two-sided quintic spline approximations for two …牀t、 す.i b tiもヤ・1-8 two・sided...

19
TWO-SIDED QUINTIC SPLINE APPROXIMATIONS FOR TWO-POINT BOUNDARY VALUE PROBLEMS 著者 "SAKAI Manabu" journal or publication title 鹿児島大学理学部紀要. 数学・物理学・化学 volume 10 page range 1-17 別言語のタイトル 2点境界値問題の5次のスプラインによる両側近時に ついて URL http://hdl.handle.net/10232/6358

Upload: others

Post on 26-Mar-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: TWO-SIDED QUINTIC SPLINE APPROXIMATIONS FOR TWO …牀T、 す.I b TIもヤ・1-8 Two・Sided Quintic Spline Approximations for Two-Point Boundary Value Problems Fork-2,Eq.(1.4)isequivalenttothefollowingsystemof(n+1

TWO-SIDED QUINTIC SPLINE APPROXIMATIONS FORTWO-POINT BOUNDARY VALUE PROBLEMS

著者 "SAKAI Manabu"journal orpublication title

鹿児島大学理学部紀要. 数学・物理学・化学

volume 10page range 1-17別言語のタイトル 2点境界値問題の5次のスプラインによる両側近時に

ついてURL http://hdl.handle.net/10232/6358

Page 2: TWO-SIDED QUINTIC SPLINE APPROXIMATIONS FOR TWO …牀T、 す.I b TIもヤ・1-8 Two・Sided Quintic Spline Approximations for Two-Point Boundary Value Problems Fork-2,Eq.(1.4)isequivalenttothefollowingsystemof(n+1

TWO-SIDED QUINTIC SPLINE APPROXIMATIONS FORTWO-POINT BOUNDARY VALUE PROBLEMS

著者 SAKAI Manabujournal orpublication title

鹿児島大学理学部紀要. 数学・物理学・化学

volume 10page range 1-17別言語のタイトル 2点境界値問題の5次のスプラインによる両側近時に

ついてURL http://hdl.handle.net/10232/00010033

Page 3: TWO-SIDED QUINTIC SPLINE APPROXIMATIONS FOR TWO …牀T、 す.I b TIもヤ・1-8 Two・Sided Quintic Spline Approximations for Two-Point Boundary Value Problems Fork-2,Eq.(1.4)isequivalenttothefollowingsystemof(n+1

Rep. Fac. Sci Kagoshima Univ., 拡ath. Rhys・ Chem.)

No. 10, p.ト17, 1977

TWO-SIDRD OUINTIG SPLINE APPROXIMATIONS

FOR TWO-POINT BOUNDARY VALUE PROBLEMS

By

Manabu

(Received September 14, 1977)

Two-sided quintic spline approximations for two・point boundary value problems

are considered. A selection of numerical results is illustrated in Tables 1-3.

I. Introduction

Splines are of much, use for approximating solutions of simple two-point boundary

value problems for both, linear and nonlinear ordinary differential equations. Recently

we have considered the two-sided cubic spline approximations of second order ([7]).

This paper disOusses the two-sided quintic spline approximations of fourth order.

The two-point boundary value problems to be solved is

a;〟(t) - f(t, x(t), ∬′W) (o≦t≦1)

A<x(OトB&′(0) -ォ,

Ajxll)+Bt∬′(1) - & ,

with boundary conditions

1.1

where f(t, x, y) is defined and four times continuously differentiable inやregion D of

(i,浴, 2/)-space intercepted by two planes 」-Q and t-l.

Now making use of JS-spJine Q6(t)-(l/120)∑(」y(i)(t-i)+, we consider spline func-

\tion xk(t) (Jc-l, 2) of the form

*l{t)-∑αi^cQy -�"T Ink-1)

sHi剰

x望w - ∑ βmm-i)

with undetermined coe鮎ients α and β (i--5, -4,..., w-1).

The above xk(t) (&-1,2) will be the approximate solution to the problem (1. 1)-(1. 3)

if it satis丘es

弔(t) - Pkf(t, xk(t),鶴(0) (o ≦ i ≦ 1)

AMョトBo宛(0) - a ,

A^m+Bjx孟(1) - 6.

with boundary conditions

1.4

* Department of Mathematics, Faculty of Science, Kagoshima University, Kagoshima, Japan.

Page 4: TWO-SIDED QUINTIC SPLINE APPROXIMATIONS FOR TWO …牀T、 す.I b TIもヤ・1-8 Two・Sided Quintic Spline Approximations for Two-Point Boundary Value Problems Fork-2,Eq.(1.4)isequivalenttothefollowingsystemof(n+1

M. Sakai

Here the operator Pk(k-l, 2) is defined as follows:

(i) (Px g)(t) is the cubic spline function with the node t{(i-0, 1, -, n) such that

(Pi9M -g(ti)  (ti-ih, i-0, 13-,n),

(Pi9)′(td - 9%) (サ- 0, n)

(u) (P2 g)(t) is the cubic spline function with the node ti(i-0, 1,�"�"., n) such that

(P*9, Li) -

H9t-i+10gt+gi+1)/12      (* - 1, 2,- - -, n-1)

h(7go+3gi)l20+hHZgふ-2#)/60  (�"'- 0)

、Wgサ+3gn-i)/20-h?(Sgムー29品-1)/60 (i - n).

and  (P99)¥ti) - 9%)     (i - 0, n) ,

where for any甲{t) and <y]p(t)牀L2[0, 1], let us denote

1

J.甲{t)-m)dt by (甲,*).

For k-l, it follows that Eqs. (1. 4)-(l. 6) are equivalent to the following system of

(n+5) equations :

F-2{a) - ^。(a-5+260_4+ 66α- ,+26a一色+ α_1)/120

-.#。(0-!+ loo-a-10a-4-α-5)/Uh-a - 0 ,

*-1(ォ)/* -トa-5+2a-4--2a-2+ a-i)/2h3

-/^O, (0-5+26a-4+66α-s+26α-2+ a-i)/120,トa-.,-10a-4+ 10a-2+ α-1)/2ih)

-/2(0,...)(a-i+10a一望-10a-4-a-5)/24/j

-/3(0, -)(a-,+2a-忠-6α-3+2(Z-4+a-5)/6」a - 0 ,

JI,(a) - (a,-5+ 2a,-4-6a;-3+ 2a/-2+ a一l)/6h2

-m-, (a,-5+ 26α,--4+ 66a,-3+ 26a,--a+ a,--1)/120 ,

((*,�"-!+ 10a*-a-10αト4-a,-5)/2a) - 0 )

Fn+I(a)lh - (an-1-2aM望+ 2a舛-4-ォn-5)/2h3

-A(Mォ舛-i +26aォ会+66aサー3+26aォー4+ aォ-5)/120 ,

(an-x + 10aw-2- 10aw-.4- αの-5)l2ih)

-Mt仰, - )(αn-i+ lOaルー皇-10αtt-4- αn-5J/24h

-mny - ・)(αルーi+2aォ包-6a舛-3+2aォー4+a舛-6)/6A2 - 0 ,

Fn+Z(a) - Al(att-1+ 2Qan-i+ 66an-3+ 26an-i+ a舛-5)/120

+ Bllaの^X+100,,-2-lOoa-^ofl-s)/2ih-b - 0 ,

where fk(ョv x包, a>a) -

1,サ2>ォ3)

∂a7k

(Je-1,2 and3).、ノー-∫-∫--I---_

ノ■

1

-

 

 

 

 

-

-

-

 

 

 

 

 

 

1

r

l

I

-

Page 5: TWO-SIDED QUINTIC SPLINE APPROXIMATIONS FOR TWO …牀T、 す.I b TIもヤ・1-8 Two・Sided Quintic Spline Approximations for Two-Point Boundary Value Problems Fork-2,Eq.(1.4)isequivalenttothefollowingsystemof(n+1

T

 

.

I

b

TIもヤ・1-8

Two・Sided Quintic Spline Approximations for Two-Point Boundary Value Problems

Fork-2,Eq.(1.4)isequivalenttothefollowingsystemof(n+1)equations:

ao(β)-fe(^トxJO))/h-x^OトWo+s/j/a0--2/i)/60,

Gi(β)-(a!ォ(*f+iト2xSA+x2{ti-i))/*a-(/m+io/<+み1)/12

ォ-1,2,...,サー1),

Gn(β)-(ォ,(!トxJl-h))Jh-xi(l)+h{7fn+Zfn-1)/20-h(3需-2f£-i)/60,

wherex2(t)-∑βmm-�")サfi-ftU,Mfi)>Vziti))and

Si-/i(ォ*ォ&i)>xk{U))+S&i,x&t),ォ;(*<))蝣x&ti)+sサ(ti,zSi),x'Si))弼ft)�"

Inthepresentpaperweassumethattheproblem(1.1)-(1.3)hastheisolatedsolution

&(t)satisfyingtheinternaltycondition

U-{(t,x,y)恒-&(t)¥+¥y-#ョ¥≦8,t∈[0,11}⊂DforsomeS>0.

Theobjectofthispaperistoshowthefollowingasymptoticexpansionofthe●

errorfunction:

e*(*)(-*(ォ上房*(*))-dkh隼(t)+o(・)(h-0)(^-1,2),

where^-1/720,d2-」/240,%k(t)(k-l,2)isthesolutionoftheapproximateproblem

(1.4ト(1.6)and¥jp(t)isthesolutionofthefollowingvariationequationof(1.1)-(1.3):

車〝{t)-mm盛′(t))w)+Mt,m,盛′(0)車′(ォ+*<�">(*)(0≦t≦1),

subjecttotheboundaryconditions

AMOトB赫′(0)-0,

Al車(l)+*i車′(l)-0.

2.SomePropertiesofSplineFunctions

Inwhatfollows,foranycontinuousfunction<p(t),weshalldenoteitsmaximum

normby¥¥<p¥¥∞andforany丘nitedimensionalvectorc,weshalldenoteitsmaximum

normby附∞ForanysquarematrixA,weshalldenotethenorminducedbythe

maximumvectornormby||-4||oo.

Lemma1([1]).LetB-(bjj)bediagonallydominant,then

HB~1Hco≦max[(|&ォ|-2|&,y|卜1]・

C」2

AsanapplciationofthisLemma,weshallprovethefollowingLen皿as2-9.●

Lemma2.Letg(t)∈C4[0,ll,then

H(I-Pk)9¥¥∞≦chfiW*)帖(*-1,2),

whereIistheunitoperatorandcisaconstantindependentofh.

Proof.Fork-l9see[11.

For#-2,letusrewrite(/-P2kintheform:

{I-P,)g - {g-Px9)+(Px-P望) 9 ,2.1

Page 6: TWO-SIDED QUINTIC SPLINE APPROXIMATIONS FOR TWO …牀T、 す.I b TIもヤ・1-8 Two・Sided Quintic Spline Approximations for Two-Point Boundary Value Problems Fork-2,Eq.(1.4)isequivalenttothefollowingsystemof(n+1

M. Sakai

where I9-Pi9¥¥∞≦ l<7(4)ll∞.

For the second part of (2. 1), we have

(Pl-PI9 - ∑ (Pi-γr) QSIh-i)

with Px9-∑βiQァ{tlh-i) and P2g-∑γiQAtlh-i).

From the definition of the operator P2, it follows that

(∑ γ#*(�"/h-i), Lh) - h(gk+1+10gk+ flr*-1)/12  tk - 1, 2,-, n-1).

Thus we have

(γ :+26γか-i+66γa-2+26 γ*-サ+γ S-4)/120

2.2

(2.3)

- (9k+i+^9k+gk-i)/12  (ft- 1,2,-,サーl). (2.4)

Similarly we have

(∑ γm-/h-%), Lo)/h - (4γ-3+32γ包+23γ-1+γ

- (700+3&)/20+A 30ムー2<70/60 , (2.5

(∑ γ /h-サ�"), 」 )/* - (4γ.-1+32γ肘,+23 γfl-3+γ,-4)/60

- 7^+3^-i)/20+hト39品+29品-1)/60.

Since <p(t)-(Pl g)(t) is a polynomial of degree 3 on [ti9 ti+1],甲(t) is represented as

follows :

甲(*) - PiLAt)+Pi+1 Li+1(t)+Pi TAt)+甲ォ+lTi+1(t),

wher e

TM) -

{t-ttf/2-{t-tif[6h-h(t-*<)/3 (ti ≦ i ≦ ti+l)

(t-tt-rf/6h-Mt-tト1)/    fe-1 ≦ i ≦ ti)

(otherwise).

Thuswehave

(甲,Lk)lh-(<pk+1+i郎+pk-1)/6-hHI中農+1+16や芸+7甲芸-1)/360

(*-1,2,-,n-1).

Similarlyweもave

(甲,L。)/h-(7甲.+3Pl)/20+M3甲ムー2甲0/60,

(甲,Ln)lk-(7Pn+3甲n-1)/ト3甲£+2甲左-1)/60・

Since(P2gY(h)-g孟エア孟(&-0,n),wehavetwoequationsfor

ek{-γh-βk):

0_3-0-l-0andOサーi-0ォー9-0.'サー3

2.7

2.10

From (2. 4)-(2. 10), we have the following system of equations for 9k(k--2, -1, -, n-2) :

(0*+260*-1+ 660*_,+260*_.+ 0*-4)/120

- -(9k+i-tyk+ g*-1)/12+/Wや芸+1+ 16平屋+7甲芸-0/860

Ik-2,3,-,n-2), 2.ll)

Page 7: TWO-SIDED QUINTIC SPLINE APPROXIMATIONS FOR TWO …牀T、 す.I b TIもヤ・1-8 Two・Sided Quintic Spline Approximations for Two-Point Boundary Value Problems Fork-2,Eq.(1.4)isequivalenttothefollowingsystemof(n+1

Two-Sided Quintic Spline Approximations for Two-Point Boundary Value Problems

(320-2+270-,+Oo)/60- - -甲0/30,

(320ォ一,+27^-3+ ^-4)/60 - %品-1-甲左-1)/30.

Since ¥g¥彬LPi・解'I≦cW一桝fIgW帖(*-0, 1, - n and m-l, 2), by Lemma 1 and (2. 10)

we

lO*1 ≦cW lg(i)¥¥∞   h-O,l,---,n).

Thus we

II(Pi-Pz)g¥¥∞ ≦ 11011∞ ≦ eft'llflfWlle。.

Combining (2.2) and (2.12) yields也e desired result.

Lemma 3. Let g(t)∈CTO, 1], then we have

H(I-Pk)g¥¥∞ ≦cJi ¥¥g'¥¥∞  (A;- 1,2) 。

Pkoof. For k-l9 we have

(甲サ+l+4甲:・+甲;-i)/6 - (9i十-9i-i)/2h

with

Thus we 血礼ve

甲 -(Prf)W

[(Pi+i-9l+i)+HPi-9i)+(Pi-i-9i-1)]/6

-(9i+i--9i-i)/^-(g'i+i+ig'i+g'i-i)/6.

(2.12

2.13

From the definition of the operator Pl9 we have two additional equations :

Pa一gム- 0 and   や£一g£ - 0.    (2.14)

Applying Lemma 1 to (2. 13) and (2. 14), we have the desired result. For k-2, let us

rewrite (I-P包)g in the form:

(I-p望) g - (g-Pi9)+(Pi-P*) g ,

where

"(I-Pi)9¥¥∞ ≦ cWll∞. 2.15

In a similar manner analogous to Lemma 2, we have only to show:

((Pi-P%) 9, Li) - (Plg, Lhトh(gk+1+ lOgk+ gk-i)l^

- A(3Pk+l+ 4:?>k + 3<Pk-1)/20-h2(甲孟+1-甲長一1)/30-h(gh+1+ 10gh+ g^j)l12

-%*+i-2ff*+0*-i)/15-h2(甲孟+rP長一1)/30 (*- 1,2,-,n-¥). (2.16)

A simple calculation shows:

((*!-P2) g, L。) - 0 and  ((Px-PJ fr LJ - O.  (2.17)

Thus we have the desired result.

Lemma 4 ([4] ). Let g(t) ∈ C6 [0, 1], then there exists a quintic splinefunction of the

/<orm

P(0 - ∑ afiMh-i)

Page 8: TWO-SIDED QUINTIC SPLINE APPROXIMATIONS FOR TWO …牀T、 す.I b TIもヤ・1-8 Two・Sided Quintic Spline Approximations for Two-Point Boundary Value Problems Fork-2,Eq.(1.4)isequivalenttothefollowingsystemof(n+1

6

so

sin劉

(ii)

M. Sakai

甲 -9(tt)       �"-0,1,-,n)

9  -gW{U)   (i-O,n and m-1,2)

"p(鮒)-g(解)||c。-0(Aォ-�") (m-0,l,2,3) (h-0)・

Proof. By the use of consistency conditions, we shall prove this Lemma. In the

case of the quntic spline, there are the following relationships between the first and●

second derivatives of the spline:

(Pi・'包+26甲ォ+l+ 66甲�"+26甲;--i+甲;-2)/120

- (Pi'包+loゃi+1-10甲i-rPi-2)/24A (t - 2, 3,-, w-2) (2.18)

and

(甲サ+2+26甲サ+l+66や1+26甲:-i+甲;-ォ)/120

-(甲,-+2+2甲詛+1-6Pi+2甲ト1+甲i-2)/6h* (i-2,3,�",n-2)・

2.19)

If ristricted on [0, t3],甲(t) depends upon 8 parameters. Therefore 9 quantitiesや;, Pi

and PJ, (i-0, 1, 2, 3) are not mutually independent, there is a unique linear relation:

37g>0-54Pl+9甲2+8甲,+ 12h甲ム

- h2ト23PS+354甲", +201甲芸+8甲

37や,-54甲か1+ 9Pn一望+ 8甲n-3-12hP左

- M-23平易+354甲芸-i+201や芸-2+8甲蒜-3)/20 ・

Similarly we 血礼ve

Also we have

and

-235^。+ 65甲1+ 155甲望+ 15^3

- 16ft2甲岩+h(lllPム+227甲;+79や; +3甲;)

235甲,-65Pn-1-155Pn-2- 15Pn-2

- - 9品+Mlll甲立+227巌-!+79甲;-2+3甲左-3�"

(2.20)

2.21

(2.22)

(2.23)

Since?r一g'i彬>-0(i-0,nandm-l,2),byTaylorseriesexpansionandLemma1we

have

tP:・一g'{|-0(・)(ォ-0,1,�"�"�",n)from(2.18),(2.22),and(2.23)(2.24)

and

lP'i一g-¥-0(・)(サ-0,l,.-,n)丘0m(2.19),(2.20)and(2.21).(2.25)

Thuswehavethedesiredresult.

Lemma5.LetP(*)-∑aiQ$lh-i)>then

a||∞≦cIMI∞.

Page 9: TWO-SIDED QUINTIC SPLINE APPROXIMATIONS FOR TWO …牀T、 す.I b TIもヤ・1-8 Two・Sided Quintic Spline Approximations for Two-Point Boundary Value Problems Fork-2,Eq.(1.4)isequivalenttothefollowingsystemof(n+1

Two-Sided Quintic Spline Approximations for Two-Point Boundary Value Problems

Proof. As is readily seen, we have

3a-i+ ao -三691-8甲1/2/3+ (?>o+91)/3

(aトサ+4aト2+a,-i)/6 -甲 (�"- 2, 3,-,サー2)

3a^3+ォォー4 - 6恥-8恥-1/2/3+(Pn+Pn-1)/3.

From Lemma 1. it follows that

cLi ≦C"平日∞     (�"--1,0,-,n-3).

Since ai-3 - 6甲.・-4a,--,-of-1 (�"- 1, 1

aト1 - 6Pi-4α,--a-af--3 li - n-l, n) 9

we have

all∞ ≦cH甲tI00.

Lemma 6. Let P(t)-∑aiQMh-i) such that

甲w>-りi (サ-0,l,-,n),甲′(*o)-り-i/h and や′(U-‰+1/A.

Then we have

IMI∞ ≦oJh=∞.

Proof. By consistency relations, it follows that

(アサ+l+4甲;・ +甲;-i)/6 - ((pi+t-Pi-1)/2h

- (丸+1-りi-1)/2h (*-1,2,-,n-1),

甲ム-り-1/h and P£ - v*+Jh�"

AOcording to I」emma 1, we have

Iや;・I ≦cJ酬∞/ (詛-0,1,-,n).

Since P.・l≦J酬∞ by (2.26) we have

(2.26)

"pll∞≦可酬00.

The following Lemma 7 follows through the same arguments as in the proof of the●

latter part of Lemma 2.

Lemma 7. Letや(t) be cubic spline function with the node ti {i-0, !,�"�"�", w) such

that

(甲,Li)-hr)i (i-09lr..9n), 甲′t0- で-1/h and P′ォ.)-‰Jh.

Then we have

瞳Hoo ≦olIでII∞.

Lemma 8 ([3]). Let g(t)∈G*[0, ll

(Pi9)〟('ォ�") -/&トh*g?l¥2+o(h*) (h -0).

Proof. Let us denote ^(t)-(^>i^)(')> *^en we ^ave

(甲サ+l+4甲;+95-0/6 - (w+1-2甲.・+甲ト1)/h2

-(9i+i-^9i+9i-i)/サォ ォ-1,2,-,n-1). (2.27)

Page 10: TWO-SIDED QUINTIC SPLINE APPROXIMATIONS FOR TWO …牀T、 す.I b TIもヤ・1-8 Two・Sided Quintic Spline Approximations for Two-Point Boundary Value Problems Fork-2,Eq.(1.4)isequivalenttothefollowingsystemof(n+1

8 M. Sakai

Thus we have

[(Pi+i-9芸i)+4(甲'i一g芸)+(甲冨-1-g;-1)]/6

--h*g?l12+o(h*) (*-1,2,-,サーl).  (2.28)

甲(t) is cubic on [t。,」j, we have

h(2Pld+甲'0/6 - {(px-^/h-甲ふ,

from which follows

l2(甲3-93)+(甲1-91)1/3 - -h%サ(12+o(h*).

Similarly we 血礼ve

[2(甲芸-9品)+ (甲芸-i-9品-1)]/3 --%<f712+o(/*2).

From (2.28)-(2.30), we have the desired result.

Lemma 9. Let g(t) be continously differentiable on [0, 1], the誌 we

¥¥Pi9¥¥∞ ≦ c(¥¥9¥¥∞+Wll。。) -

Proof. Let (Pxg){t) - ∑ αmm-i), then

¥¥Pi9¥¥∞ ≦ ‖an∞.

It follows from the definition of operator Px that

(ォーi-α-3)/2h - g占,

(<*,�"_,+4αi-2+αi-3)[6 -gi (i - O, l,'- -, n) ,

(αn-x-aォー3)/2A - g左.

Hence, from Lemma 1, we have

a ∞≦e(HgH∞+別g'帖).

Thus we have the desired result.

(2.29)

(2.30)

3. Existence and Conve鴫ence of Spline Approximations

In this section, using Kantorovich's theorem on Newton's method, we shall●

prove the solvability of the determining equations F(α)-(*"-ォ(α),乱1(α), -, Fn+1(α),

*Wα))-0 and G{β)-(*一蝣(β), F-i(β), GWβ), -, Gn{β), Fn+1(β), Fn暮2(β))-O.

Corresponding to庶(t), one can determine uniquely a quniti¢ spline funOtion &h(t), of the

form

Ut) - ∑ bmtjh-i)

so that

*k{U) -Wi)  (i-O, l,---,n)

虎㌘)(t.¥一盛(焔w  (i-0,n and m-1,2).

Since 」(t) ∈ C6[0, 1] due to the assumption f{t, x, y) ∈ C4 (D), it is valid that

睡㌘」盛(サ>n∞-0{h<6-鍋) (m-0,l,2,3) (h-0)・

Page 11: TWO-SIDED QUINTIC SPLINE APPROXIMATIONS FOR TWO …牀T、 す.I b TIもヤ・1-8 Two・Sided Quintic Spline Approximations for Two-Point Boundary Value Problems Fork-2,Eq.(1.4)isequivalenttothefollowingsystemof(n+1

Two・Sided Quintic Spline Approximations for Two-Point Boundary Value Problems

For simplicity, we shall consider the special case whenf(t, x, y) is independent of y.

Let J,(α) be the Jacobian matrix with respect to αi (*--5, -4,-, n-1). In order to

investigate the properties of J^a), let us consider a linear system

JAM-り, 3.1

where   」-(」-,|-4,-,」_!) and で-(り_2,で-1,-,でn+2

Corresponding to | andでwe consider quintic and cubic splines y^t) and y2(t) defined

by

y&) - ∑ ZiQsw-i)

and y&d-り(*-0,l,-,n)

y'

So)-り-Ay'z{Q-りn+1/k.

From(3.1),wehave

y[3)(t。)-[Uto,Uto))+Mto,Uh))釦(ォo)]yifoサ)

+/2(ォO,**(ォo))yi(ォo)+yi(ォo),

y'AU)-Mi,Wu))yM+y&i)(i-0,1,-,n),

y¥z¥Q-[Utn,UQ+UKUtサ))鶴(tサ)]yi(tサ)

+Mtサ,**(O)y'liQ+y'Sn).

^02/i(OトBoy'x(O)-ヤー2,

Sinc e

Alyl(l)+Bly'1(l)-i]n+t.

**(*,�")-*(*<)(サ-0,!,...,サ),蝣&(ti)-虎′U.)(サ-0,w),

thus we have

yl(t) - Pi[Mt, 」(t)) yi(t)]+y*(t) (o ≦ i ≦ 1) ・

Equation (3.2) can be rewritten as follows:

y;-Mt,*)yi- yサ+R,

where i?--[/-Px](/2Vl).

SinOe #(」) is isolated, there exists the Green function H(t, s) such that

1

yl- ∫ H{-,s)[y2(s)+R(s)]ds+甲,0

whereや(t) is the solution of the following equation:

甲〝(i)-ut,m))甲 -0  (0≦t≦1)

subject to the boundary conditions

Ao<p(OトBop′  り-2 ,

AM¥)+Bl<P′(1) -りn+2 '

A simple calculation shows也at

3.2)

3.3

Page 12: TWO-SIDED QUINTIC SPLINE APPROXIMATIONS FOR TWO …牀T、 す.I b TIもヤ・1-8 Two・Sided Quintic Spline Approximations for Two-Point Boundary Value Problems Fork-2,Eq.(1.4)isequivalenttothefollowingsystemof(n+1

10 M. Sakai

fJp‖∞≦<hl(ヤー2,で伸+丑I-

Throughoutthissection,c{(i-l,2,�"�"�",15)willdenotetheconstantindependentofh.

From(3.3)wehavetheinequalityoftheform:

IWI∞≦cMvzW∞+¥¥R帖+c3瞳=∞・

ApplicationofLemma3yields

"R=∞≦oM¥¥y'i¥∞+IMI。-)-

Byviruteofthe′well-knowninequality:

wy'i‖∞≦c,Hyi!l∞+ce¥¥y"i¥∞forsomec5andc6

wehave

HRH∞≦cMlyiW∞+¥¥ylH∞)

≦cMyill∞+t困l∞+¥¥R‖∞)・

Hencewehavetheestimateofl122II∞oftheform

HRH∞≦c9h(‖yュ"∞+112/2帖forsu鮎ientlysmallA.

Thuswehave

llyi帖≦clo(llォ/2瞳+り-2>77サ+2)||)�"

Sincefly^∞≧∞and||tf|||∞≦Cl納Il∞wefinallyhavetheinequalityoftheform

∞≦<y酬∞foranyh≦h。.(3.4)

providedhoissu鮎ientlysmall.

By(3.1),inequality(3.4)impliesthenon-singularityofJ^a)andinadditionthe

inequality

ITWI∞≦Gu(-cis)foranyh≦ho・

Letα-(α-sサa-i,'-,a*-i)andβ-(β-5,β-4?*'�"3βサーi)be

arbitraryvectorssuchthat、

l (aトi+26α,--4+66a4--3+26a,--負+ α,--1)/120-ォォ,) l ≦ 8 ,

) (β,�"-5+ 26β�"-4+66β;-3+26βト2+ β,-1)/120-*fo)仁≦ 8 ,

(i-0,l,---,w).

Hence by the means of the mean value theorem we have

¥¥Jl(αトJl(β)"∞ ≦ 15 α-P"∞

By Lemma 2, we have the equality of the form

¥¥m)¥¥∞ - 0(W).

3.5

3.6

The expressions (3.4)-(3.6) show that all the conditions of Kantorovich's theorem on

Newton's method are fulfilled ([5]). Therefore the determining equation F(a)-0 has

the solution a such that

Page 13: TWO-SIDED QUINTIC SPLINE APPROXIMATIONS FOR TWO …牀T、 す.I b TIもヤ・1-8 Two・Sided Quintic Spline Approximations for Two-Point Boundary Value Problems Fork-2,Eq.(1.4)isequivalenttothefollowingsystemof(n+1

Two-Sided Quintic Spline Approximations for Two-Point Boundar: Value Problems ll

na-&11∞ -00*).

Thus we 血礼ve

"褒r利∞≦lI房¥-&h ∞+睡h一利∞-0m (k-0),

where      房l(*) - ∑瓦mtik-i).

For the second derivative, we have

褒'i-盛〝 - Pi fit,房1トM *)

- Pl「/Mi)-MW-ii-pjM虎).

By the means of Lemma 9 we have

ll房;-虎〝ll∞ - 0(V).

For the first derivative, it follows that・l

/

lI褒i-V ≦C51搾1-釧>+c61|褒;一g'=∞-0{・) (*-0).

Therefore we have

ll房<サ>-」(*) ∞-0(・) (m-0,1,2) (h-0).

In the general case whenf(t, x, y) contains the component y, we can show the same

result by reducing the equations (1.1)-(1.3) into the system of first order differential

equations ([6,8]).

Thus we have the following●

Theorem 1. In the sufficiently small neighbourhood of the isolated solution x(t)

of the problem (1. 1)-(1. 3), there exists a quintic spline function房^t) of the form:

房l(0 - ∑ォ# (ォ/*-サ)

such that

tJ房(m) #(*サ)瞳-0{・) (w-0,1,2) {h-0).

In analogy with Theorem 1, we now have Theorem 2.

Theorem 2. Let the hypotheses of Theorem 1 hold. There exists a quinitic spline

junction房5(」) of the form

房M - ∑βiQSIh-i)

so that

(i) the coefficient β-(β-5, β-4,-, β -!) satisfies the determining equation G(β)-O,

(") II褒㌢'-」<蝣 ∞-0(W) (m-0,1,2) (h-0).

Proof. For the operator P2, let G(β)-(F-Jβ), *-1(β), Go(β),�"�"�", GJβ), Fn+1(β),

Fn12(β) ) and J2(β) be the Jacobian matrix with respect to β. (t-=-5, -4,..., n-1).

For simplicity, we shall consider the special Case when f(t,x,y)-f{t,x, 0). In a

similar manner analogous to Theorem 1, let us consider a linear system:

UM-り. 3.7

Page 14: TWO-SIDED QUINTIC SPLINE APPROXIMATIONS FOR TWO …牀T、 す.I b TIもヤ・1-8 Two・Sided Quintic Spline Approximations for Two-Point Boundary Value Problems Fork-2,Eq.(1.4)isequivalenttothefollowingsystemof(n+1

12 M. Sakaエ

Corresponding to J andり, We Oonsider quintic and cubic spline functions zx(t) and

z2(t) denned by

ztf) - ∑ t<Q6W-i)

Effl割

(z2,Li) -hr)i (i-0, 1,�"�"�",w)

z(*o) - V-ilh , z(tサ) -りn'1/A.

From (3.7), we have

(z'uLA-lP包SjJ,Li)+(z2,Lt)(サ蝣-0,1,�"�"�",サ),

*nti)-iM′(ti)+z'Mi)(i-0,n).

ApplyingLemma7totheequations(3.8)and(3.9)wehave

zl-P^M+z望(0≦t≦1).

ThusinasimilarwayasinTheorem1,wehavethedesiredresult.

4. Asymptotic Expansion of Error Function Ek(t) (k-l, 2)

By the means of the results of the previous sections, we shall prove in this section

the asymptotic expansion of the error function ek(t)-Jt(t)一房*(*) (*-1, 2).

Theorem 3. With the hypotheses of Theorem 1, then we have the asymptotic expansion:

ek{t)-dk・yUt)+o{・) (h-0) (&-1,2).

Proof. From Theorem 1, we have

e芸-f&虎,盛′)ek+Mt,」,盆′) e孟+(i-Pk)M虎,虎′)+0m ,

(ft-1,2) (h-0),

ト5^(0-0,

Alehm+^i(l) - O.

Since A(t) is isolated, equations (4.1ト(4.3) can be rewritten in the form:

1

ek(t)-∫ Hit,s)(トPk)g(s)ds+O(h5) (k-1,2) (k-0)・0

with

where

9(t)-盛〝(t). For k-1, we have

(I-PJgM -gti)-9z(t)+9z(t)-(Pi9)(t) for t∈ ¥pii ti+l] 3

gM) - gi LAt)+ gi+1 Li+1(t)+ g"iTi{t)+ gi+1 Ti+1(t).

n

J

u

h

1  2  3

・^i  ^jH  ^w

nu uJtー  nHJJtl

According to Lemma 8, we have

9z(t)-(Pi9)(t) - 19"i -(Prf)J] ZV(*)+ [tfi +1-(PriOi-j awt)

- (1/12) h¥g? Tffl+ gVUTt+M+oV*) >

from which follows, using the second mean value theorem on the definite integral,

Page 15: TWO-SIDED QUINTIC SPLINE APPROXIMATIONS FOR TWO …牀T、 す.I b TIもヤ・1-8 Two・Sided Quintic Spline Approximations for Two-Point Boundary Value Problems Fork-2,Eq.(1.4)isequivalenttothefollowingsystemof(n+1

Two-Sided Quintic Spline Approximations for Two-Point Boundary Value Problems

¥ H(t, S) [g3(s)-(Pig)(s)] ds

- W12) [57(4) ∫ H{t, s) Ti{s) ds+gfl+1 JH{t, s) Ti十,(s) ds] +o(h5)

- -(1/288) ・[gfH{t, Si)+tflJI{t, %)]+o(fcサ)

for some & andでi∈[k,<<+J�"

Thus we have

1

J H(t, s) [gJs)-Pig<s)]ds - -n/144)・J H{t, s)gォHs) ds+o{W)0 0

Futhermore, a simple calculation shows :

g(tト9z(t) - [{(<-tv-m-m/U- {Ut-tif-hHトti)}/12] gf+o(・)

for any t∈ [ti,ti+1¥ -

Thus it follows that

1 1

J H(t, s) (g(s)一癖)) (fe - (fc*/120) ∫ H(t, s)g(iHs)ds+o(hi)0 0

From (4.4) and (4.5), we have the following asymptotic expansion:

1 1

J H(t, s) (トPJg{8)d8 - (k*172Q)∫ H(t, s)g^(s) ds+o(hi).0 0

On the other hand, we have

1

e&) - ∫ H(t,s)(I-P2)g(s)ds - EIi ,0

where, for each i-09 1,�"�"�",n-l,

/, - ∫ H(t, s)(I-P2)g(s) ds

- f [H(t,ォ,.) L^)+H(t, ti+1) L,+1(s)] (トP2) g(s) ds+o(hォ)

- H(t, U) j L,is)(I-Pa)g(s) ds+H(t, ti+1) f Li+1(s)(I-P%)g(8) da+0m.

Thus we have

e&) - H{t, t。) ∫ L。(s)(I-P2) g(s) ds

・岩Hit, 0 ∫ L,(s)(/-P2)9(s) ds+H(t, tn) f Ln(s)(I-P2)g(s) ds+o{・)

13

4.4

(4.5)

(4.6)

Page 16: TWO-SIDED QUINTIC SPLINE APPROXIMATIONS FOR TWO …牀T、 す.I b TIもヤ・1-8 Two・Sided Quintic Spline Approximations for Two-Point Boundary Value Problems Fork-2,Eq.(1.4)isequivalenttothefollowingsystemof(n+1

14 M. Sakai

- H(t, t。) [J L。(s) g(s) ds-*(7flr。+3flrl)/20-Aォ(3flfi-2^;)/60)]

・ ∑ H(t, ti) [¥ Li(s) g(s) ds-Hg.i+i+^9i+ 9i-i)/12]

・ H(t, tn) ∫ LJs)gls) ds-hllgn+Zgn-j)/20+A2 (30品-29品-1)/60j.

By Taylor expansion, we have

1

e望(*) - - (・124:0) ∫ H(t) s)gii){s) ds+o(hi).

0

Thus we have the desired result.

As an immediate consequence of Theorem 3, we have the

Corollary. With the hypotheses of Theorem 1, then we have

(4,7)

(3房i(ォ)+褒2(*))/4 - #(*)+o(A4) (h - 0).

Finally it should be remarked that for the type of the first derivatives absent the

approximate problem (k-2) (1.4ト(1.6) is identical with the welLknown differnce scheme

as the Numerov formula. Thus the collocation method using quintic spline function

gives the opposite approximation to the solution of the problem (1.1)-(1.3) as com-

pared with比e Numerov di鮎rence method.

5. Numerical Examples

In this section, we discuss numerical results obtained from some concrete examples.

These numerical results conform the theoretical accuracies established in previous

sections. In the case of examples 1 and 2, the approximate problems (k-2) (1.4)-(1.6)

are identical with the Numerov difference schemes. We now consider the numerical

solutions of particular examples (1.1)-(1.3).

Example 1 ([1]). As our first example, we consider the linear problem:

a3〝-100a;   0≦t≦1)

∬0 -∬1 -1.

The unique solution is x(t)-cosh (10ト5)/cosh 5.

/

Table 1.1 (el(t))

A=l/20       h=l/40       A=*l/80

1

q

3

 

4

 

5

●     ●     ●     ●     ●

o o o o o

)

)

)

)

)

I

Q

I

O

O

 

D

 

D

I

I

I

I

I′ー

QO cO fc- QO cO

00 cO 00 fc- 05

cococO餌7

tH tH <O cO <M

 

 

 

 

:

-9. 8931ト7)-7. 3228ト7)-L 1708ト7)-2. 3598ト7)-1. 8040ト7)

-6. 2338

-4. 6184

-2. 6314

-1. 4891

-1. 1385

)

)

~

)

)

OO 00 00 00 00

 

 

 

 

t

 

 

 

 

t

(

t

1.5 (-5)-1.5×10-*.

Page 17: TWO-SIDED QUINTIC SPLINE APPROXIMATIONS FOR TWO …牀T、 す.I b TIもヤ・1-8 Two・Sided Quintic Spline Approximations for Two-Point Boundary Value Problems Fork-2,Eq.(1.4)isequivalenttothefollowingsystemof(n+1

Two-Sided Quintic Spline Approximations for Two-Point Boundary Value Problems

Table 1.2 (e2(t))

h-1/20       h-¥/40  I h-1/80

1 Q一CO tH サO

●      ●      ●      ●      ●

o o o o o

4. 7568ト5)3. 5245ト5)2. 0081ト5)1. 1363ト5)8. 6870ト6)

2. 9940ト6)2. 2185ト6)1.2641ト6)7. 1537ト7)5. 4691ト7)

1. 8747ト7)1. 3891ト7)7. 9151ト8)4. 4793ト8)3. 4245(-8)

For this simple problem we have

(3房L(0.5)+房,(0-5))/4-虎(0.5ト2.25ト11) fai h.- l/80・

Example 2. Let us consider the nonlinear differential equation:

a;〟-1.5が  (0≦t≦1)

a<0)-4,  x(l)-1.

This problem has two isolated solutions such that

*(ォ)-4/(<+l)a and 」(0.5)≒-10.53.

Table 2.1 leAt) for虎(0.5)-16/9)

h-1/20       A-1/40 0佃.

日日≡

iォ

H

 

(

N

e

O

T

H

 

O

O

b

-

0

0

 

0

5

●     ●     ●     ●     ●     ●     ●     ●     ●

o o o o o o o o o

-1.

-1.

-1.

-1.

-1.

-8.

-6.

-4.

-2.

)

)

O O O O O N t- t- N

I

I

I

I

I

I

 

!

 

 

(

t

l

 

 

 

 

 

 

 

 

 

t

(

 

 

 

9 1 7 dD^ O ォゥ G<一7

8 功一O サCI CO H b> IO tH

3 q一句一    i O IO IO tH

O cO CO r-I O O O O O

-6.

-8.

-8.

-7.

-6.

-5.

-3.

-2.

-1.

)

)

)

)

)

)

)

)

)

oo oo oo oo oo oo oo oo oo

I

f

I

i

I

I

l

IS*ョ(M^l>l>oJb-

O

J

O

C

O

f

f

O

r

H

^

f

c

-

O

*

l

a

 

^

 

c

o

 

*

a

c

o

r

-

i

o

o

 

o

<

j

q

-4.

-5.

-5.

-4.

-3.

-3.

-9.

-1.

-8.

t

)

)

)

Od Oi Cd C5 Ci O5 Od O5 ^1

I

I

I

I

I

I

I

(

(

(

(

(

(

(

(

(

IO H O OO O OO M OO H

8 q一10 ^ t-Oi rH CO <O

CO H ォO ゥ!一OS O H H CO

H二 田且 [*Vサ>J-rM<軌蝣>蝣蝣J-1日リ

Table 2.2 (e2(t) for #(0.5)-16/9)

A-l/20      /&-l/40       h-l/80

H N CO'^ lO O t- OO OS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

o o o o o o o o o

3.

4.

4.

3.

3.

2.

1.

1.

6.

)

)

)

)

)

)

)

)

)

q^ CO CO CO gO gO   βnV 7

I

I

I

I

I

(

(

(

(

(

(

(

(

(

ォl- 0>^ サ0 0 ォO O cfl

O IO O fc- O OO ^O SO rH

6

 

β

D

c

O

H

S

O

I

O

 

^

 

c

O

C

O

r

H

O

O

S

O

O

^

 

O

O

C

i

2

1.

9.

9.

9.

1.

1.

1.

7.

3.

ヽノ)))

777け蝣-fc-fc-fr.oo00

IIIIIIII

((′ー((′ー(ー′l

ss3SS5icq。ooiォo

>Hfc-00ォ0

85Q一ゥH^lOrWO

o*1010c<一O>IOrHb-Oi

1.

1.

1.

1.

1.

9.

7.

4.

2.

)

)

)

)

)

)

)

)

)

oo oo oo oo oo od O Od Od

I

I

I

I

I

I

(

(

(

(

(

(

(

(

(

Q一7 7 功一io サo cq oi 10

3SS3SgS$33

<N IO IO ^ GS一ォO (M 00 tォ

As in the previous exmaple, we have

(3房   男,0.5 /4-<wO.5V- -3.5(-12) for A- 1/80.

15

Page 18: TWO-SIDED QUINTIC SPLINE APPROXIMATIONS FOR TWO …牀T、 す.I b TIもヤ・1-8 Two・Sided Quintic Spline Approximations for Two-Point Boundary Value Problems Fork-2,Eq.(1.4)isequivalenttothefollowingsystemof(n+1

M. Sakai

Table 2.3 (元(t) for *(0.5)≒-10.53)

h-1/20       ^-1/40       *-1/80

H M CO"* lO O t-00 05

●      ●      ●      ●      ●      ●      ●      ●      ●

o o o o o o o o o

0.

-3.

-6.

-9.

-10.

-10.

-8.

-5.

-2.

3IO t- OJ H

1

 

4

 

q

f

c

-

t

H

0

0

C

O

E

U

 

7

Q

H

O

a

i

O

O

O

O

f

f

4

00 I   'H tH O H tH tH

00 H O <0 (M Ci一to oa so

OO OO H OO ^O O N O H

N

O

C

O

W

C

O

H

O

J

 

O

O

J

^O eO O O TH O OO^

0.

-3.

-6.

-9.

0 1 0け- <M OJ OO

O5 rH O サO ゥ=一1 5

�" <ゥ o t-

^f O cO O IO ^ ffi

0O

H

I

O

f

f

l

 

 

 

 

 

c

c

<

4

O

O

O

M

>

 

O

O

H

C

i

O

t

-

0

0

<

M

^

t

-

^

 

O

O

O

 

O

0.

-3.

-6.

-9.

-10.

-10.

-8.

-5.

-2.

65け^OiOr-i&一9

srォOoH餌ooio

COco*Q戯

OHO5b-(NOJ00OSH

O5HOlサOC`HWOOォ

OOOOOOOOOfc-Oi-H

b-OcOWCOHO15005

^ocooo^ォo<サ^

T唱ble 2.4 (雇It) for鬼(0.5)≒-10.53)

A-l/20       h-:l/40      i-l/80

1

q

C

O

-

*

 

O

 

O

N

8

 

9

●      ●      ●      ●      ●      ●      ●      ●      ●

o o o o o o o o o

0. 47898

-3. 00794

-6. 33080

-9. 03843

-10. 53616

-10. 41014

-8. 69747

-5. 86075

- 2049152

OI OS O H M OS ^ O CO

OO OO H 0 月S H CO N tH

lLO 1 0

0.

-3.

-6.

-9.

-10.

-10.

-8.

-5.

-2.

1 08

9 1 9

8 8 0

7 0 3

4 0 3

ォO(M 00

R乱 Lc*M=リ

8 6 0

3 3 1

0 5 4

7 8 0

5 8 6

7 0 1

9 6 9

6 8 4

60

*

 

?

O

O

a

 

^

H

r

 

0

0

 

H

c

O

 

(

M

o

O

O

'

*

 

t

-

O

l

>

 

0

^"?H O<M<j<i aa <ゥ ォゥoo

0.

-3.

-6.

-9.

-10.

-10.

-8.

-5.

-2.

60

3

H

0

0

C

 

 

 

 

 

4

 

1

 

q

7 9 8 の召 O t-^H 00 00

OZ CO t-i-I SO &一句一4 3

O H O5N(S一Oi 00 O*rH

OS H Oi iO (?一1 5 8 AnV

00 00 O OO <ゥ O fc- O i-H

b-O CO CO CO H OS CD OS

^ o o o io ^ o oo^

Example 3 ([2]). As our final exmaple, we consider the following nonlinear

differential equation :

x〝 - xs-(1+cos 」)3-cos t ,

x′(0)-0, ∬′   が(l)sinl/(l+cosl)3.

The unique solution is #(」)-!+ cos t.

Table 3.1 {el(t))

ft-l/16 h-1/32

冗」」*限E^M*^K|X*^^K

H

H

C

O

H

 

O

c

O

t

-

9.

2.

2.

2.

2.

9.

2.

2.

1.

ー))))))))

000000000000000000

IIIIII

′ーー′

cO00OIO一句一OOiTHO

ゥーーHH(f一Q一ooサo

稚tfJHOOO

!>�"fc-OIO舶oilOCO

<MOfc-

1.

1.

1.

1.

1.

1.

1.

1.

1.

I))))))))

OdOSOdOJO5OiOiOdO5

IIIIIIIII

′t(′tt(

ooォゥe<!fc-ca^H<サt-o

q一t-HOHOO(M1005

r-1005<

t-t-so蝣1T-HCOCO。。

'oIOtH(N㈹

1.

1.

1.

1.

1.

9.

8.

8.

6.

)

)

)

O O O O O rH rH rH rH

i-I H H rl t-H tH r-H rH tH

T

L

L

T

T

T

(  ー  (((  ー  (((

O

f

c

-

0

 

>

O

i

-

H

0

0

T

-

1

 

1

Q

0

0

N

O

 

O

c

O

O

H

.

1

O

T

t

-

1

0 0 0 o o AO Oi O 00

Page 19: TWO-SIDED QUINTIC SPLINE APPROXIMATIONS FOR TWO …牀T、 す.I b TIもヤ・1-8 Two・Sided Quintic Spline Approximations for Two-Point Boundary Value Problems Fork-2,Eq.(1.4)isequivalenttothefollowingsystemof(n+1

Two-Sided Quintic Spline Approximations for Two-Point Boundary Value Problems  17

Table 3.2 (e2(t))

h-1/       h-l/16 h-1/32

^^E^Ks^E^E^昭Sfci印

H H CO H IO CO bi

-5.

-6.

-6.

-7.

-7.

-6.

-6.

-5.

-4.

)

)

)

)

)

)

)

)

)

oo oo oo oo co oo oo oo oo

r 1 I I I   ! I I

(

(

(

(

(

(

(

(

(

IO C55 b-^ O OO t-C∂ 7

^

H

0

0

O

O

O

J

H

t

H

 

0

 

0

5

05 0 1O H (M H CO O H

O JO OJ H O t-H Gi一〇

-4.

-4.

-4.

-4.

-4.

-4.

-4.

-3.

-2.

)

)

)

)

)

)

)

)

)

05 Od O5 05 05 02 Od Od O5

I

I

I

I

I

I

I

(

(

(

(

(

(

(

(

(

00 rH CO G^一CO O lゥ 00 0

0

3

 

0

i

 

^

 

O

H

 

D

O

5

 

t

-

 

H

CO OO O H H O ^D t- O

CO O t-t-O ^ O iO Ol

-2.

-3.

-3.

-3.

-2.

-2.

-2.

-2.

-1.

)

)

)

)

)

)

)

)

)

o o o o o o o o o

i-< rH tH rH t-I v-I t-H i-I t-I

I

I

I

I

I

I

I

I

′^ O Tォ O CO ff!一ゥcO b-

O CO ^ oO G<一05 M3 kO O

O

C

Q

I

O

M

I

O

H

H

f

f

3

0> 0 0 0 05 <X) ?O W Oi

For this example, we have

(3房iO.5 +房2(0.5))/4-盛(0.5)- -1.7ト12) for h- 1/32.

References

[1] J. Ahlberg, E. Nilson and J. Walsh: The theory of splines and their applications.Academic Press, New York. 1967.

[21 P. CIARLET,班・ So王iultz and R. Varga: Numerical methods of high order accuracy for

nonlinear boundary value problems. il. Nonlinear boundary conditions. Numer. Math. ll,

33ト345 (1968).

[3] J. Daniel and B. Swartz: Extrapolated collocation for two-point boundary value problems

using cubic splines. J. Inst. Math Applies. 16, 16ト174 (1975).

[4] W. Hoskins and. 6. McMasteb,: Multipoint boundary expansions for spline interpolation.

Proceeding of the second Manitoba conference on Numerical Mathematics. Utilitas

Mathematica Publishing Incorporated. Winnipeg, 1972.

[5] L. Rall: Computational solution of nonlinear operator equation. Wiley, New, York,1969.

[6] M. Sakai: Piecewise cubic interpolation and two-point boundary value problems. Publ. B>.

I.M.S., Kyoto Univ. 26, 345-361 (1971).

Cubic spline interpolation and two-sided difference methods to two-point boundary

value problems. Rep. Fac. S°i., Kagoshima ITniv. 9, 3ト38 (1976). ′

Cubic spline function and difference method. Mem. Fac. Sci., Kyushu Univ.

28, 43-由(1974).