vfd fp calc2

Upload: dance

Post on 07-Aug-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/20/2019 Vfd Fp Calc2

    1/14

    1-800-962-3787

    pec a an s o e onnev e ower m ns ra on or perm ng us o s r u e s oo o energy pro ess ona s wor w e,as we as r s op er . an, , ec an ca v ng neer, . . . or eve op ng ese ca cu a ors.

    See the complete line of energy saving drives from Cerus by clicking on the photo below:

    If you have any questions regarding these tools, please click to email Chris Milan at

     This, and other handy calculators can be found at http://.cerusind.com/calculators.asp

    Click here for e!tensive analysis tools at "#$ eb site

    "#$ CA%C&%A'()Sfor #an ! Pump Applications

    mailto:[email protected]://www.cerusind.com/calculators.asphttp://www.eere.energy.gov/http://www.eere.energy.gov/http://www.cerusind.com/calculators.aspmailto:[email protected]

  • 8/20/2019 Vfd Fp Calc2

    2/14

    Comparison of Inlet and Outlet Dampers

  • 8/20/2019 Vfd Fp Calc2

    3/14

    Comparison of Inlet and Outlet Dampers

  • 8/20/2019 Vfd Fp Calc2

    4/14

    #an $rives Power *raphs

    Page 4 of 14 Bonneville Power Administration Revision No. 1

    'he power curves above are used in the energy savings analysis. Curves developed from data obtained by measuring the operating characteristics of various fan systems and frominformation provided in +#low Control+, a estinghouse publication, Bulletin B-/0, #121)ev-CMS 030. Curves are representative, not precise,final economic analysis should be based on actual power 4k5 measurements of the fan system.

    0 20 40 60 80 100 120

    0.0

    20.0

    40.0

    60.0

    80.0

    100.0

    120.0

    16.4 17.020.0

    25.0

    32.0

    40.7

    51.1

    62.8

    75.7

    89.6

    104.4

    Eddy Current Drive Fan Flow Control

    % of Design CFM

       %  o

       f   D  e  s   i  g  n   I  n  p  u   t   P  o  w  e  r   (   k   W   )

    0 20 40 60 80 100 120

    0.00

    20.00

    40.00

    60.00

    80.00

    100.00

    120.00

    4.75   5.37  8.00

    12.89

    20.27

    30.38

    43.46

    59.75

    79.50

    102.93

    Adusta!le "peed Drive Fan Flow Control

    % of De sign CFM or % of Full "peed #PM

       %  o   f   D  e  s   i  g  n   I  n  p  u   t   P  o  w  e  r   (   k   W

       )

  • 8/20/2019 Vfd Fp Calc2

    5/14

    A$6&S'AB% SP$ $)7" 8)*9 SA"78*S CA%C&%A'() 

    Fan Motor Information

    *++.++ hp

    -.++ %

    +.++ % 1-800-3543787

    oer at 0an "esign C0M: 1+.2* KW

    Facility Information

    + hr!yr

    +.+- "!#$h

    &itin' Flo$ (ontrol M)tho* an* Fan +yp)

    1 Inlet Guide Vane, FC Fans 4 Outlet Damper, FC Fans 7

    1 2 Inlet Guide Vane, BI & Airfoil Fans 5 Outlet Damper, BI & Airfoil Fans

    3 Inlet Damper Box 6 Eddy Current Drives

    ,ty (ycl) .o$)r /nalyi ain' /nalyi

      $!isting 3ystem 43" 3ystem

    43" 3ystem oer %k'

    +.+5 -.+5 2+.++ *6.+6 -.7+ 6.*6 &7.8+ 9

    *+.+5 -.+5 2+.86 *6.67 6.1- &.&& 66.86 9

    2+.+5 *+.+5 2*.-1 *-.*6 -.&1 &.11 7+.77 9

    &+.+5 *+.+5 2&.&2 *8.&1 .++ -.82 8.+& 9

    6+.+5 *+.+5 28.66 *.-8 *2.7 7.+- 18.+7 9

    -+.+5 *+.+5 &*.6- 22.+ 2+.21 *6.2& 82.6 9

    8+.+5 *+.+5 &.72 21.&2 &+.& 2*.&& 61.71 9

    1+.+5 *+.+5 67.&8 &6.88 6&.68 &+.-* &&.* 9

    +.+5 *+.+5 8&.&& 66.61 -7.1- 6*.7- 2+.*& 9

    7+.+5 *+.+5 *.&1 -1.*& 17.-+ --.2 *+.-2 9

    *++.+5 *+.+5 *+6.+* 1&.+& *+2.7& 12.21 8.+6 9

    +otal *++.+5 258431 206629 -*.+& 9

    l , ( l h * i* if h * l i #

    nt)r )amep ate ;orsepoer:

    nt)r )amep ate $ ciency: $$$c)r n comnt)r Motor =oa at 0an "esign C0M:

    nt)r ;ours per year fan operates:

    nt)r $nergy Charge:

    )l)ct Flo$ (ontrol an*Fan +yp) @)lo$ Click to go to the #an 'ypes worksheet for more information

    Seletion ! allo"s #$o"er %'( readin)in t+e analysis

    $nter ercent of "esignCapacity %C0M'

    $nterercent of

     Time at thisCapacity

    4nnual $nergy3avings %>h/yr'

    4nnual $ner3avings %$!isting 3ystem

    ercent of"esign %>'

    "o )ot$nter "ata

    ?elo

    $!isting 3ystemoer %k'

    ercent of"esign %k'

    for 43"3ystem

    K$h!yr)&itin'

    K$h!yra*

    http://www.cerusind.com/http://var/www/apps/conversion/tmp/scratch_6/http://var/www/apps/conversion/tmp/scratch_6/http://www.cerusind.com/

  • 8/20/2019 Vfd Fp Calc2

    6/14

    Co..on Fan /ypes

    F( For$ar*-(r)* Fan @I @ac#$ar*-Inclin)* Fan Ca*ial-@la*) Fan /

       $  e  s  c  r   i  p   t   i  o  n  s  a  n   d   #  a  n      f   f   i  c   i  e  n  c   i  e  s

       P  e  r   f  o  r  m

      a  n  c  e   C   h  a  r  a  c   t  e  r   i  s   t   i  c  s

       A  p  p   l   i  c  a   t   i  o  n  s

    The fan blades curve in the direction of rotation. These fansare typically not as lare as other fan t ypes and structurally

    are not very rued. !an efficiencies are in the rane of 55 to65".

    The fan blades tilt bac#$ a%ay fro& the direction of rotation.The &ain difference bet%een fans in this cateory is the

    shape and construction of the blades. The 'ac#%ard()nclined!lat blades tend to be &ore rued and allo% so&e

    particulate to pass throuh but these blades are not veryaerodyna&ic and therefore are the least efficient. The

    'ac#%ard()nclined *urved blades are &ore efficient but theirorientation %ith the air strea& can allo% &oisture and

    particulate to collect on the blades %hich reduces fan

    perfor&ance and &ay cause e+cessive vibrations. Theefficiency ranes fro& 75 to 85". The 'ac#%ard()nclined

    ,irfoil blade rese&bles the %in of an aircraft and is the &ostefficient fan type %ith efficiencies over 90".

    These fans are typically the &ost rued of all types and canrane fro& -addle(heel desin to !lat 'lades %ith corrosion

    resistance coatins. These fans usually operate at lo%ervolu&es but hiher pressures than other fan types. The %ide

    openins bet%een the blades allo% larer &aterial to passthrouh and also &ini&i/es vibrations %hen operatin durin

    conditions %hen the flo% and pressure drops. Theconstruction of these fans allo%s the& to be &odified to &eet

    specific applications and to be repaired at &ini&u& costs.

    Typical ranes of fan efficiencies for !lat 'lades is 55 to 65"and 60 to 75" for the adial Tip.

    This fan roup includes fans. The fan blades are

    strea&. The &aority of  %hich allo% the& to sup

    enerate hih airflo%s bue+pensive and least effic

    efficiency these fans arethe Tubea+ial fan. To fur

    develop a &ore unified a

    for& the anea+ial fan.

    The typical perfor&ance curve for a !or%ard *urved fan

    contains a dip in the static pressure curve to the left of thepoint of &a+i&u& static pressure. This reion of the

    perfor&ance curve indicates that the characteristics of the air

    flo% throuh the fan %as not consistent. ,s the flo%increases$ the static pressure increases and decreases %ithin

    this reion. )t is not reco&&ended to operate the fan %ithinthis unstable reion of the fan curve due to the unpredictable

    flo% characteristics. This area is so&eti&es referred to as thestall reion.

    The fan perfor&ance curve for 'ac#%ard )nclined fans is

    si&ilar to the for%ard curve but typically has a s&aller dip inthe static pressure curve. The &aor difference of the

    bac#%ard inclined fans is the characteristics of the '- curve.

    The horsepo%er curve does not increase to a &a+i&u&a&ount at &a+i&u& flo% rate but instead %ill reach a pea#

    and then drop off as the f lo% rate continues to increase to its&a+i&u& a&ount. This characteristic allo%s the desiner to

    select a &otor si/e for the %orst casedesin conditions and ifany errors or chanes occur that %ould increase the flo%

    reuire&ents$ the fan %ill not be overloaded. This is typically

    referred to as a non(overloadin po%er curve.

    The perfor&ance curve for fans %ith adial 'lade %heels is

    typically a s&ooth curve sho%in the pressure steadilydroppin fro& a &a+i&u& at /ero flo% to a &ini&u& pressure

    at full flo%. This characteristic allo%s stable operation of the

    fan throuhout a %ide rane of flo%cf& by adustin thepressure. The correspondin '- curve increases at a linear

    rate as the fan flo% rate increases. The adial Tip fanperfor&ance curve is a blend of the 'ac#%ard( )nclined and

    adial 'lade curves. The '- curve increases to a &a+i&u&a&ount at &a+i&u& flo%. The adial Tip is &ore efficient than

    the adial 'lade and therefore reuires less horsepo%er to

    produce the sa&e output.

    The fan perfor&ance cur

    they are capable of provpressures than other fan

    a uniue '- curve that

    rate. The horsepo%er adecrease as flo% increas

    value at &a+i&u& flo% rpressure result in differe

    pressure$ causin instab %ithin this reion should

    :ue to the narro% openins bet%een fan blades$ these fans

    are not suited for airstrea&s containin particulate. Thesefans usually operate at lo% volu&es and lo% speeds such as

    in residential ,* units.

    ,s stated above$ these fans are typically non(overloadin

    and this characteristic &a#es the& a popular choice forapplications %ere the syste& perfor&ance is uncertain at

    &a+i&u& flo% rates. The inside of these blades are usually

    hollo% to reduce their %eiht but the build up of &oisture andparticulate can lead to cavities %hich reduces their efficiency.

    The narro% openins can li&it the si/e of particulate in the airstrea& they can tolerate. These fans are a ood choice for

    installations on the clean side of the process air strea& for

    &aterial and dust handlin syste&s and for forced(draft fansin boilers.

    These fans are the fans of choice for &ovin &aterial or air in

    harsh operatin environ&ents. They are used to conveyeverythin fro& air filled %ith particulate to %ood chips$ roc# or

    &etal scrap

    -ropeller fans are co&&

    e+haust syste&s. Tubea,* e+haust applicatio

    rates are reuired. ,ll of

    noise %hen co&pared to

  • 8/20/2019 Vfd Fp Calc2

    7/14

    7nlet "ane *raphs

    Page # of 14 Bonneville Power Administration Revision No. 1

    poer curve is over [email protected] *+-5

    8

    These power curves are used in the energy savings analysis.Curves developed from data obtained by measuring the operatingcharacteristics of various fan systems and from informationprovided in "Flow Control", a Westinghouse publication, Bulletin B-!, F#$#%ev-C&' (. Curves are representative, not precise.Final economic analysis should be based on actual power)*W+measurements of the fan system.

    0 20 40 60 80 100 120

    0.0

    20.0

    40.0

    60.0

    80.0

    100.0

    120.0

    50.3

    56.159.8

    62.2 64.0 66.0

    69.1

    73.9

    81.2

    91.9

    106.7

    Inlet Da.per 3o67 8eneral Curve

    % of Design CFM

       %  o   f   D  e  s   i  g  n   I  n  p  u   t   P

      o  w  e  r   (   k   W   )

    0 20 40 60 80 100 120

    0.0

    20.0

    40.0

    60.0

    80.0

    100.0

    120.0

    20.0   20.6  21.6

    23.3

    26.4

    31.5

    38.9

    49.4

    63.3

    81.4

    104.0

    Inlet 8uide 9ane Control7 Forward Curve Fans

    % of De sign CFM

       %   o

       f   D  e  s   i  g  n   I  n  p  u   t   P  o  w  e  r   (   k

    0 20 40 60 80 100 120

    0.0

    20.0

    40.0

    60.0

    80.0

    100.0

    120.0

    47.3

    52.655.8

    57.4 58.559.9

    62.3

    66.7

    73.8

    84.6

    99.8

    Inlet 8uide 9ane Control7 3I : Airfoil Fans

    % of Design CFM

       %  o   f   D  e  s   i  g  n   I  n  p  u   t   P  o  w  e  r   (   k   W   )

  • 8/20/2019 Vfd Fp Calc2

    8/14

    (utlet $amper *raphs

    Page $ of 14 Bonneville Power Administration Revision No 1

    +h) po$)r cr) ao) ar) )* in th) )n)r'y ain' analyi (r) *))lop)* from *ata otain)* y m)arin' th) op)ratin' charact)ritic ofario fan yt)m an* from information proi*)* in DFlo$ (ontrolD a W)tin'ho) plication @ll)tin @-851 F!86!C)-(M 8121 (r) ar)r)pr))ntati) not pr)ci) ?nal )conomic analyi hol* ) a)* on actal po$)r#W m)ar)m)nt of th) fan yt)m

    0 20 40 60 80 100 120

    0.0

    20.0

    40.0

    60.0

    80.0

    100.0

    120.0

    20.422.3

    25.6

    30.4

    36.7

    44.5

    53.8

    64.6

    76.9

    90.6

    105.9

    ;utlet Da.per Control7

    Forward Curve Fans

    % of Design CFM

       %   o

       f   D  e  s   i  g  n   I  n  p  u   t   P  o  w  e  r   (   k   W   )

    0 20 40 60 80 100 120

    0.0

    10.0

    20.0

    30.0

    40.0

    50.0

    60.0

    70.0

    80.0

    90.0

    100.0

    110.0

    120.0

    52.6 53.3

    57.2

    63.6

    71.5

    80.2

    88.7

    96.3

    102.1

    105.2

    ;utlet Da.per Control7 #adial 3lade7

    3a-kward In-lined : Airfoil Fans

    % of Design CFM

       %  o

       f   D  e  s   i  g  n   I  n  p  u   t   P  o  w  e  r   (   k   W   )

  • 8/20/2019 Vfd Fp Calc2

    9/14

    ADC=>A/;# 

    Fan A li-ations  Motor Information

    -+.++ hp

    $nter )amep ate $ ciency: 7-.++ %

    $nter Motor =oad at 0an "esign C0M: 7+.++ %

    oer%>' at 0an "esign C0M: &-.&6 KW

    Facility Information

    $nter ;ours per year fan operates: 18+ hr!yr

    $nter $nergy Charge: +.+- "!#$h

    Flo$ (ontrol M)tho* an* Fan +yp)

    1 Inl)t i*) Ean) F( Fan 4 h/Ar'

    4nnual $nergy Cos3avings %9/yr'

    $!isting3ystem

    ercent of"esign %>'

    "o )ot$nter "ata

    ?elo

    $!isting3ystem oer

    %>'

    ercent of"esign %>'

    for 43"3ystem

    K$h!yr)&itin'

    K$h!yra*

    +

    $

    ,

    &

    ,%

    t0   i  s   C  a  p  a  -   i   t  y

    +

    $

    ,$$

    t0   i  s   C  a  p  a  -   i   t  y

    'his Sample 7nput Sheet is for viewingpurposes only. 8o values can be inputted orchanged. 7t is included here to give the user

    an idea of what types of values can beentered into either the #an Calculator or

    Pump Calculator worksheets.

    http://var/www/apps/conversion/tmp/scratch_6/http://var/www/apps/conversion/tmp/scratch_6/

  • 8/20/2019 Vfd Fp Calc2

    10/14

    /@PE" ;F AI#F>;W C;?/#;>

    Inl)t i*) Ean) an*Inl)t ,amp)r

  • 8/20/2019 Vfd Fp Calc2

    11/14

    Pump $rives Power *raphs

    Page 11 of 14 Bonneville Power Administration Revision No. 1

    Balues used in spreadsheet

    'hese power curves are used in the energy savings analysis.

    Curves developed from data obtained by measuring the operatingcharacteristics of various pumps and from information provided in+#low Control+, a estinghouse publication, Bulletin B-/0,#121)ev-CMS 030. Curves are representative, not precise, finaleconomic analysis should be based on actual power4k5measurements of the pumping system.

    10 20 30 40 50 60 70 80 90 100 110

    0.00

    20.00

    40.00

    60.00

    80.00

    100.00

    120.00

    14.32 13.05  15.30

    21.07

    30.37

    43.19

    59.53

    79.40

    102.79

    A"D Pu.p Flow Control

    % of Design Flow (gp.) or % of Full "peed(rp.)

       %  o   f   D  e  s   i  g  n   I  n  p  u   t   P  o  w  e  r   (   k   W   )

    0 20 40 60 80 100 120

    0

    20

    40

    60

    80

    100

    120

    13.51

    18.16

    24.92

    33.38

    43.12

    53.72

    64.76

    75.81

    86.46

    96.29

    104.88

    Me -0ani-al "peed Pu.p Flow Control

    % of Design Flow (gp.)

       %   o

       f   D  e  s   i  g  n   I  n  p  u   t   P  o  w  e  r   (   k

       W   )

    0 20 40 60 80 100 120

    0.00

    20.00

    40.00

    60.00

    80.00

    100.00

    120.00

    16.40   17.04  19.98

    25.03

    32.01

    40.75

    51.06

    62.77

    75.69

    89.64

    104.45

    Eddy Current Drive Pu.p Flow Control

    % of Design Flow (gp.)

       %   o

       f   D  e  s   i  g  n   I  n  p  u   t   P  o  w  e  r   (   k   W   )

  • 8/20/2019 Vfd Fp Calc2

    12/14

    A$6&S'AB% SP$ $)7" 8)*9 SA"78*S CA%C&%A'() 

     

    *++.++ hp

    7-.++ %

    --.++ % 1-800-3543787

    6&.*7 KW

    Facility Information

    6+++ hr!yr

    +.+- "! $

    &itin' .mp Flo$ (ontrol M)tho*

    1 +rottlin) Valve 4 Bypass, -eirulation Valve

    * 2 Eddy Current Clut+ 5 Seletion . allo"s #easured $o"er %'( readin)s to *

    3 #e+anial %or/ue Converter(

    ,ty (ycl) .o$)r /nalyi ain'

    $!isting 3ystem 43" 3ystem

    +.+5 -.+5 --.2* 2&.- 21.6- **.- 2,&7.&+

    *+.+5 -.+5 8*.&7 28.-2 *7.*2 .28 &,8-*.+

    2+.+5 *+.+5 81.*7 27.+2 *6.&2 8.*7 7,*&&.2

    &+.+5 *+.+5 12.8* &*.&8 *&.+- -.86 *+,27.76

    6+.+5 *+.+5 11.8- &&.-6 *-.&+ 8.8* *+,112.*8

    -+.+5 *+.+5 2.&* &-.-- 2*.+1 7.*+ *+,-17.7&

    8+.+5 *+.+5 8.-7 &1.6+ &+.&1 *&.*2 7,1*&.28

    1+.+5 *+.+5 7+.67 &7.+ 6&.*7 *.8- ,*12.*6

    +.+5 *+.+5 76.+* 6+.8+ -7.-& 2-.1* -,7-8.-1

    7+.+5 *+.+5 71.*- 6*.78 17.6+ &6.27 &,+88.--*++.+5 *+.+5 77.7* 6&.*- *+2.17 66.6+ 671.7*

    +otal *++.+5 14273845 6950314 1&,2&-.&*

    ampl) ,ty (ycl) th)) can ) )* a a 'i*) if th) *ty cycl) i not #no$n

    ampl) ,ty (ycl) - I .HM. ;

  • 8/20/2019 Vfd Fp Calc2

    13/14

    A$6&S'AB% SP$ $)7" 8)*9 SA"78*S CA%C&%A'() 

     

    e used in t+e analysis

     /nalyi

    **7.72

    *2.--

    6-8.88

    -*6.-+

    -&.8*

    -27.++

    6-.88

    6+.8*

    271.&

    *-&.&&

    26.7+

     9 &,88*.11

     

    4nnual $nergy Cost3avings %9/yr'

    http://var/www/apps/conversion/tmp/scratch_6/http://var/www/apps/conversion/tmp/scratch_6/

  • 8/20/2019 Vfd Fp Calc2

    14/14

    'hrottle "alve Power *raphs

     

    +h) po$)r cr) ao) ar) )* in th) )n)r'y ain' analyi (r) *))lop)* from *ata otain)* y m)arin' th) op)ratin'charact)ritic of ario pmp an* from information proi*)* in DFlo$ (ontrolD a W)tin'ho) plication @llit)n @-851 F!86!C)-(M 8121 (r) ar) r)pr))ntati) not pr)ci) ?nal )conomic analyi hol* ) a)* on actal po$)r #W m)ar)m)nt of th)

    pmpin' yt)m

    10 20 30 40 50 60 70 80 90 100 110

    B

    B$

    '

    '$

    $Constant #e-ir-ulation7 3ypass Control

    % of Design Flow (gp.)

       %   o

       f   D  e  s   i  g  n   (   k   W

       )

    10 20 30 40 50 60 70 80 90 100 110

    5

    $5

    $5

    &$5

    5

    $5

    67.19

    72.61

    77.65

    82.31

    86.59

    90.49

    94.01

    97.15

    99.91

    /0rottling 9alve Flow Control

    % of Design Flow (gp.)

       %   o

       f   D  e  s   i  g  n   (   k   W   )