two-dimensional direct numerical simulation of internal ... · two-dimensional direct numerical...

49
Two-dimensional direct numerical simulation of internal gravity wave attractor in trapezoidal domain with oscillating vertical wall Brouzet C., Dauxois T., Ermanyuk E., Joubaud S., Kraposhin M., Sibgatullin I. [email protected], [email protected] Laboratoire de Physique de l’École Normale Supérieure de Lyon, Universite de Lyon, France Lavrentyev Institute of Hydrodynamics, Novosibirsk, Russia National Research Center “Kurchatow institute”, Moscow, Russia Institute of System Programming, Russian Academy of Sciences, Moscow, Russia Faculty of Mechanics and Mathematics and Institute of Mechanics of Moscow State University, Moscow, Russia Shirshov Institute of Oceanology, Russian Academy of Sciences Ilias Sibgatullin (Moscow University) Internal Waves Attractors 1 / 105

Upload: others

Post on 09-Sep-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Two-dimensional direct numerical simulation of internal ... · Two-dimensional direct numerical simulation of internal gravity wave attractor in trapezoidal domain with oscillating

Two-dimensional direct numerical simulation ofinternal gravity wave attractor in trapezoidal

domain with oscillating vertical wall

Brouzet C., Dauxois T., Ermanyuk E., Joubaud S., Kraposhin M.,Sibgatullin I.

[email protected], [email protected]

Laboratoire de Physique de l’École Normale Supérieure de Lyon, Universite de Lyon, France

Lavrentyev Institute of Hydrodynamics, Novosibirsk, Russia

National Research Center “Kurchatow institute”, Moscow, Russia

Institute of System Programming, Russian Academy of Sciences, Moscow, Russia

Faculty of Mechanics and Mathematics and Institute of Mechanics of Moscow State University, Moscow, Russia

Shirshov Institute of Oceanology, Russian Academy of Sciences

Ilias Sibgatullin (Moscow University) Internal Waves Attractors 1 / 105

Page 2: Two-dimensional direct numerical simulation of internal ... · Two-dimensional direct numerical simulation of internal gravity wave attractor in trapezoidal domain with oscillating

Outline1 General concepts

DefinitionsPhysical insightsMotivationHistorical remarksExperimental StudiesMathematical description of the problem

2 Preliminary ResultsExperimental Data. Structure Of Velocity Field And Density GradientComparison Of Computations And Experiments

3 Comparison of Spectral Element and Finite Volume computational results

4 Hilbert transformResults of Hilbert transform application to computational data

Without decrease of stratification near boundary

With decrease of stratification near boundary

5 Long time behaviourτ = 0..200pτ = 1000..1500p

6 Conclusion

Ilias Sibgatullin (Moscow University) Internal Waves Attractors 2 / 105

Page 3: Two-dimensional direct numerical simulation of internal ... · Two-dimensional direct numerical simulation of internal gravity wave attractor in trapezoidal domain with oscillating

Definition (Gravity waves)Gravity waves are waves generated in a fluid medium with variabledensity or at the interface between two media when the force of gravityor buoyancy tries to restore equilibrium.

ExampleEffect of vertical temperature variations on the wind near the ground.

ExampleEffects of both temperature and salinity variations play an importantrole in many aspects of dynamical oceanography.

Ilias Sibgatullin (Moscow University) Internal Waves Attractors 3 / 105

Page 4: Two-dimensional direct numerical simulation of internal ... · Two-dimensional direct numerical simulation of internal gravity wave attractor in trapezoidal domain with oscillating

Forces acting on a fluid parcel in fluid subject togravitation

F = Shρ~g

P = (H− z)Sρ = pS

dpdz

= −ρ~g

g

S

h

H

Ilias Sibgatullin (Moscow University) Internal Waves Attractors 4 / 105

Page 5: Two-dimensional direct numerical simulation of internal ... · Two-dimensional direct numerical simulation of internal gravity wave attractor in trapezoidal domain with oscillating

Standing waves (seiche)

Ilias Sibgatullin (Moscow University) Internal Waves Attractors 6 / 105

Page 6: Two-dimensional direct numerical simulation of internal ... · Two-dimensional direct numerical simulation of internal gravity wave attractor in trapezoidal domain with oscillating

Traveling waves (ocean waves)

Ilias Sibgatullin (Moscow University) Internal Waves Attractors 7 / 105

Page 7: Two-dimensional direct numerical simulation of internal ... · Two-dimensional direct numerical simulation of internal gravity wave attractor in trapezoidal domain with oscillating

Stratified fluids

Stratified layerStratified layer consist ofsublayers of constantdensity.Such a layer is inequilibrium, but it may beunstable if density growswith height.

H

Ilias Sibgatullin (Moscow University) Internal Waves Attractors 9 / 105

Page 8: Two-dimensional direct numerical simulation of internal ... · Two-dimensional direct numerical simulation of internal gravity wave attractor in trapezoidal domain with oscillating

Stratified fluidsIf fluid density decrease with height, fluid particle that does getdisplaced vertically tends to be restored to its original level; it may thenovershoot inertially and oscillate about this level.

Let the unperturbed state of the layer has the density

ρ(x , y , z, t) = ρm + ρ0(z), (1)

where ρm is the space average of the unperturbed state. Then the netgravitational force on a fluid particle after vertical displacement z is−dρ0

dz z~g , sod2zdt2 =

dρ0

dzgρ0

z

H

Ilias Sibgatullin (Moscow University) Internal Waves Attractors 10 / 105

Page 9: Two-dimensional direct numerical simulation of internal ... · Two-dimensional direct numerical simulation of internal gravity wave attractor in trapezoidal domain with oscillating

Gravity waves from an oscillating cylinder

Ilias Sibgatullin (Moscow University) Internal Waves Attractors 11 / 105

Page 10: Two-dimensional direct numerical simulation of internal ... · Two-dimensional direct numerical simulation of internal gravity wave attractor in trapezoidal domain with oscillating

Clear-Skies Turbulence

Waves can travel up to 300 kilometers before breaking

Thermocline in ocean, lakes (seasonal), atmospheric inversion

If the density changes over a small vertical distance, the wavespropagate horizontally like surface waves

If the density changes continuously, the waves can propagate verticallyas well as horizontally through the fluid.

If moving vertically through the atmosphere where substantial changesin air density influences their dynamics, they are called anelastic(internal) waves.

If generated in the ocean by tidal flow over submarine ridges or thecontinental shelf, they are called internal tides.

If they evolve slowly compared to the Earth’s rotational frequency so thattheir dynamics are influence by the Coriolis effect, they are called inertialgravity waves or, simply, inertial waves.

Ilias Sibgatullin (Moscow University) Internal Waves Attractors 12 / 105

Page 11: Two-dimensional direct numerical simulation of internal ... · Two-dimensional direct numerical simulation of internal gravity wave attractor in trapezoidal domain with oscillating

Seiche

Definition (Seiche)Standing wave in an enclosed or partially enclosed body of water

Definition (Lee waves)Atmospheric standing waves caused by vertical displacement, forexample orographic lift when the wind blows over a mountain ormountain range

Ilias Sibgatullin (Moscow University) Internal Waves Attractors 13 / 105

Page 12: Two-dimensional direct numerical simulation of internal ... · Two-dimensional direct numerical simulation of internal gravity wave attractor in trapezoidal domain with oscillating

Internal gravity waves (IGW) in atmosphere

Parametrization of resistance ofinternal waves accounts formomentum and energy transferby gravitational waves, which aregenerated in troposphere anddisappear in stratosphere andmesosphere.

Necessity of calculations ofamplitudes, wave energy fluxes,turbulent viscosities, andaccelerations of the mean flowcaused by IGWs generated in thetroposphere.

Ilias Sibgatullin (Moscow University) Internal Waves Attractors 15 / 105

Page 13: Two-dimensional direct numerical simulation of internal ... · Two-dimensional direct numerical simulation of internal gravity wave attractor in trapezoidal domain with oscillating

Importance of parametrization of momentum and energy depositionsfrom gravity waves generated by tropospheric hydrodynamic sourcesfor modeling of atmospheric circulation.

There are two types of parametrisation:1 Orography resistance2 Other sources, f.e. vertical shift of wind velocity or convection.

Usually it is assumed that gravity waves are generated on some leveland spread upwards with momentum and energy.A vertical heat flux through a unit area is written as ~q = p′w ′, where p′

– pressure perturbation due to gravity waves.Two most known types of parametrizations are Hines Doppler-Spreadand Warner and McIntyre Ultra-Simple Schemes

Ilias Sibgatullin (Moscow University) Internal Waves Attractors 16 / 105

Page 14: Two-dimensional direct numerical simulation of internal ... · Two-dimensional direct numerical simulation of internal gravity wave attractor in trapezoidal domain with oscillating

Stratified media in gravity field

Definition (Brunt-Väisälä frequency, or buoyancy frequency)Brunt-Väisälä frequency, or buoyancy frequency, is the angular frequency atwhich a vertically displaced parcel will oscillate within a statically stableenvironment ρ(z) = ρm + ρ0(z):

N(z) =

√− gρ(z)

dρ(z)

dz

Ilias Sibgatullin (Moscow University) Internal Waves Attractors 17 / 105

Page 15: Two-dimensional direct numerical simulation of internal ... · Two-dimensional direct numerical simulation of internal gravity wave attractor in trapezoidal domain with oscillating

Conservation laws.

ρ

(∂~v∂t

+ vk∇k~v)

= −∇p + µ∆~v + ρ~g +µ

3∇(∇ · v)

(∂s∂t

+ vk∇ks)

= λ∆s

∂ρ

∂t+ div(ρv) = 0

f (x , y , z, t) = fm + f0(z) + f ′(x , y , z, t),

where fm is the space average in absence of motion, f0(z) is thevariation in absence of motion, f ′ is the fluctuation resulting frommotion (notation of G. Veronis, 1963),s = (ρ− ρm)/ρm, in this case ρm – minimal value of density.

Ilias Sibgatullin (Moscow University) Internal Waves Attractors 19 / 105

Page 16: Two-dimensional direct numerical simulation of internal ... · Two-dimensional direct numerical simulation of internal gravity wave attractor in trapezoidal domain with oscillating

Linearization in absence of viscosity and diffusivity.In case of constant buoyancy frequency (which is not strictly equivalentto constant density gradient):

ρ∂~v∂t

= −∇p + ρ′~g

∂ρ′

∂t+ w

dρ0

dz= 0

div(v) = 0

Wavelike solution, periodic in space and time

f = F exp i(ωt − (~k ,~r))

ω2 = N2(

1− k2z /k

2)

= (N |sinθ|)2,

where θ is the angle between the vertical axis and~k = exkx + eyky + exkz = exksinθ + . . . Waves exist for any value ofthe angular frequency from zero up to N.Ilias Sibgatullin (Moscow University) Internal Waves Attractors 20 / 105

Page 17: Two-dimensional direct numerical simulation of internal ... · Two-dimensional direct numerical simulation of internal gravity wave attractor in trapezoidal domain with oscillating

Phase and group velocity

cg = ex∂ω

∂kx+ ey

∂ω

∂ky+ ez

∂ω

∂kz(2)

Ilias Sibgatullin (Moscow University) Internal Waves Attractors 21 / 105

Page 18: Two-dimensional direct numerical simulation of internal ... · Two-dimensional direct numerical simulation of internal gravity wave attractor in trapezoidal domain with oscillating

System Of Equations In Boussinesq Approximation.Geometry.

A salt solution is confined in a trapezoidal domain.

L1 AAAA

AAA

AAL2

H

α ?

~g

- x

6y

Computational domain in 2D case.Initially constant vertical salt stratification is imposed withbuoyancy frequency N.

Ilias Sibgatullin (Moscow University) Internal Waves Attractors 22 / 105

Page 19: Two-dimensional direct numerical simulation of internal ... · Two-dimensional direct numerical simulation of internal gravity wave attractor in trapezoidal domain with oscillating

System Of Equations In Boussinesq Approximation.Boundary conditions.

For constant viscosity and diffusion the equations are:(∂~v∂t

+ vk∇k~v)

= −∇ p̃ρ0

+ ν∆~v + s~g

∂s∂t

+ vk∇ks = λ∆s

A salt solution is confined in a trapezoidal domain.The upper boundary is stress free, the bottom and right boundaryare rigid with no-slip condition, the left vertical boundary oscillateaccording to a given law.

xb(0, y , t) = acos(πy/H)cos(ω0t).

Ilias Sibgatullin (Moscow University) Internal Waves Attractors 23 / 105

Page 20: Two-dimensional direct numerical simulation of internal ... · Two-dimensional direct numerical simulation of internal gravity wave attractor in trapezoidal domain with oscillating

System Of Equations In Boussinesq Approximation.Boundary conditions.

On the bottom and right boundary {u = 0, v = 0}On the upper boundary {∂u/∂y = 0, v = 0}

L1 AAAA

AAA

AAL2

H

α ?

~g

- x

6y

On the left boundary:

u(0, y , t) = aω0cos(πy/H)sin(ω0t), v = 0.

Ilias Sibgatullin (Moscow University) Internal Waves Attractors 24 / 105

Page 21: Two-dimensional direct numerical simulation of internal ... · Two-dimensional direct numerical simulation of internal gravity wave attractor in trapezoidal domain with oscillating

Computational results. Velocity field.

Direction of velocity on the background of velocity magnitudecomputed for a = 0.09 cm, H = 28 cm, N = 1.059rad/s(ω0 = 0.623rad/s)

Ilias Sibgatullin (Moscow University) Internal Waves Attractors 25 / 105

Page 22: Two-dimensional direct numerical simulation of internal ... · Two-dimensional direct numerical simulation of internal gravity wave attractor in trapezoidal domain with oscillating

Theoretical And Experimental Discovery Of InternalWave Attractors

Pioneer work Leo R. M. Maas & Frans-Peter A. Lam. Geometricfocusing of internal waves. J . Fluid Mech., 300:1–41, 1995.Existence of different types of internal wave attractors is predictedtheoretically. A necessary condition for seiching to occur isformulated.First experimental results Maas L. R. M., Benielli D., Sommeria J.,Lam F.-P. A. 1997. Observation of an internal wave attractor in aconfined, stably stratified fluid. Nature 388, 557-561.

Ilias Sibgatullin (Moscow University) Internal Waves Attractors 27 / 105

Page 23: Two-dimensional direct numerical simulation of internal ... · Two-dimensional direct numerical simulation of internal gravity wave attractor in trapezoidal domain with oscillating

Further Experimental and Computational Researchesof Internal Wave Attractors

Laboratoire de Physique Ecole Normale Supérieure de Lyon Scolan, H.,Ermanyuk, E., Dauxois, T. 2013. Nonlinear Fate of Internal WaveAttractors. Physical Review Letters 110, 234501.Maas L., Hazewinkel J., Tsimitri C., Dalziel S. 2010. Internal waveattractors in stratified fluids, robustness to perturbations. APS Division ofFluid Dynamics Meeting Abstracts L1049.Hazewinkel J., Tsimitri C., Maas L. R. M., Dalziel S. B. 2010.Observations on the robustness of internal wave attractors toperturbations. Physics of Fluids 22, 107102.MIT General Circulation Model Finite Volume Code. Grisouard, N.,Staquet, C., Pairaud, I. 2008. Numerical simulation of a two-dimensionalinternal wave attractor. Journal of Fluid Mechanics 614, 1.Jouve, L., Ogilvie, G. I. 2014. Direct numerical simulations of an inertialwave attractor in linear and nonlinear regimes. Journal of FluidMechanics 745, 223-250.

Ilias Sibgatullin (Moscow University) Internal Waves Attractors 28 / 105

Page 24: Two-dimensional direct numerical simulation of internal ... · Two-dimensional direct numerical simulation of internal gravity wave attractor in trapezoidal domain with oscillating

For monochromatic waves of frequency ω

Ψ = ψ(x , z)e−iωt

∂2ψ

∂2x=ω2

N2∂2ψ

∂2zDispersion relation:

ω = ±Nkm

(3)

k – horizontal wavenumber, m – vertical wavenumber.With suitably re-scaled coordinates

∂2ψ

∂2x=∂2ψ

∂2z

Inner waves propagate at a fixed angle to the vertical that is determinedsolely by the forcing frequency.

Ilias Sibgatullin (Moscow University) Internal Waves Attractors 29 / 105

Page 25: Two-dimensional direct numerical simulation of internal ... · Two-dimensional direct numerical simulation of internal gravity wave attractor in trapezoidal domain with oscillating

Scolan, H., Ermanyuk, E., Dauxois, T. 2013. Nonlinear Fate of InternalWave Attractors. Physical Review Letters 110, 234501.

Ilias Sibgatullin (Moscow University) Internal Waves Attractors 30 / 105

Page 26: Two-dimensional direct numerical simulation of internal ... · Two-dimensional direct numerical simulation of internal gravity wave attractor in trapezoidal domain with oscillating

Set of parameters corresponding to the ongoing experiments (set II).SI CGS

L1 0.45m 45cmL2 0.2951584m 29.51584cmH 0.3m 30cm

g 9.81m/s2 981cm/s2

ρ0 1000kg/m3 1g/cmα 27.3o

N 1.059rad/s 1.059rad/sω0 0.623rad/s 0.623rad/s

dρs/dz − 114.32kg/m4 − 0.0011432g/cm4

∆ρ 34.296kg/m3 0.034296g/cm3

ν 10−6m2/s 10−2cm2/s

κ 10−9m2/s 10−5cm2/s

Ilias Sibgatullin (Moscow University) Internal Waves Attractors 32 / 105

Page 27: Two-dimensional direct numerical simulation of internal ... · Two-dimensional direct numerical simulation of internal gravity wave attractor in trapezoidal domain with oscillating

Experimental results. Velocity amplitude field.

0 5 10 15 20 25 30 35 40 45 500

5

10

15

20

25

30

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Experimental data for velocity amplitude, second set of parameters,

a = 0.15cm, ω0 = 0.623rad/s

Ilias Sibgatullin (Moscow University) Internal Waves Attractors 33 / 105

Page 28: Two-dimensional direct numerical simulation of internal ... · Two-dimensional direct numerical simulation of internal gravity wave attractor in trapezoidal domain with oscillating

Experimental results. Ux at a point.

-0.6-0.5-0.4-0.3-0.2-0.1

00.10.20.30.40.50.6

0 20 40 60 80 100 120 140-0.6

-0.4

-0.2

0

0.2

0.4

0.60 20 40 60 80 100 120 140

v x

Time in periods of the wall oscillation T/t0

vx

Ilias Sibgatullin (Moscow University) Internal Waves Attractors 34 / 105

Page 29: Two-dimensional direct numerical simulation of internal ... · Two-dimensional direct numerical simulation of internal gravity wave attractor in trapezoidal domain with oscillating

Computational results. Directions of velocity on thebackground of horizontal component of velocity.N = 1.059ras/s, ω0 = 0.623rad/s, a = 0.02cm,Pr = 100

Ilias Sibgatullin (Moscow University) Internal Waves Attractors 35 / 105

Page 30: Two-dimensional direct numerical simulation of internal ... · Two-dimensional direct numerical simulation of internal gravity wave attractor in trapezoidal domain with oscillating

Computational results. Change of salinity profile with time.N = 1.059ras/s, ω0 = 0.623rad/s, a = 0.02cm,Pr = 100 (7 times less than incomputational model)

0

5

10

15

20

25

30

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

y (

cm)

Salinity profiles: initial and for t=1000

t=0

t=1000

0

5

10

15

20

25

30

-0.0006 -0.0004 -0.0002 0 0.0002 0.0004 0.0006

y (

cm)

Difference between final and initial stratification

Ilias Sibgatullin (Moscow University) Internal Waves Attractors 37 / 105

Page 31: Two-dimensional direct numerical simulation of internal ... · Two-dimensional direct numerical simulation of internal gravity wave attractor in trapezoidal domain with oscillating

Computational results. Velocity direction on thebackground of horizontal component of velocity.N = 1.059ras/s, ω0 = 0.623rad/s, a = 0.105cm,Pr = 700

Ilias Sibgatullin (Moscow University) Internal Waves Attractors 38 / 105

Page 32: Two-dimensional direct numerical simulation of internal ... · Two-dimensional direct numerical simulation of internal gravity wave attractor in trapezoidal domain with oscillating

Computational results. Velocity direction on thebackground of horizontal component of velocity.N = 1.059ras/s, ω0 = 0.623rad/s, a = 0.105cm,Pr = 700

Ilias Sibgatullin (Moscow University) Internal Waves Attractors 39 / 105

Page 33: Two-dimensional direct numerical simulation of internal ... · Two-dimensional direct numerical simulation of internal gravity wave attractor in trapezoidal domain with oscillating

Computational results. Change of salinity profile with time.N = 1.059ras/s, ω0 = 0.623rad/s, a = 0.02cm,Pr = 100

0

5

10

15

20

25

30

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

y (

cm)

Salinity profiles for t=2000 and t=47500

t=0

t=1000

0

5

10

15

20

25

30

-0.001 0 0.001 0.002 0.003 0.004

y (

cm)

Difference between stratification for t=2000 and t=47500

Ilias Sibgatullin (Moscow University) Internal Waves Attractors 40 / 105

Page 34: Two-dimensional direct numerical simulation of internal ... · Two-dimensional direct numerical simulation of internal gravity wave attractor in trapezoidal domain with oscillating

Computations using spectral elements. Magnitude ofvelocity field.

Ilias Sibgatullin (Moscow University) Internal Waves Attractors 41 / 105

Page 35: Two-dimensional direct numerical simulation of internal ... · Two-dimensional direct numerical simulation of internal gravity wave attractor in trapezoidal domain with oscillating

Account for imperfect stratification near boundaries

Ilias Sibgatullin (Moscow University) Internal Waves Attractors 42 / 105

Page 36: Two-dimensional direct numerical simulation of internal ... · Two-dimensional direct numerical simulation of internal gravity wave attractor in trapezoidal domain with oscillating

Computational results. Velocity magnitude field.

Velocity magnitude computed for a = 0.09 cm, H = 28 cm,N = 1.059rad/s (ω0 = 0.623rad/s)

Ilias Sibgatullin (Moscow University) Internal Waves Attractors 44 / 105

Page 37: Two-dimensional direct numerical simulation of internal ... · Two-dimensional direct numerical simulation of internal gravity wave attractor in trapezoidal domain with oscillating

Computational results. Velocity field.

Direction of velocity on the background of velocity magnitudecomputed for a = 0.09 cm, H = 28 cm, N = 1.059rad/s(ω0 = 0.623rad/s)

Ilias Sibgatullin (Moscow University) Internal Waves Attractors 45 / 105

Page 38: Two-dimensional direct numerical simulation of internal ... · Two-dimensional direct numerical simulation of internal gravity wave attractor in trapezoidal domain with oscillating

Computational results. Ux at a point. a = 0.09cm

-0.6-0.5-0.4-0.3-0.2-0.1

00.10.20.30.40.50.6

0 20 40 60 80 100 120 140

0 20 40 60 80 100 120 140

v x

Time in periods of the wall oscillation T/t0

vx

Ilias Sibgatullin (Moscow University) Internal Waves Attractors 46 / 105

Page 39: Two-dimensional direct numerical simulation of internal ... · Two-dimensional direct numerical simulation of internal gravity wave attractor in trapezoidal domain with oscillating

Long time behaviour

-0.6-0.5-0.4-0.3-0.2-0.1

00.10.20.30.40.50.6

0 50 100 150 200

v x

Time in periods of the wall oscillation T/t0, t0 = 0.

Horizontal component of velocity vx for N = 1.059, ω0 = 0.623, a = 0.105at point x=24.7, y=20

vx

Ilias Sibgatullin (Moscow University) Internal Waves Attractors 47 / 105

Page 40: Two-dimensional direct numerical simulation of internal ... · Two-dimensional direct numerical simulation of internal gravity wave attractor in trapezoidal domain with oscillating

Конечно-объёмная модель стратифицированного течения в

замкнутом пространстве

Page 41: Two-dimensional direct numerical simulation of internal ... · Two-dimensional direct numerical simulation of internal gravity wave attractor in trapezoidal domain with oscillating

Описание проблемы и уравнения

Коленчаты

й вал, выдвигаю

щий пласти ны

в соответс твии с зад анным

за коном

∂ρ

∂ t+∇⋅(ρU⃗ ) = 0

∂ρU⃗∂ t

+∇⋅(ρU⃗⊗U⃗ )−∇⋅σ =−∇ p+ρ g⃗

∂ρs

∂ t+∇⋅(ρs U⃗ ) = ∇⋅Ds ∇ρs

ρ(s) = ρ0 + (∂ρ

∂ s )(s−s0)

Движение элементов жидкости описывается:

Уравнением неразрывности

Уравнением сохранения импульса

Уравнением сохранения массы растворённой соли

Уравнением «состояния», связывающимконцентрацию растворённой соли и плотность жидкости

Под солёностью здесь понимаетсяотношение массы соли, растворённой в элементе жидкостик его общей массе (соль + вода)

s =ms

ms+ml

Page 42: Two-dimensional direct numerical simulation of internal ... · Two-dimensional direct numerical simulation of internal gravity wave attractor in trapezoidal domain with oscillating

Расчётная область, граничные и начальные условия

Неподвижная стенка

Деф

орм

ируе

мая

(под

виж

ная

стен

ка)

DH (V , t )=a cos(πV /H )cos(ω0 t )

Поверхность раздела(непроницаемая стенка с проскальзыванием)

V

H

0 50 100 150 200 250 300 350 4000

0,0002

0,0004

0,0006

0,0008

0,001

0,0012

Физическое время, с

Ам

пли

туд

а см

ещен

ия,

м

300

0 1

23

4 5

67

b

a

tg=a/b=1.73

600

V

H

Наклонная, нижняя и верхняя стенканеподвижны, вертикальная стенка «слева» колеблется в горизонтальном направлении по синусоидальномузакону

В исследуемом режиме амплитуда колебаний увеличивалась от 0 до номинального значения примерно за 20 периодов

Page 43: Two-dimensional direct numerical simulation of internal ... · Two-dimensional direct numerical simulation of internal gravity wave attractor in trapezoidal domain with oscillating

Приближение Буссинеска и особенности использования МКО

● Жидкость несжимаемая, Ньютоновская, принимается, что в балансе импульса градиент давления играет превалирующую роль по сравнению с изменением импульса частиц за счёт плотности ---> приближение Буссинеска

● МКО — метод численного решения интегральных уравнений! Все балансные соотношения должны быть сформулированы в интегральном виде:

Или — изменение экстенсивного свойства «PSI» вычисляется как изменение интеграла этого свойства в заданном объёме плюс поток этого свойства через границы этого объёма.

Все уравнения должны быть записаны в интегральной форме

∇⋅(U⃗ ) = 0 ∂ U⃗∂ t

+∇⋅(U⃗⊗U⃗ )−∇⋅σ =−∇ pρ0

+ρρ0

g⃗

d Ψ

d t=

dd t

∫CM (t )

ρψdV =dd t

∫CV (t )

ρψdV + ∫∂CV (t )

ρψ(U⃗ r⋅d S⃗)

Page 44: Two-dimensional direct numerical simulation of internal ... · Two-dimensional direct numerical simulation of internal gravity wave attractor in trapezoidal domain with oscillating

Подвижная и неподвижная сетки

КОНТРОЛЬНАЯМАССА CV t=t

0

КОНТРОЛЬНАЯМАССА CV t=t

1

КОНТРОЛЬНЫЙ ОБЪЁМ

Если решать задачу для замкнутой системы с использованием неподвижного контрольного объёма, то получится, что среда «покидает» или «заходит» черезте его границы, которые не параллельны движению контрольной массы

Такую задачу лучше решать с использованием механизмов учёта подвижностиконтрольных объёмов

Page 45: Two-dimensional direct numerical simulation of internal ... · Two-dimensional direct numerical simulation of internal gravity wave attractor in trapezoidal domain with oscillating

Численная реализация

1) Небаланс импульса на первом шаге

Градиент давления должен уравновешиваться столбом жидкости:

Необходимо либо инициализировать давление соответствующим образом, или вычесть этот небаланс

2) Уравнение для давления получаем с учётом небаланса масс на 0-ом шаге

3) Граничное условие для давления на стенках получаем

из условия равенства потоков 0

∇ p=ρ g⃗

∑f

( ⟨H (U⃗ a)⟩

A−

⟨ g⃗⋅⃗r ∇ ρk− g⃗⋅⃗r (t=0)∇ ρk (t=0)⟩

A )f

⋅S⃗ f =∑f

( ⟨∇p∗

ρ0⟩

A )f

⋅S⃗ f

∫∂CV (t )

p∗

ρ0+( g⃗⋅⃗r )ρk d⃗S− ∫

∂CV (t )

(g⃗⋅⃗r (t=0))ρk (t=0)d⃗S = 0

Page 46: Two-dimensional direct numerical simulation of internal ... · Two-dimensional direct numerical simulation of internal gravity wave attractor in trapezoidal domain with oscillating

Результаты 1. Сеточная сходимость

● Случай 1 — сетка 225x150

● Случай 2 — сетка 450x300

● Случай 4 — сетка 900x600

Красными кружкамипоказаны моменты времени, для которых проводилось сравнение МКО и МСЭ

Page 47: Two-dimensional direct numerical simulation of internal ... · Two-dimensional direct numerical simulation of internal gravity wave attractor in trapezoidal domain with oscillating

Результаты 2. Качественная картина

Профиль горизонтальной и вертикальной скоростей на линии y=20см для момента 501.5с (максимум горизонтальной скорости)

Профиль горизонтальной и вертикальной скоростей на линии y=20см для момента 506.5с (минимум горизонтальной скорости)

Page 48: Two-dimensional direct numerical simulation of internal ... · Two-dimensional direct numerical simulation of internal gravity wave attractor in trapezoidal domain with oscillating

Результаты 3. МКО vs МСЭ

0 5 10 15 20 25 30 35

-0,4

-0,3

-0,2

-0,1

0

0,1

0,2

0,3

0,4

0,5Sem-501.5 VH [cm/s]

fvm-501.5 VH [cm/s]

distance, cm

velo

city

, cm

/s

0 5 10 15 20 25 30 35

-0,4

-0,3

-0,2

-0,1

0

0,1

0,2

0,3

0,4

0,5Sem-501.5 VV [cm/s]

fvm-501.5 VV [cm/s]

distance, cm

velo

city

, cm

/s

t=501.5с

0 5 10 15 20 25 30 35

-0,5

-0,4

-0,3

-0,2

-0,1

0

0,1

0,2

0,3

0,4Sem-506.5 VH [cm/s]

Fvm-506.5 VH [cm/s]

distance, cm

velo

city

, cm

/s

0 5 10 15 20 25 30 35

-0,8

-0,6

-0,4

-0,2

0

0,2

0,4Sem-506.5 VV [cm/s]

Fvm-506.5 VV [cm/s]

distance, cm

velo

city

, cm

/s

t=506.5с

Гори

зонт

альн

аяск

орос

ть

Вер

тика

льн

аяск

орос

ть

Красный — МКО, синий — МСЭ. Сравнивается распределение поля скорости вдольлинии y=20см

Page 49: Two-dimensional direct numerical simulation of internal ... · Two-dimensional direct numerical simulation of internal gravity wave attractor in trapezoidal domain with oscillating

Conclusion1 With the help of 2D Direct Numerical Simulation the experiment

on formation of the internal wave attractor was reproducedqualitatively.

2 Salinity profile profile changes were studied for long time intervalsand its influence on shape of the attractor was demonstrated.

3 Qualitative similarity of the computations and experiments waspossible only after taking into account the imperfect stratificationnear upper boundary.

4 Comparison of two different DNS approaches: FVM and SEM hasbeen carried out.

5 Quantitative similarity of DNS and experiment requires 3Dmodelling

DNS was performed using open libraries NEK5000 (for SEM),OpenFOAM (for FVM) and other open source tools.The study has been supported by Russian Ministry of Education andScience (agreement id RFMEFI60714X0090) and Russian Foundationfor Basic Research, grant N 15-01-06363.Ilias Sibgatullin (Moscow University) Internal Waves Attractors 105 / 105