tute 7 - m2962

2
The University of Sydney School of Ma thema tics and Statistics Tutorial 7 (Week 8) MA TH2962: Real and Complex Analysis (Advanced) Semester 1, 2012 Web Page:  http://www.maths .usyd.edu.au/u/U G/IM/MATH2962/ Lecture r: Florica ırstea Questions marked with * are more dicult questions. Questions to complete during the tutorial 1.  Let  f :  D  →  K N be a function. Give a formal deni tion of the foll owing notions. Inc lude the relevant assumptions on the domain and co-domain of the function. (a) lim xa f (x) = ∞; (b) lim x→−∞ f (x) = ∞; (c) lim xa+ f (x) = b . 2.  Decid e whether the followi ng sets are open or closed. Determine interior, closure and boundary. (a) [1, ) ⊆ R; (b)  {(1) n + 1/n :  n  ∈ N \ {0}} R; (c)  {z  ∈ C :  | z 1| + |z + 1 |  <  4} C; (d)  Z R; (e)  {(x,y,z) :  x 2 + y 2 < 1, x + y + z  = 1}; (f )  {n/(n + 1) :  n  ∈ N} {1} R. 3.  Let  X  be a set and ( U i ) iI  be a family of subsets of  X . The set  I  is an arbitrary index set (nite, countable or even uncountable depending on the problem). By denition, the union of the family (U i ) iI  is iI U i  =  {x ∈  X : there exists  i  ∈  I  such that  x  ∈  U i }  (1) and its intersection iI U i  =  {x ∈  X :  x  ∈  U i  for all  i  ∈  I }.  (2) Moreover, the complement of  U   X  is given by U c := X  \ U  := {x ∈  X :  x    U }. Prove de  Morgan’s law  asserting that iI U i c = iI U c i  and iI U i c = iI U c i .  (3) Note:  The sets  A  and  B  are equal if we prove that  A ⊆  B  and  B   A. Moreo ver , to estab lish that  A  ⊆  B , it is enough to show that  x  ∈  A  implies that  x  ∈  B  for every  x  ∈  A. Extra questions for further practice 4.  If  A  ⊂ R is a closed set bounded from above (below), show that  A  has a maximum (minimum). Copyright  c 2012 The University of Sydney  1

Upload: gavan-corke

Post on 23-Feb-2018

221 views

Category:

Documents


0 download

TRANSCRIPT

7/24/2019 Tute 7 - M2962

http://slidepdf.com/reader/full/tute-7-m2962 1/2

The University of Sydney

School of Mathematics and Statistics

Tutorial 7 (Week 8)

MATH2962: Real and Complex Analysis (Advanced) Semester 1, 2012

Web Page:  http://www.maths.usyd.edu.au/u/UG/IM/MATH2962/

Lecturer: Florica Cırstea

Questions marked with * are more difficult questions.

Questions to complete during the tutorial

1.   Let  f :  D  →  KN  be a function. Give a formal definition of the following notions. Include therelevant assumptions on the domain and co-domain of the function.

(a) limx→a

f (x) = ∞; (b) limx→−∞

f (x) = ∞; (c) limx→a+

f (x) = b.

2.   Decide whether the following sets are open or closed. Determine interior, closure and boundary.

(a) [1, ∞) ⊆ R;

(b)   {(−1)n + 1/n :  n  ∈ N \ {0}} ⊆ R;

(c)   {z  ∈ C :  |z − 1| + |z + 1| <  4} ⊆ C;

(d)   Z ⊆ R;

(e)   {(x,y ,z) :  x2 + y2 < 1, x + y + z = 1};

(f)   {n/(n + 1) :  n  ∈ N} ∪ {1} ⊆ R.

3.   Let   X   be a set and (U i)i∈I   be a family of subsets of   X . The set  I   is an arbitrary index set(finite, countable or even uncountable depending on the problem).

By definition, the union of the family (U i)i∈I   isi∈I 

U i =  {x ∈  X : there exists  i  ∈  I   such that  x  ∈  U i}   (1)

and its intersection i∈I 

U i =  {x ∈  X :  x  ∈  U i   for all  i  ∈  I }.   (2)

Moreover, the complement of  U  ⊆ X  is given by

U c := X  \ U   := {x ∈  X :  x  ∈ U }.

Prove de  Morgan’s law  asserting thati∈I 

U i

c

=i∈I 

U ci   and

i∈I 

U i

c

=i∈I 

U ci .   (3)

Note:   The sets  A  and  B  are equal if we prove that  A ⊆  B   and  B  ⊆ A. Moreover, to establishthat  A  ⊆  B , it is enough to show that  x  ∈  A  implies that  x  ∈  B  for every  x  ∈  A.

Extra questions for further practice

4.   If  A  ⊂ R is a closed set bounded from above (below), show that  A  has a maximum (minimum).

Copyright   c 2012 The University of Sydney   1

7/24/2019 Tute 7 - M2962

http://slidepdf.com/reader/full/tute-7-m2962 2/2

5.   Let  X   ⊆  KN  be an arbitrary set. A set A  ⊆  X   is said to be   relatively open in   X   if for everyx ∈  A  there exists r > 0 such that B(x, r) ∩ X  ⊆ A. Moreover,  A  ⊆  X   is called  relatively closed 

in  X  if its complement  Ac ∩ X  is relatively open in  X .

(a) Which of the following sets are relatively open or closed in X  = [0, 2)?

(i)   A = [0, 1) (ii)   A = [1, 2) (iii)   A = [1/2, 1)

(b) Prove that A  ⊆  X  is relatively open in  X  if and only if there exists an open set  O  in  KN 

with  A  =  X  ∩ O.

(c) Show that   ∅   and   X   are relatively open in   X . Prove that arbitrary unions and finiteintersections of relatively open sets in  X  are relatively open in  X .

6.   (a) If  A  ⊆  B , show that  A  ⊆  B  and that int(A) ⊆  int(B).

*(b) Show that A ∪ B  =  A ∪ B  and that  A ∩ B ⊆  A ∩ B  with possibly proper inclusion.

Challenge questions (optional)

*7.   (a) Suppose  K n ⊆ RN  are closed non-empty sets such that  K n+1 ⊆  K n   for all  n  ∈ N  and

diam(K n) := supx,y∈K n

x − y → 0 as  n  → ∞.

Show that

n∈N K n = ∅. (This is called  Cantor’s Intersection Theorem .)

(b) Give an example of non-empty open bounded sets On with On+1 ⊆  On and diam(On) →  0as  n → ∞  such that

 n∈N On =  ∅.

*8.   Denote by GLN (K) the set of invertible matrices in KN ×N . We proved in Tutorial 6, Question  5that  I  − B   is invertible if  B <  1. Use this to prove that  GLN (K) is open in  KN ×N .

(Note:   The above is a way to see that if we perturb the coefficients of an invertible matrixslightly, it will stay invertible. The proof does not make use of determinants, and the ideasapply to more general situations.)

2