theory of berry phase and wannier...

39
Theory of Berry Phase and Wannier Function Dec. 19-23@IOP, CAS, Beijing Hongming Weng (翁红明) Institute of Physics, Chinese Academy of Sciences

Upload: others

Post on 22-Jul-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Theory of Berry Phase and Wannier Functiont-ozaki.issp.u-tokyo.ac.jp/winter-school16/1-Berry_Wannier-Weng.pdf · Theory of Berry Phase and Wannier Function Dec. 19-23@IOP, CAS,

Theory of Berry Phase and Wannier Function

Dec. 19-23@IOP, CAS, Beijing

Hongming Weng (翁红明)

Institute of Physics, Chinese Academy of Sciences

Page 2: Theory of Berry Phase and Wannier Functiont-ozaki.issp.u-tokyo.ac.jp/winter-school16/1-Berry_Wannier-Weng.pdf · Theory of Berry Phase and Wannier Function Dec. 19-23@IOP, CAS,

2

M. V. Berry

Page 3: Theory of Berry Phase and Wannier Functiont-ozaki.issp.u-tokyo.ac.jp/winter-school16/1-Berry_Wannier-Weng.pdf · Theory of Berry Phase and Wannier Function Dec. 19-23@IOP, CAS,

M. V. Berry and Berry Phase

3

Page 4: Theory of Berry Phase and Wannier Functiont-ozaki.issp.u-tokyo.ac.jp/winter-school16/1-Berry_Wannier-Weng.pdf · Theory of Berry Phase and Wannier Function Dec. 19-23@IOP, CAS,

Geometric phase: A classical CaseGeometric phase: parallel transport of tangent vector on curved surface

The twisted angle of the tangent vector after a parallel transport loop is equal to the solid angle

subtended by the path it transversed.

a+ bia b 1.

7. ei⇡2 (a+ bi) = �b+ ai

http://torus.math.uiuc.edu/jms/java/dragsphere/

latitude

longitude

Page 5: Theory of Berry Phase and Wannier Functiont-ozaki.issp.u-tokyo.ac.jp/winter-school16/1-Berry_Wannier-Weng.pdf · Theory of Berry Phase and Wannier Function Dec. 19-23@IOP, CAS,

Quantum Geometric phase: Berry Phase

H(R(t))

adiabatic approximation

M. V. Berry, Proc.R. Soc. Lond. A 392, 45 (1984)

R(t) parameter space

At each R(t)

Time dependent cyclic evolution: t -> 0 - T

At the next neighboring R(t)

but there is arbitrary phase not determined

stays in n-state, but not in m-state (m!=n)

hm(R(t+�t)|n(R(t))i = 0

n(R(t))i ! cn(t)|n(R(t))i)cn(t) = e�i/~

R t0 En(t

0)dt0ei�n(t)

additional time-dependent phase

After adiabatic cyclic loop evolution: t -> 0 - T

the geometric phase acquired (Berry phase)

Page 6: Theory of Berry Phase and Wannier Functiont-ozaki.issp.u-tokyo.ac.jp/winter-school16/1-Berry_Wannier-Weng.pdf · Theory of Berry Phase and Wannier Function Dec. 19-23@IOP, CAS,

Quantum Geometric phase: Berry Phase

H(R(t))

M. V. Berry, Proc.R. Soc. Lond. A 392, 45 (1984)

R(t) parameter space

Stoke’s theorem

Geometric phase:

Stoke’s theorem is applicable only if S(C) is simply connected.

Page 7: Theory of Berry Phase and Wannier Functiont-ozaki.issp.u-tokyo.ac.jp/winter-school16/1-Berry_Wannier-Weng.pdf · Theory of Berry Phase and Wannier Function Dec. 19-23@IOP, CAS,

Quantum Geometric phase: Berry Phase

H(R(t))

M. V. Berry, Proc.R. Soc. Lond. A 392, 45 (1984)

R(t) parameter space

Eigenstate:

Geometric phase:Stoke’s theorem is applicable only if S(C) is simply connected.

Berry connection &

Berry curvature:

Gauge dependence:

is gauge-dependent, while is gauge-invariant.

Page 8: Theory of Berry Phase and Wannier Functiont-ozaki.issp.u-tokyo.ac.jp/winter-school16/1-Berry_Wannier-Weng.pdf · Theory of Berry Phase and Wannier Function Dec. 19-23@IOP, CAS,

Quantum Geometric phase: Berry Phase

H(R(t))

M. V. Berry, Proc.R. Soc. Lond. A 392, 45 (1984)

R(t) parameter space

Eigenstate:

Geometric phase:

R* is the point where Em(R*)=En(R*) with energy degeneracy or band crossing.

Magnetic monopole in R-space

around R*:

R*=0

E

R

Berry phase:1, accumulated phase along loop-path C inside of vector potential;2, magnetic flux through S;3, the solid angle subtended by S(C) related to R*.

Page 9: Theory of Berry Phase and Wannier Functiont-ozaki.issp.u-tokyo.ac.jp/winter-school16/1-Berry_Wannier-Weng.pdf · Theory of Berry Phase and Wannier Function Dec. 19-23@IOP, CAS,

H(R(t))

solid angle=0 solid angle=2⇡

H(R*)

H(R*)

Berry phase depends on the topology of H(R) related to H(R*) !

solid angle=0

H(R*)

solid angle=4

H(R*)

�x

�y

�z

Hσx(R)=XHσy(R)=YHσz(R)=Z

mapping from R space to H-space

�x

�y

�z

�x

�y

�z

�x

�y

�z

M. V. Berry, Proc.R. Soc. Lond. A 392, 45 (1984)

Quantum Geometric phase: Berry Phase

two-Dimensional case: no kz three-Dimensional case: with kz

Page 10: Theory of Berry Phase and Wannier Functiont-ozaki.issp.u-tokyo.ac.jp/winter-school16/1-Berry_Wannier-Weng.pdf · Theory of Berry Phase and Wannier Function Dec. 19-23@IOP, CAS,

Quantum Geometric phase: Berry PhaseAharonov-Bohm Effect (1959)

M. V. Berry, Proc.R. Soc. Lond. A 392, 45 (1984)

Page 11: Theory of Berry Phase and Wannier Functiont-ozaki.issp.u-tokyo.ac.jp/winter-school16/1-Berry_Wannier-Weng.pdf · Theory of Berry Phase and Wannier Function Dec. 19-23@IOP, CAS,

Quantum Geometric phase: Berry PhaseM. V. Berry, Proc.R. Soc. Lond. A 392, 15 (1984)

M. V. Berry, Proc.R. Soc. Lond. A 392, 45 (1984)

Page 12: Theory of Berry Phase and Wannier Functiont-ozaki.issp.u-tokyo.ac.jp/winter-school16/1-Berry_Wannier-Weng.pdf · Theory of Berry Phase and Wannier Function Dec. 19-23@IOP, CAS,

Wave-function in Solids

[H,TR ] = 0⇒ψnk (r) = unk (r)eik ⋅r

wn (r −R) = Rn =V(2π )3

ψnk (r) eiϕ n (k )− ik ⋅Rdk

BZ∫

Bloch representation

Wannier representation

R

r

periodical

Equivalence between two representations: span the same Hilbert space

ψnk(r)→ eiϕ n (k)ψnk(r)

Page 13: Theory of Berry Phase and Wannier Functiont-ozaki.issp.u-tokyo.ac.jp/winter-school16/1-Berry_Wannier-Weng.pdf · Theory of Berry Phase and Wannier Function Dec. 19-23@IOP, CAS,

Orthonormality & Completeness of Wannier Function

ʹ R m Rn =V(2π )3⎛

⎝ ⎜

⎠ ⎟

2

r ψm ʹ k (r) e−iϕm ( ʹ k )+ i ʹ k ⋅ ʹ R d ʹ k ψnk (r) e

iϕ n (k )− ik ⋅Rdk ⋅ drBZ∫BZ∫∫

=V(2π )3⎛

⎝ ⎜

⎠ ⎟

2

ψm ʹ k ψnkBZ∫ e− iϕm ( ʹ k )+ i ʹ k ⋅ ʹ R d ʹ k ⋅ eiϕ n (k )− ik ⋅RdkBZ∫

=V(2π )3⎛

⎝ ⎜

⎠ ⎟

2

δm,nδ ʹ k ,kBZ∫ e−iϕm ( ʹ k )+ i ʹ k ⋅ ʹ R d ʹ k ⋅ eiϕ n (k )− ik ⋅RdkBZ∫

=V(2π )3⎛

⎝ ⎜

⎠ ⎟

2

eik( ʹ R −R)dkBZ∫BZ∫ dk

= δm,nδ ʹ R ,R

Page 14: Theory of Berry Phase and Wannier Functiont-ozaki.issp.u-tokyo.ac.jp/winter-school16/1-Berry_Wannier-Weng.pdf · Theory of Berry Phase and Wannier Function Dec. 19-23@IOP, CAS,

Arbitrariness of Wannier Function

For composite bands, choice of phase and “band-index labeling” at each k For entangling bands, the subspace should be optimized.

1.

ψnk(r)→ eiϕ n (k)ψnk(r)The arbitrary phase is periodic in reciprocal lattice translation G but not assigned by the Schrodinger equation.

2.

ψnk (r)→ Umnk

m∑ ψnk (r)

Freedom of Gauge Choice

Optimal Subspace

Page 15: Theory of Berry Phase and Wannier Functiont-ozaki.issp.u-tokyo.ac.jp/winter-school16/1-Berry_Wannier-Weng.pdf · Theory of Berry Phase and Wannier Function Dec. 19-23@IOP, CAS,

Maximally Localized Wannier Functions

• Localization criterion

Ω = 0n r 2 0n − 0n r 0n 2[ ]n∑ = r 2

n− r n

2[ ]n∑

Minimizing the spread functional defined as

by finding the proper choice of Umn(k) for a given set of Bloch functions.

N. Marzari and D. Vanderbilt PRB56, 12847 (1997)

• Optimization with the knowledge of Gradient

unk ⇐ unk + dWmn(k ) umk

n∑

Umn(k ) ⇐Umn

(k ) + dWmn(k )

dW = ε ⋅ −G( )

wn (r −R) = Rn =V(2π )3

Umn(k )ψmk (r) e

−ik ⋅Rdkm=1

N

∑BZ∫The equation of motion for Umn

(k). Umn(k) is moving in the direction

opposite to the gradient to decrease the value of Ω, until a minimum is reached. A proper Gauge choice.

Page 16: Theory of Berry Phase and Wannier Functiont-ozaki.issp.u-tokyo.ac.jp/winter-school16/1-Berry_Wannier-Weng.pdf · Theory of Berry Phase and Wannier Function Dec. 19-23@IOP, CAS,

Spread functional in real-space

Ω = 0n r 2 0n − 0n r 0n 2[ ]n∑

= 0n r 2 0n − Rm r 0n2

Rm∑ + Rm r 0n

2

Rm≠0n∑

⎣ ⎢

⎦ ⎥

n∑

= 0n r 2 0n − Rm r 0n2

Rm∑

⎣ ⎢

⎦ ⎥

n∑ + Rm r 0n

2

Rm≠0n∑

n∑ =ΩI +

˜ Ω

=ΩI + Rn r 0n 2+

R≠0∑

n∑ Rm r 0n 2

R∑

m≠n∑

=ΩI +ΩD +ΩOD

ΩI, ΩD and ΩOD are all positive-definite. Especially ΩI is gauge-invariant, means it will not change under any arbitrary unitary transformation of Bloch orbitals. Thus, only ΩD+ΩOD should be minimized.

Page 17: Theory of Berry Phase and Wannier Functiont-ozaki.issp.u-tokyo.ac.jp/winter-school16/1-Berry_Wannier-Weng.pdf · Theory of Berry Phase and Wannier Function Dec. 19-23@IOP, CAS,

Spread functional in Reciprocal-space

Using the following transformations, matrix elements of the position operator in WF basis can be expressed in Bloch function basis:

Ω =ΩI + Rn r 0n 2+

R≠0∑

n∑ Rm r 0n 2

R∑

m≠n∑

=ΩI +ΩD +ΩOD

ΩI = 0n r 2 0n − Rm r 0n 2

Rm∑

⎣ ⎢

⎦ ⎥

n∑ =

1N

wb J − Mmn(k ,b ) 2

m,n∑

⎝ ⎜

⎠ ⎟

k,b∑

ΩOD =1N

wb Mmn(k ,b ) 2

m≠n∑

k ,b∑

ΩD =1N

wbk,b∑ −ImlnMnn

(k ,b ) −b ⋅ r n( )2

n∑

Mnn(k ,b ) = unk unk+b

wbbαbβb∑ = δαβ

for local potential, but can be generalized to non-local case.

Page 18: Theory of Berry Phase and Wannier Functiont-ozaki.issp.u-tokyo.ac.jp/winter-school16/1-Berry_Wannier-Weng.pdf · Theory of Berry Phase and Wannier Function Dec. 19-23@IOP, CAS,

Gradient of Spread Functional

unk ⇐ unk + dWmn(k ) umk

m∑

dMnn(k ,b ) = − dWnm

(k )Mmn(k ,b )

m∑ + Mnl

(k,b )dWln(k+b )

l∑

= − dW (k )M (k ,b )[ ]nn + M (k,b )dW (k+b )[ ]nn

Mnn(k ,b ) = unk unk+b

dΩI ,OD =1N

wb 4Re dWnm(k )Mmn

(k ,b )Mnn(k,b )*

m,n∑⎛

⎝ ⎜

⎠ ⎟

k,b∑ =

4N

wb Retr dW(k )R(k ,b )[ ]

k,b∑

dΩD = −4N

wb Retr dW(k )T (k,b )[ ]

k,b∑

G(k ) =dΩdW (k ) = 4 wb A R(k,b )[ ] - S T (k ,b )[ ]( )

b∑

Page 19: Theory of Berry Phase and Wannier Functiont-ozaki.issp.u-tokyo.ac.jp/winter-school16/1-Berry_Wannier-Weng.pdf · Theory of Berry Phase and Wannier Function Dec. 19-23@IOP, CAS,

Overlap Matrix

Mmn(k ,b )

Mmn(k ,b ) = um

k (r) unk +b (r) = ψm

k (r) eik ⋅re−i(k +b )⋅r ψnk +b (r)

=1N

e−iR p keiRq (k +b ) Cm,iα(k )*Cn, jβ

(k +b ) φiα (r − τ i −Rp ) e−ib ⋅r φ jβ (r − τ j −Rq )i,αj ,β

∑p,q

N

=1N

e−i(R p −Rq )k Cm,iα(k )*Cn, jβ

(k +b ) φiα (r − τ i −Rp ) e− i(r−Rq )⋅b φ jβ (r − τ j −Rq )i,αj,β

∑p,q

N

ʹ r ≡ r − τ i −Rp

Mmn(k ,b ) =

1N

e− i(R p −Rq )k Cm,iα(k )*Cn, jβ

(k +b ) φiα ( ʹ r ) e−i( ʹ r +τ i +R p −Rq )⋅b φ jβ ( ʹ r + τ i − τ j + Rp −Rq )i,αj ,β

∑p,q

N

= eiRq ⋅k Cm,iα(k )*Cn, jβ

(k +b ) φiα ( ʹ r ) e− i( ʹ r +τ i −Rq )⋅b φ jβ ( ʹ r + τ i − τ j −Rq )i,αj,β

∑q

N

= eiRq ⋅(k +b ) e−ib ⋅τ i Cm,iα(k )*Cn, jβ

(k +b ) φiα ( ʹ r ) e− ib ⋅ ʹ r φ jβ ( ʹ r + τ i − τ j −Rq )i,αj,β

∑q

N

ψm∈win(k ) (r) = eikrum∈win

(k ) (r) =1N

eiR p k Cm∈win,iα(k ) φiα (r − τ i − Rp )

i,α∑

p

N

Page 20: Theory of Berry Phase and Wannier Functiont-ozaki.issp.u-tokyo.ac.jp/winter-school16/1-Berry_Wannier-Weng.pdf · Theory of Berry Phase and Wannier Function Dec. 19-23@IOP, CAS,

Initial guess for MLWF

φnk = Amn(k ) umk

m

Nwin(k )

Amn(k ) = umk gn

The resulting N functions can be orthonormalized by Löwdin transformation

unkopt = (S−1/ 2)mn φmk

m=1

N

= (S−1/ 2)mn Apm(k ) upk

p=1

Nwin(k )

∑m=1

N

= (AS−1/ 2)pn upkp=1

Nwin(k )

Smn ≡ Smn(k ) = φmk φnk = (A+A)mn

Therefore, AS-1/2 is used as the initial guess of

U (k )

1. to avoid the local minima and accelerate the convergence;

2. to eliminate the random phase factor of Bloch function

Page 21: Theory of Berry Phase and Wannier Functiont-ozaki.issp.u-tokyo.ac.jp/winter-school16/1-Berry_Wannier-Weng.pdf · Theory of Berry Phase and Wannier Function Dec. 19-23@IOP, CAS,

Initial guess for MLWF

Amn(k ) = umk gn

In OpenMX, we use the pesudo-atomic orbital as initial trial functions.

ψm∈win(k ) (r) =

1N

eiRp k Cm∈win,iα(k ) φiα (r − τ i − Rp )

i,α∑

p

N

gn (r) = g j ,β (r) = φ j ,β (r)

Amn(k ) = ψm∈win

(k ) (r) gn (r) =1N

e−iR p k Cn∈win,iα(k ) *

φiα (r − τ i − Rp ) φ j,β (r)i,α∑

p

N

For selected Bloch function, the projection matrix element can be expressed as:

1. Easier to calculate;2. Can be tuned by generating new PAO;3. Can be put anywhere in the unit cell;4. Quantization axis and hybridizations can also be controlled.

Page 22: Theory of Berry Phase and Wannier Functiont-ozaki.issp.u-tokyo.ac.jp/winter-school16/1-Berry_Wannier-Weng.pdf · Theory of Berry Phase and Wannier Function Dec. 19-23@IOP, CAS,

Disentangle bands in metalSelect bands locates in an energy window. These bands constitute a large space . The number of bands at each k inside the window should be larger or equal to the number of WF.€

Nwin(k )

F(k)

Target is to find an optimized subspace , which gives the smallest

S(k)

ΩI

ΩI =1Nkp

wbTk,bb∑

k=1

Nkp

Tk,b = N − Mmn(k ,b ) 2

m,n∑ = Tr PkQk+b[ ]

P is the operator which project onto a set of bands while Q is projecting onto the left set of bands. Therefore, ΩI measures the mismatch between two sets of bands at k and k+b, respectively.

Inner window

Page 23: Theory of Berry Phase and Wannier Functiont-ozaki.issp.u-tokyo.ac.jp/winter-school16/1-Berry_Wannier-Weng.pdf · Theory of Berry Phase and Wannier Function Dec. 19-23@IOP, CAS,

Iterative minimization of

ΩIUsing Lagrange multipliers to enforce orthonormality and the stationary condition at i-th iteration is:

δΩI(i)

δumk(i)* + Λnm,k

(i) δδumk

(i)* umk(i) unk

( i) −δm,n[ ]n=1

N

∑ = 0

ΩI(i) =

1Nkp

ω I( i)(k)

k=1

Nkp

ω I(i)(k) = wbTk,b

( i)

b∑ = wbTk,b

(i)

b∑

= wb 1− umk(i) un,k+b

( i−1) 2

n=1

N

∑⎡

⎣ ⎢

⎦ ⎥

m=1

N

∑b∑

S(k )(i) is the subspace at k point

in the i-th iterationIf inner window is set, the full space shrink.

Page 24: Theory of Berry Phase and Wannier Functiont-ozaki.issp.u-tokyo.ac.jp/winter-school16/1-Berry_Wannier-Weng.pdf · Theory of Berry Phase and Wannier Function Dec. 19-23@IOP, CAS,

Interpolation of band structure

unq(W ) = Umn (q) φmq

m=1

Nq

q is the grid of BZ used for constructing MLWF

nR =1Nq

e−iq ⋅R unq(W )

q=1

Nq

Hnm(W ) q( ) = unq

(W ) H(q) umq(W ) = Uin

* (q) uiq H(q) U jm (q)j∑ u jq

i∑

= Uin* (q) uiq H(q) u jq U jm (q) =

i, j∑ U +H(q)U[ ]nm

Hamiltonian in Wannier gauge can be diagonalized and the bands inside the inner window will have the same eigen-value as in original Hamiltonian gauge.Other operators can be transferred to Wannier gauge in the similar way.

Page 25: Theory of Berry Phase and Wannier Functiont-ozaki.issp.u-tokyo.ac.jp/winter-school16/1-Berry_Wannier-Weng.pdf · Theory of Berry Phase and Wannier Function Dec. 19-23@IOP, CAS,

Interpolation of band structure

Fourier transfer into the R space:

Hnm(W )(R) =

1Nq

e− iq ⋅RHnm(W )(q)

q=1

Nq

Here R denotes the Wigner-Seitz supercell centered home unit cell.

To do the interpolation of band structure at arbitrary k point, inverse Fourier transform is performed:

Hnm(W )(k) = eik ⋅RHnm

(W )(R)R∑

Diagonalize this Hamiltonian, the eigenvalues and states will be gotten.

This is directly related to Slater-Koster interpolation, with MLWFs playing the role of the TB basis orbitals.

Page 26: Theory of Berry Phase and Wannier Functiont-ozaki.issp.u-tokyo.ac.jp/winter-school16/1-Berry_Wannier-Weng.pdf · Theory of Berry Phase and Wannier Function Dec. 19-23@IOP, CAS,

Wannier in OpenMX

26

Page 27: Theory of Berry Phase and Wannier Functiont-ozaki.issp.u-tokyo.ac.jp/winter-school16/1-Berry_Wannier-Weng.pdf · Theory of Berry Phase and Wannier Function Dec. 19-23@IOP, CAS,

Wannier in OpenMX

27

Page 28: Theory of Berry Phase and Wannier Functiont-ozaki.issp.u-tokyo.ac.jp/winter-school16/1-Berry_Wannier-Weng.pdf · Theory of Berry Phase and Wannier Function Dec. 19-23@IOP, CAS,

Wannier in OpenMX

28

# 0 Steepest-descent; 1 conjugate gradient; 2 Hybrid

Page 29: Theory of Berry Phase and Wannier Functiont-ozaki.issp.u-tokyo.ac.jp/winter-school16/1-Berry_Wannier-Weng.pdf · Theory of Berry Phase and Wannier Function Dec. 19-23@IOP, CAS,

Wannier in OpenMX

29

Files:

case.mmn overlap matrix case.amn initial guesscase.eigen eigenvalue and Bloch wavefunction

case.HWR case.Wannier_Band interpolated bands

Page 30: Theory of Berry Phase and Wannier Functiont-ozaki.issp.u-tokyo.ac.jp/winter-school16/1-Berry_Wannier-Weng.pdf · Theory of Berry Phase and Wannier Function Dec. 19-23@IOP, CAS,

Wannier in OpenMX

30

Page 31: Theory of Berry Phase and Wannier Functiont-ozaki.issp.u-tokyo.ac.jp/winter-school16/1-Berry_Wannier-Weng.pdf · Theory of Berry Phase and Wannier Function Dec. 19-23@IOP, CAS,

Initial guess in OpenMX

31

physical intuition is here and important!

Page 32: Theory of Berry Phase and Wannier Functiont-ozaki.issp.u-tokyo.ac.jp/winter-school16/1-Berry_Wannier-Weng.pdf · Theory of Berry Phase and Wannier Function Dec. 19-23@IOP, CAS,

Benzene Molecule MLWF

• With pz on each C atom as initial guess

Page 33: Theory of Berry Phase and Wannier Functiont-ozaki.issp.u-tokyo.ac.jp/winter-school16/1-Berry_Wannier-Weng.pdf · Theory of Berry Phase and Wannier Function Dec. 19-23@IOP, CAS,

Benzene Molecular Orbitals

HOMO -5.85 eV (e1g)

HOMO-1 -7.81 eV (e2g)

HOMO-2 -8.61 eV (a2u)

LUMO+2 3.35 eV (b2g)

LUMO+1 3.30 eV (a1g)

LUMO -0.55 eV (e2u)

Page 34: Theory of Berry Phase and Wannier Functiont-ozaki.issp.u-tokyo.ac.jp/winter-school16/1-Berry_Wannier-Weng.pdf · Theory of Berry Phase and Wannier Function Dec. 19-23@IOP, CAS,

Vanadium Benzene Chain

Spin Up

pπpσ

Page 35: Theory of Berry Phase and Wannier Functiont-ozaki.issp.u-tokyo.ac.jp/winter-school16/1-Berry_Wannier-Weng.pdf · Theory of Berry Phase and Wannier Function Dec. 19-23@IOP, CAS,

Model of V-Bz electronic structureNow we can propose model to clarify the essence of the electronic structures.

E

E

(a) FM state without p-d hybridization

(b) FM state with p-d hybridization

p-d hybridization

EF

EF

Page 36: Theory of Berry Phase and Wannier Functiont-ozaki.issp.u-tokyo.ac.jp/winter-school16/1-Berry_Wannier-Weng.pdf · Theory of Berry Phase and Wannier Function Dec. 19-23@IOP, CAS,

VBz Chain FM GGA MLWFInitial guess: pz orbital on each C atom and 5d on V atom

Spread 1.200

Spread 1.235

Spread 0.857

Spread 1.122

Omega_I=12.19080 Omega_D= 0.0021 Omega_OD= 0.2059 Total_Omega=12.3988

Page 37: Theory of Berry Phase and Wannier Functiont-ozaki.issp.u-tokyo.ac.jp/winter-school16/1-Berry_Wannier-Weng.pdf · Theory of Berry Phase and Wannier Function Dec. 19-23@IOP, CAS,

VBz Chain FM GGA MLWFInitial guess: Benzene molecular orbitals and 5d on V atom

2.831 σ 3.391 3.390

3.622 3.6163.920

δ δ

π π

Omega_I=12.1908 Omega_D= 0.00Omega_OD=13.7714 Total_Omega=25.9622

Page 38: Theory of Berry Phase and Wannier Functiont-ozaki.issp.u-tokyo.ac.jp/winter-school16/1-Berry_Wannier-Weng.pdf · Theory of Berry Phase and Wannier Function Dec. 19-23@IOP, CAS,

Berry Phase and Wannier function

1D hybrid WF :

ref: David Vanderbilt, Raffaele Resta: Quantum electrostatics of insulators – Polarization, Wannier functions, and electric fields

Page 39: Theory of Berry Phase and Wannier Functiont-ozaki.issp.u-tokyo.ac.jp/winter-school16/1-Berry_Wannier-Weng.pdf · Theory of Berry Phase and Wannier Function Dec. 19-23@IOP, CAS,

39

Thank you for your attention!

Hongming [email protected]

Next lecture on the Berry phase based Band Topology Theory and its application on Topological Materials.