the geoinformation technology of active monitoring … · 2019-02-21 · alekseev a. s., glinskii...

13

Upload: others

Post on 06-Jul-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: THE GEOINFORMATION TECHNOLOGY OF ACTIVE MONITORING … · 2019-02-21 · Alekseev A. S., Glinskii B. M., Koalevskyv V. V., Smagin S. I., atianoFv A. G. et al. Methods for direct and

Problems of Informatics. 2018. � 4

THE GEOINFORMATION TECHNOLOGY OF ACTIVEMONITORING IN THE STUDY INTERACTION OF

GEOPHYSICAL FIELDS

M.S. Khairetdinov, V.V. Kovalevsky, G.M. Voskoboinikova, G. F. Sedukhina

Institute of Computational Mathematics and Mathematical Geophysics SB RAS,630090, Novosibirsk, Russia

*Novosibirsk State Technical University,630092, Novosibirsk, Russia

The problem of predicting the geoecological e�ect of various technogenic explosions, namely, short-delay quarry blasts, test site ones, falling rocket stages etc., on the natural environment and socialinfrastructure is of primary importance. Mass explosions that have been made recently for the purposeof eliminating the utilizable ammunition stock are a serious hazard. Powerful natural explosions include,�rst of all, eruptions of magmatic and mud volcanoes and falls of celestial bodies. It is well-known thatthe major geoecological e�ects of explosions are due to the formation of air-shock and undergroundseismic waves, formation and propagation of dust clouds and electric pulses. Investigation of the seismicand acoustic e�ects of mass explosions damaging industrial and residential objects and the shock actionon bio-objects is of greatest interest. Such e�ects were considered earlier. Nevertheless, it should benoted that the dependence of these e�ects on external factors, such as the wind direction and velocity,temperature inversion, atmospheric turbulence, and the surrounding area relief and landscape, has beenpoorly studied. This is all the more important since the in�uence of such factors can greatly enhancethe destructive ecological action of explosions on the environment. It is proved that meteo-dependentprocesses of propagation of infrasound from explosions in the atmosphere can enhance many times theecological loading on the social and natural environments.

Taking into account the above factors,it is necessary to predict the geoecological risk of powerfulexplosions, which calls for additional investigations of the physical e�ects of propagation of seismicand acoustic waves from mass explosions. The objective of this paper is to present a methodologicalapproach to carrying out such investigations and obtaining experimental and numerical results. Theapproach being proposed is based on seismic vibrators as sources imitating explosions, but having, incontrast to them, a much smaller power. In this case, as compared to explosions, ecological cleannessand repeatability of experiments are achieved. This is due to a high-precision power and frequency-temporal characteristics of vibrational sources. The approach proposed to prediction with seismicvibrators was used because of the ability of vibrators to simultaneously generate both seismic andacoustic oscillations. This was proved earlier both theoretically and in numerous experiments for thisclass of sources.The use of the approach of active monitoring of the natural environment makes itpossible to achieve ecological purity, high repeatability and precision accuracy of the measurementparameters being estimated.

As an integral characteristic in studying the destructive properties of infrasound from explosionsfor the environment, we take the speci�c acoustic energy density. Admissible acoustic e�ects on objectsof social infrastructure are determined by the speci�c energy density values.

The determining factor for acoustic energy density values is the wave pressure. The acoustic pressureis a function of many parameters determined by the radiation conditions and the propagation of acousticoscillations.The multi-factor model of integral pressure can be described by the energy balance equation,

© M.S. Khairetdinov, V.V. Kovalevsky, G.M. Voskoboinikova, G. F. Sedukhina, 2018

Page 2: THE GEOINFORMATION TECHNOLOGY OF ACTIVE MONITORING … · 2019-02-21 · Alekseev A. S., Glinskii B. M., Koalevskyv V. V., Smagin S. I., atianoFv A. G. et al. Methods for direct and

2 Ïðèêëàäíûå èíôîðìàöèîííûå òåõíîëîãèè

which includes: the pressure at the recording point at distance r from the source; the frequency-dependent acoustic pressure of the vibrator;the absorption of infrasound depending on the distancedetermined by the inhomogeneity of the atmosphere and the state of the Earth's daily surface; thepressure at the recording point as a function of meteorological parameters: the pressure resulting fromthe spherical divergence of the wavefront. In general case obtaining of estimates of integral pressurein analytical form is di�cult, since there are no full a priori data about the meteorological conditionsalong the long propagation path of acoustic oscillations. There are also factors due to the peculiaritiesof absorption of the energy of acoustic oscillations caused by the presence of forested areas, snowcover, and geological irregularities of the Earth's daily surface (hills, mountains, etc.) along the longpropagation path of acoustic oscillations.

One way to avoid prior uncertainty is obtaining the estimates of integral pressurein experimentswith seismic vibrators as emitters of infralow-frequency acoustic oscillations. The both (analytical andexperimental) variants are considered in the present paper. The results of the works are illustrated bydata of numerous experiments and numerical calculations.

Key words: geoinformation technology, acousto-seismo-meteo �elds, interaction, seismicvibrators, technogenic and natural explosions, geoecological risk, prediction.

References

1. Adushkin V. V., The main in�uencing factors of open cast mining on the environment //Gornyzhurnal. 1996. N 4. P. 49�55.

2. Adushkin V. V., Spivak A. A., Solov'yov S. P. Geoecological consequences of mass chemicalexplosions in quarries // Geoekologiya. Inzhenernaya geologiya. Gidrogeologiya. Geokriologiya. 2000.N 6. P. 554�563.

3. Khairetdinov M. S., Avrorov S. A. Detection and recognition of explosion sources // VestnikNYATS RK (NNC RK Bulletin). June 2012. I. 2. P. 17�24.

4. Modern and Holocene volcanism in Russia. Ed. By Laverov N. P. Moscow: Nauka, 2005.5. Alekseev A. S., Glinskii B. M., Kovalevskii V. V., Khairetdinov M. S. et al. Active seismology

with powerful vibrational sources / man. ed. G.M. Tsibulchik. Novosibirsk: ICM&MG SB RAS,”Geo“

Br. of the SB RAS Publ. House, 2004.6. Alekseev A. S., Glinskii B. M., Dryakhlov S. I., Kovalevskii V. V., Mikhailenko B. G., Pushnoi

B. M., Fatianov A. G., Khairetdinov M. S., Shorokhov M. N. The e�ect of acoustoseismic inductionat vibroseismic sounding // Dokl. Akad. Nauk. 1996. V. 346. N 5. P. 664�667.

7. Zaslavskii Yu. M. Radiation of seismic waves by vibrational sources. Institute of Applied PhysicsRAS, Nizhny Novgorod, 2007.

8. Alekseev A. S., Glinskii B. M., Kovalevsky V. V., Smagin S. I., Fatianov A. G. et al. Methodsfor direct and inverse problem of seismology, electromagnetism and experimental investigations inproblems of studying geodynamic processes in the Earth's crust and upper mantle / Editors-in-Chief:Academician Mihajlenko B. G., academician Epov M. I., 2010.

9. Glinskii B. M., Kovalevsky V. V., Khairetdinov M. S. Relationship of wave �elds from powerfulvibrators with atmospheric and geodynamic processes // Russian Geology and Geophysics. N 40 (3).P. 422�431.

10. Gulyev V. T., Kuznetsov V. V., Plotkin V. V., Khomutov S. Yu. Infrasound generation andpropagation in the atmospheric during operation of high-power seismic vibrators // Izv. Akad. NaukSSSR. Physics of Atmosphere and Ocean. 2001. V. 37. N 3. P. 303�312.

11. Brekhovskikh L. M. Waves in layered media. Ìoscow, Nauka, 1973.12. Razin A. V. On Propagation of sound in an inhomogeneous moving atmosphere // Izv. Akad.

nauk SSSR. Physics of Atmosphere and Ocean. 1982. V. 18. N 6. P. 674�676.

Page 3: THE GEOINFORMATION TECHNOLOGY OF ACTIVE MONITORING … · 2019-02-21 · Alekseev A. S., Glinskii B. M., Koalevskyv V. V., Smagin S. I., atianoFv A. G. et al. Methods for direct and

Ì.Ñ. Õàéðåòäèíîâ, Â. Â. Êîâàëåâñêèé, Ã.Ì. Âîñêîáîéíèêîâà, Ã.Ô. Ñåäóõèíà 3

13. Gubarev V. V., Kovalevskii V. V., Khairetdinov M. S., Avrorov S. A., Voskoboinikova G. M.,Sedukhina G. F., and Yakimenko A. A. Prediction of Environmental Risks from Explosions Based ona Set of Coupled Geophysical Fields // Optoelectronics, Instrumentation and Data Processing. 2014.Vol. 50. N 4. P. 3�13.

14. Khairetdinov M. S., Kovalevsky V. V., Voskoboynikova G. M., Sedukhina G. F. Estimationof meteodependent geoecological risks from explosions by means of seismic vibrators // Seismictechnologies. 2016. N 3. P. 132�138.

15. Isakovich M. A. General Acoustics. Moscow: Nauka, 1973.

Page 4: THE GEOINFORMATION TECHNOLOGY OF ACTIVE MONITORING … · 2019-02-21 · Alekseev A. S., Glinskii B. M., Koalevskyv V. V., Smagin S. I., atianoFv A. G. et al. Methods for direct and

Ïðîáëåìû èíôîðìàòèêè. 2018. � 4

ÂÈÁÐÀÖÈÎÍÍÀß ÒÅÕÍÎËÎÃÈß ÀÊÒÈÂÍÎÃÎÌÎÍÈÒÎÐÈÍÃÀ  ÈÇÓ×ÅÍÈÈ ÂÇÀÈÌÎÄÅÉÑÒÂÈß

ÃÅÎÔÈÇÈ×ÅÑÊÈÕ ÏÎËÅÉ

Ì.Ñ. Õàéðåòäèíîâ, Â.Â. Êîâàëåâñêèé, Ã.Ì. Âîñêîáîéíèêîâà, Ã.Ô. Ñåäóõèíà

Èíñòèòóò âû÷èñëèòåëüíîé ìàòåìàòèêè è ìàòåìàòè÷åñêîé ãåîôèçèêè ÑÎ ÐÀÍ630090, Íîâîñèáèðñê, Ðîññèÿ

*Íîâîñèáèðñêèé ãîñóäàðñòâåííûé òåõíè÷åñêèé óíèâåðñèòåò630092, Íîâîñèáèðñê, Ðîññèÿ

ÓÄÊ 534:621.382

Ðàññìàòðèâàåòñÿ ïðîáëåìà èçó÷åíèÿ âçàèìîäåéñòâèÿ ãåîôèçè÷åñêèõ ïîëåé ðàçíîé ïðèðîäûíà îñíîâå ïðåäëîæåííîãî àâòîðàìè âèáðî-ñåéñìî-àêóñòè÷åñêîãî ìåòîäà çîíäèðîâàíèÿ ïðèðîä-íîé ñðåäû. Îáîñíîâûâàåòñÿ ïðèìåíèìîñòü ïîäõîäà äëÿ ïðåäñêàçàíèÿ ãåîýêîëîãè÷åñêèõ ðèñ-êîâ, ïîðîæäàåìûõ òåõíîãåííûìè è ïðèðîäíûìè âçðûâàìè.  êà÷åñòâå îñíîâíûõ èñòî÷íèêîâçîíäèðîâàíèÿ ïðè ýòîì èñïîëüçóþòñÿ ìàëîìîùíûå â ñðàâíåíèè ñ ìîùíûìè âçðûâàìè ñåé-ñìè÷åñêèå âèáðàòîðû, ÷òî îïðåäåëÿåò èõ âûñîêóþ ýêîëîãè÷íîñòü â ðåøåíèè çàäà÷ àêòèâíîãîìîíèòîðèíãà ïðèðîäíîé è òåõíîãåííîé ñðåäû. Ïðèâîäÿòñÿ ðåçóëüòàòû èññëåäîâàíèé ïî èçó-÷åíèþ âçàèìîäåéñòâèÿ ñåéñìè÷åñêèõ, àêóñòè÷åñêèõ è ìåòåî ïîëåé ñ ïðèëîæåíèåì ê ðåøåíèþçàäà÷è îöåíèâàíèÿ ãåîýêîëîãè÷åñêèõ ðèñêîâ äëÿ ñîöèàëüíîé ñðåäû. Ðåçóëüòàòû èññëåäîâàíèéîáîñíîâûâàþòñÿ òåîðåòè÷åñêè è ýêñïåðèìåíòàëüíî.

Êëþ÷åâûå ñëîâà: àêóñòî-ñåéñìè÷åñêèå ïîëÿ, ìåòåîïîëÿ, ãåîèíôîðìàöèîííàÿ òåõíîëîãèÿ,ôóíäàìåíòàëüíûå âçàèìîäåéñòâèÿ, ñåéñìè÷åñêèå âèáðàòîðû, òåõíîãåííûå è ïðèðîäíûå âçðû-âû, ãåîýêîëîãè÷åñêèå ðèñêè, ïðîãíîçèðîâàíèå, ýêñïåðèìåíòàëüíûå èññëåäîâàíèÿ.

Ââåäåíèå. Ìíîãèå ïðèðîäíûå è òåõíîãåííûå ïðîöåññû ñåéñìè÷åñêîé ïðèðîäû ñîïðî-âîæäàþòñÿ îáðàçîâàíèåì ñîïðÿæåííûõ ïðîöåññîâ â àòìîñôåðå.  ïåðâóþ î÷åðåäü ýòîêàñàåòñÿ îáðàçîâàíèÿ àêóñòè÷åñêèõ ïîëåé.  êà÷åñòâå ïðèìåðà íà ðèñ. 1 ïðîöåññ àêóñ-òè÷åñêîãî âîçìóùåíèÿ àòìîñôåðû èëëþñòðèðóåòñÿ ïî îòíîøåíèþ ê òðåì ðàçíûì èñòî÷-íèêàì � òåõíîãåííîìó çåìëåòðÿñåíèþ (ýïèöåíòð � óãîëüíûé ðàçðåç

”Áà÷àòñêèé“, äàòà

19.06.2013, ìàãíèòóäà 5.3�5.6), ñåéñìîâèáðàòîðó ÖÂ-40, ïîëèãîííûì âçðûâàì ìàëîé ìîù-íîñòè. Ïðèâåäåííûå çàïèñè îòðàæàþò ïðîöåññ îáðàçîâàíèÿ àêóñòè÷åñêèõ âîëí, ñîïðîâîæ-äàþùèõ ïðîöåññû èçëó÷åíèÿ ñåéñìè÷åñêèõ âîëí. Ïðè ýòîì óðîâíè àêóñòè÷åñêèõ âîëí âîòäåëüíûõ ñëó÷àÿõ ñîïîñòàâèìû, à èíîãäà âûøå óðîâíåé ñåéñìè÷åñêèõ.  ïåðâóþ î÷å-ðåäü ýòî îòíîñèòñÿ ê ïîâåðõíîñòíûì âçðûâíûì èñòî÷íèêàì (ðèñ. 1, ñ). Ýòî îïðåäåëÿåòíåîáõîäèìîñòü ó÷åòà àêóñòè÷åñêèõ âîëí íàðÿäó ñ ñåéñìè÷åñêèìè â çàäà÷àõ àêòèâíîãî ãåî-ôèçè÷åñêîãî ìîíèòîðèíãà îêðóæàþùåé ñðåäû. Ñ òî÷êè çðåíèÿ òðåáîâàíèÿ ýêîëîãè÷åñêîé÷èñòîòû ïðîöåññà ìîíèòîðèíãà â êà÷åñòâå èñòî÷íèêîâ äëÿ ýòèõ öåëåé íàèáîëåå ïîäõîäÿùè-ìè ÿâëÿþòñÿ íèçêî÷àñòîòíûå ñåéñìè÷åñêèå âèáðàòîðû, êîòîðûå èçíà÷àëüíî áûëè ñîçäàíûäëÿ ãëóáèííîãî âèáðàöèîííîãî çîíäèðîâàíèÿ Çåìëè (ÂÏÇ). Ó èñòîêîâ ñòàíîâëåíèÿ è ðàç-âèòèÿ ðàáîò ïî ýòîé ïðîáëåìå ñòîÿëè À. Ñ. Àëåêñååâ, À. Â. Íèêîëàåâ, È. Ñ. ×è÷èíèí [1�4].

Ðàáîòà âûïîëíåíà ïðè ïîääåðæêå ãðàíòîâ ÐÔÔÈ � 16-07-01052 à, 17-07-00872à, 18-47-540006 ð_à

© Ì.Ñ. Õàéðåòäèíîâ, Â.Â. Êîâàëåâñêèé, Ã.Ì. Âîñêîáîéíèêîâà, Ã.Ô. Ñåäóõèíà, 2018

Page 5: THE GEOINFORMATION TECHNOLOGY OF ACTIVE MONITORING … · 2019-02-21 · Alekseev A. S., Glinskii B. M., Koalevskyv V. V., Smagin S. I., atianoFv A. G. et al. Methods for direct and

Ì.Ñ. Õàéðåòäèíîâ, Â. Â. Êîâàëåâñêèé, Ã.Ì. Âîñêîáîéíèêîâà, Ã.Ô. Ñåäóõèíà 52 

[Введите текст] 

Сейсмические Акустические волны волны 

Сейсмические Акустические волны волны 

Сейсмические Акустические волны волны 

а) запись землетрясения на удалении 205 км (эпицентр – Старо-Бачаты 19.06.2013)

б) запись сейсмических и акустических колебаний вибратора ЦВ-40 на удалении 50 км

с) запись тестового поверхностного взрыва массой заряда 200 г на удалении 956 м

Рис. 1. Записи сейсмических и акустических волн от разного класса источников

волн наряду с сейсмическими в задачах активного геофизического мониторинга окружающей среды. С

точки зрения требования экологической чистоты процесса мониторинга в качестве источников для этих

целей наиболее подходящими являются низкочастотные сейсмические вибраторы, которые изначально

были созданы для глубинного вибрационного зондирования Земли (ВПЗ). У истоков становления и

развития работ по этой проблеме стояли А. С. Алексеев, А. В. Николаев, И. С. Чичинин [1–4]. В

развитие работ теоретически и экспериментально показано, что сейсмические вибраторы наряду с

излучением сейсмических волн одновременно излучают акустические волны инфразвуковых частот [5,

6], что определяет их уникальность в качестве источников активного акустического зондирования

воздушной среды. В таком качестве они не имеют аналогов в мире. Указанное свойство источников

позволяет проводить исследования по решению ряда экологических задач, связанных с воздействием

акустических колебаний, в частности, инфразвука на социальную инфраструктуру и человека. При этом

подразумеваются геоэкологические риски как один из факторов воздействия. Выбор сейсмических

вибраторов в качестве инструментария акустического зондирования атмосферы определяет

необходимость изучения параметров процесса дальнего распространения акустических волн, а также

образующихся при этом метеозависимых физических явлений. К числу последних относится явление

пространственной фокусировки акустических волн. В связи с этим в работе приводятся результаты

исследований по этим направлениям.

Ðèñ. 1. Çàïèñè ñåéñìè÷åñêèõ è àêóñòè÷åñêèõ âîëí îò ðàçíîãî êëàññà èñòî÷íèêîâ

 ðàçâèòèå ðàáîò òåîðåòè÷åñêè è ýêñïåðèìåíòàëüíî ïîêàçàíî, ÷òî ñåéñìè÷åñêèå âèáðàòî-ðû íàðÿäó ñ èçëó÷åíèåì ñåéñìè÷åñêèõ âîëí îäíîâðåìåííî èçëó÷àþò àêóñòè÷åñêèå âîëíûèíôðàçâóêîâûõ ÷àñòîò [5, 6], ÷òî îïðåäåëÿåò èõ óíèêàëüíîñòü â êà÷åñòâå èñòî÷íèêîâ àê-òèâíîãî àêóñòè÷åñêîãî çîíäèðîâàíèÿ âîçäóøíîé ñðåäû.  òàêîì êà÷åñòâå îíè íå èìåþòàíàëîãîâ â ìèðå. Óêàçàííîå ñâîéñòâî èñòî÷íèêîâ ïîçâîëÿåò ïðîâîäèòü èññëåäîâàíèÿ ïîðåøåíèþ ðÿäà ýêîëîãè÷åñêèõ çàäà÷, ñâÿçàííûõ ñ âîçäåéñòâèåì àêóñòè÷åñêèõ êîëåáàíèé, â÷àñòíîñòè, èíôðàçâóêà íà ñîöèàëüíóþ èíôðàñòðóêòóðó è ÷åëîâåêà. Ïðè ýòîì ïîäðàçóìå-âàþòñÿ ãåîýêîëîãè÷åñêèå ðèñêè êàê îäèí èç ôàêòîðîâ âîçäåéñòâèÿ. Âûáîð ñåéñìè÷åñêèõâèáðàòîðîâ â êà÷åñòâå èíñòðóìåíòàðèÿ àêóñòè÷åñêîãî çîíäèðîâàíèÿ àòìîñôåðû îïðåäåëÿ-åò íåîáõîäèìîñòü èçó÷åíèÿ ïàðàìåòðîâ ïðîöåññà äàëüíåãî ðàñïðîñòðàíåíèÿ àêóñòè÷åñêèõâîëí, à òàêæå îáðàçóþùèõñÿ ïðè ýòîì ìåòåîçàâèñèìûõ ôèçè÷åñêèõ ÿâëåíèé. Ê ÷èñëó ïî-ñëåäíèõ îòíîñèòñÿ ÿâëåíèå ïðîñòðàíñòâåííîé ôîêóñèðîâêè àêóñòè÷åñêèõ âîëí.  ñâÿçè ñýòèì â ðàáîòå ïðèâîäÿòñÿ ðåçóëüòàòû èññëåäîâàíèé ïî ýòèì íàïðàâëåíèÿì.

1. Ãåíåðàöèÿ è ðàñïðîñòðàíåíèå àêóñòè÷åñêèõ âîëí îò ñåéñìè÷åñêîãî âèáðà-

òîðà. Ïîëíàÿ ìîùíîñòü èíôðàçâóêîâîãî èçëó÷åíèÿ àêóñòè÷åñêèõ êîëåáàíèé âèáðàòîðà âàòìîñôåðó W a îðèåíòèðîâî÷íî ìîæåò áûòü îöåíåíà äëÿ ñëó÷àÿ, êîãäà ñêîðîñòü àêóñòè÷å-ñêîé âîëíû ca ðàâíà ñêîðîñòè ïîïåðå÷íîé ñåéñìè÷åñêîé âîëíû vs, ò. å. ca = vs, à ñêîðîñòüïðîäîëüíîé âîëíû ñîñòàâëÿåò vp =

√3vs.  ýòîì ñëó÷àå àêóñòè÷åñêàÿ ìîùíîñòü èçëó÷å-

íèÿ â àòìîñôåðó è ìîùíîñòü èçëó÷åíèÿ ïðîäîëüíîé ñåéñìè÷åñêîé âîëíû ñîîòâåòñòâåííîñîñòàâÿò [6]: W a = 3,16 · ρaF 2ω2/πρ2v3p, W

p = 0,085F 2ω2/πρv3p. Çäåñü ρa, ρ � ïëîòíîñòüâîçäóõà è ãðóíòà ïîä èñòî÷íèêîì; F � âîçìóùàþùàÿ ñèëà èñòî÷íèêà, ω � ÷àñòîòà èçëó-÷åíèÿ, vp � ñêîðîñòü ïðîäîëüíûõ âîëí. Èç ñðàâíåíèÿ ïðèâåäåííûõ ñîîòíîøåíèé ñëåäóåò,

Page 6: THE GEOINFORMATION TECHNOLOGY OF ACTIVE MONITORING … · 2019-02-21 · Alekseev A. S., Glinskii B. M., Koalevskyv V. V., Smagin S. I., atianoFv A. G. et al. Methods for direct and

6 Ïðèêëàäíûå èíôîðìàöèîííûå òåõíîëîãèè

÷òîW a/W p ∼ 0,02. Òàê íàïðèìåð, åñëè F = 100 ò, f = 10 Ãö, ρa = 1 êã/ì3, ρ = 2000 êã/ì3,ca = 340 ì/ñ, vp =

√3ca = 590 ì/ñ, òîãäà W p = 1500 âò, W a = 30 âò.

Òàêèì îáðàçîì, àêóñòè÷åñêàÿ ìîùíîñòü èçëó÷åíèÿ ñîñòàâèò ëèøü 30 âò. Íåñìîòðÿ íàçíà÷èòåëüíóþ ðàçíèöó â ñîîòíîøåíèè èçëó÷àåìûõ ìîùíîñòåé, àêóñòè÷åñêèå êîëåáàíèÿ îòâèáðàòîðà ïðè îïðåäåëåííûõ ìåòåîóñëîâèÿõ ìîãóò ðàñïðîñòðàíÿòñÿ è ðåãèñòðèðîâàòüñÿíà çíà÷èòåëüíûõ óäàëåíèÿõ îò èñòî÷íèêà [7�8]. Ýòî îáúÿñíÿåòñÿ òåì, ÷òî àêóñòè÷åñêèåâîëíû â àòìîñôåðå çàòóõàþò â ìåíüøåé ñòåïåíè â ñðàâíåíèè ñ ñåéñìè÷åñêèìè âîëíàìè âçåìëå, îáëàäàþùåé áîëåå âûðàæåííîé íåîäíîðîäíîñòüþ ãåîôèçè÷åñêîãî ñòðîåíèÿ. Äàëü-íåìó ðàñïðîñòðàíåíèþ àêóñòè÷åñêèõ âîëí ñïîñîáñòâóåò ðÿä äðóãèõ áëàãîïðèÿòíûõ ôè-çè÷åñêèõ ôàêòîðîâ: ïðèçåìíîå ðàñïðîñòðàíåíèå àêóñòè÷åñêîãî âîëíîâîãî ôðîíòà áëàãî-äàðÿ ÿâëåíèþ òåìïåðàòóðíîé èíâåðñèè, ñâÿçàííîìó ñ îáðàçîâàíèåì íèçêîòåìïåðàòóðíîãîñëîÿ âîçäóõà ó ïîâåðõíîñòè çåìëè ïðè ïåðåõîäå îò õîëîäíîé íî÷è ê òåïëîìó äíþ [9]; ìå-òåîôàêòîðíàÿ çàâèñèìîñòü, îáóñëîâëèâàþùàÿ âîçðàñòàíèå ñêîðîñòè ðàñïðîñòðàíåíèÿ àêó-ñòè÷åñêîé âîëíû è àêóñòè÷åñêîãî äàâëåíèÿ ïðè ñîâïàäåíèè íàïðàâëåíèé ðàñïðîñòðàíåíèÿàêóñòè÷åñêîãî âîëíîâîãî ôðîíòà è âåòðà. Ñþäà æå ñëåäóåò îòíåñòè ìåòåîçàâèñèìîñòü îòâëàæíîñòè. Äëÿ ýòèõ ôàêòîðîâ ñ ó÷åòîì [9] çàâèñèìîñòü àêóñòè÷åñêîãî äàâëåíèÿ, êîòîðîåíåñåò â ñåáå âîëíîâîé ôðîíò, ìîæåò áûòü ïðåäñòàâëåíà â âèäå

p =ρ

γ(331 + 0,6t+ 0,07e+ w0 cosϕ)

2. (1)

Çäåñü t, e� òåìïåðàòóðà è âëàæíîñòü âîçäóõà ñîîòâåòñòâåííî, w0 � ñêîðîñòü âåòðà, ϕ�óãîë ìåæäó íàïðàâëåíèåì ôðîíòà ðàñïðîñòðàíåíèÿ àêóñòè÷åñêîé âîëíû è íàïðàâëåíèåìâåòðà, ρa � ïëîòíîñòü âîçäóõà, γ = cp/cv � êîýôôèöèåíò, õàðàêòåðèçóþùèé îòíîøåíèåòåïëîåìêîñòåé ñðåäû ïðè ïîñòîÿííîì äàâëåíèè (Cp) è ïðè ïîñòîÿííîì îáúåìå (Cv).

Äàëüíåìó ðàñïðîñòðàíåíèþ àêóñòè÷åñêèõ âîëí íà áîëüøèå ðàññòîÿíèÿ ñïîñîáñòâóåòÿâëåíèå îòðàæåíèÿ àêóñòè÷åñêèõ âîëí îò âåðõíèõ ñëîåâ àòìîñôåðû. Íà ðèñ. 2 ïðèâîäÿòñÿòåîðåòè÷åñêè ðàññ÷èòàííûå òðàåêòîðèè èíôðàçâóêîâûõ âîëí, ïîñòðîåííûå ñ ó÷åòîì ýô-ôåêòîâ îòðàæåíèÿ äëÿ óñëîâèé àòìîñôåðû, áëèçêèõ ïî âðåìåíè ê ýêñïåðèìåíòàëüíî âû-ïîëíåííûì ñåàíñàì âèáðàöèîííîãî çîíäèðîâàíèÿ íà ëèíåéíîì ïðîôèëå ïðîòÿæåííîñòüþ100 êì [8]. Íà ðèñ. 2, à, ïðåäñòàâëåíû âûñîòíûå ïðîôèëè òåìïåðàòóðû Ò (◦Ñ), êîìïîíåí-òû ãîðèçîíòàëüíîãî âåòðà Ux(ì/ñ) âäîëü íàïðàâëåíèÿ èñòî÷íèê�ïðèåìíèê. Êàê ñëåäóåòèç ðàñ÷åòîâ, óâåðåííàÿ ðåãèñòðàöèè îòðàæåííûõ àêóñòè÷åñêèõ âîëí ìîæåò ïðîèñõîäèòüíà äàëüíîñòÿõ â ðàéîíå 50 è 100 êì îò èñòî÷íèêà. Ýòî îáúÿñíÿåò ïðèíöèïèàëüíóþ âîç-ìîæíîñòü ðåãèñòðàöèè ñëàáûõ àêóñòè÷åñêèõ âîëí íà áîëüøèõ äàëüíîñòÿõ.

Ýêñïåðèìåíòàëüíûì ïîäòâåðæäåíèåì ýòîãî âûâîäà ÿâëÿþòñÿ ðåçóëüòàòû îäíîâðåìåí-íîé ðåãèñòðàöèè è îáðàáîòêè ñåéñìè÷åñêèõ è àêóñòè÷åñêèõ âîëí ñ ïîìîùüþ âçàèìîêîððå-ëÿöèîííîé ñâåðòêè [4] ïðîäîëæèòåëüíûõ âî âðåìåíè ñåéñìè÷åñêèõ è àêóñòè÷åñêèõ êîëå-áàíèé (ðèñ. 3) îò öåíòðîáåæíîãî âèáðàòîðà ÖÂ-40 íà ëèíåéíîì ïðîôèëå ïðîòÿæåííîñòüþ100 êì (ðèñ. 4).

 ñâåðòêå â êà÷åñòâå îïîðíîãî èñïîëüçóåòñÿ ñèãíàë, ïîâòîðÿþùèé ïî ôîðìå çîíäèðóþ-ùèé ñèãíàë âèáðàòîðà â äèàïàçîíå ÷àñòîò 6,25�9,57 Ãö. Íà ðèñ. 3 ïðåäñòàâëåíû ðåçóëüòàòûñâåðòêè äëÿ óäàëåíèé 0,2, 10, 48, 90 êì. Ðàññòîÿíèÿ ïîìå÷åíû ñëåâà îò ðèñóíêà. Íà óäà-ëåíèÿõ 0,2, 10, 90 êì âèäíû ðåçóëüòàòû âûäåëåíèÿ àêóñòè÷åñêèõ âîëí. Íà óäàëåíèè 48 êìêàíàëû òðåõêîìïîíåíòíîãî ñåéñìè÷åñêîãî äàò÷èêà x, y, z íà âðåìåíè 8,27 ñ èëëþñòðèðó-þò âñòóïëåíèÿ ïðîäîëüíûõ ñåéñìè÷åñêèõ âîëí, à íà âðåìåíè 146 ñ � àêóñòè÷åñêèõ âîëí.Ñîîòâåòñòâóþùèé ëèíåéíûé ïðîôèëü ðåãèñòðàöèè îáîèõ òèïîâ âîëí ïðîòÿæåííîñòüþ 100êì ïðåäñòàâëåí íà ðèñ. 4.

Page 7: THE GEOINFORMATION TECHNOLOGY OF ACTIVE MONITORING … · 2019-02-21 · Alekseev A. S., Glinskii B. M., Koalevskyv V. V., Smagin S. I., atianoFv A. G. et al. Methods for direct and

Ì.Ñ. Õàéðåòäèíîâ, Â. Â. Êîâàëåâñêèé, Ã.Ì. Âîñêîáîéíèêîâà, Ã.Ô. Ñåäóõèíà 7

Ðèñ. 2. à) âûñîòíûå (â êì) ïðîôèëè òåìïåðàòóðû T , êîìïîíåíòû ãîðèçîíòàëüíîãî âåòðà ux (ì/ñ) ïîäàííûì ðàäèîçîíäà (äëÿ 5 ÷ 30 ìèí ìåñòíîãî âðåìåíè, ëåòíåå âðåìÿ), âûñîòû îòðàæåíèÿ zîòð;

á) òðàåêòîðèè èíôðàçâóêîâûõ âîëí

Ðèñ. 3. Ðåçóëüòàòû ýêñïåðèìåíòîâ ïî âûäåëåíèþ âîëí îò ñåéñìè÷åñêîãî âèáðàòîðà ÖÂ-40 íà óäàëåíèÿõ

0,2, 10, 48, 90 êì: à � àêóñòè÷åñêèå âîëíû; íà óäàëåíèè 48 êì äëÿ êîìïîíåíò x, y, z ñåéñìè÷åñêîãî

äàò÷èêà âðåìÿ 8,27 ñ ñîîòâåòñòâóåò âñòóïëåíèþ ïðîäîëüíûõ ñåéñìè÷åñêèõ âîëí, à âðåìÿ 146 ñ �

ïðèõîäó àêóñòè÷åñêèõ âîëí

Page 8: THE GEOINFORMATION TECHNOLOGY OF ACTIVE MONITORING … · 2019-02-21 · Alekseev A. S., Glinskii B. M., Koalevskyv V. V., Smagin S. I., atianoFv A. G. et al. Methods for direct and

8 Ïðèêëàäíûå èíôîðìàöèîííûå òåõíîëîãèè

Ðèñ. 4. Ëèíåéíûé ïðîôèëü ðåãèñòðàöèè ñåéñìè÷åñêèõ è àêóñòè÷åñêèõ ñèãíàëîâ

Ñ ó÷åòîì ïîëó÷åííûõ äàííûõ ýêñïåðèìåíòîâ íà ãðàôèêàõ ðèñ. 5 â ëîãàðèôìè÷åñ-êîì ìàñøòàáå ïðèâåäåíû íîðìèðîâàííûå çíà÷åíèÿ óðîâíåé àêóñòè÷åñêèõ è ñåéñìè÷åñêèõâîëí, à òàêæå øóìîâ, ïîëó÷åííûõ â îòäåëüíûõ òî÷êàõ ðåãèñòðàöèè. Ãðàôèêè óðîâíåéâîëí íîðìèðîâàíû ïî îòíîøåíèþ ê óðîâíþ âáëèçè âèáðàòîðà íà óäàëåíèè 200 ì. Êàêñëåäóåò èç ýêñïåðèìåíòàëüíûõ äàííûõ, óñðåäíåííîå îñëàáëåíèå ñèëû çâóêà I â ïðåäåëàõ100 êì ñîñòàâëÿåò 4 ïîðÿäêà, ò. å. â äåöèáåëàõ ýòî ñîñòàâèò: D = 10 lg 104 = 40 äá. Ñî-îòâåòñòâåííî, îòíîñèòåëüíîå çàòóõàíèå ñîñòàâèò 0,4 äá/êì. Ïðèíèìàÿ âî âíèìàíèå, ÷òîâñëåäñòâèå ãåîìåòðè÷åñêîãî ðàñõîæäåíèÿ ñèëà çâóêà óáûâàåò îáðàòíî-ïðîïîðöèîíàëüíîêâàäðàòó ðàññòîÿíèÿ îò èñòî÷íèêà, â äàííîì ñëó÷àå â 1002 ðàç (40 äá), ïðèõîäèì ê âû-âîäó î òîì, ÷òî íà èíôðàíèçêèõ ÷àñòîòàõ îñëàáëåíèå çâóêà ïî ðàññòîÿíèþ ïðàêòè÷åñêèîïðåäåëÿåòñÿ óêàçàííûì ôàêòîðîì. Ýòî îçíà÷àåò, ÷òî â ýòîì ñëó÷àå ïîãëîùåíèå àêóñòè-÷åñêîé ýíåðãèè â àòìîñôåðå èãðàåò ìåíåå ñóùåñòâåííóþ ðîëü. Ýòî îïðåäåëÿåò öåííîñòüïðèìåíåíèÿ èíôðàíèçêèõ ÷àñòîò äëÿ ðåøåíèÿ ðÿäà ïðàêòè÷åñêèõ çàäà÷ ãåîôèçè÷åñêîãîìîíèòîðèíãà, â ÷àñòíîñòè, â èçó÷åíèè ïðîáëåìû âçàèìîäåéñòâèÿ ãåîôèçè÷åñêèõ ïîëåé,ðàññìàòðèâàåìîé â äàííîé ðàáîòå.

Òåîðåòè÷åñêèé ëîãàðèôìè÷åñêèé êîýôôèöèåíò çàòóõàíèÿ îöåíèâàåòñÿ â âèäå: α =(10 lg I2 − 10 lg I1)/(r2 − r1), ãäå I1, I2 � èíòåíñèâíîñòè çâóêà íà ðàññòîÿíèÿõ r1, r2 ñîîò-âåòñòâåííî.  òî æå âðåìÿ êîýôôèöèåíò α èìååò êâàäðàòè÷íóþ çàâèñèìîñòü îò ÷àñòîòû,ò. å. α ∼ f2. Ýòî îçíà÷àåò, ÷òî ïðè ïåðåõîäå ñ ÷àñòîòû çîíäèðîâàíèÿ àòìîñôåðû îò 10 Ãöäî 100 Ãö óðîâåíü îñëàáëåíèÿ àêóñòè÷åñêîé âîëíû â îäíîé è òîé æå òî÷êå ñîñòàâèò äâàïîðÿäêà, ò. å. 100 ðàç. Ñ ó÷åòîì îáîèõ ðàññìîòðåííûõ ôàêòîðîâ î÷åâèäíî ïðåèìóùåñòâîðàáîòû íà èíôðàíèçêèõ ÷àñòîòàõ äëÿ èçó÷åíèÿ âçàèìîäåéñòâèé ãåîôèçè÷åñêèõ ïîëåé íàçíà÷èòåëüíûõ (ìíîãî áîëüøå äëèíû âîëíû) óäàëåíèÿõ îò èñòî÷íèêà.

Ìåòåîçàâèñèìûå ôàêòîðû ðàñïðîñòðàíåíèÿ àêóñòè÷åñêèõ âîëí îáóñëîâëèâàþò ðàçâè-òèå ïðàêòè÷åñêè âàæíîãî ÿâëåíèÿ ïðîñòðàíñòâåííîé ôîêóñèðîâêè àêóñòè÷åñêèõ êîëåáà-íèé â àòìîñôåðå [10, 11, 12, 13]. Îïèñûâàåòñÿ òàêîå ÿâëåíèå ñ ïîìîùüþ ôàêòîðà ôîêó-ñèðîâêè [10], ðàâíîãî îòíîøåíèþ èíòåíñèâíîñòè èíôðàçâóêà â íåîäíîðîäíîé äâèæóùåéñÿñðåäå ê èíòåíñèâíîñòè åãî â áåçãðàíè÷íîé íåïîäâèæíîé ñðåäå:

f = I [z,θ,φ] /I0, (2)

ãäå ñôåðè÷åñêèå óãëû θ (çåíèòíûé óãîë) è ϕ (àçèìóò) õàðàêòåðèçóþò íà÷àëüíîå íàïðàâ-ëåíèå ëó÷à îò èñòî÷íèêà ïî îòíîøåíèþ ê âåðòèêàëüíîé êîîðäèíàòå z è ãîðèçîíòàëüíîé

Page 9: THE GEOINFORMATION TECHNOLOGY OF ACTIVE MONITORING … · 2019-02-21 · Alekseev A. S., Glinskii B. M., Koalevskyv V. V., Smagin S. I., atianoFv A. G. et al. Methods for direct and

Ì.Ñ. Õàéðåòäèíîâ, Â. Â. Êîâàëåâñêèé, Ã.Ì. Âîñêîáîéíèêîâà, Ã.Ô. Ñåäóõèíà 9

1.E‐06

1.E‐05

1.E‐04

1.E‐03

1.E‐02

1.E‐01

1.E+00

0.1 1 10 100 1000

Нормал

изо

ванная

 ампли

туда

Расстояние, км

Сейсмический сигнал Z

Акустический сигнал

Шум

Ðèñ. 5. Ãðàôèêè çàòóõàíèÿ àêóñòè÷åñêèõ è ñåéñìè÷åñêèõ âîëí ïî äàëüíîñòè

îñè õ ñîîòâåòñòâåííî [2, 3]. Ïðè ýòîì íàïðàâëåíèå ïîñëåäíåé ñîâïàäàåò ñ íàïðàâëåíèåìâåòðà. Äëÿ îöåíèâàíèÿ ïàðàìåòðîâ ÿâëåíèÿ ïðîñòðàíñòâåííîé ôîêóñèðîâêè ýêñïåðèìåí-òàëüíî ïîëó÷åíû ãðàôèêè (ðèñ. 6) àçèìóòàëüíîé çàâèñèìîñòè àêóñòè÷åñêîãî äàâëåíèÿ äëÿñëó÷àåâ êðóãîâîé ðàññòàíîâêè äàò÷èêîâ è èñòî÷íèêà â öåíòðå êðóãà: ãðàôèê 1 � äëÿ âèá-ðàòîðà ÖÂ-40 è ðàäèóñà êðóãà 6 êì; ãðàôèê 2 � äëÿ âçðûâà ñ òðîòèëîâûì ýêâèâàëåíòîì125 êã è ðàäèóñà êðóãà 10 êì. Çíà÷åíèÿ äàâëåíèé îò âçðûâà ïðèâåäåíû íà îñè îðäèíàòñëåâà, äëÿ âèáðàòîðà � ñïðàâà. Ìàêñèìóìû ïðèâåäåííûõ çàâèñèìîñòåé ñîîòâåòñòâóþòñëó÷àÿì ñîâïàäåíèÿ íàïðàâëåíèé ôðîíòà ðàñïðîñòðàíåíèÿ âîëíû è âåòðà è â êîíå÷íîìèòîãå õàðàêòåðèçóþò íàïðàâëåíèå ãëàâíîãî óäàðà èíôðàçâóêîâîé âîëíû íà îêðóæàþùèåîáúåêòû. Ïîëó÷åííûå ãðàôèêè õàðàêòåðèçóþò ÿâíî âûðàæåííóþ çàâèñèìîñòü àêóñòè÷å-ñêîãî äàâëåíèÿ îò ñîîòíîøåíèÿ îáîèõ àçèìóòàëüíûõ íàïðàâëåíèé. Êîëè÷åñòâåííî ýô-ôåêò íàïðàâëåííîñòè õàðàêòåðèçóåòñÿ øèðèíîé ðàñêðûâàíèÿ ôóíêöèè íàïðàâëåííîñòèâ àçèìóòàëüíîì íàïðàâëåíèè, îòñ÷èòûâàåìîé íà óðîâíå 0,7 îò ìàêñèìàëüíîãî çíà÷åíèÿ.Ïî îòíîøåíèþ ê âèáðàòîðó åãî çíà÷åíèå ñîñòàâëÿåò 60 ãðàä. Ñ ó÷åòîì ïðèâåäåííîãî ïå-ðåðàñïðåäåëåíèÿ àêóñòè÷åñêîãî äàâëåíèÿ ïî ïðîñòðàíñòâó ñëåäóåò âàæíûé âûâîä, ÷òîâîçäåéñòâèå èíôðàçâóêà äàæå îò ìàëîìîùíûõ âçðûâîâ ìîæåò ñòàíîâèòñÿ ýêîëîãè÷åñêèîïàñíûì âñëåäñòâèå ìåòåîçàâèñèìîãî ìíîãîêðàòíîãî óâåëè÷åíèÿ ïîòîêà ýíåðãèè â îïðå-äåëåííîì íàïðàâëåíèè.  ÷àñòíîñòè, ãðàôèê 1 èëëþñòðèðóåò ñîîòíîøåíèå ìàêñèìàëüíîãîè ìèíèìàëüíîãî çíà÷åíèé äàâëåíèé, ðàâíîãî 50.

C ïîìîùüþ ñåéñìè÷åñêèõ âèáðàòîðîâ � ãèäðîðåçîíàíñíîãî òèïà ÃÐÂ-50 [4] � âû-ïîëíåíû ýêñïåðèìåíòû ïî ðåãèñòðàöèè ôåíîìåíà òåìïåðàòóðíîé èíâåðñèè â ïðèçåìíîìíèçêîòåìïåðàòóðíîì ñëîå âîçäóõà â óòðåííèå ÷àñû ïðè ïåðåõîäå ñ íî÷è êî äíþ. Ýêñïå-ðèìåíòû âûïîëíÿëèñü ñ ïðèìåíåíèåì èçëó÷åíèé ñåéñìè÷åñêèõ è àêóñòè÷åñêèõ êîëåáàíèé

Page 10: THE GEOINFORMATION TECHNOLOGY OF ACTIVE MONITORING … · 2019-02-21 · Alekseev A. S., Glinskii B. M., Koalevskyv V. V., Smagin S. I., atianoFv A. G. et al. Methods for direct and

10 Ïðèêëàäíûå èíôîðìàöèîííûå òåõíîëîãèè

Ðèñ. 6. Àçèìóòàëüíàÿ çàâèñèìîñòü àêóñòè÷åñêîãî äàâëåíèÿ äëÿ êðóãîâîé ðàññòàíîâêè äàò÷èêîâ è

èñòî÷íèêà â öåíòðå êðóãà: ãðàôèê 1 � äëÿ âèáðàòîðà ÖÂ-40 è ðàäèóñà êðóãà 6 êì; ãðàôèê 2 � äëÿ

âçðûâà ñ òðîòèëîâûì ýêâèâàëåíòîì 125 êã è ðàäèóñà êðóãà 10 êì

Ðèñ. 7. Çàïèñè ñåéñìè÷åñêèõ è àêóñòè÷åñêèõ âîëí â íî÷íîå è óòðåííåå âðåìÿ, èçëó÷àåìûõ âèáðàòîðîì

ÃÐÂ-50 â äèàïàçîíå ÷àñòîò 3�7 Ãö íà óäàëåíèè 20 êì îò èñòî÷íèêà. Ïåðâûå âñòóïëåíèÿ âîëí (íà 4�6 ñ)

ñîîòâåòñòâóþò ñåéñìè÷åñêèì âîëíàì, íà 58�59 ñ � àêóñòè÷åñêèì âîëíàì

â äèàïàçîíå ÷àñòîò 3�7 Ãö è ðàññòîÿíèè”èñòî÷íèê�ïðèåìíèê“ 20 êì. ×àñòíûé ðåçóëüòàò

òàêîãî ýêñïåðèìåíòà ïðåäñòàâëåí íà ðèñ. 7.Çäåñü ïðåäñòàâëåíû çàðåãèñòðèðîâàííûå ñåéñìè÷åñêèå âîëíû íà êîìïîíåíòàõ Z, X íà

âðåìåíàõ ïðèõîäà âîëí 4�6 ñ è àêóñòè÷åñêîé âîëíû íà âðåìåíè âñòóïëåíèÿ 60 ñ. Ñëåâà îòçàïèñåé ïðåäñòàâëåíû äàòà è íî÷íûå è óòðåííèå ÷àñû. Êàê âèäíî èç çàïèñåé, âîçíèêíîâå-íèå àêóñòè÷åñêîé âîëíû ïðîèñõîäèò ïðè ñìåíå íî÷è è äíÿ (â äàííîì ñëó÷àå íà âðåìåíè 6÷àñ 55 ìèí). Òàêèì îáðàçîì, õîðîøî ïðîñëåæèâàåòñÿ ïðîÿâëåíèå ÿâëåíèÿ òåìïåðàòóðíîéèíâåðñèè â ïðèçåìíîì ñëîå âîçäóõà.

Âëèÿíèå âëàæíîñòè âîçäóõà íà óðîâíè àêóñòè÷åñêèõ êîëåáàíèé îöåíèâàëîñü â ñåðèèýêñïåðèìåíòîâ ñ âèáðàòîðîì ÖÂ-40 íà óäàëåíèè 50 êì. Äèàïàçîí ÷àñòîò çîíäèðóþùèõ

Page 11: THE GEOINFORMATION TECHNOLOGY OF ACTIVE MONITORING … · 2019-02-21 · Alekseev A. S., Glinskii B. M., Koalevskyv V. V., Smagin S. I., atianoFv A. G. et al. Methods for direct and

Ì.Ñ. Õàéðåòäèíîâ, Â. Â. Êîâàëåâñêèé, Ã.Ì. Âîñêîáîéíèêîâà, Ã.Ô. Ñåäóõèíà 11

Ðèñ. 8. Óðîâíè àêóñòè÷åñêèõ êîëåáàíèé âèáðàòîðà ÑÂ-40 â çàâèñèìîñòè îò âëàæíîñòè íà óäàëåíèè 50 êì

êîëåáàíèé â ýòîì ñëó÷àå ñîñòàâèë 6,25�11,23 Ãö. Íà ðèñ. 8 ïðåäñòàâëåíî ìíîæåñòâî èçìå-ðåííûõ çíà÷åíèé àêóñòè÷åñêîãî äàâëåíèÿ â çàâèñèìîñòè îò âëàæíîñòè.

Êðèâàÿ ìàêñèìàëüíûõ çíà÷åíèé àêóñòè÷åñêîãî äàâëåíèÿ õàðàêòåðèçóåò 2�3-êðàòíîåâîçðàñòàíèå åãî äî 95 %, ïîñëå ÷åãî ïðîèñõîäèò ñïàä. Ñïàä ìîæåò áûòü îáúÿñíåí íàðàñ-òàþùåé ïëîòíîñòüþ âëàæíîñòè â âîçäóõå, ÷òî âûçûâàåò ïîâûøåííîå ðàññåÿíèå è ïîãëî-ùåíèå àêóñòè÷åñêîé ýíåðãèè.

Çàêëþ÷åíèå. Ðàññìîòðåíà ïðîáëåìà âçàèìîäåéñòâèÿ ãåîôèçè÷åñêèõ ïîëåé ðàçíîéïðèðîäû íà îñíîâå ïðåäëîæåííîãî àâòîðàìè âèáðî-ñåéñìî-àêóñòè÷åñêîãî ìåòîäà çîíäè-ðîâàíèÿ ïðèðîäíîé ñðåäû â ñèñòåìå ëèòîñôåðà�àòìîñôåðà.

Òåîðåòè÷åñêè è ýêñïåðèìåíòàëüíî îáîñíîâàíà ïðèìåíèìîñòü ïîäõîäà äëÿ ïðåäñêàçàíèÿãåîýêîëîãè÷åñêèõ ðèñêîâ, ïîðîæäàåìûõ òåõíîãåííûìè è ïðèðîäíûìè âçðûâàìè. Ïðèâî-äÿòñÿ ðåçóëüòàòû èññëåäîâàíèé ïî èçó÷åíèþ âçàèìîäåéñòâèÿ ñåéñìè÷åñêèõ, àêóñòè÷åñêèõè ìåòåîïîëåé ñ ïðèëîæåíèåì ê ðåøåíèþ çàäà÷è îöåíèâàíèÿ ãåîýêîëîãè÷åñêèõ ðèñêîâ äëÿñîöèàëüíîé ñðåäû.

 êà÷åñòâå îñíîâíûõ èñòî÷íèêîâ çîíäèðîâàíèÿ èñïîëüçóþòñÿ ìàëîìîùíûå â ñðàâ-íåíèè ñ ìîùíûìè âçðûâàìè ñåéñìè÷åñêèå âèáðàòîðû, ÷òî îïðåäåëÿåò èõ âûñîêóþýêîëîãè÷íîñòü è âûñîêóþ ïîâòîðÿåìîñòü ðåçóëüòàòîâ ýêñïåðèìåíòîâ â ðåøåíèè çàäà÷àêòèâíîãî ìîíèòîðèíãà ïðèðîäíîé è òåõíîãåííîé ñðåäû.

Ñïèñîê ëèòåðàòóðû

1. Íèêîëàåâ À. Â., Àðòþøêîâ Å. Â., ×è÷èíèí È. Ñ., Òðîèöêèé Ï. À., Ãàëêèí È. Í. Âèáðàöè-îííîå ïðîñâå÷èâàíèå Çåìëè. Èíñòèòóò ôèçèêè Çåìëè ÀÍ ÑÑÑÐ, äåï. � 2549, Ì.; 1974.

2. Àëåêñååâ À. Ñ., Ðÿøåíöåâ Í. Ï., ×è÷èíèí È. Ñ. Êàê çàãëÿíóòü â ãëóáü ïëàíåòû // Íàóêàâ ÑÑÑÐ. 1982. � 3. Ñ. 31�37.

3. Àëåêñååâ À. Ñ., Ãëèíñêèé Á. Ì., Êîâàëåâñêèé Â. Â., Õàéðåòäèíîâ Ì. Ñ. Àêòèâíûå ìå-òîäû ñåéñìè÷åñêèõ èññëåäîâàíèé ñ ìîùíûìè âèáðàöèîííûìè èñòî÷íèêàìè / Ñá. Ñîâðåìåííûåïðîáëåìû ñåéñìîëîãèè. Èçä. Âóçîâñêàÿ êíèãà. Ì. 2000. Ñ. 1�20.

Page 12: THE GEOINFORMATION TECHNOLOGY OF ACTIVE MONITORING … · 2019-02-21 · Alekseev A. S., Glinskii B. M., Koalevskyv V. V., Smagin S. I., atianoFv A. G. et al. Methods for direct and

12 Ïðèêëàäíûå èíôîðìàöèîííûå òåõíîëîãèè

4. Àëåêñååâ À. Ñ., Ãëèíñêèé Á. Ì., Êîâàëåâñêèé Â. Â., Õàéðåòäèíîâ Ì. Ñ., ×è÷èíèí È. Ñ.è äð. Àêòèâíàÿ ñåéñìîëîãèÿ ñ ìîùíûìè âèáðàöèîííûìè èñòî÷íèêàìè. Èçäàòåëüñòâî ÑÎ ÐÀÍ

”Ãåî“, Íîâîñèáèðñê, 2004.5. Àëåêñååâ À. Ñ., Ãëèíñêèé Á. Ì., Äðÿõäîâ Ñ. È., Êîâàëåâñêèé Â. Â., Ìèõàéëåíêî Á. Ã.,

Ïóøíîé Á. Ì., Ôàòüÿíîâ À. Ã., Õàéðåòäèíîâ Ì. Ñ., Øîðîõîâ Ì. Í. Ýôôåêò àêóñòîñåéñìè÷åñêîéèíäóêöèè ïðè âèáðîñåéñìè÷åñêîì çîíäèðîâàíèè // Äîêë. ÐÀÍ. 1996. Ñ. Ò. 346. � 5. Ñ. 664�667.

6. Çàñëàâñêèé Þ. Ì. Èçëó÷åíèå ñåéñìè÷åñêèõ âîëí âèáðàöèîííûìè èñòî÷íèêàìè. Èíñòèòóòïðèêëàäíîé ôèçèêè ÐÀÍ, Íèæíèé Íîâãîðîä, 2007.

7. Õàéðåòäèíîâ Ì. Ñ., Êîâàëåâñêèé Â. Â., Âîñêîáîéíèêîâà Ã. Ì., Ñåäóõèíà Ã. Ô., ßêèìåíêîÀ. À. Ñåéñìîàêóñòè÷åñêèå âîëíû ñåéñìîâèáðàòîðîâ â ñèñòåìå ëèòîñôåðà-àòìîñôåðà // ÂåñòíèêÍßÖ ÐÊ. 2018. Âûï. 2, Ñ. 44�49.

8. Ãóëÿåâ Â. Ò., Êóçíåöîâ Â. Â., Ïëîòêèí Â. Â., Õîìóòîâ Ñ. Þ. Ãåíåðàöèÿ è ðàñïðîñòðàíå-íèå èíôðàçâóêà â àòìîñôåðå ïðè ðàáîòå ìîùíûõ ñåéñìîâèáðàòîðîâ // Èçâ. ÀÍ ÑÑÑÐ: Ôèçèêààòìîñôåðû è îêåàíà. 2001. Ò. 37. � 3. Ñ. 303�312.

9. Èñàêîâè÷ À. Ì. Îáùàÿ àêóñòèêà. Ì.: Íàóêà, Ãë. ðåä. ôèç.-ìàò. ëèò., 1973.10. Áðåõîâñêèõ Ë. Ì. Âîëíû â ñëîèñòûõ ñðåäàõ. Ì.:Íàóêà, 1973.11. Razin A. V. On Propagation of sound in an inhomogeneous moving atmosphere // Izv. Akad.

nauk SSSR. Physics of Atmosphere and Ocean. 1982. V. 18. N 6. P. 674�676.12. Gubarev V. V., Kovalevskii V. V., Khairetdinov M. S., Avrorov S. A., Voskoboinikova G. M.,

Sedukhina G. F., and Yakimenko A. A. Prediction of Environmental Risks from Explosions Based ona Set of Coupled Geophysical Fields // Optoelectronics, Instrumentation and Data Processing. 2014.V. 50. N 4. P. 3�13.

13. Õàéðåòäèíîâ Ì. Ñ., Êîâàëåâñêèé Â. Â., Âîñêîáîéíèêîâà Ã. Ì., Ñåäóõèíà Ã. Ô. Îöåíèâàíèåìåòåîçàâèñèìûõ ãåîýêîëîãè÷åñêèõ ðèñêîâ îò âçðûâîâ ñ ïîìîùüþ ñåéñìè÷åñêèõ âèáðàòîðîâ //Òåõíîëîãèÿ ñåéñìîðàçâåäêè. 2016. � 3. Ñ. 132�138.

Õàéðåòäèíîâ Ìàðàò Ñà-

ìàòîâè÷ � ãëàâíûé íàó÷íûéñîòðóäíèê Èíñòèòóòà âû÷èñ-ëèòåëüíîé ìàòåìàòèêè è ìà-òåìàòè÷åñêîé ãåîôèçèêè ÑÎÐÀÍ, Ïðîôåññîð Íîâîñèáèð-ñêîãî ãîñóäàðñòâåííîãî òåõíè-

÷åñêîãî óíèâåðñèòåòà. Êàíä. òåõí. íàóê, 1972,äîêòîð òåõí. íàóê, 1994. Àâòîð è ñîàâòîð áî-ëåå 250 íàó÷íûõ ðàáîò, â òîì ÷èñëå 5 ìîíîãðà-ôèé, 10 èçîáðåòåíèé. Îáëàñòü íàó÷íûõ èíòåðå-ñîâ: ãåîôèçè÷åñêàÿ èíôîðìàòèêà, ðàñïðîñòðà-íåíèå è âçàèìîäåéñòâèå ãåîôèçè÷åñêèõ è îïòè-÷åñêèõ âîëíîâûõ ïîëåé, èíôîðìàöèîííûå ñåòèè ñèñòåìû, ñòàòèñòè÷åñêàÿ îáðàáîòêà è ðàñïî-çíàâàíèå ñèãíàëîâ. e-mail: [email protected].

Khairetdinov Marat Samatovich �principal research scientist of Institute ofComputational Mathematics and MathematicalGeophysics SB RAS, professor of NovosibirskState Technical University. Candidate ofsciences degree, 1972, doctor of sciences degree,1994. Author and co-author of 250 scienti�c

papers, including 5 monographs. ResearchInterests: geophysical informatics, propagationand interaction of geophysical and opticalwave�elds, information networks and systems,statistical processing and recognitionsignals.

Êîâàëåâñêèé Âàëåðèé

Âèêòîðîâè÷ � ä-ð. òåõí. íà-óê, Èíñòèòóò âû÷èñëèòåëüíîéìàòåìàòèêè è ìàòåìàòè÷åñêîéãåîôèçèêè ÑÎ ÐÀÍ, çàìåñòè-òåëü äèðåêòîðà ïî íàó÷íîé ðà-áîòå, ãëàâíûé íàó÷íûé ñîòðóä-

íèê ëàáîðàòîðèè ãåîôèçè÷åñêîé èíôîðìàòèêè,e-mail: [email protected], òåë.: +7 383 330-71-96.

Âàëåðèé Êîâàëåâñêèé îêîí÷èë ñ îòëè÷è-åì ôèçè÷åñêèé ôàêóëüòåò Íîâîñèáèðñêîãî ãî-ñóäàðñòâåííîãî óíèâåðñèòåòà â 1975 ã. Ñ 1976ã. � ñîòðóäíèê Èíñòèòóòà ãèäðîäèíàìèêè èì.Ì. À. Ëàâðåíòüåâà ÑÎ ÐÀÍ.  Èíñòèòóòå âû-÷èñëèòåëüíîé ìàòåìàòèêè è ìàòåìàòè÷åñêîéãåîôèçèêè ÑÎ ÐÀÍ ðàáîòàåò ñ 1986 ã.  1986 ã.

Page 13: THE GEOINFORMATION TECHNOLOGY OF ACTIVE MONITORING … · 2019-02-21 · Alekseev A. S., Glinskii B. M., Koalevskyv V. V., Smagin S. I., atianoFv A. G. et al. Methods for direct and

Ì.Ñ. Õàéðåòäèíîâ, Â. Â. Êîâàëåâñêèé, Ã.Ì. Âîñêîáîéíèêîâà, Ã.Ô. Ñåäóõèíà 13

çàùèòèë êàíäèäàòñêóþ äèññåðòàöèþ, à â 2006ã. äîêòîðñêóþ äèññåðòàöèþ ïî ñïåöèàëüíîñòè05.13.18. �

”Ìàòåìàòè÷åñêîå ìîäåëèðîâàíèå,

÷èñëåííûå ìåòîäû è êîìïëåêñû ïðîãðàìì“. Îá-ëàñòü íàó÷íûõ èíòåðåñîâ: ìàòåìàòè÷åñêîå ìî-äåëèðîâàíèå è ýêñïåðèìåíòàëüíûå èññëåäîâà-íèÿ â àêòèâíîé ñåéñìîëîãèè, âèáðîñåéñìè÷å-ñêèå ìåòîäû çîíäèðîâàíèÿ Çåìëè è ìîíèòîðèí-ãà ãåîäèíàìè÷åñêèõ ïðîöåññîâ, èíôîðìàöèîí-íûå òåõíîëîãèè â ãåîôèçè÷åñêèõ èññëåäîâàíè-ÿõ. Àâòîð è ñîàâòîð áîëåå 150 íàó÷íûõ ðàáîò, âòîì ÷èñëå 5 ìîíîãðàôèé, 10 èçîáðåòåíèé.

Valeriy Kovalevsky � Dr. Tech. Sci.,Institute of Computational Mathematics andMathematical Geophysics, Siberian Branch,Russian Academy of Sciences, Deputy Directorfor Research, Chief Researcher, Laboratory ofGeophysical Informatics, e-mail: kovalevsky@

sscc.ru, tel .: +7 383 330-71-96. Valeriy

Kovalevskiy graduated with honors PhysicsDepartment of the Novosibirsk State Universityin 1975. From 1976 � researcher at Instituteof Hydrodynamics M. A. Lavrentyeva SB RAS.He has been working at the Institute ofComputational Mathematics and MathematicalGeophysics of the SB RAS since 1986. Ph. D.degree in Technical Science (1986). Doctorof Technical Sciences degree (2006) on thespecialty 05.13.18. �

”Mathematical modeling,

numerical methods and program complexes“.Research interests: mathematical modeling andexperimental research in active seismology,vibroseismic methods of Earth's sounding andmonitoring of geodynamic processes, informationtechnology in geophysical research. Author andco-author of more than 150 scienti�c papers, 10inventions.

Âîñêîáîéíèêîâà Ãþëü-

íàðà Ìàðàòîâíà � íàó÷íûéñîòðóäíèê Èíñòèòóòà âû÷èñëè-òåëüíîé ìàòåìàòèêè è ìàòåìà-òè÷åñêîé ãåîôèçèêè ÑÎ ÐÀÍ,Êàíä. òåõí. íàóê, 2015. Àâòîðáîëåå 70 íàó÷íûõ ðàáîò.

Íàó÷íûå èíòåðåñû: ãåîôè-çè÷åñêàÿ èíôîðìàòèêà, ÷èñëåííîå ìîäåëèðîâà-íèå, ãåîôèçè÷åñêèå âîëíîâûå ïðîöåññû è èõâçàèìîäåéñòâèå, ñòàòèñòè÷åñêîå îáíàðóæåíèå,äèñêðåòíàÿ îïòèìèçàöèÿ, àïîñòåðèîðíûå àë-ãîðèòìû, äèíàìè÷åñêîå ïðîãðàììèðîâàíèå. e-mail: [email protected].

Voskoboynikova Gyulnara M. Researchscientist of the Institute of ComputationalMathematics and Mathematical Geophysics SBRAS. Phd. Degree, 2015.

Author and co-author of over 70 scienti�cpapers. Research interests: Geophysicalinformatics, numerical simulation, geophisicalwave processes and interactions, statisticaldetection, discrete optimization, a posteriorialgorithms, dynamic programming. e-mail: [email protected].

Ñåäóõèíà Ãàëèíà Ôå-

äîðîâíà � íàó÷íûé ñîòðóä-íèê ëàáîðàòîðèè ãåîôèçè÷åñ-êîé èíôîðìàòèêè ÈÂÌ è ÌÃÑÎ ÐÀÍ, e-mail: galya@opg.

sscc.ru.Segukhina G. F. �

research scientist of Institute of ComputationalMathematics and Mathematical Geophysics SBRAS. She has 53 scienti�c works.

Äàòà ïîñòóïëåíèÿ � 29.08.2018