university of tokyo · atsushi fujimori university of tokyo. new opportunities with oxide thin...

96
5th Windsor Summer School “Quantum Phenomena in Low-Dimensional Materials and Nanostructures”, Cumberland Lodge, Windsor, UK, August 9 - 21, 2010 Heterostructures of transition Heterostructures of transition - - metal oxides metal oxides - - Experiment, mainly spectroscopy Experiment, mainly spectroscopy - - Atsushi Fujimori University of Tokyo

Upload: phamminh

Post on 29-Sep-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

  • 5th Windsor Summer School Quantum Phenomena in Low-Dimensional Materials and Nanostructures, Cumberland Lodge, Windsor, UK, August 9 - 21, 2010

    Heterostructures of transitionHeterostructures of transition--metal oxidesmetal oxides-- Experiment, mainly spectroscopy Experiment, mainly spectroscopy --

    Atsushi FujimoriUniversity of Tokyo

  • New opportunities with oxide thin filmsNew opportunities with oxide thin films

    Finite thicknessEpitaxial strain

    Interfaces

    substratee.g., SrTiO3

  • OutlineOutline

    Electronic structure of transition-metal oxides

    Fabrication and characterization

    Interfacial electronic structure Effects of finite thickness Effects of epitaxial strain

  • Electronic structure of transition-metal oxides

  • MetalMetal--insulator transition through collapse insulator transition through collapse of Mott gap of Mott gap Bandwidth controlBandwidth control

    U

    U > W U < W

    O 2p

    3d

    3d

    U

    W

    W

    Gap ~ U - W

    O 2p

    3d

    3d

    W

    W

  • MetalMetal--insulator transition through carrier insulator transition through carrier doping into Mott insulator doping into Mott insulator Filling controlFilling control

    n = 1 n < 1 (>1)

    O 2p

    3d

    3d

    U

    W

    W

    Gap ~ U - W

    O 2p

    3d

    3d

    U

    W

    W

  • BandwidthBandwidth-- versusversus fillingfilling--controlled controlled metalmetal--insulator transitioninsulator transition

    BA

    ND

    WID

    TH

    n1

    U/W

    or/

    W

    Filling-controlled MIT

    Bandwidth-controlled MIT

    M. Imada, A. Fujimori and Y. Tokura, Rev. Mod. Phys. 1998

    U/W or /W ~ 1

  • 3d

    3d

    UW

    W

    W

    UW

    W

    W*

    W

    W

    U U

    W

    W

    gap ~ U - W

    Brinkman-Rice picture

    Hubbard picture

    m* 1/W* Normal metal

    U / W 1 U/W

  • X.Y. Zhang et al., Phys. Rev. Lett., 1993

    U / W

  • Filling control

    Ban

    dwid

    th c

    ontro

    l

    BandwidthBandwidth-- versusversus fillingfilling--controlled controlled in Mottin Mott--Hubbard systemsHubbard systems

    4+

    4+

    4+

    3+

    3+

    3+3+

    4+

    4+

    W cos2

    Perovskite structure

  • U

    W

    U / W

  • Filling control

    Ban

    dwid

    th c

    ontro

    l

    BandwidthBandwidth-- versusversus fillingfilling--controlled controlled in Mottin Mott--Hubbard systemsHubbard systems

    4+

    4+

    4+

    3+

    3+

    3+3+

    4+

    4+

    W cos2

    Perovskite structure

  • Y. Tokura et al. PRL 93

    FillingFilling--controlled Mottcontrolled Mott--Hubbard system Hubbard system LaLa11--xxSrSrxxTiOTiO33

    LaTiO3d1 Mott insulator

    rigid band model

    Kodowaki-Woods relationship

    SrTiO3d0

    1 0

    1 0.8 0.6 0.4 0.2 0

    x =0.2x =0.1

    x =0

    x =0.05

    x =0.3

    0.5

    x

    x

    Wilson ratio: / ~ 2

    n=1/RH~1-x

    x 01

    Electronic specific heat &Pauli-paramagnetic suseptibiulity

  • Filling control

    Ban

    dwid

    th c

    ontro

    l

    M. Imada, A. Fujimori and Y. Tokura, Rev. Mod. Phys. 98

    PerovskitePerovskite--type transitiontype transition--metal metal oxdiesoxdies

  • ZaanenZaanen--SawatzkySawatzky--Allen diagramAllen diagram

    J. Zaanen, G.A. Sawatzky and J.W. Allen, PRL 85

    p-band metal

    d-band metal

    Charge-transfer type insulator

    Mott-Hubbard type insulator

    Negative-insulator

    (eV)

    ~ U

    ~

    0

  • > W < W

    Gap ~ - W

    O 2p

    3d

    3d

    U O 2p3d

    3d U

    MetalMetal--insulator transition through collapse insulator transition through collapse of chargeof charge--transfer gap transfer gap Bandwidth controlBandwidth control

  • Gap ~ - W

    O 2p

    3d

    3d

    U

    n = 1 n < 1

    O 2p

    3d

    3d

    U

    MetalMetal--insulator transition through carrier insulator transition through carrier doping into chargedoping into charge--transfer insulatortransfer insulator

  • Filling control

    Ban

    dwid

    th c

    ontro

    l

    M. Imada, A. Fujimori and Y. Tokura, Rev. Mod. Phys. 98

    PerovskitePerovskite--type transitiontype transition--metal metal oxdiesoxdies

    Giant Magnetoresistance

    Mn

    Textbook Fermi liquidMott transition

    TiV

    Giant thermoelectricity

    Co

    A2BO4High-Tc

    superconductivity

    CuLa1-xSrxMnO3

  • Y. Tokura

    Electronic structure of Mn ion

    high-spin state

    3

    PerovskitePerovskite--type type MnMn oxdiesoxdies

    orbital

    octahedron

    Hund coupling Cryst. fieldIf

    Strongly hybridized withStrongly hybridized withO 2O 2pp orbitalsorbitals

  • JHHund coupling constant

    spintspineS

    gi

    gi

    2

    r

    rspin

    spin

    10Dq

    eg

    t2g

    Double exchange model for magnetoDouble exchange model for magneto--resistance in resistance in MnMn oxdiesoxdies

  • La1-xSrxMnO3

    La1-xSrxMnO3

    Y. Tokura et al., J. Phys. Soc. Jpn. 94

    Tc

    Colossal magnetoresistance of Colossal magnetoresistance of MnMn oxdiesoxdiesR

    esis

    tivity

    (cm

    )

    Temperature (K) Magnetic field (T)

    Res

    istiv

    ity (

    cm)

  • Filling control

    Ban

    dwid

    th c

    ontro

    l

    M. Imada, A. Fujimori and Y. Tokura, Rev. Mod. Phys. 98

    PerovskitePerovskite--type transitiontype transition--metal metal oxdiesoxdies

    Giant Magnetoresistance

    Mn

    Textbook Fermi liquidMott transition

    Ti

    Giant thermoelectricity

    Co

    A2BO4High-Tc

    superconductivity

    CuLa1-xSrxMnO3

    Pr1-xCaxMnO3

  • S.Mori et al., Nature 98

    Jahn-Teller distortion of MnO6 octahedron

    Mn3+Mn4+

    x=0.5 x=0.67

    d3z2-r2

    dx2-y2

    Pr1-xCaxMnO3

    SpinSpin--chargecharge--orbital ordering in perovskiteorbital ordering in perovskite--type type MnMn oxdiesoxdies

  • Y. Tomioka et al., Phys. Rev. B 1996 A. Asamitsu et al., Nature 1997

    Magneto-resistance Resistance drop by electric field

    Metal-insulator transition induced by H or E

    Even bigger magnetoresistance in Even bigger magnetoresistance in narrownarrow--band band MnMn oxdiesoxdies

  • Fabrication and characterization

  • T. Ohnishi et al., APL 01.

    Monitoring RHEED oscillations

    MBE using pulsed laser deposition (PLD) MBE using pulsed laser deposition (PLD)

    sintered polycrystalline

    targets

    Excime

    r laser

    RHEEDbeam Single crystal

    substrate

    Movingedge

    Maskpattern

    Laser heating

    PLD system

  • Bulk SrVO3: a = 3.84 K. Yoshimatsu et al.

    Characterization of epitaxially grown thin Characterization of epitaxially grown thin film on SrTiOfilm on SrTiO33(001) substrate(001) substrate

    SrVO3 filma = 3.905 (= SrTiO3)c = 3.82

    Tensile strain

    Reciprocal space mappingof XRD pattern

    Atomic force microscope(AFM)

    Transmission electron Microscopy (TEM)

  • X-ray reflection

    Characterization of epitaxially grown Characterization of epitaxially grown superlatticesuperlattice on SrTiOon SrTiO33(001) substrate(001) substrate

    S.J. May et al. PRB 08

    (001)

    (002)

    (003)

    [(LaMnO3)11.8 / (SrMnO3)4.4]6 superlatticeTEM image

    superspots

  • S(003) = 2fint - fLMO - fSMO

    (003) (in units of 1/m+m): visible only at O 1s edge

    O 2p hole doping only at interface.

    S. Smadici et al.,. PRL 07

    Soft X-ray scattering

    Soft xSoft x--ray scattering from ray scattering from [(LaMnO[(LaMnO33))mm/(SrMnO/(SrMnO33))mm]]nn superlatticesuperlattice

    X-ray scattering (reflectivity)

    S.J. May et al. PRB 08

    (001)

    (002)

    (003)

    superspots

    Small angle scatt. part

  • AFM image

    LEED

    Synchrotron radiation

    Combinatorial Laser MBE Chamber

    PhotoemissionChamber

    PreparationChamber

    Sample Entry

    K. Horiba et al., Rev. Sci. Instrum. 74, 3406 (2003).

    Combined photoemission-laser MBE systemOshima-Kumigashira group

    400 nm

    Photon Factory BL-1c, BL2c, BL-28

    InIn--situsitu ARPES measurement system of ARPES measurement system of PLDPLD--grown oxide thin films grown oxide thin films

  • Photoemission spectroscopy of buried Photoemission spectroscopy of buried interfacesinterfaces

    interface

    Sensitivity M

    ean

    free

    path

    ()

    Kinetic energy (eV)Soft

    x-raysHardx-raysVUV

    UV

    Probing depth of photoelectrons

    ~ 1 uc

    Dep

    th

    1-2 uc

  • Photoemission spectroscopy of buried Photoemission spectroscopy of buried interfacesinterfaces

    n-type band insulator SrTiO3, LaAlO3, TiO2, ZnO, etc

    Mott insulator, metal, superconductor, etc

    interfacial states

    10.0 5.0 0Binding Energy (eV)

    SrTiO3

    O 2p

    Sensitivity

    2-3 uc

    Dep

    th

    1-2 uc

  • Photoemission spectroscopy of buried Photoemission spectroscopy of buried interfacesinterfaces

    5-10 uc

    Mea

    n fre

    e pa

    th (

    )

    Kinetic energy (eV)Soft

    x-raysHardx-raysVUV

    UV

    ~ 1 uc

    30-50 ucsubstrate

    V oxides

    Sensitivity

    Dep

    th

    interfacial stateson V oxide side

    Probing depth of photoelectrons

  • Photoemission spectroscopy of buried Photoemission spectroscopy of buried interfacesinterfaces

    Dep

    th

    5-10 uc

    Mea

    n fre

    e pa

    th (

    )

    Kinetic energy (eV)Soft

    x-raysHardx-raysVUV

    UV

    ~ 1 uc

    30-50 ucsubstrate

    interfacial statesV oxides

    e

    Inte

    rface

    /bul

    k

    d

    Sensitivity

    Dep

    th

    M. Sing et al., PRL 09

    Probing depth of photoelectrons

  • A1 - A2

    Polarized soft xPolarized soft x--ray absorption spectroscopy ray absorption spectroscopy (XAS)(XAS)

    element specific probe

    spin sum rule

    orbital sum ruleMn 2p

    core level

    Mn 3dvalence level

    h

    spin-orbit splitting

    spin-orbit splitting

    X

    Magnetic circular x-ray dichroism(XMCD)

  • X

    XMCD of buried interfacesXMCD of buried interfaces

    Non-magnetic (Induced magnetism)

    Non-magnetic or Magnetic

    ferromagnetic interface

    element specific probe

    XAS

    XMCD

  • OutlineOutline

    Electronic structure of transition-metal oxides

    Fabrication and characterization

    Interfacial electronic structure Effects of finite thickness Effects of epitaxial strain

  • Interfacial electronic structureMetallic states between two insulators

    -States near the Fermi level-

    Interfaces

    substratee.g., SrTiO3

  • SrTiO3

    LaTiO3 Metallic interfaces !

    Metallic behavior of interfaces between Metallic behavior of interfaces between Mott insulator and band insulatorMott insulator and band insulator

    SrTiO3: d0 (Ti4+) band insulator

    LaTiO3: d1 (Ti3+) Mott insulator

    Perovskite-type oxides ABO3

    Sr2+

    Ti4+ (d0)

    O2-

    La2+

    Ti3+ (d1)

    O2-

  • A. Ohtomo et al., Nature 02

    Ti3+

    5 un

    ite c

    ells

    LaTiOLaTiO33 layers embedded in SrTiOlayers embedded in SrTiO33: : Penetration of Ti 3Penetration of Ti 3dd electrons into SrTiOelectrons into SrTiO33

    La 3d

    Atomically resolved EELS

    Ti 2p

    Energy loss (eV)

    Ti3+ Ti4+

    Ti4+Ti3+

    La

    density

    SrTiO3

    SrTiO3

    - - -- - -- -

    - -LaTiO3 - - - - -

    SrO0 layer

    LaO+ layer

    [Ti4+O2]0layer

    [Ti3+O2]-layer

    - - - -

    LaTiO3: d1 (Ti3+) Mott insulatorSrTiO3: d0 (Ti4+) band insulator

  • Metallic transport of SrTiOMetallic transport of SrTiO33/LaTiO/LaTiO33superlatticessuperlattices

    LSTO2

    2uc

    x ucSrTiO3

    LaTiO3

    LaTiO3 2uc

    x ucSrTiO3

    LaTiO3

    Lattice constant

    K. Shibuya, M. Lippmaa et al., JJAP 04

    Electrical resistivity

    T2

  • Inte

    nsity

    (arb

    . uni

    ts)

    -10 -8 -6 -4 -2 0Energy relative to EF (eV)

    h = 21.2 eV

    SrTiO3/LaTiO3

    200

    (A)

    (B)

    (C)

    (D)

    O 2p

    e-

    band gap: ~3 eV

    h

    Photoemission spectra of SrTiOPhotoemission spectra of SrTiO33/LaTiO/LaTiO33interfacesinterfaces

    (SrO)0 layer

    TiO2 layer

    (LaO)1+ layer

    SrTiO3

    LaTiO3

    SrTiO3

    LaTiO3

    SrTiO3

    SrTiO3

    LaTiO3

    V 3d

    M. Takizawa et al., PRL 06

    incoherentcoherent

    La/Srinterdiffusion

  • Ti 2p-3d resonant photoemission

    e-h

    SrTiO3

    LaTiO3

    SrTiO3

    LaTiO3

    SrTiO3

    LaTiO3Inte

    nsity

    (arb

    . uni

    ts)

    -2.0 -1.0 0Energy relative to EF (eV)

    SrTiO3/LaTiO3on resonance(h = 466 eV)off resonance(h = 600 eV)

    (A)

    (B)

    (C)

    coherentincoherent

    Photoemission spectra of SrTiOPhotoemission spectra of SrTiO33/LaTiO/LaTiO33interfacesinterfaces

    (SrO)0 layer

    TiO2 layer

    (LaO)1+ layer

    M. Takizawa et al., PRL 06

    La/Srinterdiffusion

  • SrTiO3

    LaTiO3

    V(z) V(z)

    Metallic

    Ti3+ Ti3.5+

    (SrO)0

    (SrO)0

    (SrO)0

    (SrO)0

    (SrO)0

    (TiO2)0

    (TiO2)0

    (TiO2)0

    (TiO2)0

    (TiO2)0

    (TiO2)0(LaO)+

    (LaO)+

    (LaO)+

    (LaO)+

    (LaO)+

    (LaO)+

    (TiO2)-

    (TiO2)-

    (TiO2)-

    (TiO2)-

    (TiO2)-

    e/2

    Metallicity at SrTiOMetallicity at SrTiO33/LaTiO/LaTiO3 3 interfaces resulting interfaces resulting from electronic reconstructionfrom electronic reconstruction

    S. Okamoto and A. J. Millis, Nature 04, PRB 04

    coherentincoherent

    Empty d band

    LHB UHB

    Electronicreconstruction

    Layer DMFT calculation including long-range Coulomb interaction

  • Interfacial electronic structure

    Interfaces

    substratee.g., SrTiO3

    Metallic states between two insulators-Charge transfer in electronic reconstruction-

  • A. Ohtomo and H.Y. Hwang, Nature 04H.Y. Hwang, Science 07

    High mobility of High mobility of nn--type carriers at interfaces type carriers at interfaces between two band insulatorsbetween two band insulators

    +- e/2 Ti4+ Ti3.5+

    Magneto-resistance

    LaAlO3: band insulatorSrTiO3: band insulator

    Metallic

    Magneto-resistance

  • Critical thickness of ~4 Critical thickness of ~4 ucuc for conductivity for conductivity transition at LaAlOtransition at LaAlO33/SrTiO/SrTiO33 interfaceinterface

    S. Thiel et al., Science 06 M. Huijben et al., Nature Mater.06

    d

    Insulating MetallicInsulating Metallic

    ~ 4 uc4 uc

  • Polar (111) surface of KPolar (111) surface of K33CC60 60 and its and its electronic reconstructionelectronic reconstruction

    R. Hepster et al., PRB 00

    1.5e1.5e

  • Photoemission spectroscopy of buried Photoemission spectroscopy of buried interfacesinterfaces

    Binding Energy (eV)

    O 1s core level

    V 2p core level

    V oxides

    5-10 uc

    interfaceinterfacial stateson V oxide side

    Sensitivity

    Dep

    th

  • Evidence for TiEvidence for Ti3+3+ states at the states at the nn--type type LaAlOLaAlO33/SrTiO/SrTiO33 interfaceinterface

    M. Sing et al., PRL 09

    Ti3+ intensityTi 2p core-level spectra

  • 1

    x

    6STO

    n-type interfacep-type interface

    Ti4+ Ti3+

    ~ 4 uc

    LaAlO3(x uc)/SrTiO3

    M. Takizawa et al.

    LaAlOLaAlO33 overlayeroverlayer thickness dependence of Tithickness dependence of Ti3+3+concentration at LaAlOconcentration at LaAlO33/SrTiO/SrTiO33 interfaceinterface

    Prepared at 10-5 Torr

    Metallic

    Insulating Ti4+ Ti4-+

  • A. Ohtomo and H.Y. Hwang, Nature 04; N. Nakagawa et al, Nat. Mater. 06H.Y. Hwang, Science 07

    pp--type LaAlOtype LaAlO33/SrTiO/SrTiO33 interfaceinterface

    +-

    e/2

    O/4

  • 1

    x

    6STO

    M. Takizawa et al.

    Ti4+ Ti3+

    LaAlO3(x uc)/SrTiO3

    n-type interfacep-type interface

    ~ 4 uc ?

    Prepared at 10-5 Torr

    LaAlOLaAlO33 overlayeroverlayer thickness dependence of Tithickness dependence of Ti3+3+concentration at LaAlOconcentration at LaAlO33/SrTiO/SrTiO33 interfaceinterface

    Ti4+ Ti4-+

  • Interfacial electronic structure

    Interfaces

    substratee.g., SrTiO3

    Metallic states between two insulators-Potential change in electronic reconstruction-

  • Polar catastrophe model of LaAlOPolar catastrophe model of LaAlO33/SrTiO/SrTiO33

    Y. Segal et al., PRB 09

    SrTiO3 LaAlO3

    /2

    Energy shift?~1eV/uc

    Critical thickness

  • M. Takizawa et al.

    ~0.1 eV/uc

    Probing the potential slope in the LaAlOProbing the potential slope in the LaAlO33 layer layer of LaAlOof LaAlO33/SrTiO/SrTiO33

    Al 2p Sr 3d relative core-level shifts

    Same direction!

    e-h e-

    n-type p-type~1

    eV/uc

  • Probing the potential slope in the LaAlOProbing the potential slope in the LaAlO33 layer layer of LaAlOof LaAlO33/SrTiO/SrTiO33

    Y. Segal et al., PRB 09

    La 3d5/2 Al 2p

    La 3d and Al 2p core levels referenced to Sr 3d

    ~4 uc

    ~1 eV

    /ucSr 3d La 4d relative

    core-level shiftsPolar catastrophe model

    ~0.1 eV/uc

    Opposite to the model!

    n-type p-type

    n-type p-type

  • A. Rizzi et al., JVSTB 99

    GaN/SiC(0001)GaN/AlN(0001)

    Probing the potential slope in Probing the potential slope in GaNGaN (0001) layers(0001) layers

    ~0.1 eV/nm ~0.1 eV/nm

    substratesubstrate

    in situ

    differentsamples

    overlayer overlayer

  • A. Rizzi et al., JVSTB 99

    Calculated potential in polar GaN/SiC(0001)Calculated potential in polar GaN/SiC(0001)

    Density of surface states

    ~0.3 eV/nm ~0.1 eV/nm

    e/2

    e/2

  • Short summaryShort summary-- Metallic states between two insulators Metallic states between two insulators --

    Electronic reconstruction at insulator-insulator interfaces:

    Charge transfer occurs as expected to avoid the polar catastroph, but the charge transfer starts well below the critical thickness of transport.

    Potential slope as expected to avoid the polar catastrophe model is much reduced.

    The above observations can be explained by the gradual reconstruction which starts well below the critical thickness.

  • Preparation dependence of carrier distributions at Preparation dependence of carrier distributions at the the nn--type LaAlOtype LaAlO33/SrTiO/SrTiO33 interfaceinterface

    Cross-sectional AFM

    O2-annealed

    Prepared at 10-6 Torr

    M. Basletic et al., Nat. Phys. 08M. Sing et al., PRL 09

    Core-level photoemission

    Prepared at 10-6 Torr O2-annealed

  • Novel physical properties of Novel physical properties of LaAlOLaAlO33/SrTiO/SrTiO33 interfacesinterfaces

    Ferromagnetism

    A. Brinkman et al. Nat. Mater. 07cf: MR by M B. Shalom et al., PRB 09N. Reyren et al. Science 07

    Superconductivity

  • GateGate--voltage control of superconductivity at voltage control of superconductivity at LaAlOLaAlO33/SrTiO/SrTiO33 interfaceinterface

    A.D. Caviglia et al., Nature 08

    Resistivity for various gate voltages

  • GateGate--voltagevoltage--controlled LaAlOcontrolled LaAlO33/SrTiO/SrTiO33 interface:interface:Filling control or mobility control?Filling control or mobility control?

    C. Bell et al., PRL 09

    Resistivity for various gate voltages

    Gate-voltage dependence of carrier density and mobility

  • Interfacial electronic structureFerromagnetism between non-magnetic materials

    Interfaces

    substratee.g., SrTiO3

  • T. Koida et al.,. PRB 02

    Ferromagnetism in [(LaMnOFerromagnetism in [(LaMnO33))mm/(SrMnO/(SrMnO33))mm]]nnsuperlatticessuperlattices

    Magnetization, resistivity

    m=m

    S.J. May et al.,. PRB 08

    Polarized neutron reflectivity

    TEM

    [MnO2]0[LaO]+

    [MnO2]-[SrO]0

  • S. Smadici et al.,. PRL 07H. Wadati

    STEM image Temperature dependence

    (003) resonance

    Metallic behavior

    Soft xSoft x--ray scattering from ray scattering from [(LaMnO[(LaMnO33))88/(SrMnO/(SrMnO33))44]]77/SrTiO/SrTiO33(001)(001)

  • Ferromagnetism in AF insulatorFerromagnetism in AF insulator--paramagnetic paramagnetic metal interfacesmetal interfaces

    S. Takahashi et al., APL 01

    CaMnO3: AF insulatorCaRuO3 : PM metal Magnetization and Tc

    Magnetization

  • 1.2

    0.8

    0.4

    0.0Mom

    ent

    (B

    / M

    n-at

    om)

    Mn orbital momet spin moment

    CaMn1-xRuxO3

    -1.2

    -0.8

    -0.4

    0.0

    Mom

    ent

    (B

    / R

    u-at

    om)

    Ru

    orbital moment spin moment

    -0.2

    0.0

    0.2

    Mom

    ent

    (B

    / f.

    u.)

    1.0 0.9 0.8 0.7 0.6 0.5Ru concentration x

    XMCD SQUID

    Mtotal

    Mn 2Mn 2pp and Ru 3and Ru 3pp XMCD for XMCD for CaMnCaMn11--xxRuRuxxOO33 thin filmsthin films

    K. Terai et al. PRB 08

    XMCD spectra

    Mn

    Ru

    Mn

    Ru

    total

    spin

    spin

    orbital

    orbital

    Magnetic moments on Mn and Ru

    CaRuO3 CaMn0.5Ru0.5O3

  • Ru (t2g)Mn (t2g, eg) Mn (t2g, eg)

    EF

    eg

    t2g

    eg

    t2geg

    t2g

    eg

    t2g

    cf.) Double peroskite Sr2FeMoO6 D.D. Sarma et al., PRL 00, Z. Fang et al., PRB 01

    hybridization

    Mechanism for ferromagnetism in Mechanism for ferromagnetism in CaMnCaMn11--xxRuRuxxOO33 CaMnOCaMnO33/CaRuO/CaRuO33, too ?, too ?

    itinerant

    localizedexchange-split

    localizedexchange-split

    Eex

  • Interfacial electronic structureInterface between different ground states

    Interfaces

    substratee.g., SrTiO3

  • Interface between superconductor YBaInterface between superconductor YBa22CuCu33OO77and and ferromagnetferromagnet La,Ca)MnOLa,Ca)MnO33

    J. Chakhalian et al., Nat. Phys. 06

    XMCD of Cu and Mn

    Antiparallel magn. moment

  • Interface between superconductor YBaInterface between superconductor YBa22CuCu33OO77and and ferromagnetferromagnet La,Ca)MnOLa,Ca)MnO33

    J. Chakhalian et al., Nat. Phys. 06

    XMCD of Cu and Mn

    Antiparallel magn. moment

  • Interfacial electronic structureChemical potential

    Interfaces

    substratee.g., SrTiO3

  • T. Fujii et al., APL 05

    To deduce chemical potential from To deduce chemical potential from II--VV characteristics of junctioncharacteristics of junction

    EvacA B

    A B

    Schottky barrier height = A - B = B A(or built-in potential in p-n junction)

    metal n-type semicond.

    I-V characteristics of SrRuO3/SrTiO3

  • A. Sawa et al., APL 07

    Chemical potential shift from the built-in potential of La1-xSrxMO3/SrTiO3 p-n (Schottky) junction

    To deduce chemical potential shift from To deduce chemical potential shift from II--VV characteristics of junctioncharacteristics of junction

  • A. Fujimori et al., J. Electron Spectrosc. 02

    Chemical potential shift from core-level XPS

    To deduce chemical potential shift from To deduce chemical potential shift from II--VV characteristics of junctioncharacteristics of junction

    A. Sawa et al., APL 07

    Chemical potential shift from the built-in potential

  • Magnetic fieldMagnetic field--induced chemical potential shift induced chemical potential shift in Lain La2/32/3SrSr1/31/3MnOMnO33/organic conductor junction/organic conductor junction

    D. Wu et al., PRL 05

    1-x

    x

    eg1

    eg2

    Double exchange in Jahn-Teller-split eg band

    JT

    H

  • EkinEvac

    Photoemissionspectrum

    core level

    valence bandE

    h

    h

    h

    To deduce chemical potential shift from To deduce chemical potential shift from corecore--level photoemissionlevel photoemission

    work functionvacuum level

    chemical potential+

    Density of states (DOS)

    Photoelectron count

    kinetic energy

    E E -

    Energy referenceof spectrometerEF

    EF

  • S. Yunoki et al., PRB, 2007

    Carrier doping utilizing chemical potential Carrier doping utilizing chemical potential differencesdifferences

    Manganite Cuprate

    x ~ 0.15

    x ~ 0

    x ~ 0.4

    x ~ 0

    Superconducting

    LSCO

  • Effects of finite thickness

    Finite thickness

    substratee.g., SrTiO3

    Metal-insulator transitions

  • MetalMetal--toto--insulator transition in SrVOinsulator transition in SrVO33with decreasing film thickness ofwith decreasing film thickness of

    K. Yoshimatsu et al., PRL 10, Orbital ordering? (P. Mahadevan)

    DMFT calc

    LHBMottgap

  • Small W large U/W ?

    MetalMetal--toto--insulator transition in Srinsulator transition in SrRRuOuO33with decreasing film thickness ofwith decreasing film thickness of

    P. Mahadevan et al., PRB 09D. Toyota et al., APL 05

    Orbital-ordering AFMI ?

  • OutlineOutline

    Electronic structure of transition-metal oxides

    Fabrication and characterization

    Interfacial electronic structure Effects of finite thickness Effects of epitaxial strain

  • Effects of epitaxial strainSuperconductivity

    Epitaxial strain

    e.g., SrTiO3

  • Tight-binding model

    M. Abrecht et al., PRL 91

    Bulk a = 3.784c =13.23, dAP = 2.43

    Thin filma = 3.754(= SrLaAlO4)c = 13.29, dAP = 2.50

    t = 0.145 eVt = 0.135 eV

    Strained filmBulkLa2-xSrxCuO4/SrLaAlO4(001)

    Band structure of LaBand structure of La22--xxSrSrxxCuOCuO44 (x=0.15) (x=0.15) under compressive strain studied by ARPESunder compressive strain studied by ARPES

  • Fermi surface of LaFermi surface of La22--xxSrSrxxCuOCuO44 (x=0.15) under (x=0.15) under compressive strain studied by ARPEScompressive strain studied by ARPES

    t = 0.145 eV, t = 0.0052 eV

    TTc c = 24K= 24K TTc c = 40K= 40K

    Bulk Strained film

    t = 0.135 eV, t = 0.036 eV

    Tight-binding modelM. Abrecht et al., PRL 91

    cf: Tensile strain: La2-xSrxCuO4/SrTiO3(001)D. Coleta et al., PRB 06

    Large t Small t

  • E. Pavarini et al., PRL 01

    t

    t

    t

    Tc,max vs |t/t|

    Empirical correlation between Empirical correlation between TTc c ,max,max and and nextnext--nearestnearest--neighbor hoppingneighbor hopping tt

    |t/t|

    D. Feng et al., PRL 01

    ABBB

    AB BB

    bilayer cuprates

  • Effects of epitaxial strainMetal-insulator transitions

    Epitaxial strain

    e.g., SrTiO3

  • Electronic phase diagram of Electronic phase diagram of RR11--xxAAxxMnOMnO33

    Y. Tokura and Y. Tomioka, JMMM 99

    bandwidth (W)large small

    W cos2

    La1-xSrxMnO3

    Pr1-xCaxMnO3Nd1-xSrxMnO3

    Hole doping x Hole doping x Hole doping x

    x = 0.5

  • Y. Konishi et al., JPSJ 99

    compressive

    tensile

    Electronic phase diagram ofElectronic phase diagram ofLaLa11--xxSrSrxxMnOMnO33 under epitaxial strainunder epitaxial strain

    FM

    FM

    C-AFI

    C-AFI

    A-AFM

    A-AFM

  • HXHX--PES spectra of LaPES spectra of La11--xxSrSrxxMnOMnO33 (x=0.4) (x=0.4) under epitaxial strainunder epitaxial strain

    K. Horiba et al., PRB 09

    h=5.95 keV

  • Y. Konishi et al., JPSJ 99

    compressive

    tensile

    Electronic phase diagram ofElectronic phase diagram ofLaLa11--xxSrSrxxMnOMnO33 under epitaxial strainunder epitaxial strain

    FM

    FM

    C-AFI

    C-AFI

    A-AFM

    A-AFM

  • K. Horiba et al., PRB 09

    HXHX--PES spectra of LaPES spectra of La11--xxSrSrxxMnOMnO33 (x=0.5) (x=0.5) under epitaxial strainunder epitaxial strain

    h=5.95 keV

  • Summary Summary

    Electronic structure of transition-metal oxides Fabrication and characterization Interfacial electronic structure

    Metallic states between two insulators States near the Fermi level Charge transfer in electronic reconstruction Potential change in electronic reconstruction

    Ferromagnetism between non-magnetic materials Interface between different ground states Chemical potential

    Effects of finite thickness Metal-insulator transitions

    Effects of epitaxial strain Metal-insulator transitions Madelung potential shifts Changes in chemical potential shift

  • Acknowledgement Acknowledgement

    VUV, soft x-ray photoemissionM. Takizawa, H. Wadati, M. Takizawa, T. Yoshida, K. Maekawa (U of Tokyo)H. Kumigashira, K. Horiba, K. Yoshimatsu, T. Okabe, M. Oshima, A. Maniwa, M. Minohara (U of Tokyo)Hard x-ray photoemissionS. Shin, Y. Takata, K. Horiba, M. Matsunami, M. Yabashi, K. Tamasaku, Y. Nishino, D. Miwa, T. Isikawa (SPring-8, RIKEN)E. Ikenaga, K. Kobayashi (JASRI)Materials synthesisH.Y. Hwang, Y. Hotta, S. Tsuda, T. Higuchi, T. Susaki (U of Tokyo)M. Lippmaa, K. Shibuya, N. Mihara (ISSP)M. Kawasaki (Tohoku U), H. Koinuma (U Tokyo, JST)Y. Muraoka (Okayama U), Z. Hiroi (ISSP)

    Supported by: a Grant-in-Aid for Scientific Research, JSPS & Quantum Beam Technology Development Program, JST