title on the class numbers and the ideal class groups of certain … · title on the class numbers...

12
Title On the class numbers and the ideal class groups of certain algebraic number fields Author(s) OHTA, Kiichiro Citation [岐阜大学教養部研究報告] vol.[25] p.[57]-[67] Issue Date 1989 Rights Version 岐阜大学教養部 (Dep. of Math., Fac. of Gene. Educ., Gifu Univ.) URL http://hdl.handle.net/20.500.12099/47723 ※この資料の著作権は、各資料の著者・学協会・出版社等に帰属します。

Upload: others

Post on 06-Jun-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Title On the class numbers and the ideal class groups of certain … · Title On the class numbers and the ideal class groups of certain algebraic number fields Author(s) OHTA, Kiichiro

Title On the class numbers and the ideal class groups of certainalgebraic number fields

Author(s) OHTA, Kiichiro

Citation [岐阜大学教養部研究報告] vol.[25] p.[57]-[67]

Issue Date 1989

Rights

Version 岐阜大学教養部 (Dep. of Math., Fac. of Gene. Educ., GifuUniv.)

URL http://hdl.handle.net/20.500.12099/47723

※この資料の著作権は、各資料の著者・学協会・出版社等に帰属します。

Page 2: Title On the class numbers and the ideal class groups of certain … · Title On the class numbers and the ideal class groups of certain algebraic number fields Author(s) OHTA, Kiichiro

On theclassnumbers and the ideal elass groupsofcertain algebraic number fields

57

K iichiro OHTA

§1. 1ntroduction.

ln genera1, 1et たbeanalgebraicnumber fieldof finitedegree. Then, theabsoluteideal class

groupandtheclassntlmberofカwillbedenotedbyG and瓦 respectively. Next, foranyprime

number♪the♪-Sylow subgroupof (心will becalledthe夕Xdassgroupof ルandwm bedenoted

byら (夕) , whoseorderwillbedenotedby瓦(夕) . Moreover, let瓦 beaGaloisextensionoffinite

degree over ん. Then, the subgroup of all ideal classes of G (瓦) which are ambigous with

respect to K 陳 w ill be called the ambigous y class group of 尺 with respect to A・ and wm be

denoted by y1衣:♪) .

Now, let 尺 bea Galoisextension of degree 刀over ヵ and let ヵ be aprimenumber prime

to が. Then, the following two facts are fundamental in thispaper. Namely ;

(1) Therestridionof thenormmapNIい : G (♪) → G (♪) toy11(♪) isanisomorphism from

凡 (夕) ontoG (夕) . (d. Yokoyama [10D

(2) lfj : G (夕)→G ひ) isthehomomorphismofy dassgroupofんtothatof尺 inducedby

extension of ideals, then wehavej ( G (♪) ) ΞG (♪) . ( cf. N akagoshi [4] )

Since j ( G (夕) ) ⊆ノ14(が) wehave几 (瓦) = j ( G (♪) ) clearly. Thus, considering G (♪) as a

subgroup of G (♪) , wemay put G (瓦) = y14(瓦) in our case・

ln this paper, first, weshan deal with the casewhere尺 is a relatively abelian extension

of degree戸 over ヵ whoseGaloisgroup G (K yk) isof type ( 口 , … , /) バ isaprimenumber. For

the special casewhere 辨 = 2 wehave proved in [5] the following theorem. N amely ;

T HEOREM A . Leほ be回 向 eb屈 cm ・mbey徊 ld of 鋤 itedegyee, 回 d let K bea y血 白 幽

abdiall a tetlsioR of degyeep oley k uXhoseGdoisgγo呻 G ( K Zk) 包oj` 節 e ( 口 ) j is ay ime

H s & れ £ d F1, 瓦 ,… , F tu betk 但o佃y inteymd 斌 ej dds be励 ea k n d K 、 町 い sα詐面 e

筒柑 ≠1, tke11 C11(夕) / 几 (夕) {s decoml}osd 緬to tk diyed y o加 d as加Uo切緬g ;

G (瓦)/ 瓦 (♪) = y1バ:♪) / y14(夕) xy1衣♪) / 凡 (♪) ×…xylh (Z)) / 凡 (♪) .

Using what wementioned above, wemay replaceノ11(♪) and y1ぶ :蕉) ( f= 1, 2,… , /+ 1) by

G (夕) andGべ夕) ( f= 1, 2,…丿+ 1) respedivelyandrとwriteaboveformulaasfollowing ; (cf.

Nakagoshi 圃 )G (♪) / G (夕) = GX♪) / G (が) xC乱(夕) / G (夕) ×…xG。(♪) / G (夕) .

The first aim of this paper is to extend above theorem to thegeneral casewhere 琲≧2.

Namely, in§2 weshall provethefollowing theorem.

T HEOREM X、Let k be回 向 eb面 clmmbeyμdd of 畑 治 degyee, 回 d ld K bea 畑 a面 幽

abdiaRate肴sio肴of degyeer olXeyk uJhoseGdoisgγo呻 G (K陳) zsが ㈲g( 1バ,…バ)バ 后

Dep. of M ath., Fac. of Gene. Educ., Gifu Univ

Page 3: Title On the class numbers and the ideal class groups of certain … · Title On the class numbers and the ideal class groups of certain algebraic number fields Author(s) OHTA, Kiichiro

K iichiro OHTA58

THEOREM 2. Ld K be n abd n exte, lsion 可 degyee ? ‘ ow r Q uJhose Galois gyo呻

G (K ZQ) isof 幼e (2, 2,…, 2) . Ld k , k2,…, 島, g加q X= 2 - 1, bethedi加y四t q皿dmlic

sMbβeldsof K、 jy扨eαs誂観eG1こGi(2) ×民 and(≒こCバ2) ×Bi釦yi= 1, 2,…, /, 法四 回 加回

民 = 既 ×瓦 ×…×μ (diyed 加o血d) .

Moyeow,・, が lhe山ssumbey廠of K isodd, tha da oh gtheoyde7 0j Bj )yb沃仁 1, 2, …。 )

wehave

hχコbl硲‥砿

Now, it follows immediately from abovetheorem that if weknow theclassnumber 垢 of

瓦 is odd, then we are able to determine the class number and the idei l class group of 瓦

explicitely by considering only theqUadraticsubfields of 瓦 Hence, in §3 weshall investigate

to construct the number field 瓦 whose classlnumer is odd foT 枇 = 2, 3 and 4.

Finally, in§4weshallgivesomenumericaleχmplesandlisttherealnumberfieldswithodd

dass number in a table for 附 = 2, 3 and 4.

§2. Proof of Theorem l and2.

First, werecall thefollowing definitionandtheorem discussedin [51, whichareimportant

tools to prove Theorem 1・

DEFIN汀ONべd. [5] ) Leは ben α胎わ咄cu mbeyj eldoj`ji咄edegyee皿d ld K わeaG山 is d a sion of d昭yee mn opey k Th回 K 戒 1日 )e cd d 服 (y1) -ext四 s1011 0wy 12 1f tk

GdOiS舒O呻 G= G (瓦μ) sd 球es服 到 Io面昭 co姐伍0 ;

(A) Gkαsα肴oymd s油訂o砂 N of oyぬynalld筧s油乎o卯sH1, H2,…, Hn可 sαmeoydey

m swk tk t we随従

GこNH1こNH2こ …こNHnα祖 ∩瓦 = 佃} 力r f≠j, 抑陥犯 側edmotebyE匝eM戒tdeme戒

Of G.

T HEOREM B. ( cf. [5D Leは ben α胎 b面 c m4mbey j μd of j 油 ed昭yee回 心 d K ben

(A) -at匹sio肴of degγeemR o叱y k Ld F, L1,L2, …・玩 be服 s油βddsof K con刈)回di昭

托s佃c面dy to tkes油gyo呻sN, H1, 瓦 ,…, 瓦 Of 加 GαlOiSF O呻 G (K Z& ) bjy伍eGdoistk o巧.

lミf p isa l)γlme侃m

α鈴imem4琲bey. Ld F1, F2,…, Ft, 抑陥托 tこ ( μ - 1) / ( /- 1) , b八 陥 鯉o加y 面 eymed咄 e万出 s

be訟 em k alld K s14ch tk t we随 叱 [死 丿列 = /力y X= 1, 2,… , t, が p is αp召琲emtmbey alld

♪≠I, tk筧C11(が)/G (瓦) is dea)m知sd 池 o加 d前d 卸o加d αs到 lo戒昭 ;

G (♪) /G (瓦)= Gバ:瓦)/G (瓦) xCh(j) ) /G (φ) ×…xC衣j) ) /G (j ) .

Moyeopey, u)e k w tk dαss mtmbeγ?・eld ion αs知110面 14g ;x

臨(友)= (皿恥心)) ) /(/4(yヴー1。沁 1

Neχt, let 尺 be an abelian eχtension of degree2・ over therational number field Q whose

Galoisgroup G (尺/Q) isof type (2, 2,…, 2) . T . Kリbota [31, H . W ada [7] andH . Cohn [1]

studied the class number of 瓦 by using its unit group and calculated several numerical

examples for thecasewhere辨 = 2 and 3. 0 n theother hand K . Uchida [6] investigated the

casewhere瓦 isimaginary andobtained almost all of such瓦 whoseclassnumber isone.

Thesecond aim of thispaper istostudy theclassnumber andtheideal classgroupof such

number field 瓦 asdescribed abovewithout using itsunit group. N amely, asan application of

Theorem l we shall also prove in §2 the following theorem.

Page 4: Title On the class numbers and the ideal class groups of certain … · Title On the class numbers and the ideal class groups of certain algebraic number fields Author(s) OHTA, Kiichiro

59On theclassnumbers and theideal classgroupsof certain algebraicnumber fields

G O) ZA心) ) = ylr(夕) /凡 (瓦)×< ノ1h(が) , 竃 ,(♪) , ・。; , y11. (瓦) > /ノ1衣:夕) .

Here, fronl sanle reason asbefore wemay replace凡 (♪) , ム (夕) α加 甫 か ) ( 汗 1, 2,… ,

疋) by C心) ) , G (夕) and G ,(♪) ( f= 1, 2,…, g) respectively and rewrite above formula as

f0110wing ;

G (♪) /G (夕) = G (夕) /G (瓦)×< G j :♪) , Gズ♪) ,…, (‰(♪) > /G (♪) .

PROOF of T HEOREM 1. W e shall prove our theorem by induction on 辨. Since we have

Theorem A for thecasewhere 辨 = 2, wemay let 撰 > 2 and assumethat our assertion istrue

for 附 - 1.

Let F beany oneof 瓦 ( 1≦f≦O and fix itat atime, W edenotetheGaloisgroup G (K ZF )

by χ Then Ⅳ is an abelian group of order 戸一1and of type ( 1バ ,‥・バ ) . N ext, 1et L1, L2,… ,

£t, whereX7 ( 政 - 1) / ( Z- 1) , betheintermediatefieldsbetweenんand尺 suchthatwehave [乙

丿刎= / l for j= 1, 2,…バ. Sinceonlys= ( /’-1- 1) /(X- 1) £fwehaveF⊂乙⊂瓦 itfollows

immediately that there exist exact g= 乙- s= M-1 £j for which we have F n乙 = ん. For

conveniencewemay denotesuch g 句 by L1, L2,… , Lzj respectiveny. M oreover, wedenotethe

GaloisgroupsG ( K Zk) and G ( K yL5) (j = 1, 2,… , め by G and罵 (j = 1, 2,… , u) respectively.

SincewehaveF n乙 = んfor y= 1, 2,… , g and Lj、Ljl= 尺 for j1≠ふ it fonowsimmediately that

wehaveGこN111= N瓦 = …= jV7亀and瓦丿 瓦, = { ε} forjl≠ふ wherewedenotebyEtheunit

element of G. Hence, considering theorder oI N and瓦 (j = 1, 2,… , め resped ively, it follows

easily that 尺 is an (A ) -extension of degree μ = & over ん. Applying Theorem B to our case

wehave

(2. 1) Cx(夕) /G (♪) = G (♪) /ら (♪) ×< Q (夕) , …, Cし(♪) > /G (夕)

dearly.

N ext, 1et F ’ bealso any oneof 瓦 ( 1≦ f≦O andweassume F ’≠F . Then, since尺 is an

abelian eχtension of degree 戸一20ver FF ’ whoseGaloisgroupisof type ( 口 , …j ) , it iseasily

seen that thereexist only z7= ( /’-2- 1) /( Z- 1) 乙 。佃 < j ≦O such that wehaveFF’ ⊂ ち .

Thus, for exact s- zノ= 戸一2乙 ( 1≦j ≦砥) wehaveF ’ ⊂乙 and henceC副 ,1) ) ⊆ (気心) ) clearly. lf

weassumeF = 瓦, then, aswemay let F ’ beanyoneof 瓦 withy≠jl wehave

ら1(♪)…G。(x,) CFiU(,1) )…ら ,⊆< CE,(♪),・へGX夕) >

and hence

(2. 2) G X夕) …Cyブ j) ) G 。 (夕) …CJ 、1) ) /G (瓦)

⊆< Gズダ) ,…, G刀)) > /G (♪)

dearly.

0 n theother hand, if wedenotesquadraticsubfieldsof ん byFjb Fj2, … , 瓦μ or j = 1, 2,… ,

zも then from our inductive assumption we have

CJ j) ) /G (♪) こC恥(,1) ) /G (瓦)×CJ ミj) ) /G (/)) ×…×(≒ (ダ)/G (♪) (j = 1, 2,…, め

and this implies

CJミj) ) /G (瓦) = Cぶ ,1)ス) G衣ダ)…C5 (が)/G (♪) (j = 1, 2, …, め

immediately. Sincewehave瓦 ∩烏 = ん(1≦j ≦u) by our assumption, it follows easily

(‰(♪) /G (が)E (ふ(♪) …Gい(夕) C5 、(♪) …G ,(/)) /G (夕)

for j = 1,2,… , zf, and hence wehave from ( 2. 2)

(ふ(♪) …G ,。(夕) Gバ:夕) …Gか ) /G (夕) = < Q , (夕) ,…,CU(少) > /G (夕)

dearly. Now, from (2. 1) and aboveformulaweobtain

Page 5: Title On the class numbers and the ideal class groups of certain … · Title On the class numbers and the ideal class groups of certain algebraic number fields Author(s) OHTA, Kiichiro

(direct product) .G=几G(♪)

60 K iichiroOHTA

G O) /G (夕) = Cバj) ) /G (瓦)xGエ。)…C4 心) ) G。(♪) …Cj しj) ) ZCJ ) ) .

As瓦 isanyoneof Zquadraticsubfieldsof瓦 thisformulaimpliesour assertionistrue, that

is, G (♪) /G (瓦) isdecomposedintothedirectproductasfollowing ;

G (瓦)/G (友) = Ch(加/G (φ) xC以j) ) /G (瓦)×…xC球j) ) /G (j ) .Thus, 0ur theorem isproved completely.

PROOF of T HEOREM 2. 1ngeneral, letルbeanalgebraicnumber fieldof finited6gree. Then,

it is well knownthat we have

Hence, to proveour theorem it issufficient to show that for any oddprimenumber カ wehave

ln addition to Theorem 2 we shall mention to the special case where we have 臨 = 1.

N amely ;

COROLLARY, No厭 iolls aRd αssR琲誹i匹 s be飢g sαme as Tk o犯琲 2 皿 d mo犯o叱y we

αssume加 山 ss u mbey 厦 oチ K is odd, Tha 回 k ve恥 こ1 1f n d only 汀 b1こ b2= …みt= 1.

PROOF. This coronary follows immediately from Theorem 2.

§3. 0n certainnumber fieldswithoddclassnumber.

ln this sectionweshall investigatetheconcretecasewheretheclassnumber iscalculated

explicitely by Theorem 2. N amely, weshall construct thenumber fieldsof degree4, 8 and 16

whose classnumbers are odd.

㈲ Thebiquadraticcase.

First weshan prove the following theorem.

THEOREM 3. 1 d X = Q ( √y , √凪) be α biq皿 dm励 肴umbey j dd, uJheye l) is a l)yime

゛“” lbet o d “ is “ s卯 ゛ e一介ee泌t昭ey無品 d o匁 Ld ねこ Q ( , /万 ) beαqu dmticsttbβdd of

K. Tha , がK is皿 皿mm垣d d a si匹 o叱y lこ皿d四 随従只 臨, 伍a hJ so心 ,

PROOF. W e assume our assertion is not true. Then we have 臨 = 2・・& with ,x≧1 and

(2, 4 ) = 1. LetL bethesubfieldoftheabsoluteclassfieldof五7suchthat£ ⊂£ and [1 : f ] =

2”. Thむn, it is easily verified that £ is a Galois eχtension of degree 2”+l over Q. Since the

Galois group G二G (LノQ ) has the principal series as a 2-group, refining the normal series

G⊃G (K/Q)⊃ { 吋 , wherewedenotebyEtheunitelementof G, weknow theexistenceof

normal subgroup 耳 of G such that G ( K ZQ ) ⊂亙 ⊂G and [H :・G (K ZQ ) ] = 2, Let F bethe

subfield of £ corresponding to H by theGalois theory. Then, F is Galois over Q because耳

is normal in G. M oreover, it is easily verified that F is an unramified extension of degree 4

0ver ゑ As thegroup of order 4 1s abelian, it follows immediately that F is contained in the

absolute class field of 尨 Hence, 瓦 must bedivided by 4. This is a contradiction clearly.

THEOREM. 4, Ld K こ Q ( √瓦 √R ) be α biq回 dyd c u mbey j dd, uJheye l) is a l)yime

刄umbey αud q is 誼 k y eq皿 l to -1 0y α j)Mme 筒m (mod 4) (叩1d q≠1) .

Mo犯owy, び j) isoddバhm weαssu琲eか三3 (mod4) a j 加 三5 (mod8) . Ld lこ三Q ( √瓦 )

be 服 q回 dyatic s福βdd of K . Tka , が 回 αssume 臨 is oddバha k is d o odd,

To prove this theorem weneed the following lemma due to K . lwasawa [21.

LEMMA 1. ( cf. lwasawa [2] ) Leは be朋 面鋤 臨 c lmmbey j dd of 夕咄 e 面gyee n d ld

(direct product) 。G (が) こCJ j) ) ×(乱(瓦)×…XG ,(瓦)

But, this is an immediate result applying Theorem l to our case.

Page 6: Title On the class numbers and the ideal class groups of certain … · Title On the class numbers and the ideal class groups of certain algebraic number fields Author(s) OHTA, Kiichiro

61On theclassnumbers and the ideal classgroupsof certain algebraicnumber fields

K beα11 eχtmsio筒 of degyee l) o叱y k, wk ye l) is α餅 imemtmbey. Moyeo叱y, 扨eassMmetk t

tk yed sts on砂 os 函 med屈 soy of k which is mm示砲 泌 K . Tka , 仔 hJ snot 函 isible by

飢 th匹 厦 isalso筒otd屈s伽ebyl) .

PROOF of THEOREM 4.

(1) Thecase♪= 2, Theprimeidea1(2) of Q istotally ramifiedin尺 andhencewehave

(2)= p2 1n 瓦 wherepisaprimedivisor of 尨 Moreover it it easily verified thatpistheonly

prime divisor of カ which is ramified in 尺 As 砥 is odd by our assumption, applying Lemma

l to our case our assertion follows immediately.

(2) ThecaseZ・ミ 3 (mod 4 ) and加 三5 (mod8) . Theprimeideal (2) of Q isdecomposed

into prime divisors of K as following ;

(2)= p2, 靖 /(汐= (2)2.

Sincetheideal (2) remainsasaprimein ゐ, it iseasily seen that (2) istheonly primedivisor of

んwhich is ramified is尺 Now, applying Lとmma l our assertion follows imediately.

T HEOREM 5. L d K = Q ( √j , √J ) be α biq皿 dM& 肴Rmbeγ斤eld, 扨k γe l) is 皿 odd

y而別,? がg辨加y回j αfsα将忽切一力認 fが偕臼・♪パ辨・? 必♪. 訂θy召θ誂?y z47召αssμ7μ召請厨 勿召加叱

(j)=-1α心α三3(mod4). Ldk=Q(√J) beαq皿dmtics油μddofK. Tha,ijT回l sume臨 isodd, then hs isd oodd.

PROOF. Aswehave( j ) = - 1 by our assumption, theprimeideal (φ) が Q remainsasa

prime in んatld it isramified in尺 clearly. 0 n theorher hand theprimeideal (2) of Q isramified

in ルbecausewehaveαミ 3 (mod 4) by our assumption. M oreover, if ♪( L (mod 4) , then, the

idea1(2) isunramified in Q ( √j ) . lf 夕三3 (mod4) , thenwehave砂 三1 (mod4) andhence

theideal (2) isunramified in Q ( y万 ) . From thesefactsit iseasily seen that theprimedivisor

of (2) inA・isunramifiedin瓦 Hence (♪) istheonlyprimedivisor of んwhichisramifiedin瓦

Now, 0ur assertion f0110ws immediately from Lemma 1.

T HEOREM ら. Ld K = Q ( ぶ , √万) be 皿 im昭i皿 砂 biq皿 dm良 筒Rmbey j dd, 扨keye j)

皿 d q aye diがeye戒 odd l)yimemtmbeys st4ck tk t l) ミ q三3 (mod 4) . Let k= Q ( 刀海) be the

q皿dmtic su吊 dd of K 、 Then , if weαssumehJ s o服 , tka k is 幽 o odd.

PROOF. Sincewe have知 三 付) 三 - 9ミ 1 (mod 4) from our assumption, the prime ideal (2)

of Q isunramified in 瓦 Hence, it is easily seen that all finiteprimesof ヵ areunramified in

N ow, weassunleour assertion isnottrue. T hen, it followsby thesameway asinTheorem

3 that thereexists an unramified extension of degree 2 0ver 尺 such that it is alsoGalois over

Q. Wedenoteitby£. LetF bethemaximal real subfieldof£. Then, itfollowsimmediately

that F isanunramifiedextensionof degree2 0ver 尨 Thisimpliesthat 瓦 isdivisibleby2. This

is a contradiction clearly. Thus, our theorem is proved completely.

(b) Theocticcase.

First weshall provethe following theorem. N amely ;

T HEOREM 7. Let K = Q ( √2 , √j , √i ) be 皿 od cμdd whose G山 is F o呻 {s 原 図 }e

(2, 2, 2) , wheyel) isd heyeq皿にo - 10y皿 odd l)百me筒m (mod4) α肩

qis 皿 odd 函 meu mber d胎 ye戒 斥om 払 Moyeo斑 冶k y加 ミ 5 0y qミ 5 (mod

8) . Let k= Q ( ,/y, √i ) betkebiq皿dmtic誹吊ddof K . Thm, if 扨eassRmekμsodd, th匹

k iSd OOdd.

Page 7: Title On the class numbers and the ideal class groups of certain … · Title On the class numbers and the ideal class groups of certain algebraic number fields Author(s) OHTA, Kiichiro

PROOF. First it is easily seen that the prime ideal (2) of Q is totally ramified in

Q( √2 , √瓦). Buttheideal(2) remainsasaprimeeitherinQ ( 痢 ) の・加Q( √ぷ) according

toヵ(7三5 0r ・7三5 (mod 8) . Henceit followsimmediately that ideal (2) isdecomposed intothe

prime divisors in 瓦 as following ;

(2)= 畢4, yVk/。畢= (2)2.1f wedenoteby p theprimedivisor of (2) in ん, then wehave2= 岬, Λ1/。抑= (2)2clearly. Thus,

it is easily verified that p is the only prime divisor of ゐ which is ramified iil 瓦 Applying

Lemma l to our case our assertion follows at once.

Now, to proveneχt theoremsweshall need the following lemma. N amely ;

LEMMA 2、 Ld & be 皿 dgeb咄 c mtmber 加 は of β池 e degyee 皿 d let K be a Gdois

a tm sioll of 面g粍e 8 0叱y k、 Ld F be 朋 i戒eymd ide j dd be励 eeu lこ α11d K sMch tk t

[F : 列 = 4皿dtheGdois訂o呻 G (FZk) 后げ 帥ぺ2, 2) . Thm, が伍e粍existsαj)言md面d

pげ ヵ a油 必zX四 加q q= P2バVE/丿 = q2加 石 g加g P isα函mH dd of F wk H s

mlyα琲浜ed泌 K, tk11K isαuαbdiα筒ate肴sioMowy k、

PROOF. AstheGa101sgroup G = G ( K Zk) isof order 8, toproveour lemmait issufficient

to show that neither thequaternion group nor thedihedral group of order 8 1s isomorphic to G.

Since theGaIoisgroup G ( F μ ) isof type ( 2, 2) by our assumption, thereexist 3 proper

intermediate fieldsbetween ヵ and F . W edenotethem by £ l, £2 a姐 £3 respectively. Then, it

is easily verified from our assumption that p is not decomposed into theproduct of different

prime ideaIs in any L i (しi = 1, 2, 3) .

N ow, we shall consider thedecomposition of p into the primedivisors of 瓦 Then, from

our assumptionwehaveeither p= 雫2, yVk/h雫= p40r p二(雫1叩2) 2j V臨 畢f= p2clearly. lf we

have the first case, then wedenote the inertial field of 畢 by 7こ Then, it fo110ws immediately

that theGaloisgroup G ( T ノk) is a cyclicgroup of order 4, that is, 7` is a cyclicextension of

degree4 0ver 瓦 。 0ntheother handif wehavethelatter case, thenwedenotethedecomposition

field of 畢l by 乙 . Then, it iseasily verified that 乙 is an extension of degree 2 0ver んwhich

isdifferent from any Lバ ,i = 1, 2, 3) . Thisimpliesthatthereexist at least 4 proper intermediate

fields between ル and 尺 each of which is an extension of degree 2 0ver 尨

Now, we assume G is isomorphic to eiter the quatem ion group or the dihedral group of

order 8. Then, it f0110wsimmediately that thereexistsnocyclicextension of degree 4 0ver ん

and there exist only 3 proper intermediate fields between ん and 尺 each of which is an

extension of degree2 0ver 力. This isa contradiction clearly. H ence, G mustbeabeliangroup。

THEOREM 8, Ld K こ Q ( √2 , √j T, √i ) be 皿 od c j dd w加 se Gdois F o砂 is 可 幼 e

(2, 2, 2) , Wk yej) isdtk y 同心にo - 10y皿 odd j)百観em4mbeysttch tk t j) ミ

62 K iichiro OHTA

ん干Q ( √が, √i ) belhebiqudmtics14球eldof K. Tha , が回 ass14me玩 isαlSO Odd、

PROOF. VVe assunlle our assertion is not true. Then, it follows by the same way as in

Theorem 3 that there eχists an unramified extension of degree2 0ver 瓦 which isGaloisover

Q. Wedenoteitby £ .

AswehaveG ) = 1 from our assumption, theprimeideal ( g) of Q splitsin O ( √D /and

wehave (g) = pl芯 g加g ㈲ :に 1, 2) isaprimeideal of Q ( √j T) . Moreover, theideal (瓦)

od4) a j

| =1. £dtk n hバ s

・7 1s n o習 か鋤 g u m細 ・ j i加 ya l か s Z・. jg ∂ygθz7召y z4夕g αsszx777g G 卜 11_ 八 y m m χ 1 . 1 1 ・ . . . . . . . . . _ _ - = - - g

Page 8: Title On the class numbers and the ideal class groups of certain … · Title On the class numbers and the ideal class groups of certain algebraic number fields Author(s) OHTA, Kiichiro

ideal of 尺 such that wehavejVkyQ( √が) 0 1= q12, SinceO l isunramifiedj n L , applying Lemma

2 to our case, it follows immediately that £ is an abelian extension of degree8 0ver Q ( √j ) .

0 n the other hand, aswehave匹 3 (mod 4) from our assumption, wemay put (2) = p2 1n

Q ( √y) , wherepisaprimeidealinQ ( √j ) , Moyeowy, astk ided (2) isltllmm涵ddthey

加 Q ( √万) or in Q ( 刀海) accordingto9三1 0r 9三3 (mod4) , it iseasilyseenthat pis

unramified in ん. But, sincetheideal (2) istotally ramified in Q ( √2 , √j ) , it f0110wsthat the

prime divisor of p in んmust be ramified is 尺.

N ext, sincetheGa101sgroup G ( L yQ ( √7F) ) isabelian, it iseasily verifiedthat theinertial

field of any primedivisor of p in £ with respect to LZQ ( √j ) is uniquely determined. W e

denoto it by 7こ As theprimedivisor of p in 瓦 isunramified in £ , it fonowseasily that、T is

aproper intermediatefieldbetweenヵ and£ andwehave尺≠乙 Asanyprimeideal ofんwhich

doesnot divide p isunramified in £ , it f0110ws at oncethat T is an unramified eχtension of

degree 2 0ver た This impliesthat 瓦 isdivisibleby 2. This isa contradiction clearly. Thus,

0 ur theorem is pr ov ed com pletely .

T HEOREM 9. Let K = Q (: √万, √万 , √y) be皿 oc励 μdd, tりk yel) is d服 y eq皿 に o - 1

0y α11 0 dd l) yim e 肴m

j乙

gぐjl

仁y

On theclassnumbers and the ideal classgroups of certain algebraicnumber fields 63

is ramified in Q ( √i ) and ramains as a prime in Q ( √2 ) becausu wehaveG ) こ - 1 from

our assumption. Henceit iseasily verified thatwehave q1= こ 121n瓦 where£ l isaprime

糾観is oddバ hm抑e αssR衿1e

PROOR W e assurne our assertion is not true. Then, it follows by the same way as in

Theorem 3 that there eχists an unramified eχtension of degree2 0ver 尺 which is Galois over

Q. W edenoteitby£ .

SincewehaveG ) = 1 from our assumption, theprime ideal ( Q) げ Q splits in Q ( √j )

and we may put ( 3) = ql q2, W zm ・ q1 α心 q2 αg j i砂 gが 夕可大 池 詰 みz Q ( y j ) .

M oreover aswehave( £ ) = - 1 from our assumption/it folloJ seasily that qf ( i= 1, 2) remains

asa primein Q ( √j ノ √F) . qf ( j = 1, 2) isramified in瓦 dearly andhencewehaVe ql=/

a12, 篤/, ( √j ) ら1= q12, wherea l isaprimeideal of尺 whichisunramifiedin£. Now,applying Lemma 2 to our case, it follows immediately that the Galoisgroup G ( £ / Q ( √j ) )

is abelian.

On the other hand, from our assumption for 夕, ・7 and y it is easily seen that the prime

divisor of ideal (2) in ん are unramified in 尺 . M oreover, as we have(夕) = - 1 from our

assumption, theprime ideal (r) of Q remainsasaprimein Q ( √y ) and it splits inゑ Hence

wemayput (y) = rl r2, where tl and r2aredifferent primeidealsof ヵ whichareramified

in 瓦

N ext, sincetheGaloisgroup G ( LyQ ( 巧 ) ) isabelian, it iseasily verifiedthat theinertial

field of any primedivisor of ( y) in £ with resped toLyQ ( √j ) isuniquely determined. W e

denote itbyT oThen, it followseasilyby thesamewayasinTheorem 8that T isanunramified

extension of degree2 0ver ゐandhence瓦 mustbedividedby 2. T his isa contradiction clearly.

Thus, our theorem is proved completely.

(mod 4) , 肋a u 。x吋 加叱 に 1 (mod4) . Mo托owy扨eαss14me

Ld たこQ ( √j5, √y) be服 biq回d咄ics油β出 of K. Tha

厦 iSdS0 0d1

= 1 α77j = - 1.

Page 9: Title On the class numbers and the ideal class groups of certain … · Title On the class numbers and the ideal class groups of certain algebraic number fields Author(s) OHTA, Kiichiro

64 K iichiro OHTA

(C) Thereal biquarticcase.

Now, we shall prove the following theorem. N amely ;

THEOREM 10. Ld K = Q ( √2 , √j , √肌 √F) be a yeαl mlmbey j dd of degyee 16

whoseGdoisgyo呻 is of 削)e収 , 2 , 2, 2) , wherep, qandr aredifferentoddprimenumberssuch

that we have p三r三3 (mod 4) , ・7こ 5 (mod 8) , ( 夕) = 1 α心 (夕) = G ) = G ) = ぐL. £ d ヵ=

Q ( √j , √i ) 加 法g加卿而忽面 々所dj が瓦 刀za, び回 心ggg瓦八心必法四 尻 £sα励

Odd、

PROOF. W eassunleour assertion isnot true. Then, it followsasbeforethat thereexists

anunramifiedextension of degree2 0ver 瓦 which isGaloisover Q. W edenoteitby £ .

As we have Z・三y三3 (mod 4) and 9三5 (mod 8) from our assumption, applying the

quadraticreciprocity law to(夕) = 1 and (ク) = 1 1t follows(チ) 二 ( ミル T l immediately H ence,

the prime ideal (瓦) of Q is decomposed completely in Q ( 而 , だ) α11d we 観砂 1)耐 (p) =

り 山 ら , where 喝 is a prime ideal of Q ( ,/万 , √F) . Since wehave( D = -l fronl our

assumption, 則 remainsasaprimein Q ( √2 , √万, √F) . As 、pl isramifiedinK, it iseasily

seen that we have p1二雫12, 裁 /。( √万。芦 ) 雫1= 貼 2, where 剔 is a prime ideal of 尺 which is

unramified in L . N ow, applying Lemma 2 to our case, it follows immediately that theGalois

group G (LZQ ( √示, √F) ) isabelian.

On theother hand, it iseasily verified by our assumption that theprimeideal (2) of Q is

decomposed into primedivisors in Q ( ,/万 , √7 ) as following ;

(2)= q2, 蹟 (√i, √7)/Q q= (2)2

M oreover, it fonowseasily thatqsplits in Q ( √が, √y, √F) becausethe inertial degree of

(2) with respect to Q ( √j , √iy, √F) /Q isequal to2. 0n theother hand, theideal (2) is

totally ramified in Q ( √2 , √F) , and henceramification index of (2) with respect to瓦 / Q is

at least 4. T hen, the prime divisor of q in Q ( √jj’, √i , √ F ) must be ramified in 瓦 ・

Next, since theGaloisgroup G (LZQ ( √y, √F) y isabelian, it iseasily verified that the

inertial field of any prime divisor of q in l with resped to LZQ ( √y, √F) is uniquely

determined. W edenoteitby T 、 Then, it followseasily by thesameway asinTheorem 8 that

T isanunramified extension of degree2 0ver Q ( √j , √4 , √F) andhencetheclassnumber

of Q ( √j , √y, √F) mustbedividedby2. But, sinceitiseasilyseenthatall assumption

of Theorem garesatisfiedinour case, it followsimmediatelythattheclassnumberof Q ( √j ,

√i , √F) isodd. Thisisacontradictionclearly. Thus, ourtheoremisprovedcompletely.

§4. Examples.

Now, we denote the class numbers of Q ( √j ) and Q ( √j , √辺) by yz ( √j T) and

yz( √瓦 √4) respectivelyinthefollowingexmples.

(1) K二Q ( √5 , μ7 ) . Wehaveyz( √副) = k ( μ7) = 1 andyz( √器5) = 6. Hencefrom

Theorem 3 wehuve 臨 = 3.

(2) 瓦= Q ( 1, √面r) . Wehaveyz( √i) = み( √皿[ ] = 1 andyz( √顎T) = 14. Hencefrom

Theorem 3 we have 厦 = 7.

(3) £ = Q ( √T , μ r) . Wehave71- 3 (mod4)丿 ( √2 ) = yz( J T) = 1andyz( √Ry) = 3.

Hence from Theorem 4 we have 臨 = 3.

(4卜 £ = Q ( y7 , √B [ ] . Wehave151三3 (mod 4) , 453三5 (mod 8) and yz( √1 ) =

Page 10: Title On the class numbers and the ideal class groups of certain … · Title On the class numbers and the ideal class groups of certain algebraic number fields Author(s) OHTA, Kiichiro

wehaveゐ( √2) = 1, yz( ,/26) = 2 andyz(

(13) 尺= Q ( √3 , √lヨF, √ΓΥ) . Wehave(

=6. H ence from Theorem 8 wehave 臨 = 3.

(jy)=(サム万一1andyz(√5,√ri)=1fromalid yz( 15) = yz( √B S ) = 2. HencefromTheorem 3. N ext we have yz ( √3 ) = yz (

Theorem g wehave yzχ= 1.

On theclassnumbers and theideal classgroups of certain algebraicnumber fields 65

yz( √mでr) = yz( √B3 = 1. HencefromTheorem4wehave尻こ1.

(5) 尺= Q ( f, yR ) . Wehave83三3 (mod4) , -83三5 (mod8)丿 ( √T) = yz( J 3) = 1 and

yz( √二羽 ) = 3. HencefromTheorem4wehave臨= 3.

(6) X = Q ( √y, √胚F) . Wehave439 - 3(mod4) , (響 ) = -1丿 ( √r) = yz( y剪惣) = 1and

yz( √認9) = 5. HencefromTheorem5wehave尻= 5.

(7) 尺= Q( j, √2213) . Wehave(忌 ) = -1j z( √i) = 1, yz( √2酉 ) = 3andゐ( √223) = 7.

Hence from Theorem 5 wehave 尻 = 21.

(8) 尺= Q ( √3 も ぷ1お) . Wehave23- 3 (mod4) , み( y弱) = み( √3) = 1andyz( √二23) =

3. Hence from Theorem 6 we have 尻 = 3.

(9) 瓦= Q ( √2 √5 , J 9) . Firstwehaveyz( √15, √[9] = 1 fromTheorem3. Nextwe

have yz ( √亙) = yz( y盾 ) = 1 四 j yz ( √皿 ) = yz ( √n O) = 2. Hence from Theorem 7 wehave

尻= 1.

(10) X = Q (i, √2 , √mi ) . Firstwehaveyz( √T, √T皿 = 7fromabove(2). Nextwehave

yz( √r ) = yz( √2) = 1, yz( √涯2) = 2andyz( √2屁) = 6. HencefromTheorem7wehave瓦=

21.

(11) K = Q ( √2 ’ √5’ √ri) ゜ We h e(D 二 1’(廿) 二1 311d み ( √5’ √n:) 二1 fl°0111

Theorem 3. N ext wehave yz ( J 2) = 1 and yz ( J {} ) = yz ( √i n) ) = 2. H ence from Theorem

8 wehave 尻 = 3.

㈲翼=Q(と√2, √r3).Wehave(il)⊃1,(且)=1andノz(√i, yn)=1from[61.Next

(14) j

l (mod

and yz(

宍=1,(yF)=シχJA?=-1andみ(√iyn)=1from-11) = 1, み( -143) = 10. HencefromTheorem gwe

㈲ 瓦 = Q ( j, 、/Ti , 、yr3) . W ehave

above(12). Nextwehaveyz( μΥ) = yz(

have臨= 5.

㈲ 尺 = Q ( √2 , √3‘, √7 , √口) . W eputX・= 3, ・7= 13 and ,・= 7 1nTheorem 10. Thenwe

have(il)=1,(でih)=(j)=-1andゐ(√3, √r3)=1fromTheorem3. Nextitiseasilyseenthat there exists no quadratic subfield of 尺 whose class number is divided by an odd prime

number. Hence from Theorem 10 wehave臨 = 1.

Finally, we shaII list in a table the classnumbersof real number fieldssuch that we can

obtais as the results of theorems is §3 foT j) , q, γ, α≦31. W e m6an ( j) , q, y) a field

Q ( √j , √y, √F) inthebelow. ノ

(1) Theresultsof Theorem 3.

(a) Thefieldswithclassnumber 1.

(2, 5) , (2, 13) , (2, 17) , (2, 21) , (2, 29) , (3, 5) , (3, 13) , (3, 17) , (3, 29) , (5, 7) , (5, 11) , ( 5, 13) ,

(5, 14) , (5, 17) *, (5, 19) , (5, 21) , (5, 22) , (5, 23) , (5, 31) , (6, 13) , (6, 17) , (6, 29) , (7, 13) , (7, 17) ,

(7, 29) , (11, 13) , (11, 17) , ( 11, 29) , (13, 14) , (13, 17) , (13, 19) , (13, 21) , (13, 22) , ( 13, 23) , ( 13, 29) ,

(13, 31) , (14, 17) , (14, 29) , (17, 21) , (17, 22) , (17, 23) , (17, 29) , (17, 31) , (19, 29) , (21, 29) ,

) =-1. Nextwehaveみ(y37)=1,み(√苓iT)=み(√629)=2from Theorem g wehave 尻 = 1.= 4.

Page 11: Title On the class numbers and the ideal class groups of certain … · Title On the class numbers and the ideal class groups of certain algebraic number fields Author(s) OHTA, Kiichiro

K iichiro OHTA66

(22, 29) , (23, 29)

(b) The fieldwithclassnumber 3, (29, 31)

(2) The resultsof Theorem 4.

The fields with class number 1.

(2, 3) **, (2, 7) , (2, 11) , (2, 19) , (2, 23) , (2, 31) , (3, 7) , (3, 23) , (3, 31) , (7, 11) , (7, 19) , (11, 23) ,

(n , 31) , (19, 23) , (19, 31) , (23, 31) .

(3) The resultsof Theorem 5.

The fields with class number 1. ( 3, 11) , ( 3, 19) , ( 7, 23) , ( 7,31) , ( 11, 19) .

(4) The resultsof Theorem 7.

(a) The fieldswitbclassnumber 1.

(2, 3, 5) **, ( 2, 3, 7) **, (2, 3, 13) , (2, 3, 23) , (2, 3, 29) , (2, 3, 31) , (2, 5, 7) **, (2, 5, 11) , (2, 5, 19) ,

(2, 5, 23) , (2, 5, 31) , (2, 7, 11) , (2, 7, 13) , (2, 7 19) , (2, 7, 29) , (2, 11, 13) , (2, n , 29) , (2, n , 31) ,

(2, 13, 19) , ( 2, 13, 23) , (2, 13, 31) , (2, 19, 29) , (2, 19, 31) , (2, 23, 29) .

(b) The fieldswithclassnumber 3. (2, 11, 23) , (2, 19, 23) , (2, 29, 31) .

(5) Theresultsof Theorem 8.

The fields with class number 1. ( 2, 3, 11) **, ( 2, 3, 19) , ( 2, 11, 19) .

(6) The resultsof Theorem 9.

(a) The fieldswithclassnumber 1.

(3, 5, 7) , (3, 5, 11) , (3, 5, 13) , (3, 5, 23) , (3, 5, 31) , (3, 7, 11) , (3, 7, 13) , (3, 7, 17) , (3, 7, 23) ,

(3, 7, 29) , (3, n , 13) , (3, n , 17) , (3, 11, 19) , (3,11,29) , (3,13,19) , (3, 13, 31) , (3, 17, 23) , (3, 17, 31) ,

(3, 19, 29) , ( 5, 7, 11) , (5, 7, 13) , (5, 7, 19) , (5, 7, 23) , (5, 7, 31) , (5, 11, 13) , (5, 11, 17) , (5, U , 23) ,

( 5, 13, 17) ***, (5, 13, 19) , (5, 13, 31) , (5, 19, 23) , (5, 23, 31) , (7, 11, 13) , (7, 11, 17) , (7, 11, 31) ,

( 7, 13, 19) , ( 7, 13, 23) , (7, 13, 31) , (7, 17, 23) , (7, 17, 29) , (7, 17, 31) , (7, 19, 29) , (7, 23, 31) , (11,

13, 17) , (n , 13, 19) , (11, 13, 23) , (11, 13, 29) , (11, 13, 31) , (11, 17, 23) , (11, 17, 31) , (n , 19, 29) ,

( 11, 19, 31) , (11, 23, 29) , (13, 19, 29) , (13, 19, 31) , (13, 23, 31) , (17, 23, 29) , (19, 23, 31) .

(b) The fieldswithclassnumber 3.

(3, 29, 31) , ( 5, 13, 23) , (5, 17, 31) , (11, 29, 31) , (13, 29, 31) , (17, 29, 31) , (23, 29, 31) .

(c) The fieldwith classnumber 7, ( 17, 23, 31) .

(d) The fieldwithclassnumber 9, (whoseideal classgroupisof type (3, 3) )

(19, 29, 31) .

(7) The resultsof Theorem 10.

(a) The fieldswithclassnumber 1.

(2, 3, 5, n ) , (2, 3, 7, 13) , (2, 3, 13, 19) , (2, 3, 13, 31) , (2, 5, 7, 19) .

(b) The fieldwith classnumber 3, (2, 5, 19, 23) .

( *, ** and ¨ ≒ Given in [31 , [7] and [1] respectively.)

R eferences

[ 1] H. Cohn, A numerical studyofunitsincompositereal quarticandocticfields, Computersinnumber

theory (proc. Sci. Res. Counc11AtlasSympos., No2, 0xford 1969) , 153- 165.

[ 2] K. lwasawa, A noteonclassnumbersof algebraicnumber fields, Abh. Math. Sem. Univ. Hamburg20

(1956) 257- 258.

[ 3] T. Kubota, UberdenbizyklischenbiquadratischenZahlk6rper, NagoyaMath. J. 10 (1956)65- 85.

Page 12: Title On the class numbers and the ideal class groups of certain … · Title On the class numbers and the ideal class groups of certain algebraic number fields Author(s) OHTA, Kiichiro

On theclassnumbersand the ideal classgroupsof certain algebraicnumber fields 67

[ 4] N. Nakagashi, A noteon/-dassgroupsofcertainalgebraicnumberfields, J、NumberTheory19 (1984)

140- 147.

[ 5] K. 0hta, 0nthey dassgroupsofaGaloisnumberfieldanditssubfields, J. Math. Soc. Japan30 (1978)

763- 770.

[ 6] K. Uchida, lmaginaryabeliannumberfieldswithclassnumberone, T6hokuMath. J. 24 (1972) 487- 499.

[ 7] H. Wada, 0ntheclassnumberandtheunitgroupofcertainalgebraicnumberfields, J. Fac. Sci. Univ.

T okyo Sec 1 13 ( 1966) 201- 209.

[ 8] H. Wada, A TableofldealclassNumbersofRealOuadraticFields(inJapanese) , LectureNoteinMath.

10(1981) , SophiaUniv., Tokyo.

[ 9] H. WadaandM. Saito, A Tableof ldea1ClassGroupsof lmaginaryOuadraticFields(inJapanese) ,

Lecture N ote in M ath. 28 ( 1988) , Sophia Univ. , T okyo.

[10] A. Yokoyama, 0ntherelativeclassnumberof finitealgebraicnumber fields, J. Math. Soc. Japan19

(1967) 179- 185.