theoretische festkörperphysik: anwendungsbeispiel -...

28
Theoretische Theoretische Festkörperphysik Festkörperphysik : : Anwendungsbeispiel Anwendungsbeispiel (File “Bsp_theofkp.pdf” unter http://www.theorie2.physik.uni-erlangen.de Vorlesung anklicken!) Vorlesung, Erlangen. WS 2008/2009

Upload: vodien

Post on 06-Aug-2019

214 views

Category:

Documents


0 download

TRANSCRIPT

  • TheoretischeTheoretische FestkrperphysikFestkrperphysik::AnwendungsbeispielAnwendungsbeispiel

    (File Bsp_theofkp.pdf unterhttp://www.theorie2.physik.uni-erlangen.de

    Vorlesung anklicken!)

    Vorlesung, Erlangen. WS 2008/2009

  • First-principles calculations in materials science???

    Jaguar XJ with Al-based car frame

    -0,66DFTNiAl,B2-0.64Exp.NiAl,B2-0,57DFTCoAl,B2-0,56Exp.CoAl,B2-0.30DFTFeAl,B2-0,26Exp.FeAl,B2

    Hf [eV/Atom]System

    Formation enthalpy Hf of the B2 Phase for CoAl, NiAl, FeAl

    Exp.: P. Villars and M. Calvert, Experimental Handbookof Crystallographic Data (Materials Park, Ohio, 1991)Theo.: S. Mller. J. Phys.: Condens. Matter 15 (2003) R1429.

    mass reduced by ~ 200 kg

    (thanks to FORD Motor Company,

    Michigan, USA)

  • Modelling materials properties demands the consideration of

    huge configuration spaces huge model systems

    temperature

    T

    Al-rich Al-Li: precursor

    T. Sato and A. Kamino, Mat. Sci. Eng. A

    146 (1991) 161

    TEM

    PredictionS. Mller, R. Podloucky,and W. Wolf, submitted

    time!!!

    impossible to handle directly via DFT!!!

  • Crystallographic atomic structure(relaxation, reconstruction, buckling)

    Vibronic properties(phonon spectra)Density Functional Theory

    Cluster ExpansionMonte-Carlo Methods

    (UNCLE)

    Energetics(stability)

    Nucleation

    Short-rangeorder

    Multi-siteadsorption

    Electronic structure of materials(band structure, density of states)

    Diffusion PrecipitationSegregation

    Ground state search in huge configuration spaces

    Multi-scale modeling(from atomic to mesoscopic scale)

    Activation barriers

    Dynamics(diffusion)

    Nudge Elastic Band Method,Molecular Dynamics,

    Transition State Theory

  • Precipitation in Al-rich Al-Zn alloys

    Quenching a solid solutioninto the two-phase region

    Formation of coherentZn-precipitates:

    Coherentphase boundarycalculated**experimental*

    1000

    (R. Ramlau and H. Lffler, phys. stat. sol. (a),79, p.141 (1983))

    xZnAl

    * J. L. Murray, Bulletin of Alloy Phase Diagrams 4, 55 (1983). ** S. Mller et al., Europhys. Lett. 55, 33 (2001).

  • Treating long-range interactions:The mixed-space presentation

    Problem: Real-space CE fails to predict the energyof long-periodic coherent structures!

    Intrinsic fault of any finite Cluster Expansion:

    Range of interactions: Hf = 0 for n AnBn-Superlattice

    Ansatz: Transform portion of interactions to reciprocal space Easiest to do for pair interactions

    H() = J(k) |S(k,)|2 + Df Jf f k 3,4

    body

    Mixed-space form:

  • Treating long-range interactions:The mixed-space presentation

    Solving the problem:

    J(k) = JCS (k) + JSR (k)

    Constituent Strain (CS):Contains the correct long-periodic superlattice limit

    Short-Ranged (SR) inter-actions that are ignoredby JCS (chemical part)

    can be constructed from the equilibrium constituent strain

  • Coherency strain energy

    ECSeq (a,G)

    q(a,G) = EAepi(G,a)EAhydro(a)

    Epitaxial Strain Energy:Deform to the substrate lattice

    parameter a and relax along G.

    Hydrostatic Deformation Energy:Deform hydrostatically to thesubstrate lattice parameter a.

    a

    G

    Substrate

    Film (A)

    B = 1/3 (C11 + 2C12 ): Bulk Modulus = C44 (C11 C12): Elastic anisotropy parameterharm (G): Geometric function of spherical angles

    Bqharm(G) = 1 - C11 + harm (G)

    Elasticity theory:

    However: Bq(a,G) = 1 -C11 + (a,G)

    with (a,G) = harm (G) + l bl (a) Kl (G)ECSeq (x,G) = l Al (x) Kl (G)

    Lattice parameter a [a.u.]6,6 6,8 7,0 7,2 7,4 7,6

    Epita

    xial

    sof

    teni

    ng q

    Al

    0,1

    0,2

    0,3

    0,4

    0,5

    0,6

    (201)

    (110)

    (111)

    (100)

    aAl

    fcc-AlEpitaxial Strain Energy:Deform to the substrate lattice

    parameter a and relax along G.

    Hydrostatic Deformation Energy:Deform hydrostatically to thesubstrate lattice parameter a.

    q(a,G) = EAepi(G,a)EAhydro(a)

    a

    G

    Substrate

    Film (A)

    Elasticity theory:Bqharm(G) = 1 - C11 + harm (G)

    B = 1/3 (C11 + 2C12 ): Bulk Modulus = C44 (C11 C12): Elastic anisotropy parameterharm (G): Geometric function of spherical angles

    Cu Pd

    Coherency strain ofCu1-xPdx-superlattices

    xPd

  • Treating long-range interactions:The mixed-space presentation

    ECS() for any arbitrary structure can be calculated via

    This ansatz solves long-periodic superlattice problem!

    H() = J(k) |S(k,)|2 + Df Jf f + ECS() k 3,4

    body

    Mixed-Space Cluster Expansion (MSCE):

    A. Zunger, NATO ASI on Statics and Dynamics of Alloy Phase Transformations (Plenum Press, New York, 1994), 361.

  • Size-shape-relation of precipitates

    H() = J(k) |S(k,)|2 + Df Jf f + ECS() k 3,4

    body

    Separate MSCE-Hamiltonians into two parts:

    Strain part:flat (111) layer:

    Softest direction in fcc-Zn*

    Chemical part:compact shape(NZn = 2175)

    H = Echem + ECS

    * S. Mller et al., Phys. Rev. B 60, 16448 (1999).

    (T 0)

    (S. Mller et al., Acta Mater. 48 (2000) 4007)

  • fcc-Zn precipitate: flattening along [111]

    4248 Zn atoms (rpsphere = 25 )

  • Flattening along [111]: Instability von fcc-Zn

    E(eV)

    E(eV)

    DOS [a.u.]

    DOS [a.u.]

    EF

    EF

    -1.0 -0.5 0.5 1.0

    -1.0 -0.5 0.5 1.0

    Density Of States

    (c/a) [%] = 0

    (c/a) [%] = 15

    fcc-Zn

    0,8 0,9 1,0 1,1 1,2

    Ener

    gy [m

    eV/a

    tom

    ]

    -20

    0

    20

    40

    60

    100

    111

    hcp-Zn

    -20 -10 0 10 20

    (c/a) [%]

    a

    G

    c

    (S. Mller, L.-W. Wang, A. Zunger, C. Wolverton, Phys. Rev. B 60, 16448 (1999) )

  • Calculated coherent fcc-Zn precipitates in Al-Zn as function of precipitate size and temperature

    ac

    300K

    Number of Zn-atoms

    Tem

    p. [K

    ]

    30K

    200K

    918 2175 4248

  • How do to kinetics in real time ???

  • Bridging time scales

    Idea: Force selected atoms to exchange process Calculate corresponding simulation time afterwards

    Prerequisite: Calculation of energy change E(i) for allpossible atomic exchanges i (restriction to NN)

    Ene

    rgy

    A

    B

    E(i) from MSCE

    From DFT calculationsor experiment

    (S. Mller, J. Phys.: Condens. Matter 15 (2003) R1429.)

  • Configuration-dependentactivation barriers*

    +: no exp. parameters-: no transformation to

    real time becauseE = E(T)Act

    ivat

    ion

    barr

    ier [

    eV]

    0,0

    0,1

    0,2

    0,3

    0,4

    0,5

    Activ

    atio

    n ba

    rrie

    r [eV

    ]

    0,0

    0,2

    0,4

    0,6

    0,8

    Al at Li-site Al at Al-site

    Li at Li-site Li at Al-site

    (In collaboration with R. Podloucky, Univ. Wien, Austria,and W. Wolf, Materials Design, Le Mans, France) L12 (Al3Li)

    calc. of phonon spectraDiffusion coefficients

    as function of structureand temperature

    Trafo to real time

    (* calculated by the Nudge Elastic Band Method; R. Podloucky, Vienna)

  • Phonon spectra:Al31Li Li migration(Walter Wolf, Materials Science, France)

    RelaxedStructure

    Al-vacancyFormation Li migration

    Al30LiAl31Li Al30Li

  • Configuration-dependentactivation barriers*

    (In collaboration with R. Podloucky, Univ. Wien, Austria,and W. Wolf, Materials Design, Le Mans, France) L12 (Al3Li)

    Temperature [K]

    1000/T [K -1]

    1.0 1.2 1.4 1.6 1.8 2.0

    Diff

    usio

    n co

    effic

    ient

    [m2 /

    sec]

    1e-16

    1e-15

    1e-14

    1e-13

    1e-12

    1e-11calculatedBakker et al., 1990Wen et al., 1980Costas, 1963Verlinden and Gijbels, 1980Tmelt =

    933K

    1000 500 calc. of phonon spectraDiffusion coefficients

    as function of structureand temperature

    Trafo to real time

    +: no exp. parameters-: no transformation to

    real time becauseE = E(T)

    (* calculated by the Nudge Elastic Band Method; R. Podloucky, Vienna)

  • Size-shape relation of precipitates(no Al atoms are shown)Al-rich

    Al-Li Al-Cu Al-Zn

    (T = 373K, t=1.6*105 ks)

    5 nm 2 nm

    (T = 473K, t = 86.4 ks)

    250

    (T = 250K, t = 1.2 ks)S. Mller, W. Wolf, R. Podloucky, subm. J. Wang et al., Acta Mat. 53 (2005) 2759

    10 nm

    T. Sato and A. Kamino, Mat. Sci. Eng. A 146 (1991) 161

    T. J. Konno, K. Hiraga, and M. Kawasaki, Scripta Met. 44 (2001) 2303

    R. Ramlau and H. Lffler, phys. stat. sol. (a), 79, p.141 (1983))

    S. Mller, J. Phys.: Condens. Matter 15 (2003) R1429

    mean precipitate diameter [nm]0 1 2 3 4 5

    0

    20

    40

    60

    80

    100

    E c

    hem

    E C

    S

    mean precipitate diameter [nm]0 1 2 3 4 5

    0

    20

    40

    60

    80

    100

    E c

    hem

    mean precipitate diameter [nm]0 1 2 3 4 5

    0

    20

    40

    60

    80

    100

    E che

    m

    E C

    S

    Perc

    enta

    geof

    ene

    rgy

    part

    s

    (S. Mller, Advances in Solid State Physics, ed. B. Kramer (Springer, Berlin), Vol. 44, 415 (2004).)

  • Size vs. shape of precipitates in Al-Zn:Comparison between experiment and prediction

    Mean precipitate radius rm [nm]0 1 2 3 4 5 6 7

    Axia

    l c/a

    ratio

    0,2

    0,4

    0,6

    0,8

    1,0exp.1 (T = 200K)exp.2 (T = 300K)exp.3 (T = 300K)exp.4 (T = 300K)exp.5 (T = 300K)theory (T = 300K)theory (T = 200K)

    T = 200K

    T = 300K

    (x = 0.138)

    (x = 0.068)

    Ref.1:J. Deguercy et al., ActaMetall. 30, 1921 (1982). Ref.2: G. Laslaz and P. Guyot,Acta Metall. 25 , 277 (1977).Ref.3:E. Bubeck et al., Cryst. Res.Tech. 20, 97 (1985).Ref.4:V. Gerold, W. Siebke, andG. Tempus, Phys. Stat Sol. A 104, 141 (1987).Ref.5: M. Fumeron et al., ScriptaMetall. 14, 189 (1980).

    ac

    (S. Mller et al., Europhys. Lett. 55 (2001) 33)

  • Al-6.8% Zn: Simulation of aging process

    T = 373 K Aging time: 0.02 sec.

  • Reduce Temperature to T = 300K...

    T = 373 K Aging time: 20.0 sec.

  • END OF REAL TIME-SIMULATION

    T = 300 K Aging time: 40.0 sec.

  • Qualitative comparison with typical TEM-picture

    T = 300 K Aging time: 40.0 sec.

  • ZOOM: [111]-planes

    T = 300 K Aging time: 40.0 sec.

  • Al-Zn: Average diameter of Zn-precipitates as function of aging time (T = 250K)

    log(t) [sec]

    0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

    log(

    d m) [

    ]

    0.8

    1.0

    1.2

    1.4

    1.6

    1.8

    our calc. slope = +1/3

    Time t [sec]

    10 40 100 250

    10

    40

    25

    Mean precipitate diam

    eter dm [

    ]

    Power law: dm t

    MSCE: = 0.31Ostwald-ripening: = 1/3

    (S. Mller, L.-W. Wang, and A. Zunger, Model. Sim. Mater. Sci. Eng. 10 (2002) 131;http://Select.iop.org)

  • T = 200 K T = 300 K

    t = 30 sec

    t = 1 min

  • fcc-Zn precipitates: A multi-scale example

    E(eV)EF-1.0 -0.5 0.5 1.0

    (c/a) [%] = 15

    0,8 0,9 1,0 1,1 1,2

    Ener

    gy [m

    eV/a

    tom

    ]

    -20

    0

    20

    40

    60

    100

    111

    hcp-Zn

    (c/a) [%]

    fcc-Zn

    -20 -10 0 10 20

    Theoretische Festkrperphysik:AnwendungsbeispielFirst-principles calculations in materials science???Modelling materials properties demands the consideration ofPrecipitation in Al-rich Al-Zn alloysTreating long-range interactions:The mixed-space presentationTreating long-range interactions:The mixed-space presentationCoherency strain energyTreating long-range interactions:The mixed-space presentationFlattening along [111]: Instability von fcc-ZnBridging time scalesConfiguration-dependent activation barriers*Phonon spectra:Al31Li Li migrationConfiguration-dependent activation barriers*Size-shape relation of precipitatesSize vs. shape of precipitates in Al-Zn:Comparison between experiment and predictionfcc-Zn precipitates: A multi-scale example