us army principles of internal combustion engines

105
SUBCOURSE EDITION OD1619 8 PRINCIPLES OF INTERNAL COMBUSTION ENGINES

Upload: -

Post on 19-Oct-2015

16 views

Category:

Documents


1 download

TRANSCRIPT

  • SUBCOURSE EDITIONOD1619 8

    PRINCIPLES OF INTERNALCOMBUSTION ENGINES

  • USARMYBRADLEYFIGHTINGVEHICLESYSTEMSMECHANICCORRESPONDENCECOURSE

    MOS/SKILLLEVEL:63T30

    PRINCIPLESOFINTERNALCOMBUSTIONENGINES

    SUBCOURSENO.OD1619

    USArmyCorrespondenceCourseProgram

    7CreditHours

    GENERAL

    The purpose of this subcourse is to increase the mechanic's knowledge of theprinciples,components,andoperationofinternalcombustionengines.

    Sevencredithoursareawardedforsuccessfulcompletionofthissubcourse.

    Lesson1: INTERNALCOMBUSTIONENGINES

    TASK1: Describe the principles, components, and operation of both the twostrokeandfourstrokegasolineengines.

    TASK2: Describe the principles, components, and operation of both the twostrokeandfourstrokedieselengines.

    Lesson2: INTERNALCOMBUSTIONENGINESUBSYSTEMS

    TASK1: Describetheprinciples,components,andoperationofturbochargers,intake,andexhaustsystems.

    TASK2: Describetheprinciples,components,andoperationofthelubricationsystem.

    TASK3: Describe the principles, components, and operation of the coolingsystem.

    i

  • PRIN. OF INTERNAL COMBUSTION ENGINES - OD1619

    TABLEOFCONTENTS

    Section Page

    TITLE......................................................................... i

    TABLEOFCONTENTS............................................................. ii

    Lesson1: INTERNALCOMBUSTIONENGINES..................................... 1

    Task1: Describetheprinciples,components,andoperationofboththetwostrokeandfourstrokegasolineengines......................................................... 1

    Task2: Describetheprinciples,components,andoperationofboththetwostrokeandfourstrokedieselengines......................................................... 27

    PracticalExercise1..................................................... 44

    AnswerstoPracticalExercise1.......................................... 46

    Lesson2: INTERNALCOMBUSTIONENGINESUBSYSTEMS...................................................... 47

    Task1: Describetheprinciples,components,andoperationofturbochargers,intake,andexhaustsystems..................................... 47

    Task2: Describetheprinciples,components,andoperationofthelubricationsystem.............................................. 58

    Task3: Describetheprinciples,components,andoperationofthecoolingsystem.................................................. 79

    PracticalExercise2..................................................... 97

    AnswerstoPracticalExercise2.......................................... 98

    ii

  • PRIN. OF INTERNAL COMBUSTION ENGINES - OD1619

    REFERENCES.................................................................... 99

    *** IMPORTANT NOTICE ***

    THE PASSING SCORE FOR ALL ACCP MATERIAL IS NOW 70%.

    PLEASE DISREGARD ALL REFERENCES TO THE 75% REQUIREMENT.

    iii

  • PRIN. OF INTERNAL COMBUSTION ENGINES - OD1619 LESSON 1/TASK 1

    LESSON1

    INTERNALCOMBUSTIONENGINES

    TASK1. Describe the principles, components, and operation of both the twostrokeandfourstrokegasolineengines.

    CONDITIONS

    Withinaselfstudyenvironmentandgiventhesubcoursetext,withoutassistance.

    STANDARDS

    Withintwohours

    REFERENCES

    Nosupplementaryreferencesareneededforthistask.

    1. Introduction

    Militaryvehiclesincorporateallformsofwheeledandtrackedvehicles,includingthefullrangeofbodytypesfoundincommercialvehicles.However,therearealsobodiesandequipmentthatareuniquetomilitaryoperations. Theyincludealltypes of trucks, tractors, truck tractors, personnel carriers, tanks, selfpropelledguns,motorizedandmechanizedspecialpurposeequipment,trailers,vans,andspecialpurposetowedvehicles.

    Theprincipaldistinctionbetweenthesevehiclesandtheircommercialcounterpartsisthatmilitaryvehiclesarespecificallydesignedformilitarypurposes.Theseincludecombatoperationsandthetransportationofcargo,personnel,orequipment;towingothervehiclesorequipment;andoperations,bothcrosscountryandoverroads,inclosesupportofcombatvehiclesandtroops.Suchvehiclesaredesignedandconstructedtoenduretherigorsofthemilitaryenvironmentandtocontinuetooperateat,orabove,aprescribedminimumperformance

    1

  • PRIN. OF INTERNAL COMBUSTION ENGINES - OD1619 LESSON 1/TASK 1

    level.Theyhaveexcellentcrosscountryperformancecapabilitiesoveralltypesofterrainwheretacticalorcombatoperationscanbeconducted. Thisincludessnowandice,rockyterrain,swamps,anddesertsands.Inordertonegotiatewaterbarriers with a minimum of preparation, all sensitive equipment is eitherpermanentlywaterproofedordesignedtofunctionunderwater.

    Themajorityofthevehiclesdescribedintheparagraphsabovehaveaninternalcombustionengine. Forthisreason,amechanicshouldknowtheprinciplesofoperationofthisengineanditsvariouscomponents.Aninternalcombustionengineisanyenginewithinwhichthefuelisburned. Thefourstrokeandtwostrokecycle gasoline and diesel engines are examples of internal combustion enginesbecausethecombustionchamberislocatedwithintheengine. Inthistask,aninternalcombustionengine,referredtoasthepistonengine,willbedescribed.

    2. PistonEngineCharacteristics

    a. EngineOperation.

    (1) General.Becausethemostwidelyusedpistonengineisthefourstrokecycletype,itwillbeusedastheexampleforthisparagraphandasthebasisforcomparisoninTask2.Theoperationofthepistonenginecanbestbeunderstoodbycomparingittoasimplecannon.InviewAoffigure1onthefollowingpage,acannonbarrel,chargeofgunpowder,andacannonballareillustrated.InviewBoffigure1,thegunpowderisignited. Thegunpowderburnsveryrapidlyandasitburnsthereisarapidexpansionoftheresultinggases. Thisrapidexpansioncausesatremendousincreaseinpressurethatforcesthecannonballfromthebarrel.

    InviewAoffigure2onthefollowingpage,thecannonbarrelhasbeenreplacedbyacylinderandacombustionchamber.Thecannonballhasbeenreplacedbyapiston.Amixtureofvaporizedfuelandairhasreplacedthegunpowder. InviewBoffigure2,thegasolineisignited.Thistime,theresultingforceactstopushthepistondownward.

    2

  • PRIN. OF INTERNAL COMBUSTION ENGINES - OD1619 LESSON 1/TASK 1

    FIGURE1.PISTONENGINEPRINCIPLES.

    FIGURE2.PISTONENGINEOPERATION.

    (2) ReciprocatingMotiontoRotaryMotion.Theforceofthepistonactinginadownwardnotionisoflittleimmediatevalueifitistoturnthewheelsofavehicle.Inordertousethisstraightlineorreciprocatingmotion,itmustbetransformed into rotary motion. This is made possible through the use of acrankshaft.Thecrankshaftisconnectedtothedrivingwheelsofavehiclethroughthedrivetrainononeend. Ontheotherendoftheshaftisacrankwithacrankpinoffsetfromtheshaft'scenter.Figure3onthefollowingpage

    3

  • PRIN. OF INTERNAL COMBUSTION ENGINES - OD1619 LESSON 1/TASK 1

    FIGURE3.PISTONANDCRANKSHAFT.

    illustrateshowthepistonandthecrankshaftareconnectedthroughtheconnectingrodandthecrankpin.Figure4onthefollowingpageillustrateshowreciprocatingnotionofthepistonischangedtorotatingmotionofthecrankshaft.

    A more detailed explanation of the parts that perform this reciprocating androtatingmotionwillbedescribedinparagraph3onpage15.

    (3) IntakeandExhaust. Iftheengineisgoingtooperate,thefuelandairmixturemustbefedintothecombustionchamber. Theburntgasesalsomustbeexhausted.Toaccomplishthis,thereisapassagetothecombustionchambercalledtheintakeport,andapassagefromthecombustionchambertotheexhaustsystemcalledtheexhaustport.Asimplifiedarrangementisshowninfigure5onpage6.

    Byputtingopeningsinthecombustionchamber,aproblemiscreated;theforceoftheburningfuelandairmixturewillbelostthroughtheexhaustandintakeportsratherthanusedtopushdownthepiston. Tosolvethisproblem,theremustbesomethingthatopensandclosestheintakeandexhaustportstothecombustionchambers. Toaccomplishthis,avalveisaddedtoeachoftheseports;thesevalvesarecalledtheintakeand

    4

  • PRIN. OF INTERNAL COMBUSTION ENGINES - OD1619 LESSON 1/TASK 1

    FIGURE4.PISTONTOCRANKSHAFTRELATIONSHIP.

    exhaustvalves. Asimplifiedarrangementisshowninfigure6onthefollowingpage.

    Theintakeandtheexhaustvalvesareopenedandclosedinatimedsequencebythevalvetrain.Thevalvetrainwillbediscussedinparagraph2a(5)onpage8.

    (4) ActionintheCylinder. Whenthepistonisatitshighestpointinthecylinder,itisinapositioncalledtopdeadcenter.Whenthepistonisatitslowestpointinthecylinder,itisinapositioncalledbottomdeadcenter.Asthepistonmovesfromtopdeadcentertobottomdeadcenter,orviceversa,thecrankshaftrotatesexactlyonehalfofarevolution,asshowninfigure6onthefollowingpage.

    5

  • PRIN. OF INTERNAL COMBUSTION ENGINES - OD1619 LESSON 1/TASK 1

    FIGURE5.INTAKEANDEXHAUSTPORTSANDVALVES.

    FIGURE6.PISTONPOSITIONS.

    Eachtimethepistonmovesfromtopdeadcentertobottomdeadcenter,orviceversa,itcompletesamovementcalledastroke. Therefore,thepistoncompletestwostrokesforeveryfullcrankshaftrevolution.Therearefourdefinitephasesofoperationthatanenginegoesthroughinone

    6

  • PRIN. OF INTERNAL COMBUSTION ENGINES - OD1619 LESSON 1/TASK 1

    completeoperatingcycle.Eachoneoftheseoperatingphasesiscompletedinonepistonstroke. Becauseofthis,eachoperatingphaseisalsoreferredtoasastrokeand,becausetherearefourstrokesofoperation,theengineisreferredtoasafourstrokecycleengine. Thefourstrokesareintake,compression,power,andexhaust. Becausetherearefourstrokesinoneoperatingcycle,itmaybeconcludedthattherearetwocompletecrankshaftrevolutionsineachoperatingcycle.

    (a) IntakeStroke(figure7onpage9).Theintakestrokebeginsattopdeadcenter.Asthepistonmovesdown,theintakevalveopens.Thedownwardmovementofthepistonwiththeexhaustvalveclosedcreatesavacuuminthecylinder.Thevacuumcausesafuelandairmixturetobedrawnthroughtheintakeportintothecombustionchamber. Asthepistonreachesbottomdeadcenter,theintakevalvecloses.

    (b) CompressionStroke. Thecompressionstrokebeginswiththepistonatbottomdeadcenter.Boththeintakeandtheexhaustvalvesremainclosed.Asthepistonmovestowardtopdeadcenter,theamountofspaceintheuppercylindergetssmaller.Thefuelandairmixtureiscompressedandthepotentialenergyinthefuelisconcentrated.Thecompressionstrokeendswhenthepistonreachestopdeadcenter.

    (c) PowerStroke. Asthepistonreachestopdeadcenter,endingthepowerstroke,thesparkplugignitesthecompressedfuelandairmixture.Becausebothvalvesareclosed,theforceoftheresultingexplosionpushesthepistondown,givingapowerfuldrivingthrusttothecrankshaft.Thepowerstrokeendsasthepistonreachesbottomdeadcenter.

    (d) ExhaustStroke. Asthepistonreachesbottomdeadcenter,endingthepowerstroke,theexhaustvalveopens,beginningtheexhauststroke.Asthepistonmovesupwardtowardtopdeadcenter,itpushestheburntgasesfromthefuelandairmixtureoutofthecombustionchamberthroughtheexhaustport.Asthepistonreachestopdeadcenter,endingtheexhauststroke,theexhaustvalvecloses.Astheexhaustvalvecloses,theintakevalveopenstobegintheintakestrokeinthenextcycle.

    7

  • PRIN. OF INTERNAL COMBUSTION ENGINES - OD1619 LESSON 1/TASK 1

    (5) ValveTrain.Itisveryimportanttooperatethevalvesinatimedsequence.Therefore,theengineisfittedwithavalvetrain,whichoperatesthevalves.Iftheexhaustvalveweretoopeninthemiddleoftheintakestroke,thepistonwoulddrawburntgasesintothecombustionchamberwithafreshmixtureoffuelandair.As the piston continued to the power stroke, there would be nothing in thecombustionchamberthatwouldburn.

    AsimplifiedvalvetrainisillustratedinviewAoffigure8onpage10. Acamshaftismadetorotatewiththecrankshaftthroughthetiminggears. Theraisedpieceonthecamshaftiscalledacamlobe.AsillustratedinviewBoffigure8,thevalvespringisdesignedtoholdthevalveclosed.

    Thecamlobecontactsthebottomofthelifterasitrotateswiththecamshaft,asshowninviewCoffigure8.Asthecamlobepushesuponthelifteritwill,inturn,pushthevalveopenagainstthepressureofthespring.InviewDoffigure8,thecamlobehaspassedthecenterofthelifterbottom. Asitrotatesawayfromthelifter,thevalvespringpullsthevalveclosed.

    Byproperpositionofthecamlobesonthecamshaft,asequencecanbeestablishedfortheintakeandexhaustvalves. Itisdescribed,insubparagraphs2a(4)(a)through2a(4)(d)onpage7,howtheintakevalveandtheexhaustvalvemusteachopenonceforeveryoperatingcycle. Asexplainedinsubparagraph2a(4),thecrankshaftmustmaketwocomplete revolutions tocompleteoneoperatingcycle.Usingthesetwofacts,acamshaftspeedmustbeexactlyonehalfthespeedofthecrankshaft.Toaccomplishthis,thetiminggearsaremadesothatthecrankshaftgearhasexactlyonehalfasmanyteethasthecamshaftgear,asshowninviewAoffigure9onpage11.Thetimingmarksindicatedareusedtoputthecamshaftandthecrankshaftintheproperpositionrelativetoeachother.

    8

  • PRIN. OF INTERNAL COMBUSTION ENGINES - OD1619 LESSON 1/TASK 1

    FIGURE7.FOURSTROKECYCLEOPERATIONS.

    9

  • PRIN. OF INTERNAL COMBUSTION ENGINES - OD1619 LESSON 1/TASK 1

    FIGURE8.VALVETRAINOPERATION.

    (6) EngineAccessorySystems.

    (a) Fuel System. The fuel system supplies the engine with the properlyproportionedfuelandairmixture. Italsoregulatestheamountofthemixturesuppliedtotheenginetocontrolenginespeedandpoweroutput.

    10

  • PRIN. OF INTERNAL COMBUSTION ENGINES - OD1619 LESSON 1/TASK 1

    FIGURE9.TIMINGGEARSANDFLYWHEEL.

    (b) IgnitionSystem.Theignitionsystemignitesthefuelandairmixtureinthecombustionchamberattheprecisemomentneededtomaketheenginerun.

    (c) Cooling System. The cooling system removes the excess heat from theengine,generatedbycombustion.

    (d) LubricationSystem.Thelubricationsystemprovidesaconstantsupplyofoiltotheenginetolubricateandcoolthemovingparts.

    (e) Flywheel (figure 9, view B). As discussed previously, for every tworevolutionsthecrankshaftmakes,itonlyreceivesonepowerstrokewhichlastsforonlyonehalfofonerevolutionofthecrankshaft.Thismeansthattheenginemustcoastthroughoneandonehalfcrankshaftrevolutionsineveryoperatingcycle.Thiswouldcausetheenginetoproduceveryerraticpoweroutput.Tosolvethisproblem,aflywheelisaddedattheendofthecrankshaft.Theflywheel,whichisveryheavy,willabsorbtheviolentthrustofthepowerstroke. Itwillthenreleasetheenergybacktothecrankshaftsothattheenginewillrunsmoothly.

    11

  • PRIN. OF INTERNAL COMBUSTION ENGINES - OD1619 LESSON 1/TASK 1

    b. ComparisonofEngineTypes.

    (1) InternalCombustionEngineVersusExternalCombustionEngine.

    (a) InternalCombustionEngine (figure10,viewA). Aninternalcombustionengineisanyengineinwhichthefuelisburnedfromwithin.Afourstrokecycleengineisaninternalcombustionenginebecausethecombustionchamberislocatedwithintheengine.

    FIGURE10.INTERNALCOMBUSTIONENGINEVERSUSEXTERNALCOMBUSTIONENGINE.

    (b) ExternalCombustionEngine (figure10,viewB). Anexternalcombustionengineisanengineinwhichthefuelisburnedoutsideoftheengine. Asteamengineisaperfectexample. Thefuelisburnedinanoutsideboilerwhereitmakessteam.Thesteamispipedtotheenginetomakeitrun.

    (2) FourStrokeCycleVersusTwoStrokeCycle. Theenginedescribeduntilnowhasbeenafourstrokecycleengine. Thereisanotherformofgasolinepistonenginewhichrequiresnovalvemechanismsandwhichcompletesoneoperatingcycleforeveryrevolutionofthecrankshaft.Itiscalledatwostrokecycleengineandisillustrated

    12

  • PRIN. OF INTERNAL COMBUSTION ENGINES - OD1619 LESSON 1/TASK 1

    infigure11.Insteadofplacingtheintakeandexhaustportsinthecombustionchamber,theyareplacedinthecylinderwall. Inthisengine,thepistongoesthroughapowerstrokeeverytimeitmovesfromtopdeadcentertobottomdeadcenter. Thedownwardstrokeisalsoanintakeandanexhauststroke. Asthepistonmovesfrombottomdeadcenterbacktotopdeadcenter,itisgoingthroughacompressionstroke.

    FIGURE11.TWOSTROKECYCLEENGINE.

    (a) DownwardStroke (figure12,viewA,onthefollowingpage). Thepistonbeginsthepowerstrokeattopdeadcenter.Astheexplodingfuelandairmixturepushes the piston downward, it first covers the inlet port. This seals thecrankcase. As the piston continues downward, it uncovers the intake and theexhaustports. Thepressurebuiltupinthecrankcaseforcesthefuelandairmixtureintothecylinderthroughtheintakeport.Thetopofthepistonisshapedtodivertthemixtureupwardandawayfromtheexhaustport.Asthemixtureentersthecylinder,itdisplacesandpushestheburntgasesoutthroughtheexhaustport.

    13

  • PRIN. OF INTERNAL COMBUSTION ENGINES - OD1619 LESSON 1/TASK 1

    (b) UpwardStroke(figure12,viewB).Asthepistonmovesupward,itcoverstheintakeandexhaustports. Thissealstheuppercylindersothattheupwardmovementofthepistoncompressesthefuelandairmixture.Atthesametime,theupwardmovementofthepistoncreatesasuctioninthecrankcasesothatastheinletportisuncovered,amixtureoffuelandairisdrawnintothecrankcase.Asthe piston reaches top dead center, the spark plug ignites the fuel and airmixture,beginningthedownwardpowerstrokeagain.

    FIGURE12.THETWOSTROKECYCLE.

    (c) TheFuelandLubricationSystem.Thefuelandairmixturemustfirstpassthroughthecrankcasebeforeitgetstothecombustionchamber.Forthisreason,the fuel and air mixture must also provide lubrication for the rotating andreciprocatingparts.Thisisaccomplishedbymixingasmallpercentageofoilwiththefuel.Theoil,mixedwiththefuelandairmixture,entersthecrankcaseinavaporthatconstantlycoatsthemovingparts.

    (d) PowerOutput.Itmayseemthatatwostrokeenginewillputouttwiceasmuchpowerasacomparablefourstrokecycleenginebecausetherearetwiceasmanypowerstrokes.However,thisisnotthecase.Becausetheforceofthefueland

    14

  • PRIN. OF INTERNAL COMBUSTION ENGINES - OD1619 LESSON 1/TASK 1

    airmixtureenteringthecylindermustbereliedupontogetridoftheburntgasesinthecylinderfromthelastpowerstroke,thereissomedilutionofthemixture.Themixingoftheintakemixturewithexhaustgasesreducesthepotentialpoweroutput.Also,withtheinletandexhaustportsopenedtogether,acertainamountofthefuelandairmixtureislost.Thereisalsoamuchshorterperiodinwhichtheinletportisopen.Thesefactorsreducetheamountofpowerfromeachpowerstroke.

    (e) Advantage and Usage. The two stroke cycle engine is used almostexclusivelyinverysmallequipment. Itislightweightandabletorunatveryhighspeedsduetotheabsenceofamechanicalvalvetrain.

    3. RotatingandReciprocatingParts

    a. Piston.

    (1) General(figure13).Thepistonisthepartofboththetwoandfourstrokeengines that receives the energy from the combustion and transmits it to thecrankshaft. The piston must withstand heavy stress under severe temperatureextremes.Thefollowingareexamplesofconditionsthatapistonmustwithstandatnormalhighwayspeeds.

    FIGURE13.PISTON.

    15

  • PRIN. OF INTERNAL COMBUSTION ENGINES - OD1619 LESSON 1/TASK 1

    (a) Asthepistonmovesfromthetopofthecylindertothebottom(orviseversa),itacceleratesfromastoptoaspeedofapproximately50milesperhour(mph)(80kilometersperhour[kph])atmidpoint,andthendeceleratestoastopagain.Itdoesthisapproximately80timespersecond.

    (b) Theheadofthepistonissubjectedtopressuresinexcessof1000poundspersquareinch(psi)(6895kPa).

    (c) Thepistonheadissubjectedtotemperatureswellover600F(316C).

    (2) Construction Materials. When designing pistons, weight is a majorconsideration. Thisisbecauseofthetremendousinertialforcescreatedbytherapidchangeinpistondirection.Forthisreason,ithasbeenfoundthataluminumisthebestmaterialforpistonconstruction. Ithasaveryhighstrengthtoweight ratio and, in addition to being lightweight, aluminum is an excellentconductorofheatandismachinedeasily.Pistonsarealsomanufacturedfromcastiron.Castironisanexcellentmaterialforpistonsinlowspeedengines.Itisnotsuitableforhighspeedsbecauseitisaveryheavymaterial.

    (3) ControllingExpansion(figure14onthefollowingpage).Pistonsmusthavebuiltinfeaturestohelpthemcontrolexpansion.Withoutthesefeatures,pistonswouldfitlooselyinthecylinderswhencold,thenbindinthecylindersastheywarmup. Thisisaproblemwithaluminumbecauseitexpandssoreadily. Tocontrolexpansion,pistonsmaybedesignedwiththefollowingfeatures:

    (a) Itisobviousthatthecrownofthepistonwillgethotterthantherestofthepiston.Topreventitfromexpandingtoalargersizethantherestofthepiston,itismachinedtoadiameterthatisapproximately0.03to0.04in.(0.762to1.106mm)smallerthantheskirtarea.

    (b) Oneofthewaystocontrolexpansionintheskirtareaistocutaslotupthesideoftheskirt.Asasplitskirtpistonwarmsup,thesplitwillcloseup,therebykeepingtheskirtfromexpandingoutwardandbindingthepistoninthecylinder.

    16

  • PRIN. OF INTERNAL COMBUSTION ENGINES - OD1619 LESSON 1/TASK 1

    FIGURE14.CONTROLLINGPISTONEXPANSION.

    (c) AvariationofthesplitskirtpistonistheTslotpiston. TheTslotpistonissimilartothesplitskirtpiston,withtheadditionofahorizontalslotthatretardsheattransferfromthepistonheadtothepistonskirt.

    (d) Some aluminum pistons have steel braces cast into them to controlexpansion.

    (4) CamGrinding (figure15onthefollowingpage). Bymakingthepistoneggshaped,itwillbeabletofitthecylinderbetterthroughoutitsoperationaltemperaturerange.Apistonofthisconfigurationiscalledacamgroundpiston.Camgroundpistonsaremachinedsothattheirdiameterissmallerparalleltothepistonpinaxisthanitisperpendiculartoit.Whenthepistoniscold,itwillbebigenoughacrossthelargerdiametertopreventrocking.Asitwarmsup,itwillexpandacrossitssmallerdiameteratamuchhigherratethanatitslargerdiameter. This will tend to make the piston round at operating temperature.Virtuallyallpistonsinautomotiveapplicationsarecamground.

    17

  • PRIN. OF INTERNAL COMBUSTION ENGINES - OD1619 LESSON 1/TASK 1

    FIGURE16.CAMGROUNDPISTON.

    (5) PartialSkirted (SlipperSkirt) Pistons (figure 16). The purpose of thepistonskirtistokeepthepistonfromrockinginthecylinder.Theslipperskirtpistonhaslargeportionsofitsskirtremovedinthenonthrustareas.Removaloftheskirtintheseareasservesthefollowingpurposes:

    (a) Lightensthepiston,which,inturn,increasesthespeedrangeoftheengine.

    FIGURE16.FULLANDPARTIALSKIRTEDPISTONS.

    18

  • PRIN. OF INTERNAL COMBUSTION ENGINES - OD1619 LESSON 1/TASK 1

    (b) Reducesthecontactareawiththecylinderwall,whichreducesfriction.

    (c) Allowsthepistontobebroughtdownclosertothecrankshaftwithoutinterferencewithitscounterweights.

    (6) StrengthandStructure(figure17onthefollowingpage).Whendesigningapiston,weightandstrengtharecriticalfactors.Twoofthewayspistonsaremadestrongandlightareasfollows:

    FIGURE17.PISTONSTRUCTURE.

    (a) Theheadofthepistonismadeasthinasispractical;tokeepitstrongenough,ribsarecastintotheundersideofit.

    (b) Theareasaroundthepistonpinarereinforced;theseareasarecalledthepinbosses.

    (7) Coatings. Aluminumpistonsareusuallytreatedontheiroutersurfacestoaidinenginebreakinandtoincreasehardness.Thefollowingarethemostcommonprocessesfortreatmentofaluminumpistons.

    (a) Thepistoniscoatedwithtinwhichwillworkintothecylinderwallsastheengineisbrokenin.Thisprocessresultsinamoreperfect

    19

  • PRIN. OF INTERNAL COMBUSTION ENGINES - OD1619 LESSON 1/TASK 1

    fit,shorteningthebreakinperiod,andanincreaseisoverallenginelongevity.

    (b) Thepistonisanodizedtoproduceaharderoutsidesurface.Anodizingisaprocessthatproducesacoatingonthesurfacebyelectrolysis. Theprocesshardensthesurfaceofthepiston.Thishelpsitresistpickingupparticlesthatmaybecomeembeddedinthepiston,causingcylinderwalldamage.

    b. PistonRings.

    (1) General(figure18).Pistonringsservethreeimportantfunctions:

    FIGURE18.PURPOSEOFPISTONRINGS.

    (a) Theyprovideasealbetweenthepistonandthecylinderwalltopreventthe force of the exploding gases from leaking into the crankcase from thecombustionchamber.Thisleakageisreferredtoasblowby.Blowbyisdetrimentaltoengineperformancebecausetheforceoftheexplodinggaseswillmerelybypassthepistonratherthanpushitdown.Italsocontaminatesthelubricatingoil.

    20

  • PRIN. OF INTERNAL COMBUSTION ENGINES - OD1619 LESSON 1/TASK 1

    (b) Theypreventthelubricatingoilfrombypassingthepistonandgettingintothecombustionchamberfromthecrankcase.

    (c) Theyprovideasolidbridgetoconducttheheatfromthepistontothecylinderwall.Aboutonethirdoftheheatabsorbedbythepistonpassestothecylinderwallthroughthepistonrings.

    (2) Description (figure19). Pistonringsaresplittoallowforinstallationand expansion, and they exert an outward pressure on the cylinder wall wheninstalled.Theyfitintogroovesthatarecutintothepiston,andareallowedtofloat freely in these grooves. A properly formed piston ring, working in acylinderthatiswithinlimitsforroundnessandsize,willexertanevenpressureand maintain a solid contact with the cylinder wall around its entirecircumference.Althoughpistonringshavebeenmadefrommanymaterials,castironhasprovedmostsatisfactoryasitwithstandsheat,formsagoodwearingsurface,andretainsagreateramountofitsoriginalelasticityafterconsiderableuse.Therearetwobasicclassificationsofpistonrings.

    (a) The Compression Ring. The compression ring seals the force of theexplodingmixtureintothecombustionchamber.

    FIGURE19.PISTONRINGTYPESANDDESCRIPTION.

    21

  • PRIN. OF INTERNAL COMBUSTION ENGINES - OD1619 LESSON 1/TASK 1

    (b) The Oil Control Ring. The oil control ring prevents the engine'slubricationoilfromgettingintothecombustionchamber.

    (3) Configurations. Pistonringsarearrangedonthepistonsinthreebasicconfigurations.Theyare:

    (a) Thethreeringpiston(figure20,viewA)hastwocompressionringsnearthehead,followedbyoneoilcontrolring.Thisisthemostcommonpistonringconfiguration.

    FIGURE20.CONFIGURATIONSOFPISTONRINGS.

    (b) Thefourringpiston(figure20,view8)hasthreecompressionringsnearthehead,followedbyoneoilcontrolring.Thisconfigurationiscommonindieselenginesbecausetheyaremorepronetoblowby,duetothemuchhigherpressuresgeneratedduringthepowerstroke.

    (c) Thefourringpiston(figure20,viewc)hastwocompressionringsnearthehead,followedbytwooilcontrolrings.Thebottomoilcontrolringmaybelocatedaboveorbelowthepistonpin.

    Thisisnotaverycommonconfigurationincurrentenginedesign.Inadditiontotheconfigurationsmentioned,therearesomedieselenginesthatusefiveormorepistonringsoneachpistontocontrolthehigheroperatingpressures.

    22

  • PRIN. OF INTERNAL COMBUSTION ENGINES - OD1619 LESSON 1/TASK 1

    (4) CompressionRing.Asstatedinparagraph3b(2)(a)onpage21,thepurposeofthecompressionringistomaintainagastightsealbetweenpistonandcylinder,andtoholdthepressurefromthepowerstrokeinthecombustionchamber.Therearemanydifferentcrosssectionalshapesofpistonringsavailable(figure21).

    FIGURE21.TYPESOFCOMPRESSIONRINGS.

    Thevariousshapesofringsallservetopreloadtheringsothatitsloweredgepressesagainstthecylinderwall.Asshowninfigure22onthefollowingpage,thisservesthefollowingfunctions:

    (a) Thepressurefromthepowerstrokewillforcetheupperedgeoftheringintocontactwiththecylinderwall,formingagoodseal.

    (b) Asthepistonmovesdownward,theloweredgeoftheringscrapesanyoilthatworkspasttheoilcontrolringsfromthecylinderwalls.

    (c) Onthecompressionandtheexhauststrokes,theringwillglideovertheoil,increasingthering'slife.

    23

  • PRIN. OF INTERNAL COMBUSTION ENGINES - OD1619 LESSON 1/TASK 1

    FIGURE22.OPERATIONOFCOMPRESSIONRINGS.

    24

  • PRIN. OF INTERNAL COMBUSTION ENGINES - OD1619 LESSON 1/TASK 1

    FIGURE23.STAGGERINGRINGGAPS.

    (5) SecondCompressionRing(figure23).Theprimaryreasonforusingasecondcompressionringistoholdbackanyblowbythatmayhaveoccurredatthetopring.Asignificantamountofthetotalblowbyatthetopringwillbefromtheringgap.Forthisreason,thetopandthesecondcompressionringsareassembledonthepistonwiththeirgaps60offset.

    (6) OilControlRings(figure24onthefollowingpage).Theoilcontrolringsservetocontrolthelubricationofthecylinderwalls.Theydothisbyscrapingtheexcessoilfromthecylinderwallsonthedownstroke.Theoilisthenforcedthroughslotsinthepistonringandthepistonringgroovedrainingbackintothecrankcase. Theringsaremadeinmanydifferentconfigurations,fromonepieceunitstomultipieceassemblies.Regardlessoftheconfiguration,alloilcontrolringsworkbasicallyinthesameway.

    25

  • PRIN. OF INTERNAL COMBUSTION ENGINES - OD1619 LESSON 1/TASK 1

    FIGURE24.OILCONTROLRINGS.

    4. Conclusion

    Thistaskdescribedtheoperationofboththetwostrokeandfourstrokegasolineengines.Inthenexttask,theoperationalinformationforthedieselenginewillbediscussed.

    26

  • PRIN. OF INTERNAL COMBUSTION ENGINES - OD1619 LESSON 1/TASK 2

    LESSON1

    INTERNALCOMBUSTIONENGINES

    TASK2. Describe the principles, components, and operation of both the twostrokeandfourstrokedieselengines.

    CONDITIONS

    Withinaselfstudyenvironmentandgiventhesubcoursetext,withoutassistance.

    STANDARDS

    Withinonehour

    REFERENCES

    Nosupplementaryreferencesareneededforthistask.

    1. Introduction

    Intask1,thegasolinepistonenginewasdiscussed.Inthistask,theoperationofafourstrokegasolineengineandafourstrokedieselenginewillbecompared.Inaddition,informationwillbeprovidedonthetwostrokedieselengineandthecombustionchambers.

    2. GasolineEngineVersusDieselEngine

    a. General.Inmanyrespects,thefourstrokecyclegasolineengineandthefourstrokecycledieselengineareverysimilar.Theybothfollowanoperatingcycleconsistingofintake,compression,power,andexhauststrokes.Theyalsosharethesamesystemforintakeandexhaustvalves.Thecomponentpartsofadieselengineareshownin(figure25).Themaindifferencesbetweengasolineenginesanddieselenginesfollow:

    27

  • PRIN. OF INTERNAL COMBUSTION ENGINES - OD1619 LESSON 1/TASK 2

    (1) Inadieselenginethefuelandairmixtureisignitedbytheheatgeneratedbythecompressionstroke,versustheuseofasparkignitionsysteminagasolineengine.Thedieselenginethereforeneedsnoignitionsystem.Forthisreason,thegasolineengineisreferredtoasasparkignitionengineandadieselengineisreferredtoasacompressionignitionengine.

    (2) Inadieselenginethefuelandairmixtureiscompressedtoaboutonetwentiethofitsoriginalvolume. Incontrast,thefuelandairmixtureinagasolineengineiscompressedtoaboutoneeighthofitsoriginalvolume. Thedieselenginemustcompressthemixturethistightlytogenerateenoughheattoignitethefuelandairmixture.Thecontrastbetweenthetwoenginesisshowninfigure26onthefollowingpage.

    FIGURE25.THEFOURSTROKECYCLEDIESEL.

    28

  • PRIN. OF INTERNAL COMBUSTION ENGINES - OD1619 LESSON 1/TASK 2

    (3) Thegasolineenginemixesthefuelandairbeforeitreachesthecombustionchamber.Adieselenginetakesinonlyairthroughtheintakeport.Fuelisputintothecombustionchamberdirectlythroughaninjectionsystem.Theairandfuelthenmixinthecombustionchamber. Thisisillustratedinfigure27onthefollowingpage.

    (4) Theenginespeedandthepoweroutputofadieselenginearecontrolledbythequantityoffueladmittedtothecombustionchamber.The

    FIGURE26.COMPARISONOFDIESELANDGASOLINEENGINECOMPRESSIONSTROKES.

    29

  • PRIN. OF INTERNAL COMBUSTION ENGINES - OD1619 LESSON 1/TASK 2

    amountofairisconstant.Thiscontrastswiththegasolineenginewherethespeedandpoweroutputareregulatedbylimitingtheairenteringtheengine. Thiscomparisonisillustratedinfigure28onthefollowingpage.

    FIGURE27.COMPARISONOFDIESELANDGASOLINEENGINEINTAKESTROKES.

    b. Operation.

    (1) Intake(figure29,viewA,onpage32).Thepistonisattopdeadcenteratthebeginningoftheintakestroke.Asthepistonmovesdownward,theintakevalveopens.Thedownwardmovementofthepistondrawsairintothecylinder.Asthepiston reaches bottom dead center, the intake valve closes, ending the intakestroke.

    (2) Compression(figure29,viewB).Thepistonisatbottomdeadcenteratthebeginningofthecompressionstroke.Thepistonmovesupward,

    30

  • PRIN. OF INTERNAL COMBUSTION ENGINES - OD1619 LESSON 1/TASK 2

    FIGURE28.COMPARISONOFGASOLINEANDDIESELENGINEREGULATIONOFPOWER.

    compressingtheair.Asthepistonreachestopdeadcenter,thecompressionstrokeends.

    (3) Power (figure29,viewC,onthefollowingpage). Thepistonbeginsthepowerstrokeattopdeadcenter. Atthistime,airiscompressedintheuppercylindertoasmuchas500psi(3448kPa). Thetremendouspressureintheuppercylinderbringsthetemperatureofthecompressedairtoapproximately1000F(538C).Thepowerstrokethenbeginswiththeinjectionofafuelchargeintotheengine. Theheatofcompressionignitesthefuelasitisinjected. Theexpandingforceoftheburninggasespushesthepistondownward,providingpowertothecrankshaft. Thepowergeneratedinadieselengineiscontinuousthroughoutthepowerstroke.Thiscontrastswithagasolineengine,whichhasapowerstrokewithrapidcombustioninthebeginningandlittleornocombustionattheend.

    (4) Exhaust(figure29,viewD).Asthepistonreachesbottomdeadcenteronthepowerstroke,thepowerstrokeendsandtheexhauststrokebegins. Theexhaustvalveopensandthepistonpushesthe

    31

  • PRIN. OF INTERNAL COMBUSTION ENGINES - OD1619 LESSON 1/TASK 2

    burntgasoutthroughtheexhaustport.Asthepistonreachestopdeadcenter,theexhaustvalveclosesandtheintakevalveopens.Theengineisthenreadytobeginanotheroperatingcycle.

    FIGURE29.FOURSTROKECYCLEDIESEL.

    32

  • PRIN. OF INTERNAL COMBUSTION ENGINES - OD1619 LESSON 1/TASK 2

    c. Advantages.

    (1) Thedieselengineismuchmoreefficientthanagasolineengineduetothemuchtightercompressionofthefuelandairmixture.Thedieselengineproducestremendouslowspeedpower,andgetsmuchgreaterfuelmileagethanitsgasolinecounterpart.Thismakestheengineverysuitableforlargetrucks.

    (2) Thedieselenginerequiresnoignitiontuneupsbecausethereisnoignitionsystem.

    (3) Becausedieselfuelisofanoilyconsistency andislessvolatilethangasoline,itisnotaslikelytoexplodeinacollision.

    d. Disadvantages.

    (1) The diesel engine must be made very heavy to have enough strength towithstandthetightercompressionofthefuelandairmixture.

    (2) Thedieselengineisverynoisy.

    (3) Dieselfuelcreatesalargeamountoffumes.

    (4) Becausedieselfuelisnotveryvolatile,coldweatherstartingisdifficult.

    (5) A diesel engine operates well only in lowspeed ranges in relation togasolineengines.Thiscreatesproblemswhenusingtheminpassengercars,whichrequireawidespeedrange.

    e. Usage.Dieselenginesarewidelyusedinalltypesofheavytrucks,trains,andboats.Inrecentyears,moreattentionhasbeenfocusedonusingdieselsinpassengercars.

    f. MultifuelEngine(figure30onthefollowingpage).Themultifuelengineisbasicallyafourstrokecycledieselenginewiththecapabilityofoperatingonawidevarietyoffueloilswithoutadjustmentormodification.Thefuelinjectionsystemisequippedwithadevicecalledafueldensitycompensator.Itsjobistovarytheamountoffuel,keepingthepoweroutputconstantregardlessofthefuelbeingused. Themultifuelengineusesasphericalcombustionchambertoaidinthoroughmixing,completecombustion,andminimizedknocks.

    33

  • PRIN. OF INTERNAL COMBUSTION ENGINES - OD1619 LESSON 1/TASK 2

    FIGURE30.MULTIFUELENGINE.

    3. TwoStrokeCycleDiesel

    a. General.Thetwostrokecyclediesel(figure31onthefollowingpage)isahybridenginesharingoperatingprinciplesofbothatwostrokecyclegasolineengineandafourstrokecycledieselengine.Themajorfeaturesoftheengineareasfollows:

    (1) Itcompletesanoperatingcycleeverytwopistonstrokesoreverycrankshaftrevolution.Likeatwostrokecyclegasolineengine,itprovidesapowerstrokeeverytimethepistonmovesdownward.

    (2) Itisacompressionignitionengine,makingitatruedieselengine.

    (3) Itusesanexhaustvalveontopofthecombustionchamberasinafourstrokecycledieselengine. Intakeportsarecutintothecylinderwallasinatwostrokecyclegasolineengine.

    34

  • PRIN. OF INTERNAL COMBUSTION ENGINES - OD1619 LESSON 1/TASK 2

    FIGURE31.THETWOSTROKECYCLEDIESELENGINE.

    (4) Itmixesitsfuelandairinthecombustionchamberasinafourstrokecycledieselengine.Theairentersthroughtheintakeportsandthefuelisinjectedintothecombustionchamberbythefuelinjectionsystem.

    (5) Theairsupplytotheengineisconstantwhilethespeedandpoweroutputoftheengineisregulatedbycontrollingthequantityoffuelinjectedintothecombustionchamber.

    (6) Unlikeanyoftheotherenginetypes,thetwostrokecycledieselenginemusthaveasuperchargertoforcetheintakeairintotheuppercylinder. ThemostcommontypeusedistheRootes.

    b. Operation(figure32onthefollowingpage).

    (1) Scavenging. Scavengingbeginswiththepistonatbottomdeadcenter. Theintakeportsareuncoveredinthecylinderwallandtheexhaustvalveopens.Airisforcedintotheuppercylinderbythesupercharger.Astheairisforcedin,theburntgasesfromthepreviousoperatingcycleareforcedout.

    35

  • PRIN. OF INTERNAL COMBUSTION ENGINES - OD1619 LESSON 1/TASK 2

    FIGURE32.THETWOSTROKEDIESELCYCLE.

    (2) Compression. Asthepistonmovestowardtopdeadcenter,itcoverstheintakeports.Theexhaustvalveclosesatthispointsealingtheuppercylinder.Asthepistoncontinuesupward,theairinthecylinderistightlycompressed.Asinthefourstrokecyclediesel,atremendousamountofheatisgeneratedbythecompression.

    36

  • PRIN. OF INTERNAL COMBUSTION ENGINES - OD1619 LESSON 1/TASK 2

    (3) Power.Asthepistonreachestopdeadcenter,thecompressionstrokeends.Fuelisinjectedatthispoint.Theintenseheatofcompressioncausesthefueltoignite.Theburningfuelpushesthepistondown,givingpowertothecrankshaft.Thepowerstrokeendswhenthepistongetsdowntothepointwheretheintakeportsareuncovered.Ataboutthispoint,theexhaustvalveopensandscavengingbeginsagain.

    c. Advantages.Thetwostrokecycledieselenginehasalloftheadvantagesthatafourstrokecycleenginehasoveragasolineengine,plusthefollowing:

    (1) Becauseitisatwostrokecycleengine,itwillrunsmootherthanitsfourstrokecyclecounterpart. Thisisbecausethereisapowerstrokegeneratedforeverycrankshaftrevolution.

    (2) Thetwostrokecycledieselhasalesscomplicatedvalvetrainbecauseitdoesnotuseintakevalves.

    d. Disadvantages.

    (1) Thetwostrokecycleenginemustuseasuperchargertoforceintheintakeairandpushouttheburntexhaustgases. Thisisbecausethemovementofthepistonisnotsuchthatitwillaccomplishthisnaturally.Thesuperchargerusesenginepowertooperate.

    (2) The two stroke cycle diesel uses either two or four exhaust valves percylinder,whichcomplicatesthevalvemechanism.

    (3) Aswiththetwostrokecyclegasolineengine,thedieselcounterpartwillnotproducetwiceasmuchpowerasafourstrokecycleengine,eventhoughitproducestwiceasmanypowerstrokes.Bystudyingfigure33onthefollowingpage,itcanbeseenthatthepowerstrokeoccupiesonlyaportionofthedownstrokeofthepistoninatwostrokecyclediesel. Inafourstrokecyclediesel,thepowerstrokelastsfromtopdeadcentertobottomdeadcenter.

    e. Usage.Thetwostrokecycledieselisusedinmostofthesameapplicationsasthefourstrokecyclediesel.

    37

  • PRIN. OF INTERNAL COMBUSTION ENGINES - OD1619 LESSON 1/TASK 2

    FIGURE33.COMPARISONOFTWOANDFOURSTROKECYCLEDIESELPOWERSTROKELENGTHS.

    4. CombustionChamberDesign

    a. General. The fuel injected into the combustion chamber must be mixedthoroughly with the compressed air and be distributed as evenly as possiblethroughoutthechamberiftheengineistofunctionatmaximumdriveability.Thewelldesigneddieselengineusesacombustionchamberthatisdesignedfortheengine'sintendedusage. Theinjectorsusedintheengineshouldcomplimentthecombustion chamber. The combustion chambers described in the followingsubparagraphsarethemostcommonandcovervirtuallyallofthedesignsthatareusedincurrentautomotiveapplications.

    b. OpenChamber (figure34onthefollowingpage). Theopenchamberisthesimplest form of chamber. It is suitable for slowspeed, four stroke cycleengines,andisusedwidelyintwostrokecycledieselengines. Intheopenchamber,thefuelisinjecteddirectlyintothespaceatthetopofthecylinder.Thecombustionspace,formedbythetopofthepistonandthecylinderhead,isusuallyshapedtoprovideaswirlingactionoftheairasthepistoncomesuponthecompressionstroke.

    38

  • PRIN. OF INTERNAL COMBUSTION ENGINES - OD1619 LESSON 1/TASK 2

    Therearenospecialpockets,cells,orpassagestoaidthemixingofthefuelandair. Thistypeofchamberrequiresahigherinjectionpressureandagreaterdegreeoffuelatomizationthanisrequiredbyothercombustionchamberstoobtainanacceptableleveloffuelmixing. Thischamberdesignisverysusceptibletoignitionlag.

    FIGURE34.OPENCOMBUSTIONCHAMBER.

    c. PrecombustionChamber (figure35onthefollowingpage). Theprecombustionchamberisanauxiliarychamberatthetopofthecylinder.Itisconnectedtothemain combustion chamber by a restricted throat or passage. The precombustionchamberconditionsthefuelforfinalcombustioninthecylinder.Ahollowedoutportionofthepistontopcausesturbulenceinthemaincombustionchamberasthefuel enters from the precombustion chamber to aid in mixing with air. Thefollowingstepsoccurduringthecombustionprocess:

    (1) During the compression stroke of the engine, air is forced into theprecompressionchamberand,becausetheairiscompressed,itishot. Atthebeginningofinjection,theprecombustionchambercontainsadefinitevolumeofair.

    39

  • PRIN. OF INTERNAL COMBUSTION ENGINES - OD1619 LESSON 1/TASK 2

    FIGURE35.PRECOMBUSTIONCHAMBER.

    (2) Astheinjectionbegins,combustionbeginsintheprecombustionchamber.Theburningofthefuel,combinedwiththerestrictedpassagetothemaincombustionchamber,createsatremendousamountofpressureinthechamber.Thepressureandtheinitialcombustioncauseasuperheatedfuelchargetoenterthemaincombustionchamberatatremendousvelocity.

    (3) Theenteringmixturehitsthehollowedoutpistontop,creatingturbulenceinthechambertoensurecompletemixingofthefuelchargewiththeair.Thismixingensures even and complete combustion. This chamber design will providesatisfactory performance with low fuel injector pressures and coarse spraypatterns,becausealargeamountofvaporizationtakesplaceinthecombustionchamber.Thischamberalsoisnotverysusceptibletoignitionlag,makingitmoresuitableforhighspeedapplications.

    d. TurbulenceChamber(figure36onthefollowingpage).Theturbulencechamberis similar in appearance to the precombustion chamber, but its function isdifferent.Thereisverylittleclearancebetweenthetopofthepistonandthehead,sothatahighpercentageoftheairbetweenthepistonandthecylinderheadisforcedintothe

    40

  • PRIN. OF INTERNAL COMBUSTION ENGINES - OD1619 LESSON 1/TASK 2

    turbulence chamber during the compression stroke. The chamber usually isspherical,andtheopeningthroughwhichtheairmustpassbecomessmallerasthepistonreachesthetopofthestroke,therebyincreasingthevelocityoftheairinthechamber. Thisturbulencespeedisapproximately60timescrankshaftspeed.Thefuelinjectionistimedtooccurwhentheturbulenceinthechamberisthegreatest.Thisensuresathoroughmixingofthefuelandtheair,withtheresultthatthegreaterpartofcombustiontakesplaceintheturbulencechamberitself.Thepressurecreatedbytheexpansionoftheburninggasesistheforcethatdrivesthepistondownwardonthepowerstroke.

    FIGURE36.TURBULENCECHAMBER.

    e. SphericalCombustionChamber(figure37onthefollowingpage).Thesphericalcombustionchamberisprincipallydesignedforuseinthemultifuelengine. Thechamberconsistsofabasicopentypechamberwithasphericalshapedreliefinthetopofthepistonhead. Thechamberworksinconjunctionwithastrategicallypositionedinjectorandanintake portthatproducesaswirlingeffectontheintakeairasitentersthechamber.Operationofthechamberisasfollows:

    41

  • PRIN. OF INTERNAL COMBUSTION ENGINES - OD1619 LESSON 1/TASK 2

    FIGURE37.SPHERICALCHAMBER.

    (1) Astheairentersthecombustionchamber,aswirleffectisintroducedtoitbytheshapeoftheintakeport(figure37,viewA).

    42

  • PRIN. OF INTERNAL COMBUSTION ENGINES - OD1619 LESSON 1/TASK 2

    (2) Duringthecompressionstroke,theswirlingmotionoftheaircontinuesasthetemperatureinthechamberincreases(figure37,viewB,onthepreviouspage).

    (3) Asthefuelisinjected,approximately95percentofitisdepositedontheheadofthepiston;theremaindermixeswiththeairinthesphericalcombustionchamber(figure37,viewC).

    (4) Ascombustionbegins,themainportionofthefuelissweptoffthepistonheadbythehighvelocityswirlthatwascreatedbytheintakeandthecompressionstrokes. Asthefuelissweptoffthehead,itburnsthroughthepowerstroke,maintainingevencombustionandeliminatingdetonation(figure37,viewDandE).

    6. Conclusion

    This concludes the explanation of the gasoline and diesel internal combustionengines.Inthenextlesson,operationalinformationonthesubsystemsofinternalcombustionengineswillbediscussed.

    43

  • PRIN. OF INTERNAL COMBUSTION ENGINES - OD1619 LESSON 1/PE 1

    PRACTICALEXERCISE1

    1. Instructions

    Readthescenarioandrespondtotherequirementsthatfollowthescenario.

    2. Scenario

    SSGFredrickhasbeenattendinganArmyNCOdevelopmentcourseforfourweeks.Thisweekthesubjecthasbeeninternalcombustionengines,whichheunderstandscompletely.Oneofhisclassmates,SSGOlson,isnotverysureaboutthissubjectandisnervousabouttheexamwhichiscomingupintwodays.

    SSGOlsonasksSSGFredrickifhewouldmindhelpinghimstudyfortheexam.SSGFredrickagreestohelpanddecidesthatthebestwaytoprepareSSGOlsonfortheexamistogivehimapretest.

    3.Requirement

    BelowisalistofquestionsthatSSGFredrickfeelswillgiveSSGOlsonageneralunderstandingofinternalcombustionengines.

    a. Iftheengineisgoingtooperate,thefuelandairmixturemustbefedintothe__________________________.

    b. What component opens and closes the intake and exhaust valves in a timedsequence?

    c. Howmanyrevolutionsdoesthecrankshaftrotatewhenthepistonmovesfromtopdeadcentertobottomdeadcenter?

    d. Whatarethefourstrokesofoperationinapistonengine?

    e. Whatsystemignitesthefuelandairmixtureinthecombustionchamberattheprecisemomentneededtomaketheenginerun?

    f. Whattypeofengineisusedalmostexclusivelyinverysmallequipmentbecauseitislightweightandabletorunatveryhighspeedsduetotheabsenceofamechanicalvalvetrain?

    44

  • PRIN. OF INTERNAL COMBUSTION ENGINES - OD1619 LESSON 1/PE 1

    g. Whatpistonringkeepstheengine'slubricationoilfromgettingintothecombustionchamber?

    h. Whyisadieselenginereferredtoasacompressionignitionengine?

    i. Whyisthedieselenginemuchmoreefficientthanthegasolineengine?

    j. Thetwostrokecycleenginemustuseasuperchargertoforceintheintakeairandpushouttheburntexhaustgasesbecause_______________________________________________________________________________________________________________________.

    k. What type of combustion chamber is designed principally for use in themultifuelengine?

    45

  • PRIN. OF INTERNAL COMBUSTION ENGINES - OD1619 LESSON 1/PE 1

    LESSON1.PRACTICALEXERCISEANSWERS

    1. Requirement

    a. combustionchamber.

    b. Thevalvetrain.

    c. Exactlyonehalf.

    d. Intake,compression,power,andexhaust.

    e. Theignitionsystem.

    f. Thetwostrokecycleengine.

    g. Theoilcontrolring.

    h. Thefuelandairmixtureisignitedbytheheatgeneratedbythecompressionstroke.

    i. Thedieselengineismuchmoreefficientthanthegasolineengineduetothemuchtightercompressionofthefuelandairmixture.

    j. themovementofthepistonisnotsuchthatitwillaccomplishthisnaturallyandthesuperchargerusesenginepowertorunit.

    k. Thesphericalcombustionchamber.

    46

  • PRIN. OF INTERNAL COMBUSTION ENGINES - OD1619 LESSON 2/TASK 1

    LESSON2

    INTERNALCOMBUSTIONENGINESUBSYSTEMS

    TASK1. Describe the principles, components, and operation of theturbochargers,intake,andexhaustsystems.

    CONDITIONS

    Withinaselfstudyenvironmentandgiventhesubcoursetext,withoutassistance.

    STANDARDS

    Withinonehour

    REFERENCES

    Nosupplementaryreferencesareneededforthistask.

    1. Introduction

    InLessonone,theprinciples,components,andoperationofdieselandgasolineenginesweredescribed.Theknowledgeobtainedfromthisinformationcanbeusedtounderstandthesubsystemsoftheinternalcombustionenginesdiscussedwithinthislesson.Thesesubsystemsare:intakesystem;exhaustsystem;turbochargers;lubricationsystem;andcoolingsystem.

    Thistaskwillintroduceanddescribetheintakesystem,turbochargers,andexhaustsystem.

    2. IntakeSystem

    a. Purpose.Todrawairfromanoutsidesourceintotheenginecylinder.

    b. IntakeManifold(figure38onthefollowingpage).Theintakemanifoldshould:

    47

  • PRIN. OF INTERNAL COMBUSTION ENGINES - OD1619 LESSON 2/TASK 1

    FIGURE38.TYPICALINTAKEMANIFOLD.

    (1) Deliverthemixturetothecylindersinequalquantitiesandproportions.Thisisimportantforsmoothengineperformance. Thelengthsofthepassagesshouldbeasnearequalaspossibletodistributethemixtureequally. Inagasolineengine,thereisaseriesofpipesorpassagesthroughwhichthefuelairmixturefromthecarburetorisdirectedtotheenginecylindersontheintakestroke.Thedieselenginedoesnothaveacarburetorsotheairisdirectedintothecylinderandthefuelisinjectedtomixwiththeair.

    (2) Helptokeepthevaporizedmixturefromcondensingbeforeitreachesthecombustionchamber.Becausetheidealmixtureshouldbevaporizedcompletelyasitentersthecombustionchamber,thisisveryimportant.Toreducethecondensingofthemixture,themanifoldpassages shouldbedesignedwithsmoothwalls andaminimumofbendsthatcollectfuel.Smoothflowingintakemanifoldpassagesalsoincreasevolumetricefficiency,themethodofmeasuringanenginesabilitytotakeinitsintakemixture.

    (3) Aidinthevaporizationofthemixture. Todothis,theintakemanifoldshouldprovideacontrolledsystemofheating,asdescribedinparagraph3conpage53. This systemmustheat themixture enough toaidin vaporization withoutheatingtothepointofsignificantlyreducingvolumetricefficiency.

    48

  • PRIN. OF INTERNAL COMBUSTION ENGINES - OD1619 LESSON 2/TASK 1

    FIGURE39.RAMINDUCTIONMANIFOLD.

    c. RamInduction(figure39).Intakemanifoldscanbedesignedtoprovideoptimumperformanceforagivenenginespeedrangebyvaryingthelengthofthepassages.Theinertiaofthemovingintakemixturewillcauseittobouncebackandforthinthemanifoldpassagefromtheendofoneintakestroketothebeginningofthenextintakestroke.Ifthepassageistheproperlengthsothatthenextintakestrokeisjustbeginningasthemixtureisrebounding,theinertiaofthemixturewillcauseit to ramitselfinto thecylinder. Thiswillincrease thevolumetricefficiencyoftheengineinthedesignatedspeedrange.Itshouldbenotedthattherammanifoldwillservenousefulpurposeoutsideofitsdesignatedspeedrange.

    d. Heating the Mixture. As stated in paragraph 2b(3) on page 48, providingcontrolledheatfortheincomingmixtureisveryimportantforgoodperformance.Theheatingofthemixturemaybeaccomplishedbyoneorbothofthefollowingmethods:

    (1) Directingaportionoftheexhaustthroughapassageintheintakemanifold(figure40onthefollowingpage). Theheatfromtheexhaustwilltransferandheatthemixture.Theamountofexhaustthatisdivertedintotheintakemanifoldheatpassageiscontrolledbythemanifoldheatcontrolvalve.

    49

  • PRIN. OF INTERNAL COMBUSTION ENGINES - OD1619 LESSON 2/TASK 1

    FIGURE40.EXHAUSTHEATEDINTAKEMANIFOLD.

    (2) Directingtheenginecoolant,whichisladenwithengineheat,throughtheintakemanifoldonitswaytotheradiator(figure41onthefollowingpage).

    e. Intake Manifold Flame Heater System (figure 42 on page 52). Engines areequippedwithaflametypemanifoldheaterforheatingtheinductionairduringcoldweatherstartingandwarmupoperations.

    (1) Operation.Theflameheaterassemblyiscomposedofahousing,sparkplug,flowcontrolnozzle,andtwosolenoidcontrolvalves.Thesparkplugisenergizedbytheflameheaterignitionunit.Thenozzlespraysfuelunderpressureintotheintakemanifoldelbowassembly.Thefuelvaporisignitedbythesparkplugandburnsintheintakemanifold,heatingtheairbeforeitentersthecombustionchambers.

    (2) Because this system uses fuel from the fuel tank of the vehicle, itscomponentsmustbecompatiblewithallapprovedfuelswhenthesystemisusedwithamultifuelengine.

    (a) Theflamefuelpumpassembly isarotarytype,drivenbyanenclosedelectricmotor.Thefuelpumpreceivesfuelfromthevehiclefueltankthroughthevehicle'ssupplypumpanddeliversittothespraynozzle.ThepumpisenergizedbyanONOFFswitchlocatedontheinstrumentpanel.

    50

  • PRIN. OF INTERNAL COMBUSTION ENGINES - OD1619 LESSON 2/TASK 1

    FIGURE41.WATERHEATEDINTAKEMANIFOLD.

    (b) Theintakemanifoldflameheatersystemhasafiltertoremoveimpuritiesfromthefuelbeforeitreachesthenozzle.

    (c) Twofuelsolenoidvalvesareusedintheflameheatersystem.Thevalvesareenergized(open)whenevertheflameheatersystemisactivated. Thevalvesensurethatfuelisdeliveredonlywhenthesystemisoperating.Theystopfuelflowtheinstanttheengineorheatersystemisshutdown.

    51

  • PRIN. OF INTERNAL COMBUSTION ENGINES - OD1619 LESSON 2/TASK 1

    FIGURE42.MANIFOLDFLAMEHEATERSYSTEM.

    3. ExhaustSystem

    a. Purpose(figure43onthefollowingpage).Thewasteproductsofcombustionarecarriedfromtheenginetotherearofthevehiclebytheexhaustsystem,wheretheyareexpelledtotheatmosphere. Theexhaustsystemalsoservestolessenenginenoise.

    52

  • PRIN. OF INTERNAL COMBUSTION ENGINES - OD1619 LESSON 2/TASK 1

    FIGURE43.TYPICALEXHAUSTSYSTEM.

    b. ExhaustManifold (figure44 onthefollowingpage). Theexhaustmanifoldconnectsalloftheenginecylinderstotheexhaustsystemandisusuallymadeofcastiron.Iftheexhaustmanifoldisformedproperly,itcancreateascavengingactionthatwillcauseallofthecylinderstohelpeachothergetridofexhaustgases. Backpressure(theforcethatthepistonsmustexerttopushouttheexhaustgases)canbereducedbymakingthemanifoldwithsmoothwallsandwithoutsharpbends. Allofthesefactorsaretakenintoconsiderationwhentheexhaustmanifoldisdesigned,andthebestpossiblemanifoldismanufacturedtofitintotheconfinesoftheenginecompartment.

    c. ManifoldHeatControlValve(figure45onpage55).Avalveisplacedintheexhaustmanifoldonsomegasolineenginestodeflectexhaustgasestowardahotspotintheintakemanifolduntiltheenginereachesoperatingtemperature.Thisvalveisaflatmetalplatethatisthesameshapeastheopeningitcontrols.Itpivotsonashaftandisoperatedbyathermostaticcoilspring.Thespringpullsthevalveclosedagainstacounterweightbeforewarmup.Thespringexpandsastheenginewarmsupandthecounterweightpullsthevalveopen.

    53

  • PRIN. OF INTERNAL COMBUSTION ENGINES - OD1619 LESSON 2/TASK 1

    FIGURE44.EXHAUSTMANIFOLD.

    d. Muffler(figure46onpage56).Themufflerreducestheacousticpressureofexhaustgasestodischargethemtotheatmospherewithaminimumofnoise. Themufflerisusuallylocatedatapointaboutmidwayinthevehicle,withtheexhaustpipebetweenitandtheexhaustmanifold,andthetailpipeleadingfromittotherearofthevehicle.Theinletandtheoutletofthemufflerareusuallyslightlylargerthantheirconnectingpipessothatitmaybehookedupbyslippingoverthem.Themuffleristhensecuredtotheexhaustpipeandthetailpipebyclamps.Atypicalmufflerhasseveralconcentricchamberswithopeningsbetweenthem.Thegasenterstheinnerchamberandexpandsasitworksitswaythroughaseriesofholesin the otherchambersand finallyto the atmosphere. Mufflers mustbedesigned to quiet exhaust noise while creating a minimum of back pressure.Excessivebackpressurecouldcauselossofenginepower,economy,andalsocauseoverheating. Exhaust system components are usually made of steel. They areusuallycoatedwithaluminumorzinctoretardcorrosion.

    54

  • PRIN. OF INTERNAL COMBUSTION ENGINES - OD1619 LESSON 2/TASK 1

    Stainlesssteelisalsousedinexhaustsystems,inlimitedquantitiesduetoitshighcost.Astainlesssteelexhaustsystemwilllastindefinitely.

    FIGURE45.MANIFOLDHEATCONTROLVALVE.

    4. Turbochargers

    Turbochargingisamethodofincreasingenginevolumetricefficiencybyforcingtheairfuelmixtureintotheintakeratherthanmerelyallowingthepistonstodrawitinnaturally.Aturbocharger(figure47onpage57)usestheforceoftheengineexhauststreamtoforcetheairfuelmixtureintotheengine. Itconsistsofahousing

    55

  • PRIN. OF INTERNAL COMBUSTION ENGINES - OD1619 LESSON 2/TASK 1

    containingtwo chambers. Onechamber containsa turbine thatisspun ashotexhaustgasesaredirectedagainstit.Theturbineshaftdrivesanimpellerthatislocatedintheotherchamber.Thespinningimpellerdrawsanairfuelmixturefromthecarburetorandforcesitintotheengine.Becausethevolumeofexhaustgasesincreaseswithengineloadandspeed,theturbochargerspeedwillincreaseproportionally,keepingthemanifoldpressurefairlyuniform.Adeviceknownasawastegateisinstalledonturbochargedenginestocontrolmanifoldpressure.Itisavalvewhich,whenopen,allowsengineexhausttobypasstheturbochargerturbine,effectivelyreducingintakepressure.Thewastegatevalveisoperatedbyadiaphragmthatisoperatedbymanifoldpressure. Thediaphragmwillopenthewastegatevalvewhenevermanifoldpressurereachesthedesiredmaximum.

    FIGURE46.MUFFLER.

    56

  • PRIN. OF INTERNAL COMBUSTION ENGINES - OD1619 LESSON 2/TASK 1

    FIGURE47.TURBOCHARGER.

    5. Conclusion

    Thistaskdescribedthreesubsystemsofaninternalcombustionengine. Thenexttaskwilldefinethelubricationsystem.

    57

  • PRIN. OF INTERNAL COMBUSTION ENGINES - OD1619 LESSON 2/TASK 2

    LESSON2

    INTERNALCOMBUSTIONENGINESUBSYSTEMS

    TASK2. Describetheprinciples,components,andoperationofthelubricationsystem.

    CONDITIONS

    Withinaselfstudyenvironmentandgiventhesubcoursetext,withoutassistance.

    STANDARDS

    Withinonehour

    REFERENCES

    Nosupplementaryreferencesareneededforthistask.

    1. Introduction

    Thelubricationsystem(figure48onthefollowingpage)inanautomotiveenginesuppliesaconstantsupplyofoiltoallmovingparts. Thisconstantsupplyoffreshoilisimportanttominimizewear,flushbearingsurfacesclean,andremovethelocalizedheatthatdevelopsbetweenmovingpartsasaresultoffriction.Inaddition,theoilthatissuppliedtothecylinderwallshelpsthepistonringsmakeagoodsealtoreduceblowby.

    This task will describe the characteristics, components, and function of aninternalcombustionenginelubricationsystem.

    2. PurposeofLubrication

    a. OilasaLubricant.Theprimaryfunctionofengineoilistoreducefrictionbetweenmovingparts(lubricate).Friction,inadditiontowastingenginepower,createsdestructiveheatandrapidwearofparts.Thegreaterthefrictionpresentbetweenmovingparts,thegreatertheenergyrequiredtoovercomethatfriction.The

    58

  • PRIN. OF INTERNAL COMBUSTION ENGINES - OD1619 LESSON 2/TASK 2

    increaseinenergyaddstotheamountofheatgenerated,causingmovingpartsthataredeprivedofoiltomelt,fuse,andseizeafteraveryshortperiodofengineoperation.Theeffectivenessofamodernlubricationsystemmakespossibletheuseoffrictiontypebearingsinanengine. Frictionbetweenthepistonsandthecylinderwallsissevere,makingeffectivelubricationofthisareaimperative.Lubricationoftheconnectingrodandmainbearingsiscrucialbecauseoftheheavyloadsthatareplacedonthem. Therearemanyotherlesscriticalenginepartsthatalsoneedaconstantsupplyofoil,suchasthecamshaft,valvestems,rockerarms,andtimingchains.

    FIGURE48.TYPICALENGINELUBRICATIONSYSTEM.

    59

  • PRIN. OF INTERNAL COMBUSTION ENGINES - OD1619 LESSON 2/TASK 2

    b. OilasaCoolant.Engineoilcirculatedthroughouttheenginealsoservestoremoveheatfromthefrictionpoints. Theoilcirculatesthroughtheengineanddrainstothesump. Theheatpickedupbytheoilwhileitiscirculatedisreducedbyanairflowaroundtheoutsideofthesump.Insomeinstances,wherethesumpisnotexposedtoaflowofair,itisnecessarytoaddanoilcoolingunitthattransferstheheatfromtheoiltotheenginecoolingsystem.

    3. EngineOils

    a. General.Mineraloilisusedinmostinternalcombustionengines.Engineoilsgenerally are classified according to their performance qualities and theirthickness.

    (1) HowOilLubricates(figure49onthefollowingpage).

    (a) Everymovingpartoftheengineisdesignedtohaveaspecificclearancefrom its adjacent surface. As oil is fed to the surface it forms a film,preventingthemovingpartfromactuallytouchingthesurface.

    (b) Asapartrotates,thefilmofoilactsasaseriesofrollers.Becausethemovingpartsdonotactuallytoucheachother,frictionisreducedgreatly.

    (c) Itisimportantthatsufficientclearancebeallowedbetweenthepartandthebearing; otherwise thefilmmight betoo thin. Thiswould allow contactbetweentheparts,causingthebearingtowearorburnup.

    (d) Italsoisimportantthattheclearancenotbetoolargebetweenrotatingpartsandtheirbearings.Thisistrueparticularlywithheavilyloadedbearingslikethosefoundontheconnectingrods.Theheavyloadscouldthencausetheoilfilmtobesqueezedout,resultinginbearingfailure.

    (2) OilContamination(figure50onpage62).Oildoesnotwearout,butitdoesbecomecontaminated.Whenforeignmatterentersthroughtheairintake,someofitwillpassbythepistonringsandenterthecrankcase.Thisdirt,combinedwithforeignmatterenteringthroughthecrankcase

    60

  • PRIN. OF INTERNAL COMBUSTION ENGINES - OD1619 LESSON 2/TASK 2

    breatherpipe,mixeswiththeoil,andwhenforcedintothebearings,greatlyaccelerateswear. Water,oneoftheproductsofcombustion,willseepbythepistonringsassteamandcondenseinthecrankcase.Thewaterinthecrankcasethen will emulsify with the oil to form a thick sludge. Products of fuelcombustionwillmixwiththeoilastheyenterthecrankcasethroughblowby.Theoil,whenmixedwiththecontaminants,losesitslubricatingqualitiesandbecomesacidic.Engineoilmustbechangedperiodicallytopreventcontaminatedoilfromallowingexcessivewearandcausingetchingofbearings. Oilcontaminationiscontrolledinthefollowingways:

    FIGURE49.HOWOILLUBRICATES.

    (a) Controlenginetemperature;ahotterrunningengineburnsitsfuelmorecompletelyandevaporatesthewaterproducedwithinitbeforeanyappreciableoilcontaminationoccurs.

    61

  • PRIN. OF INTERNAL COMBUSTION ENGINES - OD1619 LESSON 2/TASK 2

    FIGURE50.SOURCESOFOILCONTAMINATION.

    (b) Theuseofoilfiltersremovesdirtparticlesfromtheoilbeforeitreachesthebearings,minimizingwear.

    (c) An adequate crankcase ventilation system will purge the crankcase ofblowbyfumeseffectivelybeforealargeamountofcontaminantscansixwiththeoil.

    (d) Theuseofairintakefilterstrapforeignmaterialandkeepitfromenteringtheengine.

    (3) OilDilution (refertofigure50). Engineoilthinsoutwhenmixedwithgasoline,causingadramaticdropinitslubricatingqualities.Someofthecausesofoildilutionarethefollowing:

    (a) Excessiveuseofahandchokecausesanoverrichmixtureandanabundanceofunburnedfueltoleakpastthepistonringsintothecrankcase. Thesameconditioncanoccuronvehiclesequipped

    62

  • PRIN. OF INTERNAL COMBUSTION ENGINES - OD1619 LESSON 2/TASK 2

    withanimproperlyadjustedormalfunctioningautomaticchokesystem.

    (b) Avehiclewithadefectiveignitionsystemcancauseoildilutionduetomisfiringsparkplugs.Wheneverasparkplugmisfires,mostoftheunburnedfuelwillbeforcedintotheexhaustsystembutasmallportionofitwillalsopasstheringsandenterthecrankcase.

    (c) Anenginewithamalfunctioningthermostat,oranenginethatisoperatedforshortdurationsonly,willneverreachasufficienttemperaturetoburnthefuelcompletely.Asmallamountofoildilutionoccursinallenginesfrominitialstartupthroughwarmup. When,however,theenginereachesitsoperationalrange(180F(82.2C]to200F[93.3C]),thisconditioniscorrectedastheexcessgasolinevaporizesinthecrankcaseandiscarriedoffbythecrankcaseventilationsystem.

    b. AmericanPetroleumInstitute(API)RatingSystem.

    (1) General. TheAPIsystemforratingoilclassifiesoilaccordingtoitsperformancecharacteristics.Thehigherratedoilscontainadditivesthatprovidemaximumprotectionagainstrust,corrosion,wear,oiloxidation,andthickeningathigh temperatures. There are currently six oil classifications for gasolineengines(SA,SB,SC,SD,SE,andSF)andfourclassificationsfordieselengines(CA,CB,CC,andCD).Thehigherthealphadesignation,thehigheristhequalityoftheoil.

    (2) APIDesignations.

    (a) SA(UtilityGasolineEngines).Adequateforutilityenginessubjectedtolight loads, moderate speeds, and clean conditions. SArated oils generallycontainnoadditives.

    (b) SB(MinimumDutyGasAutomotive). Adequateforautomotiveuse underfavorable conditions (light loads, low speeds, and moderate temperatures) withrelatively short oil change intervals. SBrated oils generally offer minimalprotectiontotheengineagainstbearingscuffing,corrosion,andoiloxidation.

    63

  • PRIN. OF INTERNAL COMBUSTION ENGINES - OD1619 LESSON 2/TASK 2

    (c) SC. Meets all automotive manufacturers' requirements for vehiclesmanufacturedfrom1964to1967.

    (d) SD. Meets all automotive manufacturers' requirements for vehiclesmanufacturedfrom1968to1970.SDoiloffersadditionalprotectionoverSCoils,necessarywiththeintroductionofemissioncontrols.

    (e) SE. Meets all automotive manufacturers' requirements for vehiclesmanufacturedfrom1971to1979.Stricteremissionrequirementsduringtheseyearscreatedtheneedforthisoiltoprovideprotection.

    (f) SF. Meets all automotive manufacturers' requirements for vehiclesmanufacturedafter1980. SFoilisdesignedtomeetthedemandsofthesmall,highrevvingenginesmadenecessarybythetrendtowardsmallervehicles. AnSFoilcanbeusedinallautomotivevehicles. APIserviceratingshaverelatedmilitaryspecificationdesignations.

    c. ViscosityandViscosityMeasurement.

    (1) General.Theviscosityofanoilreferstoitsresistancetoflow.Whenoilis hot, it will flow more rapidly than when it is cold. In cold weather,therefore,oilshouldbethin(lowviscosity)topermiteasyflow.Inhotweather,oilshouldbeheavy(highviscosity)topermitittoretainitsfilmstrength.Theambienttemperatureinwhichavehicleoperatesdetermineswhetheranengineoilofhighorlowviscosityshouldbeused.If,forexample,toothinanoilwereusedinhotweather,consumptionwouldbehighbecauseitwouldleakpastthepistonringseasily.Thelubricatingfilmwouldnotbeheavyenoughtotakeupbearingclearancesorpreventbearingscuffing.Incoldweather,heavyoilwouldnotgiveadequate lubrication because its flow would be sluggish; some parts might notreceiveoilatall.

    (2) ViscosityMeasurement. OilsaregradedaccordingtotheirviscositybyaseriesofSocietyofAutomotiveEngineers(SAE)numbers.TheviscosityoftheoilwillincreaseprogressivelywiththeSAEnumber.AnSAE5oilwouldbeverylight(lowviscosity)andanSAE90oilwouldbe

    64

  • PRIN. OF INTERNAL COMBUSTION ENGINES - OD1619 LESSON 2/TASK 2

    veryheavy(highviscosity). TheviscosityoftheoilusedingasolineenginesgenerallyrangesfromSAE5(arcticuse)toSAE60(desertuse). ItshouldbenotedthattheSAEnumberoftheoilhasnothingtodowiththequalityoftheoil.Theviscositynumberoftheoilisdeterminedbyheatingtheoiltoapredeterminedtemperature and allowing it to flow through a precisely sized orifice whilemeasuringtherateofflow.Thefasteranoilflows,thelowertheviscosity.Thetestingdeviceiscalledaviscosimeter. AnyoilthatmeetsSAElowtemperaturerequirementswillbefollowedbytheletterW.AnexamplewouldbeSAE10W.

    (3) Multiweight Oils. Multiweight oils are manufactured to be used in mostclimatesbecausetheymeettherequirementsofalightoilincoldtemperaturesandaheavyoilinhottemperatures.Theirviscosityratingwillcontaintwonumbers.

    Anexampleofthiswouldbe10W30.Anoilwithaviscosityratingof10W30wouldbeasthinasa10Wweightoilat0F(17.7C)andasthickasa30weightoilat210F(99C).

    (4) DetergentOils.Detergentoilscontainadditivesthathelpkeeptheenginecleanbypreventingtheformationofsludgeandgum. AllSEandSFoilsaredetergentoils.

    4. OilPumps.

    a. General. Oilpumpsaremountedeitherinsideoroutsideofthecrankcase,dependingonthedesignoftheengine.Theyareusuallymountedsothattheycanbedrivenbyawormorspiralgeardirectlyfromthecamshaft.Oilpumpsgenerallyareofthegearortherotortype.

    b. RotorTypeOilPump (figure51onthefollowingpage). Therotoroilpumpmakesuseofaninnerrotorwithlobesthatmatchsimilarlyshapeddepressionsintheouterrotor.Figure51showsthemannerinwhichthetworotorsfittogether.Theinnerrotorisoffcenterfromtheouterrotor.Theinnerrotorisdrivenand,asitrotates,itcarriestheouterrotoraroundwithit.Theouterrotorfloatsfreelyinthepumpbody. Asthetworotorsturn,theopeningsbetweenthemarefilledwithoil.Thisoilisthenforcedoutfrombetweentherotorsastheinnerrotorlobesenterthe

    65

  • PRIN. OF INTERNAL COMBUSTION ENGINES - OD1619 LESSON 2/TASK 2

    FIGURE51.ROTARYPUMPS.

    openingsintheouterlobes.Thisactionismuchlikethatinthegeartypepump.

    c. GearTypeOilPump(figure52onthefollowingpage).Geartypeoilpumpshaveaprimarygearthatisdrivenbyanexternalmember,andwhichdrivesacompaniongear.Oilisforcedintothepumpcavity,aroundeachgear,andouttheothersideintotheoilpassages.Thepressureisderivedfromtheactionofthemeshedgearteeth,whichpreventsoilfrompassingbetweenthegears,forcingitaroundtheoutsideofeachgearinstead.Theoilpumpincorporatesapressurereliefvalve,aspringloadedballthatriseswhenthedesiredpressureisreached,allowingtheexcessoiltobedeliveredtotheinletsideofthepump.

    66

  • PRIN. OF INTERNAL COMBUSTION ENGINES - OD1619 LESSON 2/TASK 2

    FIGURE52.GEARTYPEPUMPS.

    FIGURE53.OILPICKUPANDSTRAINER.

    67

  • PRIN. OF INTERNAL COMBUSTION ENGINES - OD1619 LESSON 2/TASK 2

    d. OilStrainerandPickup(figure53onthepreviouspage).MostmanufacturersofinlineandVtypeenginesplaceatleastoneoilstrainerorscreeninthelubricationsystem. Thescreenisusuallyafinemeshbronzescreen,locatedintheoilsumpontheendoftheoilpickuptube. Theoilpickuptubeisthenthreadeddirectlyintothepumpinletormayattachtothepumpbyaboltedflange.Afixedtypestrainer,liketheonedescribed,islocatedsothataconstantsupplyofoilwillbeassured.Someautomotiveenginesuseapickupthatishingedfromtheoilpump.Thepickupisdesignedtofloatontopoftheoil,thuspreventingsedimentfrombeingdrawnintotheoilingsystem.

    e. OilFilters.

    (1) General (figure54onthefollowingpage).Theoilfilterremovesmostoftheimpuritiesthathavebeenpickedupbytheoilasitiscirculatedthroughtheengine. Thefilterismountedoutsidetheengineandisdesignedtobereadilyreplaceable.

    (2) Filter Configurations (figure 54). There are two basic filter elementconfigurations:thecartridgetypeandthesealedcamtype.

    (a) Thecartridgetypefilterelementfitsintoapermanentmetalcontainer.Oilispumpedunderpressureintothecontainerwhereitpassesfromtheoutsideofthefilterelementtothecenter. Fromheretheoilexitsthecontainer. Theelementischangedeasilybyremovingthecoverfromthecontainerwhenthistypeoffilterisused.

    (b) The sealed camtype filter element is completely selfcontained,consistingofanintegralmetalcontainerandfilterelement.Oilispumpedintothecontainerontheoutsideofthefilterelement.Theoilthenpassesthroughthefiltermediumtothecenteroftheelementwhereitexitsthecontainer.Thistypeoffilterisscrewedontoitsbaseandisremovedbyspinningitoff.

    (3) FilterMediumMaterials(figure55onpage70).

    68

  • PRIN. OF INTERNAL COMBUSTION ENGINES - OD1619 LESSON 2/TASK 2

    FIGURE54.OILFILTERS.

    (a) Cottonwasteorresintreatedpaperarethetwomostpopularautomotivefiltermediums.Theyareheldinplacebysandwichingthembetweentwoperforatedmetalsheets.

    (b) Someheavydutyapplicationsuselayersofmetalthatarethinlyspacedapart.Foreignmatterisstrainedoutastheoilpassesbetweenthemetallayers.

    (4) FilterSystemConfigurations. Therearetwofiltersystemconfigurations,the fullflow system and the bypass system. Operation of each system is asfollows:

    69

  • PRIN. OF INTERNAL COMBUSTION ENGINES - OD1619 LESSON 2/TASK 2

    FIGURE55.OILFILTERINGMEDIUMS.

    (a) Thefullflow(figure56,viewA,onthefollowingpage)isthemostpopularincurrentautomotivedesign.Alloilinafullflowsystemiscirculatedthroughthefilterbeforeitreachestheengine.Whenafullflowsystemisused,itisnecessarytoincorporateabypassvalveintheoilfiltertoallowtheoiltopassthroughtheelementintheeventitbecomesclogged.Thiswillpreventtheoilsupplyfrombeingcutofftotheengine.

    (b) Thebypasssystem(figure56,viewB)divertsonlyasmallquantityoftheoileachtimeitiscirculatedandreturnsitdirectlytotheoilpanafteritisfiltered.Thistypeofsystemdoesnotfiltertheoilbeforeitissenttotheengine.

    f. OilCoolers.

    (1) Purpose. Some automotive configurations do not allow sufficient airflowaroundthecrankcasetoallowtheoiltodissipateheat.Enginesinheavydutyanddesertusemustbeabletodissipatemoreheatfromtheiroilthannormalairflowcanaccomplish.Anoilcoolerisinstalledinallofthesecases.

    70

  • PRIN. OF INTERNAL COMBUSTION ENGINES - OD1619 LESSON 2/TASK 2

    FIGURE56.FILTERSYSTEMCONFIGURATIONS.

    (2) OilTemperatureRegulator (figure57,viewA,onthefollowingpage). Theoiltemperatureregulatorisusedtopreventtheoiltemperaturefromrisingtoohighinhotweather,andtoassistinraisingthetemperatureduringcoldstartsinwinterweather.Theregulatormakesuseofthe

    71

  • PRIN. OF INTERNAL COMBUSTION ENGINES - OD1619 LESSON 2/TASK 2

    liquidinthecoolingsystem.Itprovidesamorepositivemeansofcontrollingoiltemperaturethandoescoolingbyradiationofheatfromtheoilpanwells.

    FIGURE57.OILTEMPERATUREREGULATORANDOILCOOLER.

    72

  • PRIN. OF INTERNAL COMBUSTION ENGINES - OD1619 LESSON 2/TASK 2

    Theregulatorunitismadeupofacoreandahousing.Thecorethroughwhichtheoilcirculatesisofcellularorbellowsconstruction,builttoexposeasmuchoilaspossibletothecoolantthatcirculatesthroughthehousing.Theregulatorisattachedto the enginesothat theoil will flowthroughthe regulatorafterpassingthroughthepump.Theoilleavestheregulatoreitherheatedorcooled,dependingonthetemperatureofthecoolant,andisthencirculatedthroughtheengine.

    (3) OilCooler (figure57,viewB,onthepreviouspage). Thetypesofoilcoolers used with combat vehicles consist of a radiator through which air iscirculatedbymovementofthevehicle,orbyacoolingfan.Oilfromtheengineiscirculatedthroughthisradiatorandbacktothesumporsupplytank. Inthissystem,theradiatorwillactonlytocooltheoil.Itwillnotheatoilinacoldengine.

    FIGURE58.OILLEVELINDICATOR.

    g. OilLevelIndicator (figure58). Theoillevelindicatorisusuallyofabayonettype. Itconsistsofasmallrod,knownasadipstick,thatextendsthroughatubeintothecrankcase.Itismarkedtoshowwhenthecrankcaseisfullor,ifitislow,howmuchoilisneeded. Readingsaretakenbypullingthedipstickoutandnotingtheoillevelwhichitindicates.

    73

  • PRIN. OF INTERNAL COMBUSTION ENGINES - OD1619 LESSON 2/TASK 2

    h. PressureRegulator(figure59).Theoilpumpwillproducepressuresingreatexcesstothosenecessary. Thisexcesspressure,ifuncontrolled,wouldcauseexcessoilconsumptionduetofloodedcylinderwallsandleakagethroughoilseals.Aspringloadedregulatorvalveisinstalledinthelubricationsystemtocontrolpumppressure. Thevalvewillopenasthepressurereachesthevaluethatisdeterminedbythespring,causingexcessoiltobedivertedbacktothecrankcase.

    FIGURE59.OILPRESSUREREGULATOR.

    5.TypesofLubricationSystems

    a. SplashSystem(figure60onthefollowingpage).Thesplashlubricationsystemisnolongerusedinautomotiveengines,thoughitisusedinsmallequipmentengines.Inasplashlubricationsystem,dippersontheconnectingrodsentertheoilinthecrankcasewitheachcrankshaftrevolution,thussplashingtheoil.Astheoilisthrownupward,itfindsitswayintothevariousengineparts. Apassageisdrilledfromthedippertothebearingineachconnectingrodtoensurelubrication.Thissystemistoouncertainformodernautomotiveapplications.Onereasonisthatthelevelofoilinthecrankcasewillgreatlyvarytheamountoflubricationreceivedbytheengine;ahighlevelresultsinexcesslubricationandoilconsumptionandevenaslightlylowlevelresultsininadequatelubrication.

    74

  • PRIN. OF INTERNAL COMBUSTION ENGINES - OD1619 LESSON 2/TASK 2

    FIGURE60.SPLASHTYPELUBRICATIONSYSTEM.

    FIGURE61.COMBINATIONSPLASHANDFORCEFEEDLUBRICATIONSYSTEM.

    75

  • PRIN. OF INTERNAL COMBUSTION ENGINES - OD1619 LESSON 2/TASK 2

    b. CombinationSplashandForceFeedSystem(figure61onthepreviouspage).Inthecombinationsystem,oilisdeliveredtosomepartsbymeansofsplashandtootherpartsthroughoilpassages,underpressurefromapumpinthecrankcase.Themainandthecamshaftbearingsareusuallytheitemsthatareforcefedwhiletheconnectingrodsarefittedwithdippersthatsupplyoiltotherestoftheenginebysplash.Someconfigurationsusesmalltroughsundereachconnectingrod,keptfullbysmallnozzlesthatdeliveroilunderpressurefromtheoilpump.Theseoilnozzlesdeliveranincreasinglyheavystreamasspeedincreases. Atveryhighspeeds,theseoilstreamsarepowerfulenoughtostrikethedippersdirectly.Thiscausesamuchheaviersplashsothatadequatelubricationofthepistonsandtheconnectingrodbearingsisprovidedathigherspeeds.Ifacombinationsystemisusedonanoverheadvalveengine,theuppervalvetrainislubricatedbypressurefromtheoilpump.

    FIGURE62.FORCEFEEDLUBRICATIONSYSTEM.

    c. ForceFeed Lubrication System (figure 62). A somewhat more completepressurizationoflubricationisachievedintheforcefeedlubricationsystem.Oilisforcedbytheoilpumpfromthecrankcasetothemainbearingsandthe

    76

  • PRIN. OF INTERNAL COMBUSTION ENGINES - OD1619 LESSON 2/TASK 2

    camshaftbearings.Unlikethecombinationsystem,theconnectingrodbearingsarealso fed oil under pressure from the pump. Oil passages are drilled in thecrankshaftinordertoleadoiltotheconnectingrodbearings. Thepassagesdeliveroilfromthemainbearingjournalstotherodbearingjournals.Insomeengines,theseopeningsareholesthatindex(lineup)onceforeverycrankshaftrevolution. Inotherengines,thereareannulargroovesinthemainbearingsthrough which oil can feed constantly into the hole in the crankshaft. Thepressurizedoilthatlubricatestheconnectingrodbearingsgoesontolubricatethepistonsandwallsbysquirtingoutthroughstrategicallydrilledholes.Thislubrication system is used in virtually all engines that are equipped withsemifloatingpistonpins.

    FIGURE63.FULLFORCEFEEDLUBRICATIONSYSTEM.

    d. Full ForceFeed Lubrication System (figure 63). In the full forcefeedlubricationsystem,allofthebearingsmentionedinparagraph5bonpage76arelubricated by oil under pressure. This includes main bearings, rod bearings,camshaftbearings,andthecompletevalvemechanism.Inaddition,thefullforcefeedlubricationsystemprovideslubricationunderpressuretothepistons

    77

  • PRIN. OF INTERNAL COMBUSTION ENGINES - OD1619 LESSON 2/TASK 2

    andthepistonpins. Thisisaccomplishedbyholesdrilledthelengthoftheconnectingrod,creatinganoilpassagefromtheconnectingrodbearingtothepistonpinbearing.Thispassagenotonlyfeedsthepistonpinbearings,butalsoprovides lubrication for the pistons and cylinder walls. A full forcefeedlubricationsystemisusedinvirtuallyallcurrentautomotiveenginesthatareequippedwithfullfloatingpistonpins.

    6. Conclusion

    Thelubricationsystemplaysanimportantroleinkeepinganinternalcombustionengineoperational. Thecoolingsystem,describedinthenexttask,isanothersubsystemessentialforproperoperationofaninternalcombustionengine.

    78

  • PRIN. OF INTERNAL COMBUSTION ENGINES - OD1619 LESSON 2/TASK 3

    LESSON2

    INTERNALCOMBUSTIONENGINESUBSYSTEMS

    TASK3. Describe the principles, components, and operation of the coolingsystem.

    CONDITIONS

    Withinaselfstudyenvironmentandgiventhesubcoursetext,withoutassistance.

    STANDARDS

    Withinonehour

    REFERENCES

    Nosupplementaryreferencesareneededforthistask.

    1. Introduction

    All internal combustion engines are equipped with some type of cooling systembecauseofthehightemperaturesgeneratedduringoperation.Hightemperaturesarenecessarytoproducethehighgaspressuresthatactontheheadofthepiston.Powercannotbeproducedefficientlywithouthightemperatures.However,itisnotpossible to use all of the heat of combustion without harmful results. Thetemperatureinthecombustionchamberduringtheburningofthefueliswellabovethemeltingpointofiron.Therefore,ifnothingisdonetocooltheengineduringoperation,valveswillburnandwarp,lubricatingoilwillbreakdown,andbearingsandpistonswilloverheat,resultinginengineseizure.

    Thistaskwilldescribetheprinciples,components,andoperationofthecoolingsystem.

    2. CoolingEssentials

    a. CoolingMediums.

    79

  • PRIN. OF INTERNAL COMBUSTION ENGINES - OD1619 LESSON 2/TASK 3

    (1) Liquid. Liquidisthemostpopularcoolantinautomotiveuse. Aliquidcoolingsystemprovidesthemostpositivecoolingandisbestformaintaininganevenenginetemperature.

    (2) Air.Aircoolingismostpracticalforsmallvehiclesandequipmentbecausenoradiatororhosesarerequired.Aircoolinggenerallywillnotbeusedwhereverwatercoolingispractical.Thisisbecauseaircooledenginesdonotrunateventemperaturesandrequireextensiveuseofaluminumtodissipateheat.

    b. OtherSourcesofEngineCooling.Thereareothersourcesofheatdissipationfortheengineinadditiontothecoolingsystem.

    (1) Theexhaustsystemdissipatesassuch,ifnotmore,heatthanthecoolingsystem,althoughthatisnotitspurpose.

    (2) Theengineoil,asstatedinparagraph1onpage58,removesheatfromtheengineanddissipatesittotheairfromthesump.

    (3) Thefuelprovidessomeenginecoolingthroughvaporization.

    (4) Ameasurableamountofheatisdissipatedtotheairthroughradiationfromtheengine.

    3. LiquidCoolingSystems

    a. FlowofCoolant (figure64onthefollowingpage). Asimpleliquidcooledcoolingsystemconsistsofaradiator,coolantpump,piping,fan,thermostat,andasystemofjacketsandpassagesinthecylinderheadandcylinderblockthroughwhichthecoolantcirculates.Someenginesareequippedwithawaterdistributiontubeinsidethecoolingpassages;thesedirectadditionalcoolanttothepointswherethetemperaturesarehighest.Coolingoftheenginepartsisaccomplishedbykeeping the coolant circulating and in contact with the metal surfaces to becooled. Thepumpdrawsthecoolantfromthebottomoftheradiator,forcesitthroughthejacketsandpassages,andejectsitintotheuppertankonthetopoftheradiator.Thecoolantthenpassesthroughasetoftubestothebottomoftheradiatorfromwhichthecoolingcyclebeginsagain. Theradiatorissituatedinfrontofafandriveneitherbythewaterpumporbyanelectric

    80

  • PRIN. OF INTERNAL COMBUSTION ENGINES - OD1619 LESSON 2/TASK 3

    motor.Thefanensuresanairflowthroughtheradiatorattimeswhenthereisnovehiclemotion.Itshouldbenotedthatthedownwardflowofcoolantthroughtheradiatorcreateswhatisknownasathermosiphonaction.Thissimplymeansthatasthecoolantisheatedinthejacketsoftheengine,itexpands.Asitexpands,itbecomeslessdenseandthereforelighter.Thiscausesittoflowoutofthetopoutletoftheengineandintothetoptankoftheradiator. Asthecoolantiscooledintheradiator,itagainbecomesmoredenseandheavier.Thiscausesthecoolanttosettletothebottomtankoftheradiator.Theheatingintheengineandthecoolingintheradiator,therefore,createsanaturalcirculationthataidsthewaterpump.Theearliestautomotivevehiclesreliedonthermosiphonactionandusednowaterpump.

    FIGURE64.LIQUIDCOOLEDSYSTEM.

    81

  • PRIN. OF INTERNAL COMBUSTION ENGINES - OD1619 LESSON 2/TASK 3

    b. EngineWaterJackets(figure64onthepreviouspage).Thewaterpassagesinthecylinderblockandcylinderheadformtheenginewaterjacket.Inthemajorityofcylinderblocks,thewaterjacketcompletelysurroundsallcylindersalongtheirfulllength.Withinthejacket,narrowpassagesareprovidedbetweencylindersforcoolantcirculation. Insomeengineconfigurations,however,thecylinderboresareattachedtoeachotherandacoolantpassagewayisnotprovidedbetweenbores.Anengineofthisdesignoftenisreferredtoashavingsiamesecylinders.Thistypeofenginetendstooperatewithcylindertemperaturesslightlyhigherbetweenthebores,andslightlycoolerwherewaterjacketscomeincontactwiththebores.Inaddition,allenginesareprovidedwithwaterpassagesaroundtheexhaustvalveseat.Thisprovidescoolingforthevalvewhenitcomesincontactwiththeseat.

    Inthecylinderhead,thewaterjacketcoversthecombustionchambersatthetopofthecylindersandcontainswaterpassagesaroundthevalveseatswhenthesearelocated in the head. The coolant flows from the cylinder block up into thecylinderheadthroughpassagescalledwatertransferports. Atightsealattheportsbetweenthecylinderheadandblockisveryimportant.Thewatertightsealattheports,aswellasthegastightsealatthecombustionchamberopenings,isobtainedwithonelargegasketcalledthecylinderheadgasket.

    c. Coolants.Waterisbyfarthemostpopularcoolantforliquidcooledengines.It is plentiful, inexpensive, and its boiling point is within the efficientoperationaltemperaturerangeoftheengine.

    (1) Antifreeze Protection. When a vehicle is operated in areas where thetemperaturefallsbelow32F(0C),anantifreezesolutionmustbeaddedifwaterisusedasthecoolant. Themostcommonantifreezeisethyleneglycol. Otherantifreezesthatarelittleusedareglycerin,methylalcohol,andethylalcohol.Ethylandmethylalcoholprovideadequateprotectionasanantifreezewhenusedinsufficientquantities.Themainobjectiontotheseliquids,however,isthattheyevaporatebelowtheoperatingtemperatureofmodernautomotiveengines,makingthemimpractical. Glycerinoffersthesamedegreeofprotectionasalcohol,butdoesnotevaporateinuse,hasahigh

    82

  • PRIN. OF INTERNAL COMBUSTION ENGINES - OD1619 LESSON 2/TASK 3

    boilingpoint,isnoncorrosive,hasnoodor,andgivescompleteprotectionagainstfreezing in normal use. Ethylene glycol gives a maximum protection againstfreezingto65F(53.8C)whenitismixedtoasolutionof60percentwith40percentwater.

    Iftheproportionsofethyleneglycolareraisedinthesolution,itwillresultinahigherfreezingpointforthesolution,consequentlyhavinglessprotection.Ifa100percentsolutionofethyleneglycolwereused,itsfreezingpointwouldbemuchbelowthatofwater.Otherantifreezesolutions,however,donotshowthisincreaseoffreezingpointwithincreasingconcentration. Twogoodexamplesaremethylalcoholwhichfreezesat144F(97.8C),andethylalcoholwhichfreezesat174F(114.3C).

    (2) CorrosionResistance.Thecoolingsystemmustbefreeofrustandscaleinordertomaintainitsefficiency.Theuseofinhibitorsorrustpreventativeswillreduce or prevent corrosion and the formation of scale. Inhibitors are notcleaners and, therefore, will not remove rust and scale that have alreadyaccumulated.Mostcommerciallyavailableantifreezesolutionscontaininhibitors.Ifwateraloneisusedasacoolant,aninhibitorshouldbeadded.

    d. Radiators(figure65onthefollowingpage).Radiatorsforautomotivevehiclesusingliquidcoolingsystemsconsist oftwotankswithaheatexchangingcorebetweenthem.Theuppertankcontainsanoutsidepipecalledaninlet.Thefillerneckgenerallyisplacedonthetopoftheuppertank;attachedtothisfillerneckisanoutlettotheoverflowpipe.Thelowertankalsocontainsanoutsidepipethatservesastheradiator'soutlet.Operationoftheradiatorisasfollows:

    (1) Theuppertankcollectsincomingcoolantand,throughtheuseofaninternalbaffle,distributesitacrossthetopofthecore.

    (2) Thecoreismadeofnumerousrowsofsmallverticaltubesthatconnecttheupperandlowerradiatortanks. Sandwichedbetweentherowsoftubesarethinsheetmetalfins.Asthecoolantpassesthroughthetubestothelowertank,thefinsconducttheheatawayfromitanddissipateit

    83

  • PRIN. OF INTERNAL COMBUSTION ENGINES - OD1619 LESSON 2/TASK 3

    FIGURE65.ENGINERADIATORCONSTRUCTION.

    into the atmosphere. The dissipation of the heat from the fins is aided bydirectingaconstantairflowbetweenthetubesandoverthefins.

    (3) Thelowertankcollectsthecoolantfromthecoreanddischargesittotheenginethroughtheoutletpipe.

    (4) Theoverflowpipeprovidesanopeningfromtheradiatorforescapeofcoolantorsteamifpressureinthesystemexceedstheregulatedmaximum.Thispreventsruptureofcoolingsystemcomponents.

    Someradiatorsaredesignedwiththeirtanksonthesidesinaverticalposition.They are connected by a core that contains horizontal tubes. This radiatorconfigurationiscalledacrossflowradiatorandoperatesinthesamemannerastheconventionalverticalflowradiator,thoughitshouldbenotedthatthereisnothermosiphoneffectwithacrossflowradiator.

    e. WaterPump(figure66onthefollowingpage).Allmoderncoolingsystemshavewaterpumpsto

    84

  • PRIN. OF INTERNAL COMBUSTION ENGINES - OD1619 LESSON 2/TASK 3

    circulatethecoolant.Thepump,usuallylocatedonthefrontsideoftheengineblock,receivescoolantfromthelowertankandforcesitthroughthewaterjacketintotheupperradiatortank. Thepumpisofacentrifugaltypeandhasanimpellerwithbladesthatforcecoolantoutwardastheimpellerrotates. Itisusually driven by the engine crankshaft through a Vbelt. Advantages of acentrifugalpumpasawaterpumparethatitisinexpensive, circulatesgreatquantitiesofcoolantforitssize,andisnotcloggedbysmallamountsofforeignmatter.Anotheradvantageisthatacentrifugalpumppermitsalimitedamountofthermosiphonactionaftertheengineisshutdowntohelppreventboilover. Thepumphousingusuallyiscastfromironoraluminum.Theimpellercanbemadeofiron,aluminum,orplastic.Itridesonashaftthatissupportedinthehousingonasealeddoublerowballbearing.Thepumpshaftalsohasaspringloadedsealtopreventcoolantleakage.

    FIGURE66.WATERPUMPCONSTRUCTION.

    f. FanandShrouding(referbacktofigure64onpage81).Thefanpullsalargevolumeofairthroughtheradiatorcoresothatengineheatcanbedissipatedeffectively.Inmostcases,thefan

    85

  • PRIN. OF INTERNAL COMBUSTION ENGINES - OD1619 LESSON 2/TASK 3

    worksinanenclosurecalledashroudtoensuremaximumefficiencyofthefan.Therearetwomethodsofdrivingafan.Onemethodistoattachittotheendofthewaterpumpshaft.Theothermethod,becomingincreasinglypopular,istouseanelectricmotor.

    (1) ThermostaticallyControlledEngineDrivenFan. Somevehiclesareequippedwithasevenbladefan,particularlythoseforheavydutyuseorthosewithairconditioning.Thisfanconfigurationwillmovetremendousamountsofairthroughtheradiatortoprovideextracoolingcapacity.Theproblemwithahighcapacityfanisthatitcancausetheradiatorcoretofreezeincoldweather. Otherproblemsassociatedwithahighoutputfanareexcessivepowerconsumptionandnoiseat highway speeds. Most sevenbladefans are drivenbythe waterpumpthroughaviscous(fluid)clutch(figure67)tocorrecttheseconditions.Thefanclutchisdesignedtolimitthefanspeedbasedonthetemperatureoftheairdrawnthrough the radiator. The clutch will provide controlled slippage if thetemperatureofthisairisbelowapresetminimum.Afanclutchalsowillcontrolthenoiseandthepowerconsumptionofthefanbylimitingitsspeedtoapresetmaximum.

    (2) Electrically Motorized Fan (figure 68 on the following page). Theelectricallymotorizedfanisgainingpopu