خمططات -2

تصميمية ذلذا النظام كجزء من ادلخططات التصميمية اخلاصة .بالبناء

تعهد خطي من ادلالك وادلكتب اذلندسي ادلشرف بتنفيذ -3 .ادلخططات ادلصادق عليها من اجلهات ادلعنية

(9) المادةة :-موافقت سلطت الطاقت

أي رخص بناء تقدم للجنة ادلركزية لألبنية وتنظيم ادلدنمبحافظات غزة أو جلان التنظيم احمللية للبلديات اخلاصة برتخيص

مباين عامة أو مباين متعددة الطوابق يستلزم حصوذلا على مصادقة .هنائية أو إذن بناء إبتدائي باالضافة الحضار موافقة سلطة الطاقة

يناط بسلطة الطاقة ادلتابعة ادليدانية لضمان تنفيذ وتطبيق البنود .اليت من شأهنا تفعيل ىذا النظام

(10) المادةة :-دور بلدياث قطاع غزة

يناط باللجنة احمللية تطبيق أحكام ىذا النظام وال يتم منح رخص البناء إال بعد .مراعاة الشروط الواردة بو

(12) المادةة :-دور نقابت املهندسين

يناط بنقابة ادلهندسني القيام باجراءات التدقيق الالزمة للمخططات اذلندسية .وذلك لضمان مطابقتها دلواد ىذا النظام

Page 172: The Fifth International Energy Conference - Palestine -

11

مبحافظات غزة اس تغالل الطاكة املتجددة ( اس تغالل الطاكة الشمس ية يف املناطق العمرانيةنظام )

فرج الرصفندى

(ة1) المادةةنظام اسخغالل الطاقت الشمسيت في املناطق العمرانيت

م2014لعام

ة(2) المادةة :-حعريفاث ومصطلحاث

يقصد بالكممات والمصطمحات التالية المعنى المبين قرين كال :-منها

اللجنــــــة المركزة

اجخ اشوض٠خ ألث١خ تظ١ اذ ثذبفظبد .غضح

اللجنـــة المحلـــــة

جخ اتظ١ اذ١خ ف اجذ٠خ وب سدد ثمب .1936 غخ 28تظ١ اذ سل

سلطة الطاقة والموارد الطبعة

اجخ اخخ ثبداسح لطبع اطبلخ شالجت ٠ش ره ت١ذ م تص٠غ اطبلخ ضغ

ااصفبد اتم١خ اخبصخ ثبطبلخ دغت لب 12-1995.

نقابة المهندسن مركز غزة

اجخ ات ٠ذسج ض غؤ١بتب أػبي شاجؼخ تذل١ك اخططبد اذع١خ ف

.ذبفظبد لطبع غضحصطخ ٠غتؼ ذالخ ػ صبدس اطبلخ الطاقة البدلة

.اطج١ؼ١خ اجذ٠خ ػ الد األدفس صبدس اطبلخ اطج١ؼ١خ ابتجخ ػ صبدس :.الطاقة المتجددة

تجذدح ث طبلخ اش٠بح اشظ ا١ب .األاج اطبلخ اجف١خ

. اطبلخ ابتجخ ػ االشؼبع اشغ :.الطاقة الشمسة ػجبسح ػ جبد وشغبط١غ١خ تجؼث اإلشعاع الشمس

. اشظ ثأطاي ج١خ ختفخ اخال٠ب ات تم ثتذ٠ اطبلخ اشغ١خ ا الخالا الشمسة

.وشثبء

صبحى سكيك

نظام الخالا :.....الشمسة

اظب اىب از ٠ش ج١غ اىبد ات شأب ت١ذ اطبلخ اىشثبئ١خ خالي اطبلخ

.اشغ١خالمجمعات

الحرارة الشمسة

األاح ات تم ثتغخ١ ا١ب ثبالػتبد .ػ دشاسح اشظ

نظام التسخن :.الشمس

اظب اىب از ٠ش ج١غ اىبد ات شأب اإلعتفبدح دشاسح اشظ ف تغخ١

.ا١ب

أ ثب٠خ ػبخ دى١خ أ غ١ش دى١خ ؼذح ف المبان العامة اعتؼبب خذبد اؼبخ ث اتؼ١١خ اثمبف١خ

اذ١٠خ اصذ١خ أ اشفب االجتبػ اخذبد االداس٠خ ثب ف١ب اذاسط اصبخ اذى١خ

اجبؼبد اغبجذ امبػبد اغبسح دس اغ١ب اىبئظ اغتشف١بد االجئ لبػبد

االجتبػبد اذبضشاد اشاوض اثمبف١خ .ااد أ أل غب٠خ اغب٠بد اؼبخ

افشاؽ اذصس ث١ خط اتظ١ شبسع الطرق أو الشارع .از ٠خذ اذشوخ اشس٠خ شوجبد اشب

اشبسع از ٠ختشق اتجؼبد اؼشا١خ الشارع الرئس ثصسح جبششح غتشح اششق ا اغشة

.أ اشبي ا اجةجػخ اغشف خصصخ غى ب ذخ الوحدة السكنة

فشد تش اطجخ دسح ا١ب أ شافك .آخش تبثؼخ أ خصصخ ب

المبان المتعددة الطوابق

از ٠ض٠ذ استفبػ ػ دس أسض اجبء .خظ طاثك

اج از ال ٠ض٠ذ استفبػ ػ أسض المبنى العادي .خظ طاثك

. آخش عمف ف اج رووف المبنى

كود المبان الموفرة للطاقة ف

:فلسطن

اؼ١بس از ٠ضجظ ااصفبد اف١خ اتم١خ ااجت اتجبػب تص١ تف١ز جب تتفش ف١ب

مبد االعتذاخ تؼ ػ تم١ اعتالن .اج اطبلخ

تعريفات وأ هداف

Page 173: The Fifth International Energy Conference - Palestine -

10

واقع الطاقة في قطاع غزة والتحديات المستقبلية

أستاذ الفيزياء وعلوم المواد, ناجي الداهودي فلسطين -غزة, 7711. ب.ص, غزة-جامعة األزهر, قسم الفيزياء

الملخص

سلسلة مستمرة مليون فلسطيني يعاني من 7.1قطاع غزة هو المنطقة االشد كثافة سكانية علي مستوي العالم يحيا به حوالي

من األزمات التي تتصاعد مع الوقت اال أن أزمة الطاقة الكهربائية في قطاع غزة تعد أشد تأثيرا علي جميع المستويات

.االجتماعية والتعليمية, االقتصادية

قواتبممارسات مرتبطة وأخرى الفنية، المشكالت من معقدة طائفة من غزة قطاع في ةالكهربائيواقع الطاقة عانيي

وخطوط الشبكاتوقصف محوالتها وتدمير الطاقة الوحيدة توليد قصف االحتالل االسرائيلي محطةف. اإلسرائيلي االحتالل

وإلى إسرائيل، من القادمة الرئيسة للخطوط الصيانة أعمال عرقلة اضافة الي تعمد غزة قطاع على عدوان كل في التغذية

وتهالك تقادم كل هذه المعطيات اضافة الي ,غزة كهرباء توليد لتشغيل محطة المخصص الصناعي السوالر مرور عرقلة

وما تزال األزمة مستمرة .زاد من أزمة واقع الطاقة في قطاع غزة ،العديد من مناطق القطاع في الكهرباء توصيل شبكات

الخانق وما رافقها من واقع والحصار الجماعي العقاب بسياسة المرتبطة اإلسرائيلية الممارساتوخصوصا مع استمرار

من المزيد وخلق األزمة عقيدت في مهما دورا لعبت ومناكفات صراعات من يرافقه وما الفلسطيني السياسي االنقسام

.مناسب بشكل الكهربائي التيار خدمة توفير صعيد على المشكالت

الذي أدي الي تراجع كبير في عملية تحصيل ضافة الي الوضع االقتصادي السيئ للسكانسابقة الذكر باال المعطيات

معها وصلت لدرجة الكهربائي، التيار انقطاع عدم وضمان الخدمة هذه توفير صعيد على مترديا واقعا أفرز الفواتير

وفي حاالت متقطعة.اليوم فيات ساع 8 مدى على الحاالت أحسن وفي اليوم خالل ساعات 6 من ألقل التزويد ساعات

توصيل خدمة أوضاع على التدهور من مزيدا فترات العدوان االسرائيلي تشهد العديد من مناطق القطاع خالل

.قد تصل الي عدة أيام دون تيار كهربائي التيارالكهربائي

وهذه الكمية تتزايد اذا ما أعيد تشغيل المصانع طاقة كهربائية ال من وات ميجا 444ان قطاع غزة يحتاج الي ما يقارب

ميجا وات وهذا يعني وجود عجز ما يزيد عن 731رباء المتاحة في أحسن حاالتها هو لمدمرة علما بان اجمالي كمية الكها

هذا الواقع يخلق %. 04 ألكثر من في االوضاع الطبيعية وعند توقف محطة الطاقة عن العمل تتجاوز نسبة العجز% 44

تحديات مستقبلية لسد العجز المتزايد من الطاقة الكهربائية بايجاد مصادر بديلة أفضل من المولدات الكهربائية التي لجأ اليها

ان توفير مصادر مستدامة بديلة .السكان والتي أدت الي العديد من حاالت الوفاة اضافة الي الضوضاء والتلوث البيئي

طاع غزة أصبح من أولويات كثير من الجهات المانحة وبدأت تظهر بعض مشاريع استخدام الطاقة الشمسية للطاقة بق

.المموله والتي تعد خطوات صغيرة علي طريق الحل

في خالل هذه المحاضرة سنعرض وصفا تشخيصيا لواقع الطاقة في قطاع غزة والمشكالت التي ترتبت علي نقص التزويد

والحلول المقترحة والتي تمثل تحديات مستقبلية لن تنجح اال بتوافر جميع الجهود الحكومية والدولية في بالتيار الكهربائي

.وضع استرتيجيات توفير مصادر مستدامة للطاقة في قطاع غزة

11

مبحافظات غزة اس تغالل الطاكة املتجددة ( اس تغالل الطاكة الشمس ية يف املناطق العمرانيةنظام )

فرج الرصفندى

(ة1) المادةةنظام اسخغالل الطاقت الشمسيت في املناطق العمرانيت

م2014لعام

ة(2) المادةة :-حعريفاث ومصطلحاث

يقصد بالكممات والمصطمحات التالية المعنى المبين قرين كال :-منها

اللجنــــــة المركزة

اجخ اشوض٠خ ألث١خ تظ١ اذ ثذبفظبد .غضح

اللجنـــة المحلـــــة

جخ اتظ١ اذ١خ ف اجذ٠خ وب سدد ثمب .1936 غخ 28تظ١ اذ سل

سلطة الطاقة والموارد الطبعة

اجخ اخخ ثبداسح لطبع اطبلخ شالجت ٠ش ره ت١ذ م تص٠غ اطبلخ ضغ

ااصفبد اتم١خ اخبصخ ثبطبلخ دغت لب 12-1995.

نقابة المهندسن مركز غزة

اجخ ات ٠ذسج ض غؤ١بتب أػبي شاجؼخ تذل١ك اخططبد اذع١خ ف

.ذبفظبد لطبع غضحصطخ ٠غتؼ ذالخ ػ صبدس اطبلخ الطاقة البدلة

.اطج١ؼ١خ اجذ٠خ ػ الد األدفس صبدس اطبلخ اطج١ؼ١خ ابتجخ ػ صبدس :.الطاقة المتجددة

تجذدح ث طبلخ اش٠بح اشظ ا١ب .األاج اطبلخ اجف١خ

. اطبلخ ابتجخ ػ االشؼبع اشغ :.الطاقة الشمسة ػجبسح ػ جبد وشغبط١غ١خ تجؼث اإلشعاع الشمس

. اشظ ثأطاي ج١خ ختفخ اخال٠ب ات تم ثتذ٠ اطبلخ اشغ١خ ا الخالا الشمسة

.وشثبء

صبحى سكيك

نظام الخالا :.....الشمسة

اظب اىب از ٠ش ج١غ اىبد ات شأب ت١ذ اطبلخ اىشثبئ١خ خالي اطبلخ

.اشغ١خالمجمعات

الحرارة الشمسة

األاح ات تم ثتغخ١ ا١ب ثبالػتبد .ػ دشاسح اشظ

نظام التسخن :.الشمس

اظب اىب از ٠ش ج١غ اىبد ات شأب اإلعتفبدح دشاسح اشظ ف تغخ١

.ا١ب

أ ثب٠خ ػبخ دى١خ أ غ١ش دى١خ ؼذح ف المبان العامة اعتؼبب خذبد اؼبخ ث اتؼ١١خ اثمبف١خ

اذ١٠خ اصذ١خ أ اشفب االجتبػ اخذبد االداس٠خ ثب ف١ب اذاسط اصبخ اذى١خ

اجبؼبد اغبجذ امبػبد اغبسح دس اغ١ب اىبئظ اغتشف١بد االجئ لبػبد

االجتبػبد اذبضشاد اشاوض اثمبف١خ .ااد أ أل غب٠خ اغب٠بد اؼبخ

افشاؽ اذصس ث١ خط اتظ١ شبسع الطرق أو الشارع .از ٠خذ اذشوخ اشس٠خ شوجبد اشب

اشبسع از ٠ختشق اتجؼبد اؼشا١خ الشارع الرئس ثصسح جبششح غتشح اششق ا اغشة

.أ اشبي ا اجةجػخ اغشف خصصخ غى ب ذخ الوحدة السكنة

فشد تش اطجخ دسح ا١ب أ شافك .آخش تبثؼخ أ خصصخ ب

المبان المتعددة الطوابق

از ٠ض٠ذ استفبػ ػ دس أسض اجبء .خظ طاثك

اج از ال ٠ض٠ذ استفبػ ػ أسض المبنى العادي .خظ طاثك

. آخش عمف ف اج رووف المبنى

كود المبان الموفرة للطاقة ف

:فلسطن

اؼ١بس از ٠ضجظ ااصفبد اف١خ اتم١خ ااجت اتجبػب تص١ تف١ز جب تتفش ف١ب

مبد االعتذاخ تؼ ػ تم١ اعتالن .اج اطبلخ

تعريفات وأ هداف

Page 174: The Fifth International Energy Conference - Palestine -

9

بين الهيمنة والفرص: تحديات الطاقة المستقبلية عماد الخطيب.م.د

بكالوريوس هندسة القوى الميكانيكية، ماجستير هندسة الطاقة ،دكتوراه هندسة النمذجة البيئة رئيس جامعة بوليتكنيك فلسطين،

واإلقليم من خالل عرض معلومات عن مصادر الطاقة الهيدروكربونية " فلسطين"تقدم المحاضرة تشخيصا لوضع الطاقة في والقدرة الكهربائية المستخدمة والنمو المتوقع في الطلب على الطاقة ومصادرها التقليدية مع استعراض الستخدامات الطاقة

وتقدم المحاضرة إشكاليات أمن الطاقة في العالم واإلقليم . .طاقة الكلية المستهلكةالمتجددة الحالية ونسبة مشاركتها في الوتستعرض . وتأثيرها على أمن الطاقة الوطني وما هي الخيارات المتاحة لضمان تدفق الطاقة على المستوى الوطني

ن تساهم في تخفيف تأثيرات احتكار المحاضرة خطط العمل الوطنية في مجالي الطاقة المتجددة وكفاءة الطاقة وكيف يمكن أ . الطاقة ومصادرها من خالل هيمنة االحتالل

كما تستعرض المحاضرة تحديات التغير المناخي واالتفاقيات الدولية في مجال تخفيض انبعاث الكربون وغازات الدفيئة وتلقي المحاضرة الضوء على . الدوليةقيات وما هو الوضع الفلسطيني في هذا المجال وكيف يمكن االستفادة من االتفااألخرى

دراسات متخصصة بالتغير المناخي في شرق حوض البحر األبيض المتوسط وتإثيراتها المتوقعة للخمسة عقود القادمة وتوافق مخرجات هذه الدراسات مع دراسات تضمنها التقرير الخامس للهيئة الحكومية للتغير المناخي وما هي الخطط المطلوبة

.كيف مع التغيرات المناخية وخاصة ما يتعلق بالطاقةللت

Page 175: The Fifth International Energy Conference - Palestine -

89

بين الهيمنة والفرص: تحديات الطاقة المستقبلية عماد الخطيب.م.د

بكالوريوس هندسة القوى الميكانيكية، ماجستير هندسة الطاقة ،دكتوراه هندسة النمذجة البيئة رئيس جامعة بوليتكنيك فلسطين،

واإلقليم من خالل عرض معلومات عن مصادر الطاقة الهيدروكربونية " فلسطين"تقدم المحاضرة تشخيصا لوضع الطاقة في والقدرة الكهربائية المستخدمة والنمو المتوقع في الطلب على الطاقة ومصادرها التقليدية مع استعراض الستخدامات الطاقة

وتقدم المحاضرة إشكاليات أمن الطاقة في العالم واإلقليم . .طاقة الكلية المستهلكةالمتجددة الحالية ونسبة مشاركتها في الوتستعرض . وتأثيرها على أمن الطاقة الوطني وما هي الخيارات المتاحة لضمان تدفق الطاقة على المستوى الوطني

ن تساهم في تخفيف تأثيرات احتكار المحاضرة خطط العمل الوطنية في مجالي الطاقة المتجددة وكفاءة الطاقة وكيف يمكن أ . الطاقة ومصادرها من خالل هيمنة االحتالل

كما تستعرض المحاضرة تحديات التغير المناخي واالتفاقيات الدولية في مجال تخفيض انبعاث الكربون وغازات الدفيئة وتلقي المحاضرة الضوء على . الدوليةقيات وما هو الوضع الفلسطيني في هذا المجال وكيف يمكن االستفادة من االتفااألخرى

دراسات متخصصة بالتغير المناخي في شرق حوض البحر األبيض المتوسط وتإثيراتها المتوقعة للخمسة عقود القادمة وتوافق مخرجات هذه الدراسات مع دراسات تضمنها التقرير الخامس للهيئة الحكومية للتغير المناخي وما هي الخطط المطلوبة

.كيف مع التغيرات المناخية وخاصة ما يتعلق بالطاقةللت

Page 176: The Fifth International Energy Conference - Palestine -

7 6

فهرس المحتويات

رقم

الصفحة المحاضر عنوان الورقة

عماد الخطيب.م.د بين الهيمنة والفرص: تحديات الطاقة المستقبلية

ناجي الداهودي.م.د واقع الطاقة في قطاع غزة والتحديات المستقبلية

الصرفندىفرج .م استغالل الطاقة المتجددة بمحافظات غزة

عبد هللا عزام.م.د (نظرة إحصائية) الطاقة في فلسطين

منذر عالونة.د العمارة الخضراء والتنمية المستدامة

منير سعد .م تطبيقات جامعة بيرزيت في مجال اإلدارة البيئية

بسمة سعادة.م لألبنية المدرسية الخضراء في الضفة الغربية تقييمية دراسة

إشراق جرار. م (الواقع والمستقبل) منطقة طوباس وتغذيتها بالطاقة الكهروشمسية شبكة كهرباء

عبد هللا حرز هللا.م.د موارد البترول والغاز الطبيعي في فلسطين

لغة المؤتمر اللغة العربية ، اللغة اإلنجليزية

٩

١٠

١١

١٤

١٨

٢٥

٢٩

٣٥

٤٤

Page 177: The Fifth International Energy Conference - Palestine -

7 6

فهرس المحتويات

رقم

الصفحة المحاضر عنوان الورقة

عماد الخطيب.م.د بين الهيمنة والفرص: تحديات الطاقة المستقبلية

ناجي الداهودي.م.د واقع الطاقة في قطاع غزة والتحديات المستقبلية

الصرفندىفرج .م استغالل الطاقة المتجددة بمحافظات غزة

عبد هللا عزام.م.د (نظرة إحصائية) الطاقة في فلسطين

منذر عالونة.د العمارة الخضراء والتنمية المستدامة

منير سعد .م تطبيقات جامعة بيرزيت في مجال اإلدارة البيئية

بسمة سعادة.م لألبنية المدرسية الخضراء في الضفة الغربية تقييمية دراسة

إشراق جرار. م (الواقع والمستقبل) منطقة طوباس وتغذيتها بالطاقة الكهروشمسية شبكة كهرباء

عبد هللا حرز هللا.م.د موارد البترول والغاز الطبيعي في فلسطين

لغة المؤتمر اللغة العربية ، اللغة اإلنجليزية

٩

١٠

١١

١٤

١٨

٢٥

٢٩

٣٥

٤٤

Page 178: The Fifth International Energy Conference - Palestine -

5

1

لجان المؤتمر

اللجنة التحضيرية اللجنة العلمية (رئيس اللجة التحضريية) اسحق سدر. م.د (رئيس اللجنة العلمية) معتصم بعباع. م.د

عيسى جرب. م اسحق سدر. م.د عبداهلل نعريات. م مسري حنا الربوفيسور

معتصم بعباع. م.د حممد القراعني. م.د عماد بريك. م.د أيسر ياسني.م.د مراد زيتاوي. م ماهر مخاش.م.د سامر السعدي. م.د باسم السيد.م.د

الربفيسور مسري حنا مروان حممودالربفيسور حممد القراعني. م.د مهند حج حسني.م.د

علي محودة. م الربفيسور عفيف حسن الربفيسور مروان حممود ناصر امساعيل. م

عامر مرعي.م.د حممد ابو خيزران. م.د مسامرهسفيان .م حسام الدين بو الرب. م.د

امين حسونة. م زهدي سلهب. م.د ناجي الداهودي.م.د اسامة العمري. م.د

مازن أبوعمرو.م.د رائد عمرو. م.د أسعد منر أبو جاسر.م.د سامر السعدي. م.د

سالم الزاغة.م عماد بريك. م.د شفاء أبو سعادة.م.د صفاء ناصر الدين. م.د

تاج الدين مجعة.م.د اسعد ابو جاسر.م.د ايهاب طوطح.م مازن ابو عمرو.م.د حسني ابراهيم حامد.م ناجي الداهودي.م.د

صفاء ناصر الدين .م.د حممد مشتهى.م.د فادي بكريات .م امساعيل عالونة.م عامر كنعان.م.د مأمون ابو ريان.م

طاقم تنسيق المؤتمر مأمون أبو ريان.م عزيز سالمية.م

آالء احلساسنة سعاد منصور. م

Page 179: The Fifth International Energy Conference - Palestine -

42

متهيد

الطاقة الدولي مؤتمرل كافة التحضيراتاللجنة التحضيرية واللجنة العلمية وبدعم من مجلس نقابة المهندسين أنهت

والذي نظمته نقابة المهندسين مطلعفلسطين –الناجحة لمؤتمر الطاقة الدولي الرابع تجربتهاب تعينةالمتخصص مسبهدف توفير ،الطاقة والطاقة المتجددة تفي مجاال همحاور بمحتواه العلمية وتعددويمتاز هذا المؤتمر . 7111عام ال

و اقتصادية ويركز المؤتمر على ايجاد مصادر طاقة بديلة. لياتهفي فعا لمشاركينبين ا مناخ خصب لتبادل األفطاروادارتها وانظمتها وترشيد تكنولوجيا الطاقة مجال فيالمستجدات االطالع على كما يتيح .مستدامة وصديقة للبيئة

إدارة هذا القطاع والعمل على نشر ثقافة ترشيد استهالك الطاقة وتطوير االنظمة والقوانين المستخدمة في . استهالكها . الهام في الحياة الفلسطينية

هذا الكتاب قبل انعقاد المؤتمر ليتسنى للمشاركين االطالع صدارحرصت اللجنة التحضيرية واللجنة العلمية على او

في توجيه و المساهمةمناقشتها خالل جلسات المؤتمر عرضها و التي سيتم و األبحاث على جميع االوراق العلمية .المشاركين الى المحاور ذات االهتمام الخاص بكل منهم

استضافة العديد من المتحدثين الرسميين من داخل الوطن وخارجه الطالع إثراء هذا المؤتمر بمن جهة أخرى فقد تم المشاركين في المهندس الفلسطيني على المستجدات الحديثة في مجال الطاقة وليتسنى تبادل الخبرات والمعرفة بين

أمام يتيح الفرصة ل ،المؤتمر انعقاد على هامشو ذلك ، باالضافة الى تنظيم معرض القدس للتكنولوجيا الطاقة المؤتمر .جديد في مجال الطاقة في فلسطين كل ما هو لشركات الوطنية لعرض ا

أتوجه بالشكر الجزيل لو كافة والمؤلفون الذين تقدمو بأوراقهم القيمة مننجاز هذا الكتاب إمن ساهم في كلأخيرا . الذين بذلو جهدهم الصداره في موعدهنقابة المهندسين طواقم ومنسقي

سدر الدكتور المهندس اسحق رئيس اللجنة التحضيرية

5

1

لجان المؤتمر

اللجنة التحضيرية اللجنة العلمية (رئيس اللجة التحضريية) اسحق سدر. م.د (رئيس اللجنة العلمية) معتصم بعباع. م.د

عيسى جرب. م اسحق سدر. م.د عبداهلل نعريات. م مسري حنا الربوفيسور

معتصم بعباع. م.د حممد القراعني. م.د عماد بريك. م.د أيسر ياسني.م.د مراد زيتاوي. م ماهر مخاش.م.د سامر السعدي. م.د باسم السيد.م.د

الربفيسور مسري حنا مروان حممودالربفيسور حممد القراعني. م.د مهند حج حسني.م.د

علي محودة. م الربفيسور عفيف حسن الربفيسور مروان حممود ناصر امساعيل. م

عامر مرعي.م.د حممد ابو خيزران. م.د مسامرهسفيان .م حسام الدين بو الرب. م.د

امين حسونة. م زهدي سلهب. م.د ناجي الداهودي.م.د اسامة العمري. م.د

مازن أبوعمرو.م.د رائد عمرو. م.د أسعد منر أبو جاسر.م.د سامر السعدي. م.د

سالم الزاغة.م عماد بريك. م.د شفاء أبو سعادة.م.د صفاء ناصر الدين. م.د

تاج الدين مجعة.م.د اسعد ابو جاسر.م.د ايهاب طوطح.م مازن ابو عمرو.م.د حسني ابراهيم حامد.م ناجي الداهودي.م.د

صفاء ناصر الدين .م.د حممد مشتهى.م.د فادي بكريات .م امساعيل عالونة.م عامر كنعان.م.د مأمون ابو ريان.م

طاقم تنسيق المؤتمر مأمون أبو ريان.م عزيز سالمية.م

آالء احلساسنة سعاد منصور. م

Page 180: The Fifth International Energy Conference - Palestine -

3

3

كلمة نقيب املهندسني

زمالئي وزميالتي المهندسين،،،

في ظل النمو المتسارع نقابة المهندسين في فلسطين و الدور الهام المناط بها تجاه أعضائها بما يضمن مساهمة المهندسين بشكل فعال في التنمية والتطوير و وضع لبنة الدولة الفلسطينية المستقلة والقوية وفي ظل التزايد الهائل في أعداد المهندسين بكافة اختصاصاتهم ليصل

في ضوء هذه المعطيات تسعى نقابة المهندسين لتطوير و. مهندس و مهندسة 12211أكثر من 7112المهندسين مع نهاية عام تعداد العمل الهندسي ورفده بكل ما هو جديد من تكنولوجيا هندسية و بما يتماشى مع اإلحتياجات الماسة للمواطن الفلسطيني و خاصة في

.المواطن اليومية كالطاقة والمياه والبيئة غيرها المحاور و القضايا التي تمس حياة

و حرصت نقابة المهندسين و منذ تأسيسها على تطوير العمل الهندسي اإلستشاري كجزء من واجبها الوطني تجاه المجتمع الفلسطيني، و ل العلمية وتشكيل الجمعيات العلمية رفع قدرات المهندسين سواء من خالل حزم البرامج التدريبية أو عبر تنظيم المؤتمرات و ورش العم .المتخصصة، بما يضمن توفير بيئة علمية هندسية متطورة وتتماشى مع جديد علوم الهندسة في العالم

وضع العديد من القضايا أن نقابة المهندسين و من خالل تنظيم العديد من المؤتمرات الدولية، تسعى وبشكل جاد الى ،و مما ال شك فيه

المواطن، وكان من أبرز هذه كاهلالمحورية والهام على طاولة النقاش بهدف المساعدة قدر اإلمكان في التخفيف من األعباء الواقعة على الهندسة بحضور محلي وعربي ودولي واسع، وكذلك تنظيم مؤتمر 7111المؤتمرات الدولية تنظيم مؤتمر الطاقة الدولي الرابع في عام

، حيث استضافة هذه المؤتمرات الدولية متحدثين وخبراء دوليين و محليين لمناقشة المحاور المختلفة في هذه 7113المدنية األول في عام .القطاعات ذات الحاجة الماسة لتدارسها وتنمية قدرات المهندسين العاملين فيها

فلسطيني لإللتقاء بخبراء دوليين في عدة مجاالت باإلضافة الى إيجاد فرصة كما و أتاحت هذه التظاهرات العلمية فرصة للمهندس ال

. للمهندسين والشركات الفلسطينية العاملة في هذه القطاعات للترويج لخبراتهم المتميزة فيها

الطاقة على سلم األولويات وفي إطار الحاجة الماسة إلبقاء ملف 7111وامتدادا للنجاح الذي القاه مؤتمر الطاقة الدولي الرابع في عام نظرا لما يعانيه المجتمع الفلسطيني من تحديات و مشاكل تواجهه في ظل هيمنة اإلحتالل اإلسرائيلي على مصادر الطاقة والقيود التي

" لدولي الخامسمؤتمر الطاقة ا" يفرضها على المواطن الفلسطيني وإرتفاع قيمة فاتورة الطاقة وتكلفتها، قررت نقابة المهندسين تنظيم .7112في السابع والعشرين والثامن والعشرين من كانون الثاني

ويستعرض هذا المؤتمر إثنان وثالثون بحثا و ورقة علمية في مجاالت الطاقة المختلفة كما ويستضيف أربعة متحدثين دوليين ومحليين

.وعربي و دولي متميزفي مجاالت الطاقة بهدف الوصول إلى أعلى قدر من الفائدة بحضور محلي

كما و تنظم نقابة المهندسين على هامش هذا المؤتمر معرضا خاصا بالشركات الوطنية العاملة في مجاالت الطاقة و الطاقة المتجددة بهدف عرض تجاربها و نجاحاتها في مجاالت عملها، وال ننسى تجارب طلبة كليات الهندسة في الجامعات الفلسطينية و دور نقابة المهندسين في الترويج لها من خالل عرض مشاريع التخرج المميزة في اختصاصات الطاقة ضمن زارة خاصة بها بمشاركة عدة

.جامعات فلسطينية

و نتمنى لهذا الحدث الدولي النجاح و التميز و تحقيق أهدافه العلمية والوطنية و اإلقتصادية، و كلنا امل أن يتمخض عن هذا المؤتمر من التوصيات الهامة والبناءة في تنظيم وتطوير قطاع الطاقة في فلسطين، بما ينعكس على حياة المواطن الفلسطيني و ضمان حقة العديد

.في حياة كريمة

املهندس أحمد عدييل نقيب املهندسني

Page 181: The Fifth International Energy Conference - Palestine -

2

7

مقدمة

الهندسة علوم بجديد الفلسطينيين المهندسين ورفد الهندسي العمل تطوير في دورها من انطالقا .عنوان تحت الطاقة في فلسطين حول دولي مؤتمر المهندسين تنظيم نقابة قرر مجلس ،

". فلسطين -الخامس الطاقة الدولي مؤتمر " جودة ي ويهدف لفتح آفاق عمل متطور وذ. دوليا في فلسطين في هذا المجال ثانيويعتبر هذا المؤتمر ال، وتأكيدا على اهداف مجلس النقابة في تطوير البحث العلمي وتشجيع مجال الطاقةعالية ومستدامة في

.مجاالت االبتكار واالستثمار

الجهة المنظمة فلسطين –المهندسين نقابة

7

مقدمة

الهندسة علوم بجديد الفلسطينيين المهندسين ورفد الهندسي العمل تطوير في دورها من انطالقا .عنوان تحت الطاقة في فلسطين حول دولي مؤتمر المهندسين تنظيم نقابة قرر مجلس ،

". فلسطين -الخامس الطاقة الدولي مؤتمر " جودة ي ويهدف لفتح آفاق عمل متطور وذ. دوليا في فلسطين في هذا المجال ثانيويعتبر هذا المؤتمر ال، وتأكيدا على اهداف مجلس النقابة في تطوير البحث العلمي وتشجيع مجال الطاقةعالية ومستدامة في

.مجاالت االبتكار واالستثمار

الجهة المنظمة فلسطين –المهندسين نقابة

3

3

كلمة نقيب املهندسني

زمالئي وزميالتي المهندسين،،،

في ظل النمو المتسارع نقابة المهندسين في فلسطين و الدور الهام المناط بها تجاه أعضائها بما يضمن مساهمة المهندسين بشكل فعال في التنمية والتطوير و وضع لبنة الدولة الفلسطينية المستقلة والقوية وفي ظل التزايد الهائل في أعداد المهندسين بكافة اختصاصاتهم ليصل

في ضوء هذه المعطيات تسعى نقابة المهندسين لتطوير و. مهندس و مهندسة 12211أكثر من 7112المهندسين مع نهاية عام تعداد العمل الهندسي ورفده بكل ما هو جديد من تكنولوجيا هندسية و بما يتماشى مع اإلحتياجات الماسة للمواطن الفلسطيني و خاصة في

.المواطن اليومية كالطاقة والمياه والبيئة غيرها المحاور و القضايا التي تمس حياة

و حرصت نقابة المهندسين و منذ تأسيسها على تطوير العمل الهندسي اإلستشاري كجزء من واجبها الوطني تجاه المجتمع الفلسطيني، و ل العلمية وتشكيل الجمعيات العلمية رفع قدرات المهندسين سواء من خالل حزم البرامج التدريبية أو عبر تنظيم المؤتمرات و ورش العم .المتخصصة، بما يضمن توفير بيئة علمية هندسية متطورة وتتماشى مع جديد علوم الهندسة في العالم

وضع العديد من القضايا أن نقابة المهندسين و من خالل تنظيم العديد من المؤتمرات الدولية، تسعى وبشكل جاد الى ،و مما ال شك فيه

المواطن، وكان من أبرز هذه كاهلالمحورية والهام على طاولة النقاش بهدف المساعدة قدر اإلمكان في التخفيف من األعباء الواقعة على الهندسة بحضور محلي وعربي ودولي واسع، وكذلك تنظيم مؤتمر 7111المؤتمرات الدولية تنظيم مؤتمر الطاقة الدولي الرابع في عام

، حيث استضافة هذه المؤتمرات الدولية متحدثين وخبراء دوليين و محليين لمناقشة المحاور المختلفة في هذه 7113المدنية األول في عام .القطاعات ذات الحاجة الماسة لتدارسها وتنمية قدرات المهندسين العاملين فيها

فلسطيني لإللتقاء بخبراء دوليين في عدة مجاالت باإلضافة الى إيجاد فرصة كما و أتاحت هذه التظاهرات العلمية فرصة للمهندس ال

. للمهندسين والشركات الفلسطينية العاملة في هذه القطاعات للترويج لخبراتهم المتميزة فيها

الطاقة على سلم األولويات وفي إطار الحاجة الماسة إلبقاء ملف 7111وامتدادا للنجاح الذي القاه مؤتمر الطاقة الدولي الرابع في عام نظرا لما يعانيه المجتمع الفلسطيني من تحديات و مشاكل تواجهه في ظل هيمنة اإلحتالل اإلسرائيلي على مصادر الطاقة والقيود التي

" لدولي الخامسمؤتمر الطاقة ا" يفرضها على المواطن الفلسطيني وإرتفاع قيمة فاتورة الطاقة وتكلفتها، قررت نقابة المهندسين تنظيم .7112في السابع والعشرين والثامن والعشرين من كانون الثاني

ويستعرض هذا المؤتمر إثنان وثالثون بحثا و ورقة علمية في مجاالت الطاقة المختلفة كما ويستضيف أربعة متحدثين دوليين ومحليين

.وعربي و دولي متميزفي مجاالت الطاقة بهدف الوصول إلى أعلى قدر من الفائدة بحضور محلي

كما و تنظم نقابة المهندسين على هامش هذا المؤتمر معرضا خاصا بالشركات الوطنية العاملة في مجاالت الطاقة و الطاقة المتجددة بهدف عرض تجاربها و نجاحاتها في مجاالت عملها، وال ننسى تجارب طلبة كليات الهندسة في الجامعات الفلسطينية و دور نقابة المهندسين في الترويج لها من خالل عرض مشاريع التخرج المميزة في اختصاصات الطاقة ضمن زارة خاصة بها بمشاركة عدة

.جامعات فلسطينية

و نتمنى لهذا الحدث الدولي النجاح و التميز و تحقيق أهدافه العلمية والوطنية و اإلقتصادية، و كلنا امل أن يتمخض عن هذا المؤتمر من التوصيات الهامة والبناءة في تنظيم وتطوير قطاع الطاقة في فلسطين، بما ينعكس على حياة المواطن الفلسطيني و ضمان حقة العديد

.في حياة كريمة

املهندس أحمد عدييل نقيب املهندسني

Page 182: The Fifth International Energy Conference - Palestine -

1

1

إصدار فلسطين – الطاقة الدولي الخامسمؤتمر

7112ثاني الكانون 72-72

البيرة، فلسطين مبنى الهالل األحمر الفلسطيني،

بتنظيم من نقابة المهندسين

الراعي الرسمي

الراعي االعالمي

راعي وثيقة التأمين

1

إصدار فلسطين – الطاقة الدولي الخامسمؤتمر

7112ثاني الكانون 72-72

البيرة، فلسطين مبنى الهالل األحمر الفلسطيني،

بتنظيم من نقابة المهندسين

الراعي الرسمي

الراعي االعالمي

راعي وثيقة التأمين

1

إصدار فلسطين – الطاقة الدولي الخامسمؤتمر

7112ثاني الكانون 72-72

البيرة، فلسطين مبنى الهالل األحمر الفلسطيني،

بتنظيم من نقابة المهندسين

الراعي الرسمي

الراعي االعالمي

راعي وثيقة التأمين

1

إصدار فلسطين – الطاقة الدولي الخامسمؤتمر

7112ثاني الكانون 72-72

البيرة، فلسطين مبنى الهالل األحمر الفلسطيني،

بتنظيم من نقابة المهندسين

الراعي الرسمي

الراعي االعالمي

راعي وثيقة التأمين

1

إصدار فلسطين – الطاقة الدولي الخامسمؤتمر

7112ثاني الكانون 72-72

البيرة، فلسطين مبنى الهالل األحمر الفلسطيني،

بتنظيم من نقابة المهندسين

الراعي الرسمي

الراعي االعالمي

راعي وثيقة التأمين

7

مقدمة

الهندسة علوم بجديد الفلسطينيين المهندسين ورفد الهندسي العمل تطوير في دورها من انطالقا .عنوان تحت الطاقة في فلسطين حول دولي مؤتمر المهندسين تنظيم نقابة قرر مجلس ،

". فلسطين -الخامس الطاقة الدولي مؤتمر " جودة ي ويهدف لفتح آفاق عمل متطور وذ. دوليا في فلسطين في هذا المجال ثانيويعتبر هذا المؤتمر ال، وتأكيدا على اهداف مجلس النقابة في تطوير البحث العلمي وتشجيع مجال الطاقةعالية ومستدامة في

.مجاالت االبتكار واالستثمار

الجهة المنظمة فلسطين –المهندسين نقابة

Page 183: The Fifth International Energy Conference - Palestine -

1

1

إصدار فلسطين – الطاقة الدولي الخامسمؤتمر

7112ثاني الكانون 72-72

البيرة، فلسطين مبنى الهالل األحمر الفلسطيني،

بتنظيم من نقابة المهندسين

الراعي الرسمي

الراعي االعالمي

راعي وثيقة التأمين

1

إصدار فلسطين – الطاقة الدولي الخامسمؤتمر

7112ثاني الكانون 72-72

البيرة، فلسطين مبنى الهالل األحمر الفلسطيني،

بتنظيم من نقابة المهندسين

الراعي الرسمي

الراعي االعالمي

راعي وثيقة التأمين

1

إصدار فلسطين – الطاقة الدولي الخامسمؤتمر

7112ثاني الكانون 72-72

البيرة، فلسطين مبنى الهالل األحمر الفلسطيني،

بتنظيم من نقابة المهندسين

الراعي الرسمي

الراعي االعالمي

راعي وثيقة التأمين

1

إصدار فلسطين – الطاقة الدولي الخامسمؤتمر

7112ثاني الكانون 72-72

البيرة، فلسطين مبنى الهالل األحمر الفلسطيني،

بتنظيم من نقابة المهندسين

الراعي الرسمي

الراعي االعالمي

راعي وثيقة التأمين

1

إصدار فلسطين – الطاقة الدولي الخامسمؤتمر

7112ثاني الكانون 72-72

البيرة، فلسطين مبنى الهالل األحمر الفلسطيني،

بتنظيم من نقابة المهندسين

الراعي الرسمي

الراعي االعالمي

راعي وثيقة التأمين

7

مقدمة

الهندسة علوم بجديد الفلسطينيين المهندسين ورفد الهندسي العمل تطوير في دورها من انطالقا .عنوان تحت الطاقة في فلسطين حول دولي مؤتمر المهندسين تنظيم نقابة قرر مجلس ،

". فلسطين -الخامس الطاقة الدولي مؤتمر " جودة ي ويهدف لفتح آفاق عمل متطور وذ. دوليا في فلسطين في هذا المجال ثانيويعتبر هذا المؤتمر ال، وتأكيدا على اهداف مجلس النقابة في تطوير البحث العلمي وتشجيع مجال الطاقةعالية ومستدامة في

.مجاالت االبتكار واالستثمار

الجهة المنظمة فلسطين –المهندسين نقابة

Page 184: The Fifth International Energy Conference - Palestine -

/28-27

إصدارمؤتمر الطاقة الدولي الخامس - فلسطين

٢٧-٢٨/كانون الثاني ٢٠١٥

بتنظيم من نقابة المهندسين

راعي وثيقة التأمين الراعي ا�عالمي

الراعي الرسميبدعم من

IECP 2015

PRCS Building

27 -28 January A l b i r e h , P a l e s t i n e

Proceeding of

The Fifth International Energy Conference - Palestine

27-28 January 2015

Organized by Palestine Engineers Association

Official Sponsor

Media SponsorsInsurance policy

sponsor

Supported BY

The

Fift

h In

tern

atio

nal E

nerg

y C

onf

eren

ce -

Pal

estine

ينسط

فلس-

املخ

ي اول

لدة ا

اقلط

مر اؤت

م