thesuvat equations$ - wordpress.com · thesuvat equations$ pg3638 # # terminology$ •...

13
The SUVAT Equations Pg 3638 © cgrahamphysics.com 2015

Upload: truongdan

Post on 10-Apr-2018

215 views

Category:

Documents


1 download

TRANSCRIPT

The  SUVAT  Equations  Pg  36-­‐38   ©

 cgraham

physics.com  2015  

Terminology  •  s=  displacement  •  u  =  ini?al  /  star?ng  speed  •  v  =  final  speed  /  velocity  •  a  =  accelera?on  •  t  =  ?me  

©  cgraham

physics.com  2015  

Deriving  the  equations  from  v  –  t    graph  

• Accelera?on  =  gradient  • 𝑎= 𝑣−𝑢/𝑡   • 𝑎𝑡=𝑣−𝑢    • 𝑣=𝑢+𝑎𝑡    àvelocity  equa?on  

• Area  under  v-­‐t  graph  =  distance  

velocity  

?me  t  

v  

u  

𝐴= 1/2 (𝑣−𝑢)𝑡  

𝐴=𝑢×𝑡  

S  =  total  area  =  = 1/2 (𝑣−𝑢)𝑡+𝑢𝑡= 1/2 (𝑣−𝑢)𝑡/𝑡 ×𝑡+𝑢𝑡  𝑠=𝑢𝑡+ 1/2 𝑎𝑡↑2   à  distance  equa,on      

a  

©  cgraham

physics.com  2015  

We  know…  • 𝑎= 𝑣−𝑢/𝑡   •  𝑡= 𝑣−𝑢/𝑎   •  s  =𝑢𝑡+ 1/2 𝑎𝑡↑2   =𝑢( 𝑣−𝑢/𝑎 )+ 1/2 𝑎(𝑣−𝑢/𝑎 )↑2   

•  𝑠𝑎=𝑢(𝑣−𝑢)+ 1/2 (𝑣−𝑢)↑2   •  2sa= 𝑣↑2 − 𝑢↑2   •  𝑣↑2 = 𝑢↑2 +2𝑠𝑎        à  ?meless  EQ   ©

 cgraham

physics.com  2015  

Average  displacement  • Average  speed  =  𝑢+𝑣/2   •  𝑣↓𝑎𝑣 = 𝑠/𝑡   •  𝑠=(𝑢+𝑣/2 )𝑡  • à  average  displacement  

©  cgraham

physics.com  2015  

v = u + at

s = ut + at 2 1 2

v2 = u2 + 2as

©  cgraham

physics.com  2015  

Solving problems using equations of motion for uniform acceleration

Topic  2:  Mechanics  2.1  –  Motion  

EXAMPLE: How far will Pinky and the Brain go in 30.0 seconds if their acceleration is 20.0 m s -2? a = 20 m/s2

KNOWN Given

u = 0 m/s Implicit t = 30 s Given

WANTED s = ?

FORMULAS

v = u + at v2 = u2 + 2as

•t is known - drop the timeless eq’n. •Since v is not wanted, drop the velocity eq'n:

SOLUTION

s = 0(30) + 20(30)2 1 2

s = 9000 m

s = ut + at2 1 2

s = ut + at2 1 2

©  cgraham

physics.com  2015  

Solving problems using equations of motion for uniform acceleration

Topic  2:  Mechanics  2.1  –  Motion  

EXAMPLE: How fast will Pinky and the Brain be going at this instant?

a = 20 m/s2 KNOWN

Given

u = 0 m/s Implicit t = 30 s Given

WANTED v = ?

FORMULAS

v = u + at v2 = u2 + 2as

•t is known - drop the timeless eq’n. •Since v is wanted, drop the displacement eq'n:

SOLUTION

s = ut + at2 1 2

v = u + at v = 0 + 20(30) v = 600 m s-1

©  cgraham

physics.com  2015  

Solving problems using equations of motion for uniform acceleration

Topic  2:  Mechanics  2.1  –  Motion  

EXAMPLE: How fast will Pinky and the Brain be going when they have traveled a total of 18000 m? a = 20 m/s2

KNOWN Given

u = 0 m/s Implicit s = 18000 m Given

WANTED v = ?

FORMULAS

v = u + at v2 = u2 + 2as

•Since t is not known - drop the two eq’ns which have time in them.

SOLUTION

s = ut + at2 1 2

v2 = u2 + 2as v2 = 02 + 2(20)(18000) v = 850 m s-1

©  cgraham

physics.com  2015  

Example  • A  cyclist  slows  uniformly  from  a  speed  of  7.5m𝑠↑−1 to  a  speed  of  2.5m𝑠↑−1   in  a  ?me  of  5.0s.  

• Calculate  a)  the  accelera?on  b)  the  distance  moved  in  5.0s  

Solu?on  • 𝑣=𝑢+𝑎𝑡  • 𝑎= 𝑣−𝑢/𝑡 = 2.5−7.5/5 = −5/5 �=−1.0𝑚𝑠↑−2     nega?ve  sign  =  decelera?on  

b)   𝑣↑2 = 𝑢↑2 +2𝑠𝑎  𝑠= 𝑣↑2 − 𝑢↑2 /2𝑎 = 2.5↑2 − 7.5↑2 /2(−1.0) =25𝑚    

©  cgraham

physics.com  2015  

Example  • A  driver  of  a  car  travelling  at    25  m 𝑠↑−1   along  a  road  applies  the  brakes.  The  car  comes  to  a  stop  in  150m  with  a  uniform  decelera?on.  

• Calculate  a)  the  ?me  the  car  takes  to  stop  b)  the  decelera?on  of  the  car  

Solu?on  •  𝑠= 𝑢+𝑣/2 𝑡  𝑡= 2𝑠/𝑢+𝑣   

•  𝑡= 2×150/25+0 =12𝑠  

• b)  v  =  u  +  at  • 𝑎= 𝑣−𝑢/𝑡 = 0−25/12 �=−2.1  m𝑠↑−2   

©  cgraham

physics.com  2015  

Example  •  A  car  starts  from  rest  and  reaches  a  speed  of  36  m 𝑠↑−1 in  12s.  What  is  the  accelera?on  of  the  car?  

Solu?on  •  𝑎= 𝑣−𝑢/𝑡 = 36−0/12 =3𝑚𝑠↑−2   

•  The  car  then  brakes  and  stops  with  a  decelera?on  of  5.0   𝑚𝑠↑−2 .  How  far  does  the  car  travel  before  stopping?  

Solu?on  •  𝑣↑2 = 𝑢↑2 +2𝑠𝑎  •  𝑠= 𝑣↑2 − 𝑢↑2 /2𝑎 = 0− 36↑2 /2(−5) =129.6𝑚  ~130𝑚  

©  cgraham

physics.com  2015  

Example  •  A  car  is  travelling  with  constant  speed  of  80𝑘𝑚ℎ↑−1 in  a  school  zone.  A  police  car  starts  at  rest  as  the  speeder  passes  it  and  accelerates  at  a  constant  rate  of  8.0   𝑘𝑚ℎ↑−2 .    

• When  does  the  police  car  catch  the  speeding  car?  

•  𝑠↓𝑠 = 𝑠↓𝑝   at  ?me  t  •  𝑣↓𝑠 =  80   𝑘𝑚ℎ↑−1 =22.2m 𝑠↑−1   

•  𝑠↓𝑠 =   𝑣↓𝑠 t  •  𝑠↓𝑝 =0+1/2 𝑎𝑡↑2   •  𝑣↓𝑃 =  8.0   𝑘𝑚ℎ↑−2 =2.22m 𝑠↑−2   

distance  

?me  t  

d  

𝑣𝑡= 1/2 𝑎𝑡↑2   

𝑡= 22.22/1.11 =20.0𝑠  

©  cgraham

physics.com  2015