theory of topological insulators - ifw-website ·  · 2013-03-08pre hist qhe cs bw kubo red z2 sum...

12
Pre Hist QHE CS BW Kubo Red Z2 Sum Helmut Eschrig Leibniz-Institut für Festkörper- und Werkstofforschung Dresden Leibniz-Institute for Solid State and Materials Research Dresden Theory of Topological Insulators Helmut Eschrig IFW Dresden Theory of Topological Insulators Pre Hist QHE CS BW Kubo Red Z2 Sum 1 Preliminaries 2 Historical Remark 3 Quantum Hall Effect 4 (2r + 1)-Dimensional Chern-Simons Field Theory 5 Bloch and Wannier functions 6 Kubo’s formula 7 Dimension Reduction 8 Z 2 -Symmetry 9 Summary Helmut Eschrig IFW Dresden Theory of Topological Insulators Pre Hist QHE CS BW Kubo Red Z2 Sum 1 Preliminaries 2 Historical Remark 3 Quantum Hall Effect 4 (2r + 1)-Dimensional Chern-Simons Field Theory 5 Bloch and Wannier functions 6 Kubo’s formula 7 Dimension Reduction 8 Z 2 -Symmetry 9 Summary Helmut Eschrig IFW Dresden Theory of Topological Insulators Pre Hist QHE CS BW Kubo Red Z2 Sum Local coordinates on a real manifold M of dimension m: U M is an open set small enough to be trivialized: M U x ˜ x ˆ =x =(x 1 ,..., x m ) R m Élie Cartan’s external calculus on M does not need a metric: external 0-form: f : x f (x )= ˜ f (x ) R, external 1-form: ω = df ˆ =(˜ f /∂x i )dx i = j ω j dx j , external 2-form: σ = i <j σ ij dx i dx j =(2!) 1 σ ij dx i dx j , ··· external r -form: ρ = i 1 <...<ir ρ i 1 ...ir dx i 1 ∧···∧ dx ir =, =(r !) 1 ρ i 1 ...ir dx 1 ··· dx r alternating tensor ρ i 1 ...ir . y = y (x ): df =(˜ f /∂x i )dx i =(˜ f /∂y j )(y j /∂x i )dx i =(˜ f /∂y j )dy j . Helmut Eschrig IFW Dresden Theory of Topological Insulators

Upload: ngotuong

Post on 14-Apr-2018

217 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Theory of Topological Insulators - IFW-Website ·  · 2013-03-08Pre Hist QHE CS BW Kubo Red Z2 Sum Helmut Eschrig Leibniz-Institut für Festkörper- und Werkstofforschung Dresden

Pre Hist QHE CS BW Kubo Red Z2 Sum

Helmut EschrigLeibniz-Institut für Festkörper- und Werkstofforschung DresdenLeibniz-Institute for Solid State and Materials Research Dresden

Theory of Topological Insulators

Helmut Eschrig IFW Dresden Theory of Topological Insulators

Pre Hist QHE CS BW Kubo Red Z2 Sum

1 Preliminaries

2 Historical Remark

3 Quantum Hall Effect

4 (2r + 1)-Dimensional Chern-Simons Field Theory

5 Bloch and Wannier functions

6 Kubo’s formula

7 Dimension Reduction

8 Z2-Symmetry

9 Summary

Helmut Eschrig IFW Dresden Theory of Topological Insulators

Pre Hist QHE CS BW Kubo Red Z2 Sum

1 Preliminaries

2 Historical Remark

3 Quantum Hall Effect

4 (2r + 1)-Dimensional Chern-Simons Field Theory

5 Bloch and Wannier functions

6 Kubo’s formula

7 Dimension Reduction

8 Z2-Symmetry

9 Summary

Helmut Eschrig IFW Dresden Theory of Topological Insulators

Pre Hist QHE CS BW Kubo Red Z2 Sum

Local coordinates on a real manifold M of dimension m:U ⊂ M is an open set small enough to be trivialized:

M ⊃ U ∋ x ↔ x=x = (x1, . . . , xm) ∈ Rm

Élie Cartan’s external calculus on M does not need a metric:

external 0-form: f : x 7→ f (x) = f (x) ∈ R,

external 1-form: ω = df =(∂ f/∂x i)dx i =∑

j ωj dx j ,

external 2-form: σ =∑

i<j σij dx i ∧ dx j = (2!)−1σijdx idx j ,· · ·external r -form: ρ =

i1<...<ir ρi1...ir dx i1 ∧ · · · ∧ dx ir =,

= (r !)−1ρi1...ir dx1 · · ·dx r

alternating tensor ρi1...ir .

y = y(x) : df = (∂ f/∂x i)dx i = (∂ f/∂y j)(∂y j/∂x i)dx i = (∂ f/∂y j)dy j .

Helmut Eschrig IFW Dresden Theory of Topological Insulators

Page 2: Theory of Topological Insulators - IFW-Website ·  · 2013-03-08Pre Hist QHE CS BW Kubo Red Z2 Sum Helmut Eschrig Leibniz-Institut für Festkörper- und Werkstofforschung Dresden

Pre Hist QHE CS BW Kubo Red Z2 Sum

dρ =∑

i1<...<ir

dρi1...ir ∧ dx i1 ∧ · · · ∧ dx ir =

=∑

i1<...<ir

j

∂ρi1...ir

∂x j dx j ∧ dx i1 ∧ · · · ∧ dx ir .

Uρ =

U

i1<...<ir

ρi1...ir dx i1 ∧ · · · ∧ dx ir ,

dx i1 ∧ · · · ∧ dx ir =D(x1, . . . , x r )

D(y1, . . . , y r )dy j1 ∧ · · · ∧ dy jr .

Stokes:∫

Mdρ =

∂Mρ,

∂M: boundary of M.

Helmut Eschrig IFW Dresden Theory of Topological Insulators

Pre Hist QHE CS BW Kubo Red Z2 Sum

An action integral over M which is an integral of an externalform depends only on the topology of M, not on a metric; it iscalled a topological term.

For instance the action integral of a Maxwell field,∫

d4xFµν Fµν =

d4xFστ gσµ gτν Fµν

depends on the pseudo-Riemannian metric gµν ,while ∫

d4xδµνστ0123 FµνFστ =

d4xE · B

is a topological term.

Helmut Eschrig IFW Dresden Theory of Topological Insulators

Pre Hist QHE CS BW Kubo Red Z2 Sum

1 Preliminaries

2 Historical Remark

3 Quantum Hall Effect

4 (2r + 1)-Dimensional Chern-Simons Field Theory

5 Bloch and Wannier functions

6 Kubo’s formula

7 Dimension Reduction

8 Z2-Symmetry

9 Summary

Helmut Eschrig IFW Dresden Theory of Topological Insulators

Pre Hist QHE CS BW Kubo Red Z2 Sum

Theoretical prediction of quantum oscillations in σxy :

σxy ≈ −necB

+1ωcτ

σxx .

T. Ando, Y. Matsumoto and Y. Uemura, J. Phys. Soc. Japan 39,279 (1975).

Discovery of QHE:

K. von Klitzing, G. Dorda and M. Pepper, Phys. Rev. Lett. 45,494 (1980).

Helmut Eschrig IFW Dresden Theory of Topological Insulators

Page 3: Theory of Topological Insulators - IFW-Website ·  · 2013-03-08Pre Hist QHE CS BW Kubo Red Z2 Sum Helmut Eschrig Leibniz-Institut für Festkörper- und Werkstofforschung Dresden

Pre Hist QHE CS BW Kubo Red Z2 Sum

Kubo’s formula as a Chern number: (TKNN-number)D. J. Thouless, M. Kohmoto, M. P. Nightingale and M. denNijs, Phys. Rev. Lett. 49, 405 (1982).Edge currents: B. I. Halperin, Phys. Rev. B 25, 2185(1982).Berry’s phase: M. V. Berry, Les Houches, 1983; Proc. R.Soc. A 392, 45 (1984).Identification of Berry’s phase and TKNN-number as Chernnumbers: Barry Simon, Phys. Rev. Lett. 51, 2167 (1983).

A case of combinatorial topology:Shiing-Shen Chern and James Simons, Ann. Math. 99, 48(1974).

Relevance in gauge-field theory and string theory:Edward Witten, Commun. Math. Phys. 121, 351 (1989).In this paper Witten coined the namesChern-Simons field theory and Chern-Simons action.

Helmut Eschrig IFW Dresden Theory of Topological Insulators

Pre Hist QHE CS BW Kubo Red Z2 Sum

1 Preliminaries

2 Historical Remark

3 Quantum Hall Effect

4 (2r + 1)-Dimensional Chern-Simons Field Theory

5 Bloch and Wannier functions

6 Kubo’s formula

7 Dimension Reduction

8 Z2-Symmetry

9 Summary

Helmut Eschrig IFW Dresden Theory of Topological Insulators

Pre Hist QHE CS BW Kubo Red Z2 Sum

(2 + 1)-dimensional Chern-Simons field theory:

X.-L. Qi, T. L. Hughes and S.-C. Zhang, Phys. Rev. B 78,195424 (2008).

Sint =

d3x Aµ jµ =σH

2!

d3x δµνσ012 Aµ∂νAσ, ∂µ =

∂xµ, µ = 0,1,2;

jµ =δSint

δAµ=σH δ

µνσ012 ∂νAσ,

Hall conductance

δcycl{012}012 = +1,

δcycl{210}012 = −1,

δµνσ012 = 0 else.

Helmut Eschrig IFW Dresden Theory of Topological Insulators

Pre Hist QHE CS BW Kubo Red Z2 Sum

jµ = σH Fµ, Fµ = δµνσ012 ∂νAσ

j0 = cρ = σH B,

j1 = σH E2, j2 = −σH E1.

F 0 = ∂1A2−∂2A1 = B (= Bz),

F 1 = ∂2A0 − ∂0A2 = E2,

F 2 = ∂0A1−∂1A0 = −E1.

0 = ∂µ jµ ⇒ 1c

∂Bz

∂t = −(∇× E)z : Faraday’s law of induction.

Helmut Eschrig IFW Dresden Theory of Topological Insulators

Page 4: Theory of Topological Insulators - IFW-Website ·  · 2013-03-08Pre Hist QHE CS BW Kubo Red Z2 Sum Helmut Eschrig Leibniz-Institut für Festkörper- und Werkstofforschung Dresden

Pre Hist QHE CS BW Kubo Red Z2 Sum

Kubo:

σH =e2

h

(1

T2κ

occ.∑

n

(−2i)(∂1unκ | ∂2unκ) dκ1 ∧ dκ2

︸ ︷︷ ︸

integer (first Chern number)

)

, ∂ i =∂

∂κi

σH =e2

~

1(2π)2

T2κ

d2κ δ12ij tr(∂ iAj), Stokes:

MdA =

∂MA

Ajmn = (−i)(umκ | ∂

junκ)

A =∑

j

Aj dκj : Berry-Simon connection form

F = DA = dA + i[A,A] = (tr([A,A]) = 0)

=∑

ij

∂ iAj dκi ∧ dκj : Berry-Simon curvature form

Helmut Eschrig IFW Dresden Theory of Topological Insulators

Pre Hist QHE CS BW Kubo Red Z2 Sum

q = (qA) = (ct , x1, x2, κ1, κ2), A = 0,1,2,3,4, ∂A =∂

∂qA,

(AA) = (A0,A1,A2,0,0, ), (AA) = (0,0,0,A3,A4),

Sint =e2

~

12!(2π)2

d5q δABCDE01234 AA∂BAC tr(∂DAE),

Helmut Eschrig IFW Dresden Theory of Topological Insulators

Pre Hist QHE CS BW Kubo Red Z2 Sum

1 Preliminaries

2 Historical Remark

3 Quantum Hall Effect

4 (2r + 1)-Dimensional Chern-Simons Field Theory

5 Bloch and Wannier functions

6 Kubo’s formula

7 Dimension Reduction

8 Z2-Symmetry

9 Summary

Helmut Eschrig IFW Dresden Theory of Topological Insulators

Pre Hist QHE CS BW Kubo Red Z2 Sum

integer r th Cern number Cr of r th Chern character:

Cr =1r !

tr(

F

2π∧ · · · ∧

F

)

= tr

((2

d2k F12)r)

=

=1

(2π)r

tr(

F12F34 · · · F2r−1,2r)

dk1 ∧ dk2 ∧ · · · ∧ dk2r =

=1

r !2r (2π)r

d2r k δ12···2ri1i2···i2r

tr(F i1i2F i3i4 · · · F i2r−1i2r

).

S(2r+1)int =

e2

~

Cr

(2π)r

A0∂1A2 · · · ∂2r−1A2r cdt ∧ dx1 ∧ · · · ∧ dx2r =

=e2

~

Cr

(r + 1)!(2π)r

d2r+1x δµν···στ012···2r Aµ∂ν · · · ∂σAτ .

Helmut Eschrig IFW Dresden Theory of Topological Insulators

Page 5: Theory of Topological Insulators - IFW-Website ·  · 2013-03-08Pre Hist QHE CS BW Kubo Red Z2 Sum Helmut Eschrig Leibniz-Institut für Festkörper- und Werkstofforschung Dresden

Pre Hist QHE CS BW Kubo Red Z2 Sum

r th order response:

jµ =e2

~

Cr

r !(2π)r δµν···στ012···2r∂νA. · · · ∂σAτ ,

S(2r+1)int =

e2

~

1r !(r + 1)!(2π)2r

d4r+1q δA0A1···A4r01···4r ·

· AA0∂A1 · · · ∂A2r−1AA2r tr(DA2r+1AA2r+2 · · ·DA4r−1AA4r

).

Helmut Eschrig IFW Dresden Theory of Topological Insulators

Pre Hist QHE CS BW Kubo Red Z2 Sum

Example: 4D QHES.-C. Zhang and J. P. Hu, Science 294, 823 (2001).

r = 2, A0 = A1 = A4 = 0, A2 = B3x1, A3 = −E3ct :

j4 =e2

~

C2

(2π)2 B3E3 = σHE3,

dx1dx2 j4 =e2

~

C2

(2π)2

(∫

dx1dx2 B3

︸ ︷︷ ︸

NΦ0=N2π~/e

)

E3 =e

2πC2N E3,

12-plane

34-plane�B3

�E36

j4

Helmut Eschrig IFW Dresden Theory of Topological Insulators

Pre Hist QHE CS BW Kubo Red Z2 Sum

Simple (2r + 1)D model, topologically equivalent tomost conceivable 2rD band structures:

(2r + 1)D Dirac model:

H =

d2r x ψ†(

−i∑

j

Γj∂j + Γ0m)

ψ, [Γµ, Γν ]+ = 2δµν I,

j = 1, . . . ,2r , µ, ν = 0,1, . . . ,2r ,

The Γµ are (r × r)-matrices of a faithful representation of theso(2r + 1) Lie algebra (Clifford algebra).

2rD Dirac lattice model (tb):

H =∑

k

ψ†k

(∑

j

Γj sin kj + Γ0(m + c∑

j

cos kj))

ψk =

=∑

k

ψ†k

(∑

µ

Γµdµ(k))

ψk , c : NN hopping integral.

Helmut Eschrig IFW Dresden Theory of Topological Insulators

Pre Hist QHE CS BW Kubo Red Z2 Sum

r = 2 :

dµ(k) =

([

m + c4∑

j=1

cos kj], sin k1, sin k2, sin k3, sin k4

)

,

εk = ±

√∑

µ

d2µ(k),

C2 =3

8π2

d4k δabcde01234 da∂1db∂2dc∂3dd∂4de =

=

0 |m| > 4c,

1 −4c < m < −2c,

−3 −2c < m < 0,

3 0 < m < 2c,

−1 2c < m < 4c.

Helmut Eschrig IFW Dresden Theory of Topological Insulators

Page 6: Theory of Topological Insulators - IFW-Website ·  · 2013-03-08Pre Hist QHE CS BW Kubo Red Z2 Sum Helmut Eschrig Leibniz-Institut für Festkörper- und Werkstofforschung Dresden

Pre Hist QHE CS BW Kubo Red Z2 Sum

gapless surface states on 3D surface (open x4 boundary) for

εk = 0 for some k .

1 Dirac cone at k = 0 for |C2| = 1,3 Dirac cones at k = (π,0,0), (0, π,0), (0,0, π) for |C2| = 3.

For more details see Qi at al. (2008).

Helmut Eschrig IFW Dresden Theory of Topological Insulators

Pre Hist QHE CS BW Kubo Red Z2 Sum

1 Preliminaries

2 Historical Remark

3 Quantum Hall Effect

4 (2r + 1)-Dimensional Chern-Simons Field Theory

5 Bloch and Wannier functions

6 Kubo’s formula

7 Dimension Reduction

8 Z2-Symmetry

9 Summary

Helmut Eschrig IFW Dresden Theory of Topological Insulators

Pre Hist QHE CS BW Kubo Red Z2 Sum

d-Tori Tdr (unit cell) and T

dk Brillouin zone.

R · G = 2π · integer.

Crystal Hamiltonian:

H = −~

2

2m∇2+V , Hψnk = ψnkεnk , (ψnk |ψn′k ′)∞ = δnn′δ(k−k ′),

ψnk (r) =eik ·r

|Tdk |

1/2unk (r), unk (r+R) = unk (r), unk+G(r) = unk (r),

Hk = −~

2

2m(−i∇+k)2+V , Hk unk = unkεnk , (unk |un′k )

Tdr

= δnn′ ,

anR(r) =1

|Tdk |

Tdk

ddk eik ·(r−R)occ.∑

n′

Unn′(k)un′k (r), U†(k) = U−1(k),

(anR |an′R′) = δnn′δRR′ ,∑

R

occ.∑

n

|anR(r)|2 = ρ(r).

Helmut Eschrig IFW Dresden Theory of Topological Insulators

Pre Hist QHE CS BW Kubo Red Z2 Sum

Change of polarization:

∆P = −e

|Tdr |

occ.∑

n

∫ ∞

dd r r ∆|an0(r)|2 =

=e

|Tdr |

(

−i|Td

k |

Tdk

ddkocc.∑

n

Tdr

dd r(Uu)†nk∇k (Uu)nk

)

.

occ.∑

n

((Uu)nk | ∇k (Uu)nk

)=

occ.∑

n

(unk | ∇k unk )+tr(U−1(k)∇k U(k)

),

trU−1∇U = tr∇ ln U = ∇tr ln U = ∇ ln det U = i∇θ, det U = eiθ,

det U(k+G) = det U(k) ⇒ θ(k) = α(k)+∑

R

′k ·R, α(k+G) = α(k),

∆P is only determined modulo (e/|Tdr |)∑

R′R.

Helmut Eschrig IFW Dresden Theory of Topological Insulators

Page 7: Theory of Topological Insulators - IFW-Website ·  · 2013-03-08Pre Hist QHE CS BW Kubo Red Z2 Sum Helmut Eschrig Leibniz-Institut für Festkörper- und Werkstofforschung Dresden

Pre Hist QHE CS BW Kubo Red Z2 Sum

Consider a 1D crystal:

R = Na, G =2πa2 a, |T1

r | = |a|, |T1k | =

2π|a|.

θ(k) = α(k) + Nk ,

∆P =e

|T1r |

(a

2π(−i)

∫ 1

0dk

occ.∑

n

((Uu)nk | ∂

k (Uu)nk))

.

Helmut Eschrig IFW Dresden Theory of Topological Insulators

Pre Hist QHE CS BW Kubo Red Z2 Sum

Adiabatic parameter t :

H = Ht , 0 ≤ t ≤ 1, P(0) = 0,P(1) = P,

unk → untk , U(k) → U(k , t).

6

-

t

k

M

U

∂M

T1k

Helmut Eschrig IFW Dresden Theory of Topological Insulators

Pre Hist QHE CS BW Kubo Red Z2 Sum

P = P(1) − P(0) =e

|T1k |

a2π

∂MtrA =

=

∫ 1

0dt∂P∂t

=e

|T1k |

a2π

MtrF ,

Amn = −i((Uu)mtk | ∂

k (Uu)ntk)dk , (Uu)m,ntk occupied,

Fmn = −i(∂t(Uu)mtk | ∂

k (Uu)ntk)dt∧dk , (Uu)m,ntk occupied,

trA : J. Zak’s Berry phase due to the k -torus,

A : J. Zak’s Berry connection,F : J. Zak’s Berry curvature.

J. Zak, Phys. Rev. B 62, 2747 (1989).

Helmut Eschrig IFW Dresden Theory of Topological Insulators

Pre Hist QHE CS BW Kubo Red Z2 Sum

Let Ht be periodic, H1 = H0, then, ∂M = ∅. Is P(1) = P = 0?

Recall that ∆P was via A only determined modulo (e/|T1k |)Na.

12π

MtrF = N = integer (= first Chern number C1).

While trA dependts on U(k , t), trF depends only on U(k)(for smooth U(t)).

trF = d trA holds locally, its continuation to all M is obstructed,if C1 6= 0.

This is a case of the general Chern-Weil theorem:While trF is uniquely defined in such cases, it is independent ofthe local gauge (U(t)) of trA.

Helmut Eschrig IFW Dresden Theory of Topological Insulators

Page 8: Theory of Topological Insulators - IFW-Website ·  · 2013-03-08Pre Hist QHE CS BW Kubo Red Z2 Sum Helmut Eschrig Leibniz-Institut für Festkörper- und Werkstofforschung Dresden

Pre Hist QHE CS BW Kubo Red Z2 Sum

1 Preliminaries

2 Historical Remark

3 Quantum Hall Effect

4 (2r + 1)-Dimensional Chern-Simons Field Theory

5 Bloch and Wannier functions

6 Kubo’s formula

7 Dimension Reduction

8 Z2-Symmetry

9 Summary

Helmut Eschrig IFW Dresden Theory of Topological Insulators

Pre Hist QHE CS BW Kubo Red Z2 Sum

L. Smrcka and P. Streda, J. Phys. C 10, (1977); TKNN, 1982.

conductivity ∼ current-current correlation function;for non-interacting Bloch electrons at zero temperature:

σH =i~

(2π)2

d2κocc.∑

n

unocc.∑

m

(umκ |jx |unκ)(unκ |jy |umκ) − c.c.(εmκ − εnκ)2

Helmut Eschrig IFW Dresden Theory of Topological Insulators

Pre Hist QHE CS BW Kubo Red Z2 Sum

Ax = 0, Ay = Bx − Ect , B = Bez , E = Eey ,

H =~

2

2m

((

−i∂

∂x

)

)2 +(

−i∂

∂y+

e~c

Bx −e~

Et)2)

+ V (x , y)

T (R) = exp(iR ·

(−i∇− (e/~c)eyBx

), R = n1a1 + n2a2,

T (R)T (R′) = exp((ie/~c)B·R×R′

)T (R′)T (R), [H, T (R)] = 0,

choose (e/~c)B · R1 × R2 = 2π· integer, then

Hκunκ = unκεnκ, Hκ =~

2(κ + κ)2

2m+V , κ = −i∇+(e/~c)ey (Bx−Ect).

j = −ep

m|T2r |

= −e~

2∑

i=1

R i

|T2r |

[ ∂

∂κi, Hκ

]

.

σH =i~

(2π)2

d2κocc.∑

n

unocc.∑

m

(umκ |jx |unκ)(unκ |jy |umκ) − c.c.(εmκ − εnκ)2

Helmut Eschrig IFW Dresden Theory of Topological Insulators

Pre Hist QHE CS BW Kubo Red Z2 Sum

σH =e2

2π~

(

12π

T2r

occ.∑

n

(−2i)(∂1unκ | ∂2unκ) dκ1 ∧ dκ2

)

=

=e2

2π~C1, C1 ∈ Z ∂ i =

∂κi.

G =∑

n

u∗n (ω − εn)

−1 un,

C1 ∼

tr(

Pocc(G∂ωG−1)(G∂1G−1)((G∂2G−1))

dω∧dκ1∧dκ2.

Helmut Eschrig IFW Dresden Theory of Topological Insulators

Page 9: Theory of Topological Insulators - IFW-Website ·  · 2013-03-08Pre Hist QHE CS BW Kubo Red Z2 Sum Helmut Eschrig Leibniz-Institut für Festkörper- und Werkstofforschung Dresden

Pre Hist QHE CS BW Kubo Red Z2 Sum

Remark regarding the literature:

G−1G = 1 ⇒ (∂G−1)G + G−1∂G = 0;

tr(G−1∂G · · · ) = ∓tr(G ∂G−1 · · · )

.

Helmut Eschrig IFW Dresden Theory of Topological Insulators

Pre Hist QHE CS BW Kubo Red Z2 Sum

1 Preliminaries

2 Historical Remark

3 Quantum Hall Effect

4 (2r + 1)-Dimensional Chern-Simons Field Theory

5 Bloch and Wannier functions

6 Kubo’s formula

7 Dimension Reduction

8 Z2-Symmetry

9 Summary

Helmut Eschrig IFW Dresden Theory of Topological Insulators

Pre Hist QHE CS BW Kubo Red Z2 Sum

D. J. Thouless, Phys. Rev. B 27, 6083 (1983);

Consider a QHE setup with a strip long in y -direction (furtheron with periodic boundary conditions with macroscopic lengthLy ) but constraint in x-direction by width Lx , and let themagnetic field adiabatically change.

A0 = 0, Ax = 0, Ay = B(t)x ,

Bz(t) =∂Ay

∂x= B(t), Ey (t) = −

∂Ay

c∂t= −

xc∂B∂t.

κ2 = κ(x) = −i∂

∂y+

e~c

B(t)x , Hκ → Hλ(x ,t),κ(x).

λ(x , t) ≈ const. within a unit cell: adiabatic and quasiclassic.

Helmut Eschrig IFW Dresden Theory of Topological Insulators

Pre Hist QHE CS BW Kubo Red Z2 Sum

[ ∂

∂t, Hλκ

]

= −xc∂B∂t

epy

m=

xc∂B∂t

jy .

jx =∂Px

∂t,

∂jx

∂x= −

∂ρ

∂t=∂2Px

∂t∂x:

(t , x , κ) = (q0,q1,q2), ρ = j0, j i = −δij

01∂Px

∂q j , i , j = 0,1.

AA =

occ.∑

n

(−i)(unq | ∂Aunq), F = dA, ∂i =∂

∂q i , i = 0,1,2 :

j i = −1

2πδ012

i2j

dq2dq jF2j .

i = 0 : quantized charge flow across the QHE strip (Laughlin,1981).i = 1 and B(t) periodic: quantized charge pumping through a1D conductor (Thouless, 1983).

Helmut Eschrig IFW Dresden Theory of Topological Insulators

Page 10: Theory of Topological Insulators - IFW-Website ·  · 2013-03-08Pre Hist QHE CS BW Kubo Red Z2 Sum Helmut Eschrig Leibniz-Institut für Festkörper- und Werkstofforschung Dresden

Pre Hist QHE CS BW Kubo Red Z2 Sum

Now the magnetic state is not any more in a closed positionspace without boundary (unit cell torus or Born-van Karmantorus T

2r ); it is bounded in x-direction by edges.

Since outside the edges the vacuum state has C1 = 0 and theChern number is topological prodected as long as theelectronic spectrum is gapped, C1 6= 0 in the QHE strip canonly happen, if there are gapless edge states.

Helmut Eschrig IFW Dresden Theory of Topological Insulators

Pre Hist QHE CS BW Kubo Red Z2 Sum

X.-L. Qi, T. L. Hughes and S.-C. Zhang, Phys. Rev. B 78,195424 (2008).

gave a general prescription how automatically an analogousdimension reduction form a fundamental (2r + 1)DChern-Simons field theory to an adiabatic and quasi-classical((2r + 1) − s)D Chern-Simons field theory is obtained.

Helmut Eschrig IFW Dresden Theory of Topological Insulators

Pre Hist QHE CS BW Kubo Red Z2 Sum

Start with the (2r + 1)D Chern-Simons action

S(2r+1)int =

e2

~

1r !(r + 1)!(2π)2r

d4r+1q δA0A1···A4r01···4r ·

· AA0∂A1 · · · ∂A2r−1AA2r tr(DA2r+1AA2r+2 · · ·DA4r−1AA4r

),

remove a term ∂A2r−1AA2r ,remove the integrations over dx2r dk2r/(2π),multiply by the original power r of the external potential A, afters reduction steps find

S(2r+1−s)(s) int =

e2

~

(2r+1−sr

)

(2r + 1 − s)!(2π)2r−s

d4r+1−2sq δA0A1···A4r−2s01···(4r−2s) ·

· AA0∂A1 · · · ∂A2r−2s−1AA2r−2s ·

· tr(DA2r−2s+1AA2r−2s+2 · · ·DA4r−2s−1AA4r−2s

).

Helmut Eschrig IFW Dresden Theory of Topological Insulators

Pre Hist QHE CS BW Kubo Red Z2 Sum

There are at most r descendants from a fundamental (2r + 1)DChern-Simons theory, then there is no external gauge potentialA left any more for reduction.

To arrive in our D ≤ 3-dimensional physical position spaces,the following cases are possible:

S(0+1)int ,

S(2+1)int → S(1+1)

1 int → S(0+1)2 int ,

S(4+1)int → S(3+1)

1 int → S(2+1)2 int ,

S(3+1)3 int → S(2+1)

4 int ,

S(3+1)5 int

dHvA, QHE,TRI, QSHE

Helmut Eschrig IFW Dresden Theory of Topological Insulators

Page 11: Theory of Topological Insulators - IFW-Website ·  · 2013-03-08Pre Hist QHE CS BW Kubo Red Z2 Sum Helmut Eschrig Leibniz-Institut für Festkörper- und Werkstofforschung Dresden

Pre Hist QHE CS BW Kubo Red Z2 Sum

1 Preliminaries

2 Historical Remark

3 Quantum Hall Effect

4 (2r + 1)-Dimensional Chern-Simons Field Theory

5 Bloch and Wannier functions

6 Kubo’s formula

7 Dimension Reduction

8 Z2-Symmetry

9 Summary

Helmut Eschrig IFW Dresden Theory of Topological Insulators

Pre Hist QHE CS BW Kubo Red Z2 Sum

In order to have a topological protection of a non-trivial Chernnumber state in a dimension reduced Chern-Simons theory, anadditional symmetry is needed which enforces the boundarystates to be gapless.

Such a symmetry may be one of the ubiquitous discretesymmetries of the kinetic terms in the action:

charge conjugation: C†H−k C = −H tk , C†C = C∗C = 1,

time reversal: T †H−k T = H tk , T †T = −T ∗T = 1.

C : Aµ → −Aµ, T : Aµ →

{

A0

−Ai

Chern-Simons Lagrangian L(2r+1)int :

C : L(2r+1)int → (−1)r+1L(2r+1)

int , T : L(2r+1)int → (−1)r L(2r+1)

int .

Helmut Eschrig IFW Dresden Theory of Topological Insulators

Pre Hist QHE CS BW Kubo Red Z2 Sum

A Chern-Simons theory, depending on the properties of thekinetic terms, may be C-invariant for r odd and T -invariant for reven.

This is why non-trivial S(3+1)1 int and S(2+1)

2 int must be time-reversalinvariant. (In the first (second) descendant of a fundamental(2r + 1)-dimensional case an adiabatic quasiclassicalpolarization (gauge curvature) appears in the action instead ofone (two) external potential factor(s) with the sametransformation properties as the latter.)

Helmut Eschrig IFW Dresden Theory of Topological Insulators

Pre Hist QHE CS BW Kubo Red Z2 Sum

1 Preliminaries

2 Historical Remark

3 Quantum Hall Effect

4 (2r + 1)-Dimensional Chern-Simons Field Theory

5 Bloch and Wannier functions

6 Kubo’s formula

7 Dimension Reduction

8 Z2-Symmetry

9 Summary

Helmut Eschrig IFW Dresden Theory of Topological Insulators

Page 12: Theory of Topological Insulators - IFW-Website ·  · 2013-03-08Pre Hist QHE CS BW Kubo Red Z2 Sum Helmut Eschrig Leibniz-Institut für Festkörper- und Werkstofforschung Dresden

Pre Hist QHE CS BW Kubo Red Z2 Sum

Chern-Simons action integrals are integrals of externalforms and hence independent of a metric: topologicalterms.

The QHE is the prototype of such a theory in solid statephysics.

A Chern number is the 2r -dimensional integral of a 2r -form(Chern form) which is an invariant polynomial of theBerry-Simon curvature form. It locally derives from aChern-Simons form obtained from the Berry-Simonconnection form, but does not depend on the choice of theconnection (Berry gauge invariance).

The theory combines a Berry phase gauge theory with agauge field theory of an external field.

Helmut Eschrig IFW Dresden Theory of Topological Insulators

Pre Hist QHE CS BW Kubo Red Z2 Sum

Thank you for your attention!

Helmut Eschrig IFW Dresden Theory of Topological Insulators