university of Žilina · obsahzoznam01112131415161718191 zoznamintegrálov–príklady101–200...

812
Obsah Zoznam 01 11 21 31 41 51 61 71 81 91 Matematická analýza 1 2018/2019 13. Neurčitý integrál Riešené príklady [email protected] http://frcatel.fri.uniza.sk/˜beerb

Upload: others

Post on 03-Aug-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

  • Obsah Zoznam 01 11 21 31 41 51 61 71 81 91

    Matematická analýza 1

    2018/2019

    13. Neurčitý integrálRiešené príklady

    [email protected] http://frcatel.fri.uniza.sk/˜beerb

    mailto:[email protected]://frcatel.fri.uniza.sk/~beerb

  • Obsah Zoznam 01 11 21 31 41 51 61 71 81 91

    Obsah – príklady 101–200

    1 Riešené príklady 101–1102 Riešené príklady 111–1203 Riešené príklady 121–1304 Riešené príklady 131–1405 Riešené príklady 141–1506 Riešené príklady 151–1607 Riešené príklady 161–1708 Riešené príklady 171–1809 Riešené príklady 181–19010 Riešené príklady 191–200

    [email protected] http://frcatel.fri.uniza.sk/˜beerb

    mailto:[email protected]://frcatel.fri.uniza.sk/~beerb

  • Obsah Zoznam 01 11 21 31 41 51 61 71 81 91

    Zoznam integrálov – príklady 101–200101.

    ∫dx

    x2+4x+5 102.

    ∫dx

    x2+4x+3 103.

    ∫dx

    x2−4x+6 104.

    ∫dx

    x2−4x+2 105.

    ∫dx

    x2+4x+4 106.

    ∫dx√

    x2+4x+4107.

    ∫dx√

    x2+4x+5108.

    ∫dx√

    x2+4x+3

    109.

    ∫dx√

    x2−4x+6110.

    ∫dx√

    x2−4x+2111.

    ∫dx√

    −x2+4x−5112.

    ∫dx√

    −x2+4x−3113.

    ∫dx√

    x(x−1)114.

    ∫dx√

    x(2−x)115.

    ∫√

    x2+4x +5 dx

    116.

    ∫√

    x2+4x +3 dx 117.∫√

    x2−4x +6 dx 118.∫√

    x2−4x +2 dx 119.∫√−x2+4x−3 dx 120.

    ∫ √x(2−x) dx 121.

    ∫dx

    (x2+a2)n 122.

    ∫dx

    (x2+a2)2

    123.

    ∫dx

    (x2+a2)3 124.

    ∫dx

    (x2+a2)4 125.

    ∫dx

    (x2−a2)n 126.

    ∫dx

    (x2−a2)2 127.

    ∫dx

    (x2−a2)3 128.

    ∫dx

    (x2−a2)4 129.

    ∫dx

    (x2+4x+5)2 130.

    ∫dx

    (x2+4x+3)2 131.

    ∫x2 dx

    (x2+a2)2

    132.

    ∫x2 dx

    (x2−a2)2 133.

    ∫x dx

    x2+a2 134.

    ∫x dx

    (x2+a2)n 135.

    ∫x dx

    x2−a2 136.

    ∫x dx

    (x2−a2)n 137.

    ∫xn dxx−1 138.

    ∫x dxx−1 139.

    ∫x2 dxx−1 140.

    ∫x9 dxx−1 141.

    ∫dx

    (1−x)x2

    142.

    ∫dx

    x6(1+x2) 143.

    ∫(x−2)4 dx

    (x−1)2 144.

    ∫(x−1)4 dx

    (x−2)2 145.

    ∫dx

    x3−7x−6 146.

    ∫dx

    x3−2x2−x+2 147.

    ∫dx

    x3−3x−2 148.

    ∫dx

    x3+x2−x−1 149.

    ∫dx

    x3−3x2+4x−2

    150.

    ∫dx

    x3−3x2+3x−1 151.

    ∫dx

    x3−2x−4 152.

    ∫dx

    x6+1 153.

    ∫x dxx6+1 154.

    ∫x2 dxx6+1 155.

    ∫x3 dxx6+1 156.

    ∫x4 dxx6+1 157.

    ∫x5 dxx6+1 158.

    ∫x6 dxx6+1 159.

    ∫dx

    2x +1 160.

    ∫dx√2x +1

    161.

    ∫(1+x) dx√

    1−x2162.

    ∫ √1+x1−x dx 163.

    ∫ √1−x1+x dx 164.

    ∫ √x+1x−1 dx 165.

    ∫ √x−1x+1 dx 166.

    ∫ √(1+x1−x

    )3 dx 167.∫ √( 1−x1+x )3 dx168.

    ∫ √(x+1x−1

    )3 dx 169.∫ √( x−1x+1 )3 dx 170.∫ √1−√x√1+√x dx 171.∫ dx√x+1+ 3√x+1 172.∫ arcsin√ 1+x1−x dx 173.∫ arcsin√ 1−x1+x dx174.

    ∫arcsin

    √x+1x−1 dx 175.

    ∫arcsin

    √x−1x+1 dx 176.

    ∫dx√

    x−3+√

    x−5 177.

    ∫dx√

    x−3−√

    x−5 178.

    ∫dx√

    x−3+√5−x 179.

    ∫1+√

    1−x2

    1−√

    1−x2dx

    180.

    ∫ √ x1−x√

    x dx 181.∫

    dx3√x+ 4√

    x 182.

    ∫dx

    6√x+ 4√

    x 183.

    ∫dx

    3√x+ 5√

    x 184.

    ∫dx

    3√x+1 185.

    ∫ [√x3 − 1√x

    ]dx 186.

    ∫x−1

    (√

    x+ 3√

    x2)xdx 187.

    ∫dx

    (x−1)√

    x−2

    188.

    ∫dx

    (x+1)√1−x 189.

    ∫(x−1)

    √x−2 dx 190.

    ∫√1−x

    x+1 dx 191.∫

    dx(x−√

    x2−1)2 192.∫ x5 dx√x2+1 193.

    ∫x5 dx√

    x3+1194.

    ∫x5 dx√x2−1

    195.

    ∫x5 dx√x3−1

    196.

    ∫x5 dx√1−x2

    197.

    ∫x5 dx√1−x3

    198.

    ∫ √1−x2x2 dx 199.

    ∫dx

    x√

    x4+x2+1200.

    ∫dx

    x√

    x6+x3+1

    [email protected] http://frcatel.fri.uniza.sk/˜beerb

    mailto:[email protected]://frcatel.fri.uniza.sk/~beerb

  • Obsah Zoznam 01 11 21 31 41 51 61 71 81 91 01–02 03–04 05–06 07–08 09–10

    Riešené príklady – 101, 102∫dx

    x2+4x+5 = arctg (x +2) + c

    =∫

    dxx2+4x+4+1 =

    ∫dx

    (x+2)2+1 =[Subst. t =x +2 x ∈R

    dt =dx t∈R

    ]

    =∫

    dtt2+1 =arctg t + c = arctg (x +2) + c, x ∈R, c∈R.

    ∫dx

    x2+4x+3 =12 ln∣∣ x+1

    x+3∣∣+ c

    =∫

    dxx2+4x+4−1 =

    ∫dx

    (x+2)2−1 =[ Subst. t =x +2 x ∈R−{−1,− 3}

    dt =dx t∈R−{±1}

    ]

    =∫

    dtt2−1 =

    12 ln∣∣ t−1

    t+1∣∣+ c = 12 ln ∣∣ x+2−1x+2+1 ∣∣+ c = 12 ln ∣∣ x+1x+3 ∣∣+ c,

    x ∈R−{−1,− 3}, c∈R.

    [email protected] http://frcatel.fri.uniza.sk/˜beerb

    mailto:[email protected]://frcatel.fri.uniza.sk/~beerb

  • Obsah Zoznam 01 11 21 31 41 51 61 71 81 91 01–02 03–04 05–06 07–08 09–10

    Riešené príklady – 101, 102∫dx

    x2+4x+5 = arctg (x +2) + c

    =∫

    dxx2+4x+4+1 =

    ∫dx

    (x+2)2+1 =[Subst. t =x +2 x ∈R

    dt =dx t∈R

    ]

    =∫

    dtt2+1 =arctg t + c = arctg (x +2) + c, x ∈R, c∈R.

    ∫dx

    x2+4x+3 =12 ln∣∣ x+1

    x+3∣∣+ c

    =∫

    dxx2+4x+4−1 =

    ∫dx

    (x+2)2−1 =[ Subst. t =x +2 x ∈R−{−1,− 3}

    dt =dx t∈R−{±1}

    ]

    =∫

    dtt2−1 =

    12 ln∣∣ t−1

    t+1∣∣+ c = 12 ln ∣∣ x+2−1x+2+1 ∣∣+ c = 12 ln ∣∣ x+1x+3 ∣∣+ c,

    x ∈R−{−1,− 3}, c∈R.

    [email protected] http://frcatel.fri.uniza.sk/˜beerb

    mailto:[email protected]://frcatel.fri.uniza.sk/~beerb

  • Obsah Zoznam 01 11 21 31 41 51 61 71 81 91 01–02 03–04 05–06 07–08 09–10

    Riešené príklady – 101, 102∫dx

    x2+4x+5 = arctg (x +2) + c

    =∫

    dxx2+4x+4+1 =

    ∫dx

    (x+2)2+1 =[Subst. t =x +2 x ∈R

    dt =dx t∈R

    ]

    =∫

    dtt2+1 =arctg t + c = arctg (x +2) + c, x ∈R, c∈R.

    ∫dx

    x2+4x+3 =12 ln∣∣ x+1

    x+3∣∣+ c

    =∫

    dxx2+4x+4−1 =

    ∫dx

    (x+2)2−1 =[ Subst. t =x +2 x ∈R−{−1,− 3}

    dt =dx t∈R−{±1}

    ]

    =∫

    dtt2−1 =

    12 ln∣∣ t−1

    t+1∣∣+ c = 12 ln ∣∣ x+2−1x+2+1 ∣∣+ c = 12 ln ∣∣ x+1x+3 ∣∣+ c,

    x ∈R−{−1,− 3}, c∈R.

    [email protected] http://frcatel.fri.uniza.sk/˜beerb

    mailto:[email protected]://frcatel.fri.uniza.sk/~beerb

  • Obsah Zoznam 01 11 21 31 41 51 61 71 81 91 01–02 03–04 05–06 07–08 09–10

    Riešené príklady – 101, 102∫dx

    x2+4x+5 = arctg (x +2) + c

    =∫

    dxx2+4x+4+1 =

    ∫dx

    (x+2)2+1 =[Subst. t =x +2 x ∈R

    dt =dx t∈R

    ]

    =∫

    dtt2+1 =arctg t + c = arctg (x +2) + c, x ∈R, c∈R.

    ∫dx

    x2+4x+3 =12 ln∣∣ x+1

    x+3∣∣+ c

    =∫

    dxx2+4x+4−1 =

    ∫dx

    (x+2)2−1 =[ Subst. t =x +2 x ∈R−{−1,− 3}

    dt =dx t∈R−{±1}

    ]

    =∫

    dtt2−1 =

    12 ln∣∣ t−1

    t+1∣∣+ c = 12 ln ∣∣ x+2−1x+2+1 ∣∣+ c = 12 ln ∣∣ x+1x+3 ∣∣+ c,

    x ∈R−{−1,− 3}, c∈R.

    [email protected] http://frcatel.fri.uniza.sk/˜beerb

    mailto:[email protected]://frcatel.fri.uniza.sk/~beerb

  • Obsah Zoznam 01 11 21 31 41 51 61 71 81 91 01–02 03–04 05–06 07–08 09–10

    Riešené príklady – 101, 102∫dx

    x2+4x+5 = arctg (x +2) + c

    =∫

    dxx2+4x+4+1 =

    ∫dx

    (x+2)2+1 =[Subst. t =x +2 x ∈R

    dt =dx t∈R

    ]

    =∫

    dtt2+1 =arctg t + c = arctg (x +2) + c, x ∈R, c∈R.

    ∫dx

    x2+4x+3 =12 ln∣∣ x+1

    x+3∣∣+ c

    =∫

    dxx2+4x+4−1 =

    ∫dx

    (x+2)2−1 =[ Subst. t =x +2 x ∈R−{−1,− 3}

    dt =dx t∈R−{±1}

    ]

    =∫

    dtt2−1 =

    12 ln∣∣ t−1

    t+1∣∣+ c = 12 ln ∣∣ x+2−1x+2+1 ∣∣+ c = 12 ln ∣∣ x+1x+3 ∣∣+ c,

    x ∈R−{−1,− 3}, c∈R.

    [email protected] http://frcatel.fri.uniza.sk/˜beerb

    mailto:[email protected]://frcatel.fri.uniza.sk/~beerb

  • Obsah Zoznam 01 11 21 31 41 51 61 71 81 91 01–02 03–04 05–06 07–08 09–10

    Riešené príklady – 101, 102∫dx

    x2+4x+5 = arctg (x +2) + c

    =∫

    dxx2+4x+4+1 =

    ∫dx

    (x+2)2+1 =[Subst. t =x +2 x ∈R

    dt =dx t∈R

    ]

    =∫

    dtt2+1 =arctg t + c = arctg (x +2) + c, x ∈R, c∈R.

    ∫dx

    x2+4x+3 =12 ln∣∣ x+1

    x+3∣∣+ c

    =∫

    dxx2+4x+4−1 =

    ∫dx

    (x+2)2−1 =[ Subst. t =x +2 x ∈R−{−1,− 3}

    dt =dx t∈R−{±1}

    ]

    =∫

    dtt2−1 =

    12 ln∣∣ t−1

    t+1∣∣+ c = 12 ln ∣∣ x+2−1x+2+1 ∣∣+ c = 12 ln ∣∣ x+1x+3 ∣∣+ c,

    x ∈R−{−1,− 3}, c∈R.

    [email protected] http://frcatel.fri.uniza.sk/˜beerb

    mailto:[email protected]://frcatel.fri.uniza.sk/~beerb

  • Obsah Zoznam 01 11 21 31 41 51 61 71 81 91 01–02 03–04 05–06 07–08 09–10

    Riešené príklady – 101, 102∫dx

    x2+4x+5 = arctg (x +2) + c

    =∫

    dxx2+4x+4+1 =

    ∫dx

    (x+2)2+1 =[Subst. t =x +2 x ∈R

    dt =dx t∈R

    ]

    =∫

    dtt2+1 =arctg t + c = arctg (x +2) + c, x ∈R, c∈R.

    ∫dx

    x2+4x+3 =12 ln∣∣ x+1

    x+3∣∣+ c

    =∫

    dxx2+4x+4−1 =

    ∫dx

    (x+2)2−1 =[ Subst. t =x +2 x ∈R−{−1,− 3}

    dt =dx t∈R−{±1}

    ]

    =∫

    dtt2−1 =

    12 ln∣∣ t−1

    t+1∣∣+ c = 12 ln ∣∣ x+2−1x+2+1 ∣∣+ c = 12 ln ∣∣ x+1x+3 ∣∣+ c,

    x ∈R−{−1,− 3}, c∈R.

    [email protected] http://frcatel.fri.uniza.sk/˜beerb

    mailto:[email protected]://frcatel.fri.uniza.sk/~beerb

  • Obsah Zoznam 01 11 21 31 41 51 61 71 81 91 01–02 03–04 05–06 07–08 09–10

    Riešené príklady – 103, 104∫dx

    x2−4x+6 = arctg (x +2) + c

    =∫

    dxx2−4x+4+2 =

    ∫dx

    (x−2)2+(√2)2 =

    [ Subst. t =x−2 x ∈Rdt =dx t∈R

    ]

    =∫

    dtt2+(√2)2 =

    1√2 arctg

    t√2 + c =

    1√2 arctg

    x−2√2 + c, x ∈R, c∈R.

    ∫dx

    x2−4x+2 =12 ln∣∣∣ x−2−√2x−2+√2 ∣∣∣+ c

    =∫

    dxx2−4x+4−2 =

    ∫dx

    (x−2)2−(√2)2 =

    [Subst. t =x−2 x ∈R−{2±

    √2}

    dt =dx t∈R−{±√2}

    ]

    =∫

    dtt2−(√2)2 =

    12√2 ln∣∣∣ t−√2t+√2 ∣∣∣+ c = 12√2 ln ∣∣∣ x−2−√2x−2+√2 ∣∣∣+ c,

    x ∈R−{2±√2}, c∈R.

    [email protected] http://frcatel.fri.uniza.sk/˜beerb

    mailto:[email protected]://frcatel.fri.uniza.sk/~beerb

  • Obsah Zoznam 01 11 21 31 41 51 61 71 81 91 01–02 03–04 05–06 07–08 09–10

    Riešené príklady – 103, 104∫dx

    x2−4x+6 = arctg (x +2) + c

    =∫

    dxx2−4x+4+2 =

    ∫dx

    (x−2)2+(√2)2 =

    [ Subst. t =x−2 x ∈Rdt =dx t∈R

    ]

    =∫

    dtt2+(√2)2 =

    1√2 arctg

    t√2 + c =

    1√2 arctg

    x−2√2 + c, x ∈R, c∈R.

    ∫dx

    x2−4x+2 =12 ln∣∣∣ x−2−√2x−2+√2 ∣∣∣+ c

    =∫

    dxx2−4x+4−2 =

    ∫dx

    (x−2)2−(√2)2 =

    [Subst. t =x−2 x ∈R−{2±

    √2}

    dt =dx t∈R−{±√2}

    ]

    =∫

    dtt2−(√2)2 =

    12√2 ln∣∣∣ t−√2t+√2 ∣∣∣+ c = 12√2 ln ∣∣∣ x−2−√2x−2+√2 ∣∣∣+ c,

    x ∈R−{2±√2}, c∈R.

    [email protected] http://frcatel.fri.uniza.sk/˜beerb

    mailto:[email protected]://frcatel.fri.uniza.sk/~beerb

  • Obsah Zoznam 01 11 21 31 41 51 61 71 81 91 01–02 03–04 05–06 07–08 09–10

    Riešené príklady – 103, 104∫dx

    x2−4x+6 = arctg (x +2) + c

    =∫

    dxx2−4x+4+2 =

    ∫dx

    (x−2)2+(√2)2 =

    [ Subst. t =x−2 x ∈Rdt =dx t∈R

    ]

    =∫

    dtt2+(√2)2 =

    1√2 arctg

    t√2 + c =

    1√2 arctg

    x−2√2 + c, x ∈R, c∈R.

    ∫dx

    x2−4x+2 =12 ln∣∣∣ x−2−√2x−2+√2 ∣∣∣+ c

    =∫

    dxx2−4x+4−2 =

    ∫dx

    (x−2)2−(√2)2 =

    [Subst. t =x−2 x ∈R−{2±

    √2}

    dt =dx t∈R−{±√2}

    ]

    =∫

    dtt2−(√2)2 =

    12√2 ln∣∣∣ t−√2t+√2 ∣∣∣+ c = 12√2 ln ∣∣∣ x−2−√2x−2+√2 ∣∣∣+ c,

    x ∈R−{2±√2}, c∈R.

    [email protected] http://frcatel.fri.uniza.sk/˜beerb

    mailto:[email protected]://frcatel.fri.uniza.sk/~beerb

  • Obsah Zoznam 01 11 21 31 41 51 61 71 81 91 01–02 03–04 05–06 07–08 09–10

    Riešené príklady – 103, 104∫dx

    x2−4x+6 = arctg (x +2) + c

    =∫

    dxx2−4x+4+2 =

    ∫dx

    (x−2)2+(√2)2 =

    [ Subst. t =x−2 x ∈Rdt =dx t∈R

    ]

    =∫

    dtt2+(√2)2 =

    1√2 arctg

    t√2 + c =

    1√2 arctg

    x−2√2 + c, x ∈R, c∈R.

    ∫dx

    x2−4x+2 =12 ln∣∣∣ x−2−√2x−2+√2 ∣∣∣+ c

    =∫

    dxx2−4x+4−2 =

    ∫dx

    (x−2)2−(√2)2 =

    [Subst. t =x−2 x ∈R−{2±

    √2}

    dt =dx t∈R−{±√2}

    ]

    =∫

    dtt2−(√2)2 =

    12√2 ln∣∣∣ t−√2t+√2 ∣∣∣+ c = 12√2 ln ∣∣∣ x−2−√2x−2+√2 ∣∣∣+ c,

    x ∈R−{2±√2}, c∈R.

    [email protected] http://frcatel.fri.uniza.sk/˜beerb

    mailto:[email protected]://frcatel.fri.uniza.sk/~beerb

  • Obsah Zoznam 01 11 21 31 41 51 61 71 81 91 01–02 03–04 05–06 07–08 09–10

    Riešené príklady – 103, 104∫dx

    x2−4x+6 = arctg (x +2) + c

    =∫

    dxx2−4x+4+2 =

    ∫dx

    (x−2)2+(√2)2 =

    [ Subst. t =x−2 x ∈Rdt =dx t∈R

    ]

    =∫

    dtt2+(√2)2 =

    1√2 arctg

    t√2 + c =

    1√2 arctg

    x−2√2 + c, x ∈R, c∈R.

    ∫dx

    x2−4x+2 =12 ln∣∣∣ x−2−√2x−2+√2 ∣∣∣+ c

    =∫

    dxx2−4x+4−2 =

    ∫dx

    (x−2)2−(√2)2 =

    [Subst. t =x−2 x ∈R−{2±

    √2}

    dt =dx t∈R−{±√2}

    ]

    =∫

    dtt2−(√2)2 =

    12√2 ln∣∣∣ t−√2t+√2 ∣∣∣+ c = 12√2 ln ∣∣∣ x−2−√2x−2+√2 ∣∣∣+ c,

    x ∈R−{2±√2}, c∈R.

    [email protected] http://frcatel.fri.uniza.sk/˜beerb

    mailto:[email protected]://frcatel.fri.uniza.sk/~beerb

  • Obsah Zoznam 01 11 21 31 41 51 61 71 81 91 01–02 03–04 05–06 07–08 09–10

    Riešené príklady – 103, 104∫dx

    x2−4x+6 = arctg (x +2) + c

    =∫

    dxx2−4x+4+2 =

    ∫dx

    (x−2)2+(√2)2 =

    [ Subst. t =x−2 x ∈Rdt =dx t∈R

    ]

    =∫

    dtt2+(√2)2 =

    1√2 arctg

    t√2 + c =

    1√2 arctg

    x−2√2 + c, x ∈R, c∈R.

    ∫dx

    x2−4x+2 =12 ln∣∣∣ x−2−√2x−2+√2 ∣∣∣+ c

    =∫

    dxx2−4x+4−2 =

    ∫dx

    (x−2)2−(√2)2 =

    [Subst. t =x−2 x ∈R−{2±

    √2}

    dt =dx t∈R−{±√2}

    ]

    =∫

    dtt2−(√2)2 =

    12√2 ln∣∣∣ t−√2t+√2 ∣∣∣+ c = 12√2 ln ∣∣∣ x−2−√2x−2+√2 ∣∣∣+ c,

    x ∈R−{2±√2}, c∈R.

    [email protected] http://frcatel.fri.uniza.sk/˜beerb

    mailto:[email protected]://frcatel.fri.uniza.sk/~beerb

  • Obsah Zoznam 01 11 21 31 41 51 61 71 81 91 01–02 03–04 05–06 07–08 09–10

    Riešené príklady – 105, 106∫dx

    x2+4x+4 = −1

    x+2 + c

    =∫

    dx(x+2)2 =

    [ Subst. t =x +2 x ∈R−{−2}dt =dx t∈R−{0}

    ]

    =∫

    dtt2 =

    ∫t−2 dt = t

    −2+1

    −2+1 +c =−1t +c = −

    1x+2 +c, x ∈R−{−2}, c∈R.∫

    dx√x2+4x+4 = sgn (x +2)·ln |x +2|+c

    =∫

    dx√(x+2)2

    =∫

    dx|x+2|=

    [ Subst. t =x +2 x ∈R−{−2}dt =dx t∈R−{0}

    ]=∫

    dt|t|

    t>0 =∫

    dtt = ln |t|+c = ln |x +2|+c, x ∈(−2;∞), c∈R,

    t

  • Obsah Zoznam 01 11 21 31 41 51 61 71 81 91 01–02 03–04 05–06 07–08 09–10

    Riešené príklady – 105, 106∫dx

    x2+4x+4 = −1

    x+2 + c

    =∫

    dx(x+2)2 =

    [ Subst. t =x +2 x ∈R−{−2}dt =dx t∈R−{0}

    ]

    =∫

    dtt2 =

    ∫t−2 dt = t

    −2+1

    −2+1 +c =−1t +c = −

    1x+2 +c, x ∈R−{−2}, c∈R.∫

    dx√x2+4x+4 = sgn (x +2)·ln |x +2|+c

    =∫

    dx√(x+2)2

    =∫

    dx|x+2|=

    [ Subst. t =x +2 x ∈R−{−2}dt =dx t∈R−{0}

    ]=∫

    dt|t|

    t>0 =∫

    dtt = ln |t|+c = ln |x +2|+c, x ∈(−2;∞), c∈R,

    t

  • Obsah Zoznam 01 11 21 31 41 51 61 71 81 91 01–02 03–04 05–06 07–08 09–10

    Riešené príklady – 105, 106∫dx

    x2+4x+4 = −1

    x+2 + c

    =∫

    dx(x+2)2 =

    [ Subst. t =x +2 x ∈R−{−2}dt =dx t∈R−{0}

    ]

    =∫

    dtt2 =

    ∫t−2 dt = t

    −2+1

    −2+1 +c =−1t +c = −

    1x+2 +c, x ∈R−{−2}, c∈R.∫

    dx√x2+4x+4 = sgn (x +2)·ln |x +2|+c

    =∫

    dx√(x+2)2

    =∫

    dx|x+2|=

    [ Subst. t =x +2 x ∈R−{−2}dt =dx t∈R−{0}

    ]=∫

    dt|t|

    t>0 =∫

    dtt = ln |t|+c = ln |x +2|+c, x ∈(−2;∞), c∈R,

    t

  • Obsah Zoznam 01 11 21 31 41 51 61 71 81 91 01–02 03–04 05–06 07–08 09–10

    Riešené príklady – 105, 106∫dx

    x2+4x+4 = −1

    x+2 + c

    =∫

    dx(x+2)2 =

    [ Subst. t =x +2 x ∈R−{−2}dt =dx t∈R−{0}

    ]

    =∫

    dtt2 =

    ∫t−2 dt = t

    −2+1

    −2+1 +c =−1t +c = −

    1x+2 +c, x ∈R−{−2}, c∈R.∫

    dx√x2+4x+4 = sgn (x +2)·ln |x +2|+c

    =∫

    dx√(x+2)2

    =∫

    dx|x+2|=

    [ Subst. t =x +2 x ∈R−{−2}dt =dx t∈R−{0}

    ]=∫

    dt|t|

    t>0 =∫

    dtt = ln |t|+c = ln |x +2|+c, x ∈(−2;∞), c∈R,

    t

  • Obsah Zoznam 01 11 21 31 41 51 61 71 81 91 01–02 03–04 05–06 07–08 09–10

    Riešené príklady – 105, 106∫dx

    x2+4x+4 = −1

    x+2 + c

    =∫

    dx(x+2)2 =

    [ Subst. t =x +2 x ∈R−{−2}dt =dx t∈R−{0}

    ]

    =∫

    dtt2 =

    ∫t−2 dt = t

    −2+1

    −2+1 +c =−1t +c = −

    1x+2 +c, x ∈R−{−2}, c∈R.∫

    dx√x2+4x+4 = sgn (x +2)·ln |x +2|+c

    =∫

    dx√(x+2)2

    =∫

    dx|x+2|=

    [ Subst. t =x +2 x ∈R−{−2}dt =dx t∈R−{0}

    ]=∫

    dt|t|

    t>0 =∫

    dtt = ln |t|+c = ln |x +2|+c, x ∈(−2;∞), c∈R,

    t

  • Obsah Zoznam 01 11 21 31 41 51 61 71 81 91 01–02 03–04 05–06 07–08 09–10

    Riešené príklady – 105, 106∫dx

    x2+4x+4 = −1

    x+2 + c

    =∫

    dx(x+2)2 =

    [ Subst. t =x +2 x ∈R−{−2}dt =dx t∈R−{0}

    ]

    =∫

    dtt2 =

    ∫t−2 dt = t

    −2+1

    −2+1 +c =−1t +c = −

    1x+2 +c, x ∈R−{−2}, c∈R.∫

    dx√x2+4x+4 = sgn (x +2)·ln |x +2|+c

    =∫

    dx√(x+2)2

    =∫

    dx|x+2|=

    [ Subst. t =x +2 x ∈R−{−2}dt =dx t∈R−{0}

    ]=∫

    dt|t|

    t>0 =∫

    dtt = ln |t|+c = ln |x +2|+c, x ∈(−2;∞), c∈R,

    t

  • Obsah Zoznam 01 11 21 31 41 51 61 71 81 91 01–02 03–04 05–06 07–08 09–10

    Riešené príklady – 105, 106∫dx

    x2+4x+4 = −1

    x+2 + c

    =∫

    dx(x+2)2 =

    [ Subst. t =x +2 x ∈R−{−2}dt =dx t∈R−{0}

    ]

    =∫

    dtt2 =

    ∫t−2 dt = t

    −2+1

    −2+1 +c =−1t +c = −

    1x+2 +c, x ∈R−{−2}, c∈R.∫

    dx√x2+4x+4 = sgn (x +2)·ln |x +2|+c

    =∫

    dx√(x+2)2

    =∫

    dx|x+2|=

    [ Subst. t =x +2 x ∈R−{−2}dt =dx t∈R−{0}

    ]=∫

    dt|t|

    t>0 =∫

    dtt = ln |t|+c = ln |x +2|+c, x ∈(−2;∞), c∈R,

    t

  • Obsah Zoznam 01 11 21 31 41 51 61 71 81 91 01–02 03–04 05–06 07–08 09–10

    Riešené príklady – 107, 108∫dx√

    x2+4x+5 = ln (x +2+√

    x2+4x +5)+c

    =∫

    dx√x2+4x+4+1 =

    ∫dx√

    (x+2)2+1=[Subst. t =x +2 x ∈R

    dt =dx t∈R

    ]

    =∫

    dt√t2+1 = ln (t+

    √t2+1)+c = ln (x +2+

    √(x +2)2+1)+c

    = ln (x +2+√

    x2+4x +5)+c, x ∈R, c∈R.∫dx√

    x2+4x+3 = ln |x +2+√

    x2+4x +3|+c

    =∫

    dx√x2+4x+4−1

    =∫

    dx√(x+2)2−1

    =[ Subst. t =x +2 x ∈(−∞;−3) , t∈(−∞;−1)

    dt =dx x ∈(−1;∞) , t∈(1;∞)

    ]

    =∫

    dt√t2−1

    = ln |t+√

    t2−1|+c = ln |x +2+√

    (x +2)2−1|+c

    = ln |x +2+√

    x2+4x +3|+c, x ∈(−∞;−3) ∪ (−1;∞), c∈R.

    [email protected] http://frcatel.fri.uniza.sk/˜beerb

    mailto:[email protected]://frcatel.fri.uniza.sk/~beerb

  • Obsah Zoznam 01 11 21 31 41 51 61 71 81 91 01–02 03–04 05–06 07–08 09–10

    Riešené príklady – 107, 108∫dx√

    x2+4x+5 = ln (x +2+√

    x2+4x +5)+c

    =∫

    dx√x2+4x+4+1 =

    ∫dx√

    (x+2)2+1=[Subst. t =x +2 x ∈R

    dt =dx t∈R

    ]

    =∫

    dt√t2+1 = ln (t+

    √t2+1)+c = ln (x +2+

    √(x +2)2+1)+c

    = ln (x +2+√

    x2+4x +5)+c, x ∈R, c∈R.∫dx√

    x2+4x+3 = ln |x +2+√

    x2+4x +3|+c

    =∫

    dx√x2+4x+4−1

    =∫

    dx√(x+2)2−1

    =[ Subst. t =x +2 x ∈(−∞;−3) , t∈(−∞;−1)

    dt =dx x ∈(−1;∞) , t∈(1;∞)

    ]

    =∫

    dt√t2−1

    = ln |t+√

    t2−1|+c = ln |x +2+√

    (x +2)2−1|+c

    = ln |x +2+√

    x2+4x +3|+c, x ∈(−∞;−3) ∪ (−1;∞), c∈R.

    [email protected] http://frcatel.fri.uniza.sk/˜beerb

    mailto:[email protected]://frcatel.fri.uniza.sk/~beerb

  • Obsah Zoznam 01 11 21 31 41 51 61 71 81 91 01–02 03–04 05–06 07–08 09–10

    Riešené príklady – 107, 108∫dx√

    x2+4x+5 = ln (x +2+√

    x2+4x +5)+c

    =∫

    dx√x2+4x+4+1 =

    ∫dx√

    (x+2)2+1=[Subst. t =x +2 x ∈R

    dt =dx t∈R

    ]

    =∫

    dt√t2+1 = ln (t+

    √t2+1)+c = ln (x +2+

    √(x +2)2+1)+c

    = ln (x +2+√

    x2+4x +5)+c, x ∈R, c∈R.∫dx√

    x2+4x+3 = ln |x +2+√

    x2+4x +3|+c

    =∫

    dx√x2+4x+4−1

    =∫

    dx√(x+2)2−1

    =[ Subst. t =x +2 x ∈(−∞;−3) , t∈(−∞;−1)

    dt =dx x ∈(−1;∞) , t∈(1;∞)

    ]

    =∫

    dt√t2−1

    = ln |t+√

    t2−1|+c = ln |x +2+√

    (x +2)2−1|+c

    = ln |x +2+√

    x2+4x +3|+c, x ∈(−∞;−3) ∪ (−1;∞), c∈R.

    [email protected] http://frcatel.fri.uniza.sk/˜beerb

    mailto:[email protected]://frcatel.fri.uniza.sk/~beerb

  • Obsah Zoznam 01 11 21 31 41 51 61 71 81 91 01–02 03–04 05–06 07–08 09–10

    Riešené príklady – 107, 108∫dx√

    x2+4x+5 = ln (x +2+√

    x2+4x +5)+c

    =∫

    dx√x2+4x+4+1 =

    ∫dx√

    (x+2)2+1=[Subst. t =x +2 x ∈R

    dt =dx t∈R

    ]

    =∫

    dt√t2+1 = ln (t+

    √t2+1)+c = ln (x +2+

    √(x +2)2+1)+c

    = ln (x +2+√

    x2+4x +5)+c, x ∈R, c∈R.∫dx√

    x2+4x+3 = ln |x +2+√

    x2+4x +3|+c

    =∫

    dx√x2+4x+4−1

    =∫

    dx√(x+2)2−1

    =[ Subst. t =x +2 x ∈(−∞;−3) , t∈(−∞;−1)

    dt =dx x ∈(−1;∞) , t∈(1;∞)

    ]

    =∫

    dt√t2−1

    = ln |t+√

    t2−1|+c = ln |x +2+√

    (x +2)2−1|+c

    = ln |x +2+√

    x2+4x +3|+c, x ∈(−∞;−3) ∪ (−1;∞), c∈R.

    [email protected] http://frcatel.fri.uniza.sk/˜beerb

    mailto:[email protected]://frcatel.fri.uniza.sk/~beerb

  • Obsah Zoznam 01 11 21 31 41 51 61 71 81 91 01–02 03–04 05–06 07–08 09–10

    Riešené príklady – 107, 108∫dx√

    x2+4x+5 = ln (x +2+√

    x2+4x +5)+c

    =∫

    dx√x2+4x+4+1 =

    ∫dx√

    (x+2)2+1=[Subst. t =x +2 x ∈R

    dt =dx t∈R

    ]

    =∫

    dt√t2+1 = ln (t+

    √t2+1)+c = ln (x +2+

    √(x +2)2+1)+c

    = ln (x +2+√

    x2+4x +5)+c, x ∈R, c∈R.∫dx√

    x2+4x+3 = ln |x +2+√

    x2+4x +3|+c

    =∫

    dx√x2+4x+4−1

    =∫

    dx√(x+2)2−1

    =[ Subst. t =x +2 x ∈(−∞;−3) , t∈(−∞;−1)

    dt =dx x ∈(−1;∞) , t∈(1;∞)

    ]

    =∫

    dt√t2−1

    = ln |t+√

    t2−1|+c = ln |x +2+√

    (x +2)2−1|+c

    = ln |x +2+√

    x2+4x +3|+c, x ∈(−∞;−3) ∪ (−1;∞), c∈R.

    [email protected] http://frcatel.fri.uniza.sk/˜beerb

    mailto:[email protected]://frcatel.fri.uniza.sk/~beerb

  • Obsah Zoznam 01 11 21 31 41 51 61 71 81 91 01–02 03–04 05–06 07–08 09–10

    Riešené príklady – 107, 108∫dx√

    x2+4x+5 = ln (x +2+√

    x2+4x +5)+c

    =∫

    dx√x2+4x+4+1 =

    ∫dx√

    (x+2)2+1=[Subst. t =x +2 x ∈R

    dt =dx t∈R

    ]

    =∫

    dt√t2+1 = ln (t+

    √t2+1)+c = ln (x +2+

    √(x +2)2+1)+c

    = ln (x +2+√

    x2+4x +5)+c, x ∈R, c∈R.∫dx√

    x2+4x+3 = ln |x +2+√

    x2+4x +3|+c

    =∫

    dx√x2+4x+4−1

    =∫

    dx√(x+2)2−1

    =[ Subst. t =x +2 x ∈(−∞;−3) , t∈(−∞;−1)

    dt =dx x ∈(−1;∞) , t∈(1;∞)

    ]

    =∫

    dt√t2−1

    = ln |t+√

    t2−1|+c = ln |x +2+√

    (x +2)2−1|+c

    = ln |x +2+√

    x2+4x +3|+c, x ∈(−∞;−3) ∪ (−1;∞), c∈R.

    [email protected] http://frcatel.fri.uniza.sk/˜beerb

    mailto:[email protected]://frcatel.fri.uniza.sk/~beerb

  • Obsah Zoznam 01 11 21 31 41 51 61 71 81 91 01–02 03–04 05–06 07–08 09–10

    Riešené príklady – 107, 108∫dx√

    x2+4x+5 = ln (x +2+√

    x2+4x +5)+c

    =∫

    dx√x2+4x+4+1 =

    ∫dx√

    (x+2)2+1=[Subst. t =x +2 x ∈R

    dt =dx t∈R

    ]

    =∫

    dt√t2+1 = ln (t+

    √t2+1)+c = ln (x +2+

    √(x +2)2+1)+c

    = ln (x +2+√

    x2+4x +5)+c, x ∈R, c∈R.∫dx√

    x2+4x+3 = ln |x +2+√

    x2+4x +3|+c

    =∫

    dx√x2+4x+4−1

    =∫

    dx√(x+2)2−1

    =[ Subst. t =x +2 x ∈(−∞;−3) , t∈(−∞;−1)

    dt =dx x ∈(−1;∞) , t∈(1;∞)

    ]

    =∫

    dt√t2−1

    = ln |t+√

    t2−1|+c = ln |x +2+√

    (x +2)2−1|+c

    = ln |x +2+√

    x2+4x +3|+c, x ∈(−∞;−3) ∪ (−1;∞), c∈R.

    [email protected] http://frcatel.fri.uniza.sk/˜beerb

    mailto:[email protected]://frcatel.fri.uniza.sk/~beerb

  • Obsah Zoznam 01 11 21 31 41 51 61 71 81 91 01–02 03–04 05–06 07–08 09–10

    Riešené príklady – 109, 110∫dx√

    x2−4x+6= ln (x−2+

    √x2−4x +6)+c

    =∫

    dx√x2−4x+4+2

    =∫

    dx√(x−2)2+(

    √2)2

    =[Subst. t =x−2 x ∈R

    dt =dx t∈R

    ]

    =∫

    dt√t2+(√2)2

    = ln(t+√

    t2+(√2)2)+c = ln (x +2+

    √(x−2)2+4)+c

    = ln (x−2+√

    x2−4x +6)+c, x ∈R, c∈R.∫dx√

    x2−4x+2= ln |x−2+

    √x2−4x +2|+c

    =∫

    dx√x2−4x+4−2

    =∫

    dx√(x−2)2−(

    √2)2

    =[Subst. t =x−2 x ∈(−∞; 2−

    √2), t∈(−∞;−

    √2)

    dt =dx x ∈(2+√2;∞), t∈(

    √2;∞)

    ]

    =∫

    dt√t2−(√2)2

    = ln∣∣t+√t2−(√2)2∣∣+c = ln |x−2+√(x +2)2−2|+c

    = ln |x−2+√

    x2−4x +2|+c, x ∈(−∞; 2−√2) ∪ (2+

    √2;∞), c∈R.

    [email protected] http://frcatel.fri.uniza.sk/˜beerb

    mailto:[email protected]://frcatel.fri.uniza.sk/~beerb

  • Obsah Zoznam 01 11 21 31 41 51 61 71 81 91 01–02 03–04 05–06 07–08 09–10

    Riešené príklady – 109, 110∫dx√

    x2−4x+6= ln (x−2+

    √x2−4x +6)+c

    =∫

    dx√x2−4x+4+2

    =∫

    dx√(x−2)2+(

    √2)2

    =[Subst. t =x−2 x ∈R

    dt =dx t∈R

    ]

    =∫

    dt√t2+(√2)2

    = ln(t+√

    t2+(√2)2)+c = ln (x +2+

    √(x−2)2+4)+c

    = ln (x−2+√

    x2−4x +6)+c, x ∈R, c∈R.∫dx√

    x2−4x+2= ln |x−2+

    √x2−4x +2|+c

    =∫

    dx√x2−4x+4−2

    =∫

    dx√(x−2)2−(

    √2)2

    =[Subst. t =x−2 x ∈(−∞; 2−

    √2), t∈(−∞;−

    √2)

    dt =dx x ∈(2+√2;∞), t∈(

    √2;∞)

    ]

    =∫

    dt√t2−(√2)2

    = ln∣∣t+√t2−(√2)2∣∣+c = ln |x−2+√(x +2)2−2|+c

    = ln |x−2+√

    x2−4x +2|+c, x ∈(−∞; 2−√2) ∪ (2+

    √2;∞), c∈R.

    [email protected] http://frcatel.fri.uniza.sk/˜beerb

    mailto:[email protected]://frcatel.fri.uniza.sk/~beerb

  • Obsah Zoznam 01 11 21 31 41 51 61 71 81 91 01–02 03–04 05–06 07–08 09–10

    Riešené príklady – 109, 110∫dx√

    x2−4x+6= ln (x−2+

    √x2−4x +6)+c

    =∫

    dx√x2−4x+4+2

    =∫

    dx√(x−2)2+(

    √2)2

    =[Subst. t =x−2 x ∈R

    dt =dx t∈R

    ]

    =∫

    dt√t2+(√2)2

    = ln(t+√

    t2+(√2)2)+c = ln (x +2+

    √(x−2)2+4)+c

    = ln (x−2+√

    x2−4x +6)+c, x ∈R, c∈R.∫dx√

    x2−4x+2= ln |x−2+

    √x2−4x +2|+c

    =∫

    dx√x2−4x+4−2

    =∫

    dx√(x−2)2−(

    √2)2

    =[Subst. t =x−2 x ∈(−∞; 2−

    √2), t∈(−∞;−

    √2)

    dt =dx x ∈(2+√2;∞), t∈(

    √2;∞)

    ]

    =∫

    dt√t2−(√2)2

    = ln∣∣t+√t2−(√2)2∣∣+c = ln |x−2+√(x +2)2−2|+c

    = ln |x−2+√

    x2−4x +2|+c, x ∈(−∞; 2−√2) ∪ (2+

    √2;∞), c∈R.

    [email protected] http://frcatel.fri.uniza.sk/˜beerb

    mailto:[email protected]://frcatel.fri.uniza.sk/~beerb

  • Obsah Zoznam 01 11 21 31 41 51 61 71 81 91 01–02 03–04 05–06 07–08 09–10

    Riešené príklady – 109, 110∫dx√

    x2−4x+6= ln (x−2+

    √x2−4x +6)+c

    =∫

    dx√x2−4x+4+2

    =∫

    dx√(x−2)2+(

    √2)2

    =[Subst. t =x−2 x ∈R

    dt =dx t∈R

    ]

    =∫

    dt√t2+(√2)2

    = ln(t+√

    t2+(√2)2)+c = ln (x +2+

    √(x−2)2+4)+c

    = ln (x−2+√

    x2−4x +6)+c, x ∈R, c∈R.∫dx√

    x2−4x+2= ln |x−2+

    √x2−4x +2|+c

    =∫

    dx√x2−4x+4−2

    =∫

    dx√(x−2)2−(

    √2)2

    =[Subst. t =x−2 x ∈(−∞; 2−

    √2), t∈(−∞;−

    √2)

    dt =dx x ∈(2+√2;∞), t∈(

    √2;∞)

    ]

    =∫

    dt√t2−(√2)2

    = ln∣∣t+√t2−(√2)2∣∣+c = ln |x−2+√(x +2)2−2|+c

    = ln |x−2+√

    x2−4x +2|+c, x ∈(−∞; 2−√2) ∪ (2+

    √2;∞), c∈R.

    [email protected] http://frcatel.fri.uniza.sk/˜beerb

    mailto:[email protected]://frcatel.fri.uniza.sk/~beerb

  • Obsah Zoznam 01 11 21 31 41 51 61 71 81 91 01–02 03–04 05–06 07–08 09–10

    Riešené príklady – 109, 110∫dx√

    x2−4x+6= ln (x−2+

    √x2−4x +6)+c

    =∫

    dx√x2−4x+4+2

    =∫

    dx√(x−2)2+(

    √2)2

    =[Subst. t =x−2 x ∈R

    dt =dx t∈R

    ]

    =∫

    dt√t2+(√2)2

    = ln(t+√

    t2+(√2)2)+c = ln (x +2+

    √(x−2)2+4)+c

    = ln (x−2+√

    x2−4x +6)+c, x ∈R, c∈R.∫dx√

    x2−4x+2= ln |x−2+

    √x2−4x +2|+c

    =∫

    dx√x2−4x+4−2

    =∫

    dx√(x−2)2−(

    √2)2

    =[Subst. t =x−2 x ∈(−∞; 2−

    √2), t∈(−∞;−

    √2)

    dt =dx x ∈(2+√2;∞), t∈(

    √2;∞)

    ]

    =∫

    dt√t2−(√2)2

    = ln∣∣t+√t2−(√2)2∣∣+c = ln |x−2+√(x +2)2−2|+c

    = ln |x−2+√

    x2−4x +2|+c, x ∈(−∞; 2−√2) ∪ (2+

    √2;∞), c∈R.

    [email protected] http://frcatel.fri.uniza.sk/˜beerb

    mailto:[email protected]://frcatel.fri.uniza.sk/~beerb

  • Obsah Zoznam 01 11 21 31 41 51 61 71 81 91 01–02 03–04 05–06 07–08 09–10

    Riešené príklady – 109, 110∫dx√

    x2−4x+6= ln (x−2+

    √x2−4x +6)+c

    =∫

    dx√x2−4x+4+2

    =∫

    dx√(x−2)2+(

    √2)2

    =[Subst. t =x−2 x ∈R

    dt =dx t∈R

    ]

    =∫

    dt√t2+(√2)2

    = ln(t+√

    t2+(√2)2)+c = ln (x +2+

    √(x−2)2+4)+c

    = ln (x−2+√

    x2−4x +6)+c, x ∈R, c∈R.∫dx√

    x2−4x+2= ln |x−2+

    √x2−4x +2|+c

    =∫

    dx√x2−4x+4−2

    =∫

    dx√(x−2)2−(

    √2)2

    =[Subst. t =x−2 x ∈(−∞; 2−

    √2), t∈(−∞;−

    √2)

    dt =dx x ∈(2+√2;∞), t∈(

    √2;∞)

    ]

    =∫

    dt√t2−(√2)2

    = ln∣∣t+√t2−(√2)2∣∣+c = ln |x−2+√(x +2)2−2|+c

    = ln |x−2+√

    x2−4x +2|+c, x ∈(−∞; 2−√2) ∪ (2+

    √2;∞), c∈R.

    [email protected] http://frcatel.fri.uniza.sk/˜beerb

    mailto:[email protected]://frcatel.fri.uniza.sk/~beerb

  • Obsah Zoznam 01 11 21 31 41 51 61 71 81 91 01–02 03–04 05–06 07–08 09–10

    Riešené príklady – 109, 110∫dx√

    x2−4x+6= ln (x−2+

    √x2−4x +6)+c

    =∫

    dx√x2−4x+4+2

    =∫

    dx√(x−2)2+(

    √2)2

    =[Subst. t =x−2 x ∈R

    dt =dx t∈R

    ]

    =∫

    dt√t2+(√2)2

    = ln(t+√

    t2+(√2)2)+c = ln (x +2+

    √(x−2)2+4)+c

    = ln (x−2+√

    x2−4x +6)+c, x ∈R, c∈R.∫dx√

    x2−4x+2= ln |x−2+

    √x2−4x +2|+c

    =∫

    dx√x2−4x+4−2

    =∫

    dx√(x−2)2−(

    √2)2

    =[Subst. t =x−2 x ∈(−∞; 2−

    √2), t∈(−∞;−

    √2)

    dt =dx x ∈(2+√2;∞), t∈(

    √2;∞)

    ]

    =∫

    dt√t2−(√2)2

    = ln∣∣t+√t2−(√2)2∣∣+c = ln |x−2+√(x +2)2−2|+c

    = ln |x−2+√

    x2−4x +2|+c, x ∈(−∞; 2−√2) ∪ (2+

    √2;∞), c∈R.

    [email protected] http://frcatel.fri.uniza.sk/˜beerb

    mailto:[email protected]://frcatel.fri.uniza.sk/~beerb

  • Obsah Zoznam 01 11 21 31 41 51 61 71 81 91 11–12 13–14 15–16 17–18 19–20

    Riešené príklady – 111, 112∫dx√

    −x2+4x−5nemá riešenie

    =∫

    dx√−(x2−4x+5)

    =∫

    dx√−(x2−4x+4+1)

    =∫

    dx√−(x−2)2−1

    =[−(x−2)2−1≥1>0

    pre všetky x ∈R

    ].

    Neexistuje riešenie pre žiadne x ∈R.∫dx√

    −x2+4x−3= arcsin (x−2)+c1 = − arccos (x−2)+c2

    =∫

    dx√−(x2−4x+3)

    =∫

    dx√−(x2−4x+4−1)

    =∫

    dx√−(x−2)2+1

    =∫

    dx√1−(x−2)2

    =[ Subst. t =x−2 x ∈(1; 3)

    dt =dx t∈(−1; 1)

    ]=∫

    dt√1−t2

    =arcsin t+c1=− arccos t+c2= arcsin (x−2)+c1= − arccos (x−2)+c2, x ∈(1; 3), c1, c2∈R.

    [email protected] http://frcatel.fri.uniza.sk/˜beerb

    mailto:[email protected]://frcatel.fri.uniza.sk/~beerb

  • Obsah Zoznam 01 11 21 31 41 51 61 71 81 91 11–12 13–14 15–16 17–18 19–20

    Riešené príklady – 111, 112∫dx√

    −x2+4x−5nemá riešenie

    =∫

    dx√−(x2−4x+5)

    =∫

    dx√−(x2−4x+4+1)

    =∫

    dx√−(x−2)2−1

    =[−(x−2)2−1≥1>0

    pre všetky x ∈R

    ].

    Neexistuje riešenie pre žiadne x ∈R.∫dx√

    −x2+4x−3= arcsin (x−2)+c1 = − arccos (x−2)+c2

    =∫

    dx√−(x2−4x+3)

    =∫

    dx√−(x2−4x+4−1)

    =∫

    dx√−(x−2)2+1

    =∫

    dx√1−(x−2)2

    =[ Subst. t =x−2 x ∈(1; 3)

    dt =dx t∈(−1; 1)

    ]=∫

    dt√1−t2

    =arcsin t+c1=− arccos t+c2= arcsin (x−2)+c1= − arccos (x−2)+c2, x ∈(1; 3), c1, c2∈R.

    [email protected] http://frcatel.fri.uniza.sk/˜beerb

    mailto:[email protected]://frcatel.fri.uniza.sk/~beerb

  • Obsah Zoznam 01 11 21 31 41 51 61 71 81 91 11–12 13–14 15–16 17–18 19–20

    Riešené príklady – 111, 112∫dx√

    −x2+4x−5nemá riešenie

    =∫

    dx√−(x2−4x+5)

    =∫

    dx√−(x2−4x+4+1)

    =∫

    dx√−(x−2)2−1

    =[−(x−2)2−1≥1>0

    pre všetky x ∈R

    ].

    Neexistuje riešenie pre žiadne x ∈R.∫dx√

    −x2+4x−3= arcsin (x−2)+c1 = − arccos (x−2)+c2

    =∫

    dx√−(x2−4x+3)

    =∫

    dx√−(x2−4x+4−1)

    =∫

    dx√−(x−2)2+1

    =∫

    dx√1−(x−2)2

    =[ Subst. t =x−2 x ∈(1; 3)

    dt =dx t∈(−1; 1)

    ]=∫

    dt√1−t2

    =arcsin t+c1=− arccos t+c2= arcsin (x−2)+c1= − arccos (x−2)+c2, x ∈(1; 3), c1, c2∈R.

    [email protected] http://frcatel.fri.uniza.sk/˜beerb

    mailto:[email protected]://frcatel.fri.uniza.sk/~beerb

  • Obsah Zoznam 01 11 21 31 41 51 61 71 81 91 11–12 13–14 15–16 17–18 19–20

    Riešené príklady – 111, 112∫dx√

    −x2+4x−5nemá riešenie

    =∫

    dx√−(x2−4x+5)

    =∫

    dx√−(x2−4x+4+1)

    =∫

    dx√−(x−2)2−1

    =[−(x−2)2−1≥1>0

    pre všetky x ∈R

    ].

    Neexistuje riešenie pre žiadne x ∈R.∫dx√

    −x2+4x−3= arcsin (x−2)+c1 = − arccos (x−2)+c2

    =∫

    dx√−(x2−4x+3)

    =∫

    dx√−(x2−4x+4−1)

    =∫

    dx√−(x−2)2+1

    =∫

    dx√1−(x−2)2

    =[ Subst. t =x−2 x ∈(1; 3)

    dt =dx t∈(−1; 1)

    ]=∫

    dt√1−t2

    =arcsin t+c1=− arccos t+c2= arcsin (x−2)+c1= − arccos (x−2)+c2, x ∈(1; 3), c1, c2∈R.

    [email protected] http://frcatel.fri.uniza.sk/˜beerb

    mailto:[email protected]://frcatel.fri.uniza.sk/~beerb

  • Obsah Zoznam 01 11 21 31 41 51 61 71 81 91 11–12 13–14 15–16 17–18 19–20

    Riešené príklady – 111, 112∫dx√

    −x2+4x−5nemá riešenie

    =∫

    dx√−(x2−4x+5)

    =∫

    dx√−(x2−4x+4+1)

    =∫

    dx√−(x−2)2−1

    =[−(x−2)2−1≥1>0

    pre všetky x ∈R

    ].

    Neexistuje riešenie pre žiadne x ∈R.∫dx√

    −x2+4x−3= arcsin (x−2)+c1 = − arccos (x−2)+c2

    =∫

    dx√−(x2−4x+3)

    =∫

    dx√−(x2−4x+4−1)

    =∫

    dx√−(x−2)2+1

    =∫

    dx√1−(x−2)2

    =[ Subst. t =x−2 x ∈(1; 3)

    dt =dx t∈(−1; 1)

    ]=∫

    dt√1−t2

    =arcsin t+c1=− arccos t+c2= arcsin (x−2)+c1= − arccos (x−2)+c2, x ∈(1; 3), c1, c2∈R.

    [email protected] http://frcatel.fri.uniza.sk/˜beerb

    mailto:[email protected]://frcatel.fri.uniza.sk/~beerb

  • Obsah Zoznam 01 11 21 31 41 51 61 71 81 91 11–12 13–14 15–16 17–18 19–20

    Riešené príklady – 111, 112∫dx√

    −x2+4x−5nemá riešenie

    =∫

    dx√−(x2−4x+5)

    =∫

    dx√−(x2−4x+4+1)

    =∫

    dx√−(x−2)2−1

    =[−(x−2)2−1≥1>0

    pre všetky x ∈R

    ].

    Neexistuje riešenie pre žiadne x ∈R.∫dx√

    −x2+4x−3= arcsin (x−2)+c1 = − arccos (x−2)+c2

    =∫

    dx√−(x2−4x+3)

    =∫

    dx√−(x2−4x+4−1)

    =∫

    dx√−(x−2)2+1

    =∫

    dx√1−(x−2)2

    =[ Subst. t =x−2 x ∈(1; 3)

    dt =dx t∈(−1; 1)

    ]=∫

    dt√1−t2

    =arcsin t+c1=− arccos t+c2= arcsin (x−2)+c1= − arccos (x−2)+c2, x ∈(1; 3), c1, c2∈R.

    [email protected] http://frcatel.fri.uniza.sk/˜beerb

    mailto:[email protected]://frcatel.fri.uniza.sk/~beerb

  • Obsah Zoznam 01 11 21 31 41 51 61 71 81 91 11–12 13–14 15–16 17–18 19–20

    Riešené príklady – 111, 112∫dx√

    −x2+4x−5nemá riešenie

    =∫

    dx√−(x2−4x+5)

    =∫

    dx√−(x2−4x+4+1)

    =∫

    dx√−(x−2)2−1

    =[−(x−2)2−1≥1>0

    pre všetky x ∈R

    ].

    Neexistuje riešenie pre žiadne x ∈R.∫dx√

    −x2+4x−3= arcsin (x−2)+c1 = − arccos (x−2)+c2

    =∫

    dx√−(x2−4x+3)

    =∫

    dx√−(x2−4x+4−1)

    =∫

    dx√−(x−2)2+1

    =∫

    dx√1−(x−2)2

    =[ Subst. t =x−2 x ∈(1; 3)

    dt =dx t∈(−1; 1)

    ]=∫

    dt√1−t2

    =arcsin t+c1=− arccos t+c2= arcsin (x−2)+c1= − arccos (x−2)+c2, x ∈(1; 3), c1, c2∈R.

    [email protected] http://frcatel.fri.uniza.sk/˜beerb

    mailto:[email protected]://frcatel.fri.uniza.sk/~beerb

  • Obsah Zoznam 01 11 21 31 41 51 61 71 81 91 11–12 13–14 15–16 17–18 19–20

    Riešené príklady – 111, 112∫dx√

    −x2+4x−5nemá riešenie

    =∫

    dx√−(x2−4x+5)

    =∫

    dx√−(x2−4x+4+1)

    =∫

    dx√−(x−2)2−1

    =[−(x−2)2−1≥1>0

    pre všetky x ∈R

    ].

    Neexistuje riešenie pre žiadne x ∈R.∫dx√

    −x2+4x−3= arcsin (x−2)+c1 = − arccos (x−2)+c2

    =∫

    dx√−(x2−4x+3)

    =∫

    dx√−(x2−4x+4−1)

    =∫

    dx√−(x−2)2+1

    =∫

    dx√1−(x−2)2

    =[ Subst. t =x−2 x ∈(1; 3)

    dt =dx t∈(−1; 1)

    ]=∫

    dt√1−t2

    =arcsin t+c1=− arccos t+c2= arcsin (x−2)+c1= − arccos (x−2)+c2, x ∈(1; 3), c1, c2∈R.

    [email protected] http://frcatel.fri.uniza.sk/˜beerb

    mailto:[email protected]://frcatel.fri.uniza.sk/~beerb

  • Obsah Zoznam 01 11 21 31 41 51 61 71 81 91 11–12 13–14 15–16 17–18 19–20

    Riešené príklady – 113, 114∫dx√

    x(x−1)=∫

    dx√x2−x

    = ln |x− 12 +√

    x2−x |+c1 = ln |2x−1+√

    x2−x |+c2

    =∫

    dx√x2−2 x2 +

    14−

    14

    =∫

    dx√(x− 12 )2−(

    12 )2

    =[Subst. t =x− 12 x ∈(−∞; 0) , t∈

    (−∞;− 12

    )dt =dx x ∈(1;∞) , t∈

    ( 12 ;∞

    ) ]

    =∫

    dt√t2−( 12 )2

    = ln∣∣t+√t2−( 12 )2∣∣+c1= ln |x− 12 +√x2−x |+c1

    = ln∣∣∣ 2x−1+√x2−x2 ∣∣∣+c1= ln |2x−1+√x2−x |−ln 2+c1=[ c2 = c1−ln 2c1∈R, c2∈R ]

    = ln |2x−1+√

    x2−x |+c2, x ∈(−∞; 0) ∪ (1;∞), c∈R.∫dx√

    x(2−x)=∫

    dx√−x2+2x

    = arcsin (x−1)+c1 = − arccos (x−1)+c2

    =∫

    dx√−(x2−2x+1)+1

    =∫

    dx√1−(x−1)2

    =[ Subst. t =x−1 x ∈(0; 2)

    dt =dx t∈(−1; 1)

    ]=∫

    dt√1−t2

    =arcsin t+c1=− arccos t+c2= arcsin (x−1)+c1= − arccos (x−1)+c2,x ∈(0; 2), c1, c2∈R.

    [email protected] http://frcatel.fri.uniza.sk/˜beerb

    mailto:[email protected]://frcatel.fri.uniza.sk/~beerb

  • Obsah Zoznam 01 11 21 31 41 51 61 71 81 91 11–12 13–14 15–16 17–18 19–20

    Riešené príklady – 113, 114∫dx√

    x(x−1)=∫

    dx√x2−x

    = ln |x− 12 +√

    x2−x |+c1 = ln |2x−1+√

    x2−x |+c2

    =∫

    dx√x2−2 x2 +

    14−

    14

    =∫

    dx√(x− 12 )2−(

    12 )2

    =[Subst. t =x− 12 x ∈(−∞; 0) , t∈

    (−∞;− 12

    )dt =dx x ∈(1;∞) , t∈

    ( 12 ;∞

    ) ]

    =∫

    dt√t2−( 12 )2

    = ln∣∣t+√t2−( 12 )2∣∣+c1= ln |x− 12 +√x2−x |+c1

    = ln∣∣∣ 2x−1+√x2−x2 ∣∣∣+c1= ln |2x−1+√x2−x |−ln 2+c1=[ c2 = c1−ln 2c1∈R, c2∈R ]

    = ln |2x−1+√

    x2−x |+c2, x ∈(−∞; 0) ∪ (1;∞), c∈R.∫dx√

    x(2−x)=∫

    dx√−x2+2x

    = arcsin (x−1)+c1 = − arccos (x−1)+c2

    =∫

    dx√−(x2−2x+1)+1

    =∫

    dx√1−(x−1)2

    =[ Subst. t =x−1 x ∈(0; 2)

    dt =dx t∈(−1; 1)

    ]=∫

    dt√1−t2

    =arcsin t+c1=− arccos t+c2= arcsin (x−1)+c1= − arccos (x−1)+c2,x ∈(0; 2), c1, c2∈R.

    [email protected] http://frcatel.fri.uniza.sk/˜beerb

    mailto:[email protected]://frcatel.fri.uniza.sk/~beerb

  • Obsah Zoznam 01 11 21 31 41 51 61 71 81 91 11–12 13–14 15–16 17–18 19–20

    Riešené príklady – 113, 114∫dx√

    x(x−1)=∫

    dx√x2−x

    = ln |x− 12 +√

    x2−x |+c1 = ln |2x−1+√

    x2−x |+c2

    =∫

    dx√x2−2 x2 +

    14−

    14

    =∫

    dx√(x− 12 )2−(

    12 )2

    =[Subst. t =x− 12 x ∈(−∞; 0) , t∈

    (−∞;− 12

    )dt =dx x ∈(1;∞) , t∈

    ( 12 ;∞

    ) ]

    =∫

    dt√t2−( 12 )2

    = ln∣∣t+√t2−( 12 )2∣∣+c1= ln |x− 12 +√x2−x |+c1

    = ln∣∣∣ 2x−1+√x2−x2 ∣∣∣+c1= ln |2x−1+√x2−x |−ln 2+c1=[ c2 = c1−ln 2c1∈R, c2∈R ]

    = ln |2x−1+√

    x2−x |+c2, x ∈(−∞; 0) ∪ (1;∞), c∈R.∫dx√

    x(2−x)=∫

    dx√−x2+2x

    = arcsin (x−1)+c1 = − arccos (x−1)+c2

    =∫

    dx√−(x2−2x+1)+1

    =∫

    dx√1−(x−1)2

    =[ Subst. t =x−1 x ∈(0; 2)

    dt =dx t∈(−1; 1)

    ]=∫

    dt√1−t2

    =arcsin t+c1=− arccos t+c2= arcsin (x−1)+c1= − arccos (x−1)+c2,x ∈(0; 2), c1, c2∈R.

    [email protected] http://frcatel.fri.uniza.sk/˜beerb

    mailto:[email protected]://frcatel.fri.uniza.sk/~beerb

  • Obsah Zoznam 01 11 21 31 41 51 61 71 81 91 11–12 13–14 15–16 17–18 19–20

    Riešené príklady – 113, 114∫dx√

    x(x−1)=∫

    dx√x2−x

    = ln |x− 12 +√

    x2−x |+c1 = ln |2x−1+√

    x2−x |+c2

    =∫

    dx√x2−2 x2 +

    14−

    14

    =∫

    dx√(x− 12 )2−(

    12 )2

    =[Subst. t =x− 12 x ∈(−∞; 0) , t∈

    (−∞;− 12

    )dt =dx x ∈(1;∞) , t∈

    ( 12 ;∞

    ) ]

    =∫

    dt√t2−( 12 )2

    = ln∣∣t+√t2−( 12 )2∣∣+c1= ln |x− 12 +√x2−x |+c1

    = ln∣∣∣ 2x−1+√x2−x2 ∣∣∣+c1= ln |2x−1+√x2−x |−ln 2+c1=[ c2 = c1−ln 2c1∈R, c2∈R ]

    = ln |2x−1+√

    x2−x |+c2, x ∈(−∞; 0) ∪ (1;∞), c∈R.∫dx√

    x(2−x)=∫

    dx√−x2+2x

    = arcsin (x−1)+c1 = − arccos (x−1)+c2

    =∫

    dx√−(x2−2x+1)+1

    =∫

    dx√1−(x−1)2

    =[ Subst. t =x−1 x ∈(0; 2)

    dt =dx t∈(−1; 1)

    ]=∫

    dt√1−t2

    =arcsin t+c1=− arccos t+c2= arcsin (x−1)+c1= − arccos (x−1)+c2,x ∈(0; 2), c1, c2∈R.

    [email protected] http://frcatel.fri.uniza.sk/˜beerb

    mailto:[email protected]://frcatel.fri.uniza.sk/~beerb

  • Obsah Zoznam 01 11 21 31 41 51 61 71 81 91 11–12 13–14 15–16 17–18 19–20

    Riešené príklady – 113, 114∫dx√

    x(x−1)=∫

    dx√x2−x

    = ln |x− 12 +√

    x2−x |+c1 = ln |2x−1+√

    x2−x |+c2

    =∫

    dx√x2−2 x2 +

    14−

    14

    =∫

    dx√(x− 12 )2−(

    12 )2

    =[Subst. t =x− 12 x ∈(−∞; 0) , t∈

    (−∞;− 12

    )dt =dx x ∈(1;∞) , t∈

    ( 12 ;∞

    ) ]

    =∫

    dt√t2−( 12 )2

    = ln∣∣t+√t2−( 12 )2∣∣+c1= ln |x− 12 +√x2−x |+c1

    = ln∣∣∣ 2x−1+√x2−x2 ∣∣∣+c1= ln |2x−1+√x2−x |−ln 2+c1=[ c2 = c1−ln 2c1∈R, c2∈R ]

    = ln |2x−1+√

    x2−x |+c2, x ∈(−∞; 0) ∪ (1;∞), c∈R.∫dx√

    x(2−x)=∫

    dx√−x2+2x

    = arcsin (x−1)+c1 = − arccos (x−1)+c2

    =∫

    dx√−(x2−2x+1)+1

    =∫

    dx√1−(x−1)2

    =[ Subst. t =x−1 x ∈(0; 2)

    dt =dx t∈(−1; 1)

    ]=∫

    dt√1−t2

    =arcsin t+c1=− arccos t+c2= arcsin (x−1)+c1= − arccos (x−1)+c2,x ∈(0; 2), c1, c2∈R.

    [email protected] http://frcatel.fri.uniza.sk/˜beerb

    mailto:[email protected]://frcatel.fri.uniza.sk/~beerb

  • Obsah Zoznam 01 11 21 31 41 51 61 71 81 91 11–12 13–14 15–16 17–18 19–20

    Riešené príklady – 113, 114∫dx√

    x(x−1)=∫

    dx√x2−x

    = ln |x− 12 +√

    x2−x |+c1 = ln |2x−1+√

    x2−x |+c2

    =∫

    dx√x2−2 x2 +

    14−

    14

    =∫

    dx√(x− 12 )2−(

    12 )2

    =[Subst. t =x− 12 x ∈(−∞; 0) , t∈

    (−∞;− 12

    )dt =dx x ∈(1;∞) , t∈

    ( 12 ;∞

    ) ]

    =∫

    dt√t2−( 12 )2

    = ln∣∣t+√t2−( 12 )2∣∣+c1= ln |x− 12 +√x2−x |+c1

    = ln∣∣∣ 2x−1+√x2−x2 ∣∣∣+c1= ln |2x−1+√x2−x |−ln 2+c1=[ c2 = c1−ln 2c1∈R, c2∈R ]

    = ln |2x−1+√

    x2−x |+c2, x ∈(−∞; 0) ∪ (1;∞), c∈R.∫dx√

    x(2−x)=∫

    dx√−x2+2x

    = arcsin (x−1)+c1 = − arccos (x−1)+c2

    =∫

    dx√−(x2−2x+1)+1

    =∫

    dx√1−(x−1)2

    =[ Subst. t =x−1 x ∈(0; 2)

    dt =dx t∈(−1; 1)

    ]=∫

    dt√1−t2

    =arcsin t+c1=− arccos t+c2= arcsin (x−1)+c1= − arccos (x−1)+c2,x ∈(0; 2), c1, c2∈R.

    [email protected] http://frcatel.fri.uniza.sk/˜beerb

    mailto:[email protected]://frcatel.fri.uniza.sk/~beerb

  • Obsah Zoznam 01 11 21 31 41 51 61 71 81 91 11–12 13–14 15–16 17–18 19–20

    Riešené príklady – 113, 114∫dx√

    x(x−1)=∫

    dx√x2−x

    = ln |x− 12 +√

    x2−x |+c1 = ln |2x−1+√

    x2−x |+c2

    =∫

    dx√x2−2 x2 +

    14−

    14

    =∫

    dx√(x− 12 )2−(

    12 )2

    =[Subst. t =x− 12 x ∈(−∞; 0) , t∈

    (−∞;− 12

    )dt =dx x ∈(1;∞) , t∈

    ( 12 ;∞

    ) ]

    =∫

    dt√t2−( 12 )2

    = ln∣∣t+√t2−( 12 )2∣∣+c1= ln |x− 12 +√x2−x |+c1

    = ln∣∣∣ 2x−1+√x2−x2 ∣∣∣+c1= ln |2x−1+√x2−x |−ln 2+c1=[ c2 = c1−ln 2c1∈R, c2∈R ]

    = ln |2x−1+√

    x2−x |+c2, x ∈(−∞; 0) ∪ (1;∞), c∈R.∫dx√

    x(2−x)=∫

    dx√−x2+2x

    = arcsin (x−1)+c1 = − arccos (x−1)+c2

    =∫

    dx√−(x2−2x+1)+1

    =∫

    dx√1−(x−1)2

    =[ Subst. t =x−1 x ∈(0; 2)

    dt =dx t∈(−1; 1)

    ]=∫

    dt√1−t2

    =arcsin t+c1=− arccos t+c2= arcsin (x−1)+c1= − arccos (x−1)+c2,x ∈(0; 2), c1, c2∈R.

    [email protected] http://frcatel.fri.uniza.sk/˜beerb

    mailto:[email protected]://frcatel.fri.uniza.sk/~beerb

  • Obsah Zoznam 01 11 21 31 41 51 61 71 81 91 11–12 13–14 15–16 17–18 19–20

    Riešené príklady – 113, 114∫dx√

    x(x−1)=∫

    dx√x2−x

    = ln |x− 12 +√

    x2−x |+c1 = ln |2x−1+√

    x2−x |+c2

    =∫

    dx√x2−2 x2 +

    14−

    14

    =∫

    dx√(x− 12 )2−(

    12 )2

    =[Subst. t =x− 12 x ∈(−∞; 0) , t∈

    (−∞;− 12

    )dt =dx x ∈(1;∞) , t∈

    ( 12 ;∞

    ) ]

    =∫

    dt√t2−( 12 )2

    = ln∣∣t+√t2−( 12 )2∣∣+c1= ln |x− 12 +√x2−x |+c1

    = ln∣∣∣ 2x−1+√x2−x2 ∣∣∣+c1= ln |2x−1+√x2−x |−ln 2+c1=[ c2 = c1−ln 2c1∈R, c2∈R ]

    = ln |2x−1+√

    x2−x |+c2, x ∈(−∞; 0) ∪ (1;∞), c∈R.∫dx√

    x(2−x)=∫

    dx√−x2+2x

    = arcsin (x−1)+c1 = − arccos (x−1)+c2

    =∫

    dx√−(x2−2x+1)+1

    =∫

    dx√1−(x−1)2

    =[ Subst. t =x−1 x ∈(0; 2)

    dt =dx t∈(−1; 1)

    ]=∫

    dt√1−t2

    =arcsin t+c1=− arccos t+c2= arcsin (x−1)+c1= − arccos (x−1)+c2,x ∈(0; 2), c1, c2∈R.

    [email protected] http://frcatel.fri.uniza.sk/˜beerb

    mailto:[email protected]://frcatel.fri.uniza.sk/~beerb

  • Obsah Zoznam 01 11 21 31 41 51 61 71 81 91 11–12 13–14 15–16 17–18 19–20

    Riešené príklady – 113, 114∫dx√

    x(x−1)=∫

    dx√x2−x

    = ln |x− 12 +√

    x2−x |+c1 = ln |2x−1+√

    x2−x |+c2

    =∫

    dx√x2−2 x2 +

    14−

    14

    =∫

    dx√(x− 12 )2−(

    12 )2

    =[Subst. t =x− 12 x ∈(−∞; 0) , t∈

    (−∞;− 12

    )dt =dx x ∈(1;∞) , t∈

    ( 12 ;∞

    ) ]

    =∫

    dt√t2−( 12 )2

    = ln∣∣t+√t2−( 12 )2∣∣+c1= ln |x− 12 +√x2−x |+c1

    = ln∣∣∣ 2x−1+√x2−x2 ∣∣∣+c1= ln |2x−1+√x2−x |−ln 2+c1=[ c2 = c1−ln 2c1∈R, c2∈R ]

    = ln |2x−1+√

    x2−x |+c2, x ∈(−∞; 0) ∪ (1;∞), c∈R.∫dx√

    x(2−x)=∫

    dx√−x2+2x

    = arcsin (x−1)+c1 = − arccos (x−1)+c2

    =∫

    dx√−(x2−2x+1)+1

    =∫

    dx√1−(x−1)2

    =[ Subst. t =x−1 x ∈(0; 2)

    dt =dx t∈(−1; 1)

    ]=∫

    dt√1−t2

    =arcsin t+c1=− arccos t+c2= arcsin (x−1)+c1= − arccos (x−1)+c2,x ∈(0; 2), c1, c2∈R.

    [email protected] http://frcatel.fri.uniza.sk/˜beerb

    mailto:[email protected]://frcatel.fri.uniza.sk/~beerb

  • Obsah Zoznam 01 11 21 31 41 51 61 71 81 91 11–12 13–14 15–16 17–18 19–20

    Riešené príklady – 113, 114∫dx√

    x(x−1)=∫

    dx√x2−x

    = ln |x− 12 +√

    x2−x |+c1 = ln |2x−1+√

    x2−x |+c2

    =∫

    dx√x2−2 x2 +

    14−

    14

    =∫

    dx√(x− 12 )2−(

    12 )2

    =[Subst. t =x− 12 x ∈(−∞; 0) , t∈

    (−∞;− 12

    )dt =dx x ∈(1;∞) , t∈

    ( 12 ;∞

    ) ]

    =∫

    dt√t2−( 12 )2

    = ln∣∣t+√t2−( 12 )2∣∣+c1= ln |x− 12 +√x2−x |+c1

    = ln∣∣∣ 2x−1+√x2−x2 ∣∣∣+c1= ln |2x−1+√x2−x |−ln 2+c1=[ c2 = c1−ln 2c1∈R, c2∈R ]

    = ln |2x−1+√

    x2−x |+c2, x ∈(−∞; 0) ∪ (1;∞), c∈R.∫dx√

    x(2−x)=∫

    dx√−x2+2x

    = arcsin (x−1)+c1 = − arccos (x−1)+c2

    =∫

    dx√−(x2−2x+1)+1

    =∫

    dx√1−(x−1)2

    =[ Subst. t =x−1 x ∈(0; 2)

    dt =dx t∈(−1; 1)

    ]=∫

    dt√1−t2

    =arcsin t+c1=− arccos t+c2= arcsin (x−1)+c1= − arccos (x−1)+c2,x ∈(0; 2), c1, c2∈R.

    [email protected] http://frcatel.fri.uniza.sk/˜beerb

    mailto:[email protected]://frcatel.fri.uniza.sk/~beerb

  • Obsah Zoznam 01 11 21 31 41 51 61 71 81 91 11–12 13–14 15–16 17–18 19–20

    Riešené príklady – 115, 116∫ √x2+4x +5 dx = (x+2)

    √x2+4x+52 +

    ln (x+2+√

    x2+4x+5)2 +c

    =[ Subst. t =x +2 x2+4x +5=x2+4x +4+1 x ∈R

    dt =dx =(x +2)2+1= t2+1 t∈R

    ]=∫ √

    t2+1 dt = t√

    t2+12 +

    12

    ∫dt√t2+1

    = t√

    t2+12 +

    ln (t+√

    t2+1)2 +c =

    (x+2)√

    (x+2)2+12 +

    ln (x+2+√

    (x+2)2+1)2 +c

    = (x+2)√

    x2+4x+52 +

    ln (x+2+√

    x2+4x+5)2 +c, x ∈R, c∈R.∫ √

    x2+4x +3 dx = (x+2)√

    x2+4x+32 −

    ln |x+2+√

    x2+4x+3|2 +c

    =[ Subst. t =x +2 x2+4x +3=x2+4x +4−1 x ∈(−∞;−3) , t∈(−∞;−1)

    dt =dx =(x +2)2−1= t2−1 x ∈(−1;∞) , t∈(1;∞)

    ]=∫ √

    t2−1 dt

    = t√

    t2−12 −

    12

    ∫dt√t2−1

    = t√

    t2−12 −

    ln |t+√

    t2−1|2 +c

    = (x+2)√

    x2+4x+32 −

    ln |x+2+√

    x2+4x+3|2 +c, x ∈(−∞;−3) ∪ (−1;∞), c∈R.

    [email protected] http://frcatel.fri.uniza.sk/˜beerb

    mailto:[email protected]://frcatel.fri.uniza.sk/~beerb

  • Obsah Zoznam 01 11 21 31 41 51 61 71 81 91 11–12 13–14 15–16 17–18 19–20

    Riešené príklady – 115, 116∫ √x2+4x +5 dx = (x+2)

    √x2+4x+52 +

    ln (x+2+√

    x2+4x+5)2 +c

    =[ Subst. t =x +2 x2+4x +5=x2+4x +4+1 x ∈R

    dt =dx =(x +2)2+1= t2+1 t∈R

    ]=∫ √

    t2+1 dt = t√

    t2+12 +

    12

    ∫dt√t2+1

    = t√

    t2+12 +

    ln (t+√

    t2+1)2 +c =

    (x+2)√

    (x+2)2+12 +

    ln (x+2+√

    (x+2)2+1)2 +c

    = (x+2)√

    x2+4x+52 +

    ln (x+2+√

    x2+4x+5)2 +c, x ∈R, c∈R.∫ √

    x2+4x +3 dx = (x+2)√

    x2+4x+32 −

    ln |x+2+√

    x2+4x+3|2 +c

    =[ Subst. t =x +2 x2+4x +3=x2+4x +4−1 x ∈(−∞;−3) , t∈(−∞;−1)

    dt =dx =(x +2)2−1= t2−1 x ∈(−1;∞) , t∈(1;∞)

    ]=∫ √

    t2−1 dt

    = t√

    t2−12 −

    12

    ∫dt√t2−1

    = t√

    t2−12 −

    ln |t+√

    t2−1|2 +c

    = (x+2)√

    x2+4x+32 −

    ln |x+2+√

    x2+4x+3|2 +c, x ∈(−∞;−3) ∪ (−1;∞), c∈R.

    [email protected] http://frcatel.fri.uniza.sk/˜beerb

    mailto:[email protected]://frcatel.fri.uniza.sk/~beerb

  • Obsah Zoznam 01 11 21 31 41 51 61 71 81 91 11–12 13–14 15–16 17–18 19–20

    Riešené príklady – 115, 116∫ √x2+4x +5 dx = (x+2)

    √x2+4x+52 +

    ln (x+2+√

    x2+4x+5)2 +c

    =[ Subst. t =x +2 x2+4x +5=x2+4x +4+1 x ∈R

    dt =dx =(x +2)2+1= t2+1 t∈R

    ]=∫ √

    t2+1 dt = t√

    t2+12 +

    12

    ∫dt√t2+1

    = t√

    t2+12 +

    ln (t+√

    t2+1)2 +c =

    (x+2)√

    (x+2)2+12 +

    ln (x+2+√

    (x+2)2+1)2 +c

    = (x+2)√

    x2+4x+52 +

    ln (x+2+√

    x2+4x+5)2 +c, x ∈R, c∈R.∫ √

    x2+4x +3 dx = (x+2)√

    x2+4x+32 −

    ln |x+2+√

    x2+4x+3|2 +c

    =[ Subst. t =x +2 x2+4x +3=x2+4x +4−1 x ∈(−∞;−3) , t∈(−∞;−1)

    dt =dx =(x +2)2−1= t2−1 x ∈(−1;∞) , t∈(1;∞)

    ]=∫ √

    t2−1 dt

    = t√

    t2−12 −

    12

    ∫dt√t2−1

    = t√

    t2−12 −

    ln |t+√

    t2−1|2 +c

    = (x+2)√

    x2+4x+32 −

    ln |x+2+√

    x2+4x+3|2 +c, x ∈(−∞;−3) ∪ (−1;∞), c∈R.

    [email protected] http://frcatel.fri.uniza.sk/˜beerb

    mailto:[email protected]://frcatel.fri.uniza.sk/~beerb

  • Obsah Zoznam 01 11 21 31 41 51 61 71 81 91 11–12 13–14 15–16 17–18 19–20

    Riešené príklady – 115, 116∫ √x2+4x +5 dx = (x+2)

    √x2+4x+52 +

    ln (x+2+√

    x2+4x+5)2 +c

    =[ Subst. t =x +2 x2+4x +5=x2+4x +4+1 x ∈R

    dt =dx =(x +2)2+1= t2+1 t∈R

    ]=∫ √

    t2+1 dt = t√

    t2+12 +

    12

    ∫dt√t2+1

    = t√

    t2+12 +

    ln (t+√

    t2+1)2 +c =

    (x+2)√

    (x+2)2+12 +

    ln (x+2+√

    (x+2)2+1)2 +c

    = (x+2)√

    x2+4x+52 +

    ln (x+2+√

    x2+4x+5)2 +c, x ∈R, c∈R.∫ √

    x2+4x +3 dx = (x+2)√

    x2+4x+32 −

    ln |x+2+√

    x2+4x+3|2 +c

    =[ Subst. t =x +2 x2+4x +3=x2+4x +4−1 x ∈(−∞;−3) , t∈(−∞;−1)

    dt =dx =(x +2)2−1= t2−1 x ∈(−1;∞) , t∈(1;∞)

    ]=∫ √

    t2−1 dt

    = t√

    t2−12 −

    12

    ∫dt√t2−1

    = t√

    t2−12 −

    ln |t+√

    t2−1|2 +c

    = (x+2)√

    x2+4x+32 −

    ln |x+2+√

    x2+4x+3|2 +c, x ∈(−∞;−3) ∪ (−1;∞), c∈R.

    [email protected] http://frcatel.fri.uniza.sk/˜beerb

    mailto:[email protected]://frcatel.fri.uniza.sk/~beerb

  • Obsah Zoznam 01 11 21 31 41 51 61 71 81 91 11–12 13–14 15–16 17–18 19–20

    Riešené príklady – 115, 116∫ √x2+4x +5 dx = (x+2)

    √x2+4x+52 +

    ln (x+2+√

    x2+4x+5)2 +c

    =[ Subst. t =x +2 x2+4x +5=x2+4x +4+1 x ∈R

    dt =dx =(x +2)2+1= t2+1 t∈R

    ]=∫ √

    t2+1 dt = t√

    t2+12 +

    12

    ∫dt√t2+1

    = t√

    t2+12 +

    ln (t+√

    t2+1)2 +c =

    (x+2)√

    (x+2)2+12 +

    ln (x+2+√

    (x+2)2+1)2 +c

    = (x+2)√

    x2+4x+52 +

    ln (x+2+√

    x2+4x+5)2 +c, x ∈R, c∈R.∫ √

    x2+4x +3 dx = (x+2)√

    x2+4x+32 −

    ln |x+2+√

    x2+4x+3|2 +c

    =[ Subst. t =x +2 x2+4x +3=x2+4x +4−1 x ∈(−∞;−3) , t∈(−∞;−1)

    dt =dx =(x +2)2−1= t2−1 x ∈(−1;∞) , t∈(1;∞)

    ]=∫ √

    t2−1 dt

    = t√

    t2−12 −

    12

    ∫dt√t2−1

    = t√

    t2−12 −

    ln |t+√

    t2−1|2 +c

    = (x+2)√

    x2+4x+32 −

    ln |x+2+√

    x2+4x+3|2 +c, x ∈(−∞;−3) ∪ (−1;∞), c∈R.

    [email protected] http://frcatel.fri.uniza.sk/˜beerb

    mailto:[email protected]://frcatel.fri.uniza.sk/~beerb

  • Obsah Zoznam 01 11 21 31 41 51 61 71 81 91 11–12 13–14 15–16 17–18 19–20

    Riešené príklady – 115, 116∫ √x2+4x +5 dx = (x+2)

    √x2+4x+52 +

    ln (x+2+√

    x2+4x+5)2 +c

    =[ Subst. t =x +2 x2+4x +5=x2+4x +4+1 x ∈R

    dt =dx =(x +2)2+1= t2+1 t∈R

    ]=∫ √

    t2+1 dt = t√

    t2+12 +

    12

    ∫dt√t2+1

    = t√

    t2+12 +

    ln (t+√

    t2+1)2 +c =

    (x+2)√

    (x+2)2+12 +

    ln (x+2+√

    (x+2)2+1)2 +c

    = (x+2)√

    x2+4x+52 +

    ln (x+2+√

    x2+4x+5)2 +c, x ∈R, c∈R.∫ √

    x2+4x +3 dx = (x+2)√

    x2+4x+32 −

    ln |x+2+√

    x2+4x+3|2 +c

    =[ Subst. t =x +2 x2+4x +3=x2+4x +4−1 x ∈(−∞;−3) , t∈(−∞;−1)

    dt =dx =(x +2)2−1= t2−1 x ∈(−1;∞) , t∈(1;∞)

    ]=∫ √

    t2−1 dt

    = t√

    t2−12 −

    12

    ∫dt√t2−1

    = t√

    t2−12 −

    ln |t+√

    t2−1|2 +c

    = (x+2)√

    x2+4x+32 −

    ln |x+2+√

    x2+4x+3|2 +c, x ∈(−∞;−3) ∪ (−1;∞), c∈R.

    [email protected] http://frcatel.fri.uniza.sk/˜beerb

    mailto:[email protected]://frcatel.fri.uniza.sk/~beerb

  • Obsah Zoznam 01 11 21 31 41 51 61 71 81 91 11–12 13–14 15–16 17–18 19–20

    Riešené príklady – 117, 118∫ √x2−4x +6 dx = (x−2)

    √x2−4x+62 +

    ln (x−2+√

    x2−4x+6)2 +c

    =[Subst. t =x−2 x2−4x +6=x2+4x +4+2 x ∈R

    dt =dx =(x−2)2+2= t2+(√2)2 t∈R

    ]=∫√

    t2+(√2)2 dt

    = t√

    t2+(√2)2

    2 +12

    ∫dt√

    t2+(√2)2

    = t√

    t2+(√2)2

    2 +ln (t+√

    t2+(√2)2)

    2 +c

    = (x−2)√

    x2−4x+62 +

    ln (x−2+√

    x2−4x+6)2 +c, x ∈R, c∈R.∫ √

    x2−4x +2 dx = (x−2)√

    x2+4x+22 −

    ln |x−2+√

    x2−4x+2|2 +c

    =[Subst. t =x−2 x2−4x +2=x2−4x +4−2 x ∈(−∞;−3) , t∈(−∞;−1)

    dt =dx =(x−2)2−2= t2−(√2)2 x ∈(−1;∞) , t∈(1;∞)

    ]=∫ √

    t2−(√2)2 dt

    = t√

    t2−(√2)2

    2 −12

    ∫dt√

    t2−(√2)2

    = t√

    t2−(√2)2

    2 −ln∣∣t+√t2−(√2)2∣∣

    2 +c

    = (x−2)√

    x2+4x+22 −

    ln |x−2+√

    x2−4x+2|2 +c, x ∈R−

    〈2−√2; 2+

    √2〉, c∈R.

    [email protected] http://frcatel.fri.uniza.sk/˜beerb

    mailto:[email protected]://frcatel.fri.uniza.sk/~beerb

  • Obsah Zoznam 01 11 21 31 41 51 61 71 81 91 11–12 13–14 15–16 17–18 19–20

    Riešené príklady – 117, 118∫ √x2−4x +6 dx = (x−2)

    √x2−4x+62 +

    ln (x−2+√

    x2−4x+6)2 +c

    =[Subst. t =x−2 x2−4x +6=x2+4x +4+2 x ∈R

    dt =dx =(x−2)2+2= t2+(√2)2 t∈R

    ]=∫√

    t2+(√2)2 dt

    = t√

    t2+(√2)2

    2 +12

    ∫dt√

    t2+(√2)2

    = t√

    t2+(√2)2

    2 +ln (t+√

    t2+(√2)2)

    2 +c

    = (x−2)√

    x2−4x+62 +

    ln (x−2+√

    x2−4x+6)2 +c, x ∈R, c∈R.∫ √

    x2−4x +2 dx = (x−2)√

    x2+4x+22 −

    ln |x−2+√

    x2−4x+2|2 +c

    =[Subst. t =x−2 x2−4x +2=x2−4x +4−2 x ∈(−∞;−3) , t∈(−∞;−1)

    dt =dx =(x−2)2−2= t2−(√2)2 x ∈(−1;∞) , t∈(1;∞)

    ]=∫ √

    t2−(√2)2 dt

    = t√

    t2−(√2)2

    2 −12

    ∫dt√

    t2−(√2)2

    = t√

    t2−(√2)2

    2 −ln∣∣t+√t2−(√2)2∣∣

    2 +c

    = (x−2)√

    x2+4x+22 −

    ln |x−2+√

    x2−4x+2|2 +c, x ∈R−

    〈2−√2; 2+

    √2〉, c∈R.

    [email protected] http://frcatel.fri.uniza.sk/˜beerb

    mailto:[email protected]://frcatel.fri.uniza.sk/~beerb

  • Obsah Zoznam 01 11 21 31 41 51 61 71 81 91 11–12 13–14 15–16 17–18 19–20

    Riešené príklady – 117, 118∫ √x2−4x +6 dx = (x−2)

    √x2−4x+62 +

    ln (x−2+√

    x2−4x+6)2 +c

    =[Subst. t =x−2 x2−4x +6=x2+4x +4+2 x ∈R

    dt =dx =(x−2)2+2= t2+(√2)2 t∈R

    ]=∫√

    t2+(√2)2 dt

    = t√

    t2+(√2)2

    2 +12

    ∫dt√

    t2+(√2)2

    = t√

    t2+(√2)2

    2 +ln (t+√

    t2+(√2)2)

    2 +c

    = (x−2)√

    x2−4x+62 +

    ln (x−2+√

    x2−4x+6)2 +c, x ∈R, c∈R.∫ √

    x2−4x +2 dx = (x−2)√

    x2+4x+22 −

    ln |x−2+√

    x2−4x+2|2 +c

    =[Subst. t =x−2 x2−4x +2=x2−4x +4−2 x ∈(−∞;−3) , t∈(−∞;−1)

    dt =dx =(x−2)2−2= t2−(√2)2 x ∈(−1;∞) , t∈(1;∞)

    ]=∫ √

    t2−(√2)2 dt

    = t√

    t2−(√2)2

    2 −12

    ∫dt√

    t2−(√2)2

    = t√

    t2−(√2)2

    2 −ln∣∣t+√t2−(√2)2∣∣

    2 +c

    = (x−2)√

    x2+4x+22 −

    ln |x−2+√

    x2−4x+2|2 +c, x ∈R−

    〈2−√2; 2+

    √2〉, c∈R.

    [email protected] http://frcatel.fri.uniza.sk/˜beerb

    mailto:[email protected]://frcatel.fri.uniza.sk/~beerb

  • Obsah Zoznam 01 11 21 31 41 51 61 71 81 91 11–12 13–14 15–16 17–18 19–20

    Riešené príklady – 117, 118∫ √x2−4x +6 dx = (x−2)

    √x2−4x+62 +

    ln (x−2+√

    x2−4x+6)2 +c

    =[Subst. t =x−2 x2−4x +6=x2+4x +4+2 x ∈R

    dt =dx =(x−2)2+2= t2+(√2)2 t∈R

    ]=∫√

    t2+(√2)2 dt

    = t√

    t2+(√2)2

    2 +12

    ∫dt√

    t2+(√2)2

    = t√

    t2+(√2)2

    2 +ln (t+√

    t2+(√2)2)

    2 +c

    = (x−2)√

    x2−4x+62 +

    ln (x−2+√

    x2−4x+6)2 +c, x ∈R, c∈R.∫ √

    x2−4x +2 dx = (x−2)√

    x2+4x+22 −

    ln |x−2+√

    x2−4x+2|2 +c

    =[Subst. t =x−2 x2−4x +2=x2−4x +4−2 x ∈(−∞;−3) , t∈(−∞;−1)

    dt =dx =(x−2)2−2= t2−(√2)2 x ∈(−1;∞) , t∈(1;∞)

    ]=∫ √

    t2−(√2)2 dt

    = t√

    t2−(√2)2

    2 −12

    ∫dt√

    t2−(√2)2

    = t√

    t2−(√2)2

    2 −ln∣∣t+√t2−(√2)2∣∣

    2 +c

    = (x−2)√

    x2+4x+22 −

    ln |x−2+√

    x2−4x+2|2 +c, x ∈R−

    〈2−√2; 2+

    √2〉, c∈R.

    [email protected] http://frcatel.fri.uniza.sk/˜beerb

    mailto:[email protected]://frcatel.fri.uniza.sk/~beerb

  • Obsah Zoznam 01 11 21 31 41 51 61 71 81 91 11–12 13–14 15–16 17–18 19–20

    Riešené príklady – 117, 118∫ √x2−4x +6 dx = (x−2)

    √x2−4x+62 +

    ln (x−2+√

    x2−4x+6)2 +c

    =[Subst. t =x−2 x2−4x +6=x2+4x +4+2 x ∈R

    dt =dx =(x−2)2+2= t2+(√2)2 t∈R

    ]=∫√

    t2+(√2)2 dt

    = t√

    t2+(√2)2

    2 +12

    ∫dt√

    t2+(√2)2

    = t√

    t2+(√2)2

    2 +ln (t+√

    t2+(√2)2)

    2 +c

    = (x−2)√

    x2−4x+62 +

    ln (x−2+√

    x2−4x+6)2 +c, x ∈R, c∈R.∫ √

    x2−4x +2 dx = (x−2)√

    x2+4x+22 −

    ln |x−2+√

    x2−4x+2|2 +c

    =[Subst. t =x−2 x2−4x +2=x2−4x +4−2 x ∈(−∞;−3) , t∈(−∞;−1)

    dt =dx =(x−2)2−2= t2−(√2)2 x ∈(−1;∞) , t∈(1;∞)

    ]=∫ √

    t2−(√2)2 dt

    = t√

    t2−(√2)2

    2 −12

    ∫dt√

    t2−(√2)2

    = t√

    t2−(√2)2

    2 −ln∣∣t+√t2−(√2)2∣∣

    2 +c

    = (x−2)√

    x2+4x+22 −

    ln |x−2+√

    x2−4x+2|2 +c, x ∈R−

    〈2−√2; 2+

    √2〉, c∈R.

    [email protected] http://frcatel.fri.uniza.sk/˜beerb

    mailto:[email protected]://frcatel.fri.uniza.sk/~beerb

  • Obsah Zoznam 01 11 21 31 41 51 61 71 81 91 11–12 13–14 15–16 17–18 19–20

    Riešené príklady – 117, 118∫ √x2−4x +6 dx = (x−2)

    √x2−4x+62 +

    ln (x−2+√

    x2−4x+6)2 +c

    =[Subst. t =x−2 x2−4x +6=x2+4x +4+2 x ∈R

    dt =dx =(x−2)2+2= t2+(√2)2 t∈R

    ]=∫√

    t2+(√2)2 dt

    = t√

    t2+(√2)2

    2 +12

    ∫dt√

    t2+(√2)2

    = t√

    t2+(√2)2

    2 +ln (t+√

    t2+(√2)2)

    2 +c

    = (x−2)√

    x2−4x+62 +

    ln (x−2+√

    x2−4x+6)2 +c, x ∈R, c∈R.∫ √

    x2−4x +2 dx = (x−2)√

    x2+4x+22 −

    ln |x−2+√

    x2−4x+2|2 +c

    =[Subst. t =x−2 x2−4x +2=x2−4x +4−2 x ∈(−∞;−3) , t∈(−∞;−1)

    dt =dx =(x−2)2−2= t2−(√2)2 x ∈(−1;∞) , t∈(1;∞)

    ]=∫ √

    t2−(√2)2 dt

    = t√

    t2−(√2)2

    2 −12

    ∫dt√

    t2−(√2)2

    = t√

    t2−(√2)2

    2 −ln∣∣t+√t2−(√2)2∣∣

    2 +c

    = (x−2)√

    x2+4x+22 −

    ln |x−2+√

    x2−4x+2|2 +c, x ∈R−

    〈2−√2; 2+

    √2〉, c∈R.

    [email protected] http://frcatel.fri.uniza.sk/˜beerb

    mailto:[email protected]://frcatel.fri.uniza.sk/~beerb

  • Obsah Zoznam 01 11 21 31 41 51 61 71 81 91 11–12 13–14 15–16 17–18 19–20

    Riešené príklady – 119, 120∫ √−x2+4x−3 dx = (x−2)

    √−x2+4x−32 +

    arcsin (x−2)2 +c1

    =[ Subst. t =x−2 −x2+4x−3=−(x2−4x +4−1) x ∈(1; 3)

    dt =dx =−(x−2)2+1=1−t2 t∈(−1; 1)

    ]=∫ √

    1−t2 dt

    = t√

    1−t22 +

    12

    ∫dt√1−t2

    = t√

    1−t22 +

    arcsin t2 +c1=

    t√

    1−t22 −

    arccos t2 +c2

    = (x−2)√−x2+4x−32 +

    arcsin (x−2)2 +c1=

    (x−2)√−x2+4x−32 −

    arccos (x−2)2 +c2,

    x ∈(1; 3), c1, c2∈R.∫ √x(2−x) dx =

    ∫ √−x2+2x dx = (x−2)

    √−x2+2x2 +

    arcsin (x−2)2 +c1

    =[ Subst. t =x−1 −x2+2x =−(x2−2x +1−1) x ∈(0; 2)

    dt =dx =−(x−1)2+1=1−t2 t∈(−1; 1)

    ]=∫ √

    1−t2 dt = t√

    1−t22 +

    12

    ∫dt√1−t2

    = t√

    1−t22 +

    arcsin t2 +c1=

    t√

    1−t22 −

    arccos t2 +c2=

    (x−2)√−x2+2x2 +

    arcsin (x−2)2 +c1

    = (x−2)√−x2+2x2 −

    arccos (x−2)2 +c2, x ∈(0; 2), c1, c2∈R.

    [email protected] http://frcatel.fri.uniza.sk/˜beerb

    mailto:[email protected]://frcatel.fri.uniza.sk/~beerb

  • Obsah Zoznam 01 11 21 31 41 51 61 71 81 91 11–12 13–14 15–16 17–18 19–20

    Riešené príklady – 119, 120∫ √−x2+4x−3 dx = (x−2)

    √−x2+4x−32 +

    arcsin (x−2)2 +c1

    =[ Subst. t =x−2 −x2+4x−3=−(x2−4x +4−1) x ∈(1; 3)

    dt =dx =−(x−2)2+1=1−t2 t∈(−1; 1)

    ]=∫ √

    1−t2 dt

    = t√

    1−t22 +

    12

    ∫dt√1−t2

    = t√

    1−t22 +

    arcsin t2 +c1=

    t√

    1−t22 −

    arccos t2 +c2

    = (x−2)√−x2+4x−32 +

    arcsin (x−2)2 +c1=

    (x−2)√−x2+4x−32 −

    arccos (x−2)2 +c2,

    x ∈(1; 3), c1, c2∈R.∫ √x(2−x) dx =

    ∫ √−x2+2x dx = (x−2)

    √−x2+2x2 +

    arcsin (x−2)2 +c1

    =[ Subst. t =x−1 −x2+2x =−(x2−2x +1−1) x ∈(0; 2)

    dt =dx =−(x−1)2+1=1−t2 t∈(−1; 1)

    ]=∫ √

    1−t2 dt = t√

    1−t22 +

    12

    ∫dt√1−t2

    = t√

    1−t22 +

    arcsin t2 +c1=

    t√

    1−t22 −

    arccos t2 +c2=

    (x−2)√−x2+2x2 +

    arcsin (x−2)2 +c1

    = (x−2)√−x2+2x2 −

    arccos (x−2)2 +c2, x ∈(0; 2), c1, c2∈R.

    [email protected] http://frcatel.fri.uniza.sk/˜beerb

    mailto:[email protected]://frcatel.fri.uniza.sk/~beerb

  • Obsah Zoznam 01 11 21 31 41 51 61 71 81 91 11–12 13–14 15–16 17–18 19–20

    Riešené príklady – 119, 120∫ √−x2+4x−3 dx = (x−2)

    √−x2+4x−32 +

    arcsin (x−2)2 +c1

    =[ Subst. t =x−2 −x2+4x−3=−(x2−4x +4−1) x ∈(1; 3)

    dt =dx =−(x−2)2+1=1−t2 t∈(−1; 1)

    ]=∫ √

    1−t2 dt

    = t√

    1−t22 +

    12

    ∫dt√1−t2

    = t√

    1−t22 +

    arcsin t2 +c1=

    t√

    1−t22 −

    arccos t2 +c2

    = (x−2)√−x2+4x−32 +

    arcsin (x−2)2 +c1=

    (x−2)√−x2+4x−32 −

    arccos (x−2)2 +c2,

    x ∈(1; 3), c1, c2∈R.∫ √x(2−x) dx =

    ∫ √−x2+2x dx = (x−2)

    √−x2+2x2 +

    arcsin (x−2)2 +c1

    =[ Subst. t =x−1 −x2+2x =−(x2−2x +1−1) x ∈(0; 2)

    dt =dx =−(x−1)2+1=1−t2 t∈(−1; 1)

    ]=∫ √

    1−t2 dt = t√

    1−t22 +

    12

    ∫dt√1−t2

    = t√

    1−t22 +

    arcsin t2 +c1=

    t√

    1−t22 −

    arccos t2 +c2=

    (x−2)√−x2+2x2 +

    arcsin (x−2)2 +c1

    = (x−2)√−x2+2x2 −

    arccos (x−2)2 +c2, x ∈(0; 2), c1, c2∈R.

    [email protected] http://frcatel.fri.uniza.sk/˜beerb

    mailto:[email protected]://frcatel.fri.uniza.sk/~beerb

  • Obsah Zoznam 01 11 21 31 41 51 61 71 81 91 11–12 13–14 15–16 17–18 19–20

    Riešené príklady – 119, 120∫ √−x2+4x−3 dx = (x−2)

    √−x2+4x−32 +

    arcsin (x−2)2 +c1

    =[ Subst. t =x−2 −x2+4x−3=−(x2−4x +4−1) x ∈(1; 3)

    dt =dx =−(x−2)2+1=1−t2 t∈(−1; 1)

    ]=∫ √

    1−t2 dt

    = t√

    1−t22 +

    12

    ∫dt√1−t2

    = t√

    1−t22 +

    arcsin t2 +c1=

    t√

    1−t22 −

    arccos t2 +c2

    = (x−2)√−x2+4x−32 +

    arcsin (x−2)2 +c1=

    (x−2)√−x2+4x−32 −

    arccos (x−2)2 +c2,

    x ∈(1; 3), c1, c2∈R.∫ √x(2−x) dx =

    ∫ √−x2+2x dx = (x−2)

    √−x2+2x2 +

    arcsin (x−2)2 +c1

    =[ Subst. t =x−1 −x2+2x =−(x2−2x +1−1) x ∈(0; 2)

    dt =dx =−(x−1)2+1=1−t2 t∈(−1; 1)

    ]=∫ √

    1−t2 dt = t√

    1−t22 +

    12

    ∫dt√1−t2

    = t√

    1−t22 +

    arcsin t2 +c1=

    t√

    1−t22 −

    arccos t2 +c2=

    (x−2)√−x2+2x2 +

    arcsin (x−2)2 +c1

    = (x−2)√−x2+2x2 −

    arccos (x−2)2 +c2, x ∈(0; 2), c1, c2∈R.

    [email protected] http://frcatel.fri.uniza.sk/˜beerb

    mailto:[email protected]://frcatel.fri.uniza.sk/~beerb

  • Obsah Zoznam 01 11 21 31 41 51 61 71 81 91 11–12 13–14 15–16 17–18 19–20

    Riešené príklady – 119, 120∫ √−x2+4x−3 dx = (x−2)

    √−x2+4x−32 +

    arcsin (x−2)2 +c1

    =[ Subst. t =x−2 −x2+4x−3=−(x2−4x +4−1) x ∈(1; 3)

    dt =dx =−(x−2)2+1=1−t2 t∈(−1; 1)

    ]=∫ √

    1−t2 dt

    = t√

    1−t22 +

    12

    ∫dt√1−t2

    = t√

    1−t22 +

    arcsin t2 +c1=

    t√

    1−t22 −

    arccos t2 +c2

    = (x−2)√−x2+4x−32 +

    arcsin (x−2)2 +c1=

    (x−2)√−x2+4x−32 −

    arccos (x−2)2 +c2,

    x ∈(1; 3), c1, c2∈R.∫ √x(2−x) dx =

    ∫ √−x2+2x dx = (x−2)

    √−x2+2x2 +

    arcsin (x−2)2 +c1

    =[ Subst. t =x−1 −x2+2x =−(x2−2x +1−1) x ∈(0; 2)

    dt =dx =−(x−1)2+1=1−t2 t∈(−1; 1)

    ]=∫ √

    1−t2 dt = t√

    1−t22 +

    12

    ∫dt√1−t2

    = t√

    1−t22 +

    arcsin t2 +c1=

    t√

    1−t22 −

    arccos t2 +c2=

    (x−2)√−x2+2x2 +

    arcsin (x−2)2 +c1

    = (x−2)√−x2+2x2 −

    arccos (x−2)2 +c2, x ∈(0; 2), c1, c2∈R.

    [email protected] http://frcatel.fri.uniza.sk/˜beerb

    mailto:[email protected]://frcatel.fri.uniza.sk/~beerb

  • Obsah Zoznam 01 11 21 31 41 51 61 71 81 91 11–12 13–14 15–16 17–18 19–20

    Riešené príklady – 119, 120∫ √−x2+4x−3 dx = (x−2)

    √−x2+4x−32 +

    arcsin (x−2)2 +c1

    =[ Subst. t =x−2 −x2+4x−3=−(x2−4x +4−1) x ∈(1; 3)

    dt =dx =−(x−2)2+1=1−t2 t∈(−1; 1)

    ]=∫ √

    1−t2 dt

    = t√

    1−t22 +

    12

    ∫dt√1−t2

    = t√

    1−t22 +

    arcsin t2 +c1=

    t√

    1−t22 −

    arccos t2 +c2

    = (x−2)√−x2+4x−32 +

    arcsin (x−2)2 +c1=

    (x−2)√−x2+4x−32 −

    arccos (x−2)2 +c2,

    x ∈(1; 3), c1, c2∈R.∫ √x(2−x) dx =

    ∫ √−x2+2x dx = (x−2)

    √−x2+2x2 +

    arcsin (x−2)2 +c1

    =[ Subst. t =x−1 −x2+2x =−(x2−2x +1−1) x ∈(0; 2)

    dt =dx =−(x−1)2+1=1−t2 t∈(−1; 1)

    ]=∫ √

    1−t2 dt = t√

    1−t22 +

    12

    ∫dt√1−t2

    = t√

    1−t22 +

    arcsin t2 +c1=

    t√

    1−t22 −

    arccos t2 +c2=

    (x−2)√−x2+2x2 +

    arcsin (x−2)2 +c1

    = (x−2)√−x2+2x2 −

    arccos (x−2)2 +c2, x ∈(0; 2), c1, c2∈R.

    [email protected] http://frcatel.fri.uniza.sk/˜beerb

    mailto:[email protected]://frcatel.fri.uniza.sk/~beerb

  • Obsah Zoznam 01 11 21 31 41 51 61 71 81 91 21 22 23–24 25 26 27–28 29 30

    Riešené príklady – 121

    In =∫

    dx(x2+a2)n =

    2n−32a2(n−1) In−1+

    x2a2(n−1)(x2+a2)n−1 , I1=

    1a arctg

    xa +c, a>0, n∈N

    = 1a2∫

    a2 dx(x2+a2)n =

    1a2

    ∫(x2+a2−x2) dx

    (x2+a2)n =1a2

    ∫(x2+a2) dx(x2+a2)n −

    1a2

    ∫x2 dx

    (x2+a2)n

    = 1a2∫

    dx(x2+a2)n−1 −

    12a2

    ∫x ·2x dx

    (x2+a2)n =[

    u = x u′= 1v ′= 2x(x2+a2)n v =

    (x2+a2)1−n1−n =

    1(1−n)(x2+a2)n−1

    ]

    = 1a2 In−1 −12a2

    [x

    (1−n)(x2+a2)n−1 −1

    1−n

    ∫dx

    (x2+a2)n−1

    ]= 1a2 In−1 −

    x2a2(1−n)(x2+a2)n−1 +

    12a2(1−n) In−1

    = 12a2 (2+1

    1−n )In−1 +x

    2a2(n−1)(x2+a2)n−1 =3−2n

    2a2(1−n) In−1 +x

    2a2(n−1)(x2+a2)n−1

    = 2n−32a2(n−1) In−1 +x

    2a2(n−1)(x2+a2)n−1 , x ∈R, c∈R, n=2,3,4, . . . .

    I1=∫

    dxx2+a2 =

    1a arctg

    xa + c, x ∈R, c∈R, n=1.

    [email protected] http://frcatel.fri.uniza.sk/˜beerb

    mailto:[email protected]://frcatel.fri.uniza.sk/~beerb

  • Obsah Zoznam 01 11 21 31 41 51 61 71 81 91 21 22 23–24 25 26 27–28 29 30

    Riešené príklady – 121

    In =∫

    dx(x2+a2)n =

    2n−32a2(n−1) In−1+

    x2a2(n−1)(x2+a2)n−1 , I1=

    1a arctg

    xa +c, a>0, n∈N

    = 1a2∫

    a2 dx(x2+a2)n =

    1a2

    ∫(x2+a2−x2) dx

    (x2+a2)n =1a2

    ∫(x2+a2) dx(x2+a2)n −

    1a2

    ∫x2 dx

    (x2+a2)n

    = 1a2∫

    dx(x2+a2)n−1 −

    12a2

    ∫x ·2x dx

    (x2+a2)n =[

    u = x u′= 1v ′= 2x(x2+a2)n v =

    (x2+a2)1−n1−n =

    1(1−n)(x2+a2)n−1

    ]

    = 1a2 In−1 −12a2

    [x

    (1−n)(x2+a2)n−1 −1

    1−n

    ∫dx

    (x2+a2)n−1

    ]= 1a2 In−1 −

    x2a2(1−n)(x2+a2)n−1 +

    12a2(1−n) In−1

    = 12a2 (2+1

    1−n )In−1 +x

    2a2(n−1)(x2+a2)n−1 =3−2n

    2a2(1−n) In−1 +x

    2a2(n−1)(x2+a2)n−1

    = 2n−32a2(n−1) In−1 +x

    2a2(n−1)(x2+a2)n−1 , x ∈R, c∈R, n=2,3,4, . . . .

    I1=∫

    dxx2+a2 =

    1a arctg

    xa + c, x ∈R, c∈R, n=1.

    [email protected] http://frcatel.fri.uniza.sk/˜beerb

    mailto:[email protected]://frcatel.fri.uniza.sk/~beerb

  • Obsah Zoznam 01 11 21 31 41 51 61 71 81 91 21 22 23–24 25 26 27–28 29 30

    Riešené príklady – 121

    In =∫

    dx(x2+a2)n =

    2n−32a2(n−1) In−1+

    x2a2(n−1)(x2+a2)n−1 , I1=

    1a arctg

    xa +c, a>0, n∈N

    = 1a2∫

    a2 dx(x2+a2)n =

    1a2

    ∫(x2+a2−x2) dx

    (x2+a2)n =1a2

    ∫(x2+a2) dx(x2+a2)n −

    1a2

    ∫x2 dx

    (x2+a2)n

    = 1a2∫

    dx(x2+a2)n−1 −

    12a2

    ∫x ·2x dx

    (x2+a2)n =[

    u = x u′= 1v ′= 2x(x2+a2)n v =

    (x2+a2)1−n1−n =

    1(1−n)(x2+a2)n−1

    ]

    = 1a2 In−1 −12a2

    [x

    (1−n)(x2+a2)n−1 −1

    1−n

    ∫dx

    (x2+a2)n−1

    ]= 1a2 In−1 −

    x2a2(1−n)(x2+a2)n−1 +

    12a2(1−n) In−1

    = 12a2 (2+1

    1−n )In−1 +x

    2a2(n−1)(x2+a2)n−1 =3−2n

    2a2(1−n) In−1 +x

    2a2(n−1)(x2+a2)n−1

    = 2n−32a2(n−1) In−1 +x

    2a2(n−1)(x2+a2)n−1 , x ∈R, c∈R, n=2,3,4, . . . .

    I1=∫

    dxx2+a2 =

    1a arctg

    xa + c, x ∈R, c∈R, n=1.

    [email protected] http://frcatel.fri.uniza.sk/˜beerb

    mailto:[email protected]://frcatel.fri.uniza.sk/~beerb

  • Obsah Zoznam 01 11 21 31 41 51 61 71 81 91 21 22 23–24 25 26 27–28 29 30

    Riešené príklady – 121

    In =∫

    dx(x2+a2)n =

    2n−32a2(n−1) In−1+

    x2a2(n−1)(x2+a2)n−1 , I1=

    1a arctg

    xa +c, a>0, n∈N

    = 1a2∫

    a2 dx(x2+a2)n =

    1a2

    ∫(x2+a2−x2) dx

    (x2+a2)n =1a2

    ∫(x2+a2) dx(x2+a2)n −

    1a2

    ∫x2 dx

    (x2+a2)n

    = 1a2∫

    dx(x2+a2)n−1 −

    12a2

    ∫x ·2x dx

    (x2+a2)n =[

    u = x u′= 1v ′= 2x(x2+a2)n v =

    (x2+a2)1−n1−n =

    1(1−n)(x2+a2)n−1

    ]

    = 1a2 In−1 −12a2

    [x

    (1−n)(x2+a2)n−1 −1

    1−n

    ∫dx

    (x2+a2)n−1

    ]= 1a2 In−1 −

    x2a2(1−n)(x2+a2)n−1 +

    12a2(1−n) In−1

    = 12a2 (2+1

    1−n )In−1 +x

    2a2(n−1)(x2+a2)n−1 =3−2n

    2a2(1−n) In−1 +x

    2a2(n−1)(x2+a2)n−1

    = 2n−32a2(n−1) In−1 +x

    2a2(n−1)(x2+a2)n−1 , x ∈R, c∈R, n=2,3,4, . . . .

    I1=∫

    dxx2+a2 =

    1a arctg

    xa + c, x ∈R, c∈R, n=1.

    [email protected] http://frcatel.fri.uniza.sk/˜beerb

    mailto:[email protected]://frcatel.fri.uniza.sk/~beerb

  • Obsah Zoznam 01 11 21 31 41 51 61 71 81 91 21 22 23–24 25 26 27–28 29 30

    Riešené príklady – 121

    In =∫

    dx(x2+a2)n =

    2n−32a2(n−1) In−1+

    x2a2(n−1)(x2+a2)n−1 , I1=

    1a arctg

    xa +c, a>0, n∈N

    = 1a2∫

    a2 dx(x2+a2)n =

    1a2

    ∫(x2+a2−x2) dx

    (x2+a2)n =1a2

    ∫(x2+a2) dx(x2+a2)n −

    1a2

    ∫x2 dx

    (x2+a2)n

    = 1a2∫

    dx(x2+a2)n−1 −

    12a2

    ∫x ·2x dx

    (x2+a2)n =[

    u = x u′= 1v ′= 2x(x2+a2)n v =

    (x2+a2)1−n1−n =

    1(1−n)(x2+a2)n−1

    ]

    = 1a2 In−1 −12a2

    [x

    (1−n)(x2+a2)n−1 −1

    1−n

    ∫dx

    (x2+a2)n−1

    ]= 1a2 In−1 −

    x2a2(1−n)(x2+a2)n−1 +

    12a2(1−n) In−1

    = 12a2 (2+1

    1−n )In−1 +x

    2a2(n−1)(x2+a2)n−1 =3−2n

    2a2(1−n) In−1 +x

    2a2(n−1)(x2+a2)n−1

    = 2n−32a2(n−1) In−1 +x

    2a2(n−1)(x2+a2)n−1 , x ∈R, c∈R, n=2,3,4, . . . .

    I1=∫

    dxx2+a2 =

    1a arctg

    xa + c, x ∈R, c∈R, n=1.

    [email protected] http://frcatel.fri.uniza.sk/˜beerb

    mailto:[email protected]://frcatel.fri.uniza.sk/~beerb

  • Obsah Zoznam 01 11 21 31 41 51 61 71 81 91 21 22 23–24 25 26 27–28 29 30

    Riešené príklady – 121

    In =∫

    dx(x2+a2)n =

    2n−32a2(n−1) In−1+

    x2a2(n−1)(x2+a2)n−1 , I1=

    1a arctg

    xa +c, a>0, n∈N

    = 1a2∫

    a2 dx(x2+a2)n =

    1a2

    ∫(x2+a2−x2) dx

    (x2+a2)n =1a2

    ∫(x2+a2) dx(x2+a2)n −

    1a2

    ∫x2 dx

    (x2+a2)n

    = 1a2∫

    dx(x2+a2)n−1 −

    12a2

    ∫x ·2x dx

    (x2+a2)n =[

    u = x u′= 1v ′= 2x(x2+a2)n v =

    (x2+a2)1−n1−n =

    1(1−n)(x2+a2)n−1

    ]

    = 1a2 In−1 −12a2

    [x

    (1−n)(x2+a2)n−1 −1

    1−n

    ∫dx

    (x2+a2)n−1

    ]= 1a2 In−1 −

    x2a2(1−n)(x2+a2)n−1 +

    12a2(1−n) In−1

    = 12a2 (2+1

    1−n )In−1 +x

    2a2(n−1)(x2+a2)n−1 =3−2n

    2a2(1−n) In−1 +x

    2a2(n−1)(x2+a2)n−1

    = 2n−32a2(n−1) In−1 +x

    2a2(n−1)(x2+a2)n−1 , x ∈R, c∈R, n=2,3,4, . . . .

    I1=∫

    dxx2+a2 =

    1a arctg

    xa + c, x ∈R, c∈R, n=1.

    [email protected] http://frcatel.fri.uniza.sk/˜beerb

    mailto:[email protected]://frcatel.fri.uniza.sk/~beerb

  • Obsah Zoznam 01 11 21 31 41 51 61 71 81 91 21 22 23–24 25 26 27–28 29 30

    Riešené príklady – 121

    In =∫

    dx(x2+a2)n =

    2n−32a2(n−1) In−1+

    x2a2(n−1)(x2+a2)n−1 , I1=

    1a arctg

    xa +c, a>0, n∈N

    = 1a2∫

    a2 dx(x2+a2)n =

    1a2

    ∫(x2+a2−x2) dx

    (x2+a2)n =1a2

    ∫(x2+a2) dx(x2+a2)n −

    1a2

    ∫x2 dx

    (x2+a2)n

    = 1a2∫

    dx(x2+a2)n−1 −

    12a2

    ∫x ·2x dx

    (x2+a2)n =[

    u = x u′= 1v ′= 2x(x2+a2)n v =

    (x2+a2)1−n1−n =

    1(1−n)(x2+a2)n−1

    ]

    = 1a2 In−1 −12a2

    [x

    (1−n)(x2+a2)n−1 −1

    1−n

    ∫dx

    (x2+a2)n−1

    ]= 1a2 In−1 −

    x2a2(1−n)(x2+a2)n−1 +

    12a2(1−n) In−1

    = 12a2 (2+1

    1−n )In−1 +x

    2a2(n−1)(x2+a2)n−1 =3−2n

    2a2(1−n)