· web viewak použije rad takýchto dosiek môžeme dostať aj trajektóriu častice. častice v...

23
Gymnázium Jozefa Gregora Tajovského, Banská Bystrica Urýchľovače častíc

Upload: others

Post on 20-Jan-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1:  · Web viewAk použije rad takýchto dosiek môžeme dostať aj trajektóriu častice. častice v tomto prípade vyrábajú svoju vlastnú fotografiu. V 40. rokoch minulého storočia

Gymnázium Jozefa Gregora Tajovského, Banská Bystrica

Urýchľovače častíc

Eva Potančoková, III.E

Page 2:  · Web viewAk použije rad takýchto dosiek môžeme dostať aj trajektóriu častice. častice v tomto prípade vyrábajú svoju vlastnú fotografiu. V 40. rokoch minulého storočia

2012/2013

Obsah

Úvod.........................................................................................................................................................3

1 Urýchľovače častíc..............................................................................................................................4

1.1 Prečo stavať urýchľovač ?...........................................................................................................4

1.1.1 Neviditeľné vlny........................................................................................................................5

2 Ako taký urýchľovač funguje ?..........................................................................................................6

2.1 Prvý cyklotron.............................................................................................................................6

2.2 Synchrotron.................................................................................................................................7

2.3 Súčasnosť je toroid.....................................................................................................................7

2.3.1 Cosmotron............................................................................................................................7

2.4 Zrážky zrazených častíc...............................................................................................................7

2.5 Lineárny urýchľovač smerom k terču..........................................................................................8

2.6 LEP..............................................................................................................................................8

2.7 Továreň na vesmír.......................................................................................................................9

2.7.1 Konštrukcia LHC..................................................................................................................9

3 Detektory od začiatku......................................................................................................................10

3.1 Hmla detektorom.......................................................................................................................10

3.2 Emulzia.....................................................................................................................................11

3.3 Máme radi bublinky..................................................................................................................11

3.4 Od bubliniek k iskrám...............................................................................................................12

3.5 Detektory v urýchľovači............................................................................................................12

4 Stratený Higgs...................................................................................................................................13

Záver......................................................................................................................................................14

Zoznam použitej literatúry..................................................................................................................15

Príloha č.1...............................................................................................................................................16

2

Page 3:  · Web viewAk použije rad takýchto dosiek môžeme dostať aj trajektóriu častice. častice v tomto prípade vyrábajú svoju vlastnú fotografiu. V 40. rokoch minulého storočia

Úvod

Časticová fyzika ako odbor skúma všetku hmotu a antihmotu vo vesmíre. Ako ale

vznikla ? Prečo prevažuje hmota nad antihmotou ? Čo sa dialo počas veľkého tresku ? Aj na

tieto otázky sa snaží nájsť odpovede časticová fyzika. Za odpoveďami sa môžeme vydať

dvoma smermi. Jeden smeruje hore do samotného nekonečna vesmíru, ktorý je všade okolo

nás. Druhý smer je pod zem do tunelov lineárnych a kruhových urýchľovačov. Ako taký

urýchľovač ale vyzerá a funguje ? Najznámejší a najvýkonnejší kruhový časticový

urýchľovač sa v súčasnosti nachádza na francúzsko-švajčiarskej hranici, blízko mesta Ženeva

- CERN. Práve tu bol vybudovaný urýchľovač LEP, ktorý bol neskôr nahradení výkonnejším

urýchľovačom LHC. Ako ale vedci dokážu spozorovať častice ak sú tak malé ? Aj na tieto

otázky sa pokúsim odpovedať. Cez históriu urýchľovačov sa dostaneme k samotným

detektorom častíc používaných v súčasnosti.

3

Page 4:  · Web viewAk použije rad takýchto dosiek môžeme dostať aj trajektóriu častice. častice v tomto prípade vyrábajú svoju vlastnú fotografiu. V 40. rokoch minulého storočia

1 Urýchľovače častíc

1.1 Prečo stavať urýchľovač ?Začiatky časticovej fyziky pochádzajú z prvotného pozorovania vesmíru. Vesmír

vznikol pomocou Veľkého tresku pri ktorom sa vytvoril čas a priestor. Neskôr sa energia z

neho zhlukovala do častíc, tvorili sa hviezdne hmloviny, hviezdy a nakoniec aj planéty. Ako

ale vieme že Veľký tresk naozaj nastal ?

Prvý smer ktorým sa automaticky pozeráme je práve nočná obloha, presnejšie hlboký

vesmír. Dlhodobejším pozorovaním sa zistilo, že sa vesmír neustále rozpína, pričom jeho

rozpínanie sa zrýchľuje. Ide o pozorovateľný posun a vzďaľovanie sa hviezd. Ak by sme tento

jav otočili musel by sa celý vesmír nakoniec zhluknúť do jedného miesta. Ako ale taký Veľký

tresk vyzeral ? Pozorovaním vesmíru práve Hubblovym teleskopom sa podarilo nahliadnuť do

ďalekej minulosti . Svetlo vo vákuu sa šíri presne rýchlosťou 299 792 458 m.s-1. Aj svetlo

ktoré pochádza zo Slnka musí cestovať 8 min aby dorazilo na Zem. Preto čím ďalej sa

pozeráme do hlbín vesmíru, tým viac sa pozeráme do jeho minulosti. Teleskop bol naslepo

zamierený na najtmavšie miesta vo vesmíre, tzv. Hubblovo ultrahlboké pole. Prvé zväčšené

fotografie boli nekvalitné a poškodené šumom. Až po poskladaní 400 fotografií do jedného

celku sa fotografia vesmíru vyčistila. Tieto fotografie boli vytvorené v priebehu 1 milióna

sekúnd, čo ide o najdlhšie snímanú expozíciu pomocou teleskopu. Takto vznikol obraz

vesmíru starý okolo 13,1 miliárd rokov, 600 - 400 miliónov rokov po Veľkom tresku.

Zachytené boli najvzdialenejšie nám pozorovateľné galaxie ranného vesmíru. Tieto galaxie

nemali tvar aký poznáme u bližších galaxií - žiadne špirály či elipsy. Galaxie boli len na

začiatku svojho vzniku. Ide o hmatateľný dôkaz Veľkého tresku.

Takto sme sa však aj dostali k hranici pozorovania vesmíru. Ak sa budeme pozerať

hlbšie do temnoty nebude vidieť nič. Dostaneme sa totižto do minulosti pred veľkým treskom

kedy hviezdy neexistovali, takže žiadne svetlo sa k nám nedostane. Dosiahli sme takmer

hranicu optického pozorovania.

4

Page 5:  · Web viewAk použije rad takýchto dosiek môžeme dostať aj trajektóriu častice. častice v tomto prípade vyrábajú svoju vlastnú fotografiu. V 40. rokoch minulého storočia

Obrázok č.1-Najvzdialenejšie galaxie v ultrahlbokom poli Hubblovho teleskopu (1-4)

1.1.1 Neviditeľné vlnyV 30. rokoch 20. storočia prišli astronómovia s objavom pozorovania vesmíru

pomocou iného žiarenia než viditeľného svetla. Išlo o ultrafialové, ultračervené žiarenie

a dokonca aj o rádiové frekvencie. V roku 1965 sa podarilo 2 astronómom Wilsonovi

a Penziasovi zachytiť neznámy šum. Išlo o mikrovlnové žiarenie z vesmíru. Toto žiarenie sa

neskôr ukázalo byť posledným zábleskom Veľkého tresku. Svetelné vlny Veľkého tresku

pretrvali až dodnes, ale rozpínaním vesmíru sa tieto svetelné vlny roztiahlo a tak sa stali

neviditeľnými. Nakoniec boli zachytené 14 miliárd rokov neskôr.

Obrázok č.2 - Ranné štádium vesmíru po Veľkom tresku zachytené ako mikrovlnové žiarenie

Pre ďalšie skúmanie Veľkého tresku a malého sveta častíc nám už ostáva len ostať na

Zemi. V poslednom storočí sa o odhaľovanie odpovedí snažia vedci pri pokusoch s prúdmi

(lúčmi) častíc. Začalo to časticami alfa a žiarením beta, ktoré sa vďaka rádioaktivite

vyskytuje prirodzene v prírode. Pokračovalo to kozmickým žiarením a nakoniec to skončilo

pri intenzívnych prúdoch častíc ako sú elektróny, protóny a nakoniec časticami vytvorenými

v moderných urýchľovačoch. Zrážanie častíc môže nastať dvoma spôsobmi. Prvý spôsob je

namierenie prúdu častíc na statickú prekážku. Druhý spôsob, ktorý sa využíva častejšie je

5

Page 6:  · Web viewAk použije rad takýchto dosiek môžeme dostať aj trajektóriu častice. častice v tomto prípade vyrábajú svoju vlastnú fotografiu. V 40. rokoch minulého storočia

zrazenie dvoch protichodných lúčov rôznych častíc. Väčšinou ide o lúč častíc a lúč s ich

antičasticami (protóny s antiprotónmi/ elektróny s pozitrónami...). Rôzne typy častíc

umožňujú rozličné skúmanie hmoty. Pri zrážke nastáva stav, ktorý je dosť podobný

podmienkam Veľkého tresku. Pri takejto zrážke vznikajú aj nové exotické častice (v

súčasnosti je objavených asi 300 častíc). Tieto experimenty prebiehajú práve v urýchľovačoch

častíc.

2 Ako taký urýchľovač funguje ?

Vo vnútri urýchľovača sa vytvorí umelý lúč zvolených častíc, napríklad elektróny.

Elektricky nabité častice sú zrýchľované vo vnútri urýchľovača pomocou elektrických síl.

Čím viac energie dodáme častici tým rýchlejšie sa bude pohybovať. Dráha častice môže byť

lineárna ale môže byť aj zakrivená. Zakrivenie alebo udržanie dráhy častice sa zabezpečuje

pomocou magnetického pola.

2.1 Prvý cyklotron

Prvotnou myšlienkou urýchľovača bolo zrýchliť častice pomocou série malých

elektrických postrčení aby dosiahli väčšiu rýchlosť. Čím väčšia je rýchlosť častíc, tým viac

dokážu preniknúť do jadra atómu. Častice pritom cestovali sústavou oddelených kovových

trubíc z ktorých bol odčerpaný vzduch. Vďaka tomu nebolo v trubiciach elektrické pole a iné

častice.

Najdôležitejšou častou prístroja bola medzera medzi trubicami. V tejto medzere mení

elektrické pole svoju polaritu z kladnej na zápornú a späť. Frekvencia zmeny polarity je

presne nastavená tak aby časticu vždy zrýchlila a naopak nespomalila. Toto nakopnutie

elektrickou silou sa využíva dodnes aj u veľkých urýchľovačoch.

Ako prvý s nápadom postaviť urýchľovač okrúhleho tvaru prišiel Ernest Lawrence.

Dráhu častíc udržiaval pomocou magnetického pola. Dve duté trubice v tvare písmená D

a medzi nimi medzera, vytvárali prvý kruhový urýchľovač častíc ktorý mal priemer len 13cm.

Na rozdiel od lineárnych urýchľovačov boli častice urýchľované len na dvoch

miestach. Dráha týchto častíc ale nebola kruhová - vytvárala špirálu. Čím vyššiu rýchlosť

6

Page 7:  · Web viewAk použije rad takýchto dosiek môžeme dostať aj trajektóriu častice. častice v tomto prípade vyrábajú svoju vlastnú fotografiu. V 40. rokoch minulého storočia

častice mali tým sa viac vzďaľovali od stredu, pričom sa čas ich obehu nemenil. Cyklotron

pracuje s konštantnou dobou obehu častíc. To je však iba relatívny pojem. U častíc sa

uplatňuje tzv. teória relativity, inak povedané, častice začnú klásť voči zrýchľovaniu odpor.

Týmto javom sa čas ich obehu zväčšuje.

Pre spomaľujúce častice môže byť upravená frekvencia zmeny elektrickej polarizácia.

V tom prípade sa však v tempe udržujú len vysoko energetické častice a na nové častice

s nižšou začiatočnou energiou, nevychádza frekvencia a sú nepravidelne zrýchľované ale

môžu byť aj spomaľované. Tento problém vyriešil Synchrotron.

2.2 Synchrotron

Ide o zariadenie ktoré je schopné vysielať častice z rádioaktívneho zdroja po

skupinách. Nasledujúca skupina častíc je vypustená až potom čo opustí oblasť magnetu

a urýchľovača. Spolu s cyklotronom vytvára synchrocyklotron. Synchrocyklotron je schopný

urýchliť protóny na energiu dostatočnú k tomu, aby ich zrážky z atómovými jadrami

vyprodukovala častice zvané piony. Takéto zariadenie však musí mať priemer 5m. Na

vyvinutie väčších rýchlostí je takéto zariadenie neefektívne.

2.3 Súčasnosť je toroid

Ak by sme chceli využiť synchrotron pri vyšších energiách a rýchlostiach častíc,

potrebovali by sme na oboch stranách medzery veľmi silné magnety. Tento problém sa

vyriešil novou konštrukciou urýchľovača. Dostal podobu tzv. toroidu. Ide o trubice s odsatým

vzduchom stočené do tvaru prstenca pričom po celom obvode boli nainštalované magnety

okolo trubíc ako prstienky. Táto konštrukcia synchrotronov (akcelerátorov častíc) sa používa

dodnes. Postupne rastúce magnetické pole dokáže udržať častice v ich dráhach aj pri

vysokých rýchlostiach. Prvé veľké synchrotrony boli postavené v USA a CERNe.

2.3.1 Cosmotron

V americkom Brookhaven National Laboratory bol postavený ako prvý protónový

synchrotron. Začal fungovať už v roku 1952 a protóny dosahovali energiu až 3GeV. Je

zložený zo 4 častí, pričom každá časť obsahuje 72 kovových blokov o rozmere 2.5x2.5m. Vo

vnútri je trubica pre lúč častíc veľká 15x35cm. Cosmotron bol v prevádzke do roku 1966.

7

Page 8:  · Web viewAk použije rad takýchto dosiek môžeme dostať aj trajektóriu častice. častice v tomto prípade vyrábajú svoju vlastnú fotografiu. V 40. rokoch minulého storočia

2.4 Zrážky zrazených častíc

Ak sa chce zraziť protón s antiprotónom, jeho antihmotnou verziou, potrebujeme viac

než len jeden urýchľovač. Tento trik sa ako prvý využil v americkom Fermilabe. Tu sa

nachádza urýchľovač zvaný Tevatron - pretože dosahuje energiu častíc až 1TeV. Na Tevatron

je napojený menší urýchľovač Main Injection. V tomto urýchľovači sú najprv vystreľované

spŕšky protónov na statickú prekážku z berýlia alebo uhlíku. Takto sa uvoľňujú napr. piony

a kaony, ktoré sa potom používajú k zrážkam častíc v Tevatrone.

Main Injection produkuje taktiež protóny a antiprotóny, pričom ich produkcia je 200

miliárd za hodinu. Tento princíp sa využíva aj vo veľkých urýchľovačoch ako LHC. Rôzne

častice sa používajú k skúmaniu rôznych vlastností hmoty.

2.5 Lineárny urýchľovač smerom k terču

Najdlhší lineárny urýchľovač sa v súčasnosti nachádza v Stanforde (SLAC). Má dĺžku

3 km a elektróny v ňom dosahujú energiu až 50GeV. Elektróny vyletujú z dela, kde sú

vyžarované zahrievanými vláknami. Potom sú častice urýchľované pomocou vĺn, presnejšie

elektromagnetickým žiarením ktoré im dodáva energiu. Tento proces prebieha v 100 tisíc

trubiciach o priemere 12cm. Zariadenie má presnosť 0,5mm a nachádza sa 8m pod povrchom.

Ak chceme ostreľovať statický terč je to najlepšie riešenie. Čo ale v prípade, ak chceme

zrážať lúče častíc ? Jeden lúč vychádza z jedného konca a druhý vychádza z druhého. Tu však

nastáva problém. Ako zariadime aby sa tieto lúče naozaj zrazili ? Pravdepodobnosť zrazenia

lúčov je veľmi nízka, pretože lúče častíc majú priemer menší než 1 mikron (10 -6m). Lúče

častíc a antičastíc sa dokonca navzájom odpudzujú kvôli opačnému elektrickému náboju

častíc. Preto udržať tieto lúče tak aby sa zrazili je naozajstná výzva.

2.6 LEP

LEP (Large Electron Pozitron) bol kruhový urýchľovač o dĺžke 27 km v Ženeve.

Dokázal zvýšiť energiu elektrónov až na 100GeV. Do prevádzky ho uviedli v roku 1989 do

roku 2000. Jeho cieľom bolo vyprodukovať lúče častíc s energiou 90GeV. Pred ukončením

svojej prevádzky dosiahol energiu lúča až 200GeV. Pri pokusoch s elektrónmi nastal menší

8

Page 9:  · Web viewAk použije rad takýchto dosiek môžeme dostať aj trajektóriu častice. častice v tomto prípade vyrábajú svoju vlastnú fotografiu. V 40. rokoch minulého storočia

problém. Urýchlené elektróny po kruhovej dráhe totižto vyžarujú energiu, tzv. synchrotronové

žiarenie. Žiarenie je tým väčšie, čím je menšia dráha elektrónu a tým je vyššia jeho energia.

Protóny taktiež emitujú synchrotronové žiarenie, ale pretože sú 200krát hmotnejšie než

elektróny, môžu dosiahnuť väčšiu energiu, než sa ich energetická strata prejaví .Preto sa

nahradil v roku 2000 urýchľovačom LHC(Large Hadron Collider).

2.7 Továreň na vesmír

LHC (Large Hadron Collider) je najvýkonnejší a najväčší urýchľovač častíc na svete.

Nachádza sa na hranici Francúzska s Švajčiarskom v Ženeve. Je vybudovaný v 27 km okruhu

namiesto predchádzajúceho urýchľovača LEP 80 - 120m pod povrchom. Jeho hlavným

cieľom je protichodné zrážanie lúčov subatomárnych častíc s vysokou energiou. Tieto častice

nadobúdajú rýchlosť podobnú rýchlosti svetla. Urýchlenými časticami sú protóny a ťažké

atómové jadrá - zložené z kvarkov. Kvarky sú základná stavebná častica nuklidov (neutrónov

a protónov). Väčšie častice tvoria vzájomným spojením pomocou nehmotnej častice

nazývanej gluon. Tieto častice sú silne zviazané silnou jadrovou silou (môžu obsahovať aj

antikavrky - antihmota), nazývané spoločným názvom hadrony (preto Hadronový

urýchlovač).

2.7.1 Konštrukcia LHC

LHC obsahuje na začiatku lineárny urýchľovač. Ten dokáže vytvoriť pre experiment

rôzne častice. Po výstupe častíc z lineárneho urýchľovača, častice vstúpia do sústavy

prvotných kruhových urýchľovačov. Tam sa častice rozdelia na dve časti. Aby sa mohli zraziť

musia byť uvedené do opačných smerov. Aj to zabezpečujú menšie okruhy urýchľovača.

Z nich častice potom putujú priamo cez veľký okruh urýchľovača.

Obrázok č.3 - Mapa podzemného komplexu v CERNe

9

Page 10:  · Web viewAk použije rad takýchto dosiek môžeme dostať aj trajektóriu častice. častice v tomto prípade vyrábajú svoju vlastnú fotografiu. V 40. rokoch minulého storočia

Častice obehnú okruh 11 245krát za sekundu a cieľovú energiu dosiahnu po 20

minútach. Aby sa častice v tuneli správne zatáčali, udržuje ich trajektóriu silné magnetické

pole. Toto pole zabezpečuje sústava supravodivých magnetov. Boli špeciálne vyrobené pre

LHC a každý z nich má výšku 14m a váhu 35ton. Tieto magnety spolu vytvárajú 150 tisíc krát

silnejšie magnetické pole než je magnetické pole Zeme. Aby sa magnety neprehrievali sú

schladzované supratekutým héliom. Podzemný okruh je tak schladení na -271,3 C0, čo

predstavuje necelé dva stupne nad absolútnou nulou. Táto teplota je dokonca nižšia než

teplota vo vesmíre. Ďalšou výhodou je, že pri tak nízkej teplote preteká magnetmi elektrický

prúd s takmer nulovým odporom. Trubice, ktorými častice prelietavajú sa na niekoľkých

miestach krížia. Práve na tomto mieste dochádza ku kolíziám lúčov častíc. Okolo miesta

kríženia trubíc sú vystavané obrovské haly vybavené 40m vysokými a 25m širokými valcami

- detektormi.

Detektory sú schopné zachytávať informácie zo zrážok pri kolíziách. Dokážu merať

rýchlosť, hmotnosť, náboj vzniknutej častice a identifikovať ich. Detektory v podstate fungujú

ako videokamery s niekoľko miliónov senzorov, ktoré vytvoria pri každej zrážke 1

fotografiu. Snímaných je 600 miliónov zrážok za sekundu. Tieto detektory sú nazvané podľa

cieľových experimentov: ATLAS, ALICE, CMS, LHCB

3 Detektory od začiatku

Svet častíc sa pohybuje na neuveriteľnom malom priestore. Pre lepšie si predstavenie

tejto veľkosti si zoberieme bodku na konci tejto vety. V nej sa totižto nachádza približne 100

miliárd atómov uhlíka. Ak by sme ich chceli spozorovať voľným okom, museli by sme bodku

natiahnuť na rozmer 100m. Tak ako je predsa len možné, že vedci takéto častice nájdu a ešte

k tomu aj rozlíšia ? Takýmto detektorom je napríklad aj obrazovka počítača. Na špeciálny

citlivý materiál dopadajú elektróny a emitujú svetlo. Podobne to funguje aj v plynoch. Ak

plynom preletí elektricky nabitá častica, zanechá za sebou stopu ionizovaných atómov.

Detektor musí byť schopní zosilniť efekt ionizácie aby sa dala zachytiť. Častice za sebou

nechávajú až milimeter dlhé trajektórie svetla, čo je možné pozorovať na fotografiách.

10

Page 11:  · Web viewAk použije rad takýchto dosiek môžeme dostať aj trajektóriu častice. častice v tomto prípade vyrábajú svoju vlastnú fotografiu. V 40. rokoch minulého storočia

3.1 Hmla detektorom

Presný názov je hmlová komora. V tejto komore sa nachádza uzavretá vodná para.

Keď odsajeme vzduch z komory dôjde k expanzii, tá prudko ochladí paru a vzniknú kvapôčky

kondenzovanej hmly. Keď potom prelieta častica alfa alebo beta, atómy vodnej pary ionizujú

a vytvárajú sa zhustené mraky hmly. Je to podobné ako keď Slnko svieti cez oblak a vytvárajú

sa viditeľné lúče svetla. Hmlová komora sa používala hlavne na detekciu častíc kozmického

žiarenia. Boli v nej zachytené aj antičastice ako pozitróny a iné exotické častice.

3.2 Emulzia

Ďalší spôsob detekovania častíc je fotografická doska. Vďaka tmavnutiu týchto dosiek

bolo objavené röntgenové žiarenie a rádioaktivita. Emulzie ktoré sa používajú sú citlivé na

vysoko energetické častice. V mieste kde prejde častica doskou emulzia stmavne. Ak použije

rad takýchto dosiek môžeme dostať aj trajektóriu častice. častice v tomto prípade vyrábajú

svoju vlastnú fotografiu. V 40. rokoch minulého storočia boli takéto emulzie vynesené

balónom do vysokých výšok. Vznikli tak prvé zábery kozmického žiarenia.

3.3 Máme radi bublinky

Pri ďalších urýchľovačoch sme potrebovali nie len zaznamenať časticu ale aj jej

životnosť. Napríklad ak by sme chceli odmerať životnosť častice o energii niekoľko GeV,

vyžadovala by sa hmlová komora dlhá okolo 100m. Okrem toho hmlové komory pracujú

pomaly. Cyklus kompresie a dekompresie mohol trvať 1-2 minúty, no urýchľovače už v 50.

rokoch dodávali častice do experimentu každé dve sekundy. Plyny na to boli príliš pomalé.

Tak to skúsili s kvapalinou. Presnejšie s vodou vo fázy tzv. prehriatej kvapaliny. Voda bola

zahrievaná takmer na bod varu, no znížením tlaku v komore sa do varu nedostala. V tejto fáze

nedokáže ostať voda dlho pretože ide o nestabilnú fázu. A to hralo do karát vedcom. Ako

náhle vstúpila častica do takejto vody, začala ionizovať atómy vody a privádzala ju do varu.

Dôsledkom toho za sebou nechávala častica viditeľnú trajektóriu v podobe bubliniek. Táto

trajektória sa vyfotografovala a vznikli veľmi čisté snímky dráh častíc. Hneď potom sa

v komore vyrovnal tlak a voda sa znova dostala do stavu prehriatej kvapaliny. Pokiaľ sa

v komore nachádzalo magnetické pole, tak boli trajektórie častíc zakrivené dôsledkom

záporného alebo kladného náboja.

11

Page 12:  · Web viewAk použije rad takýchto dosiek môžeme dostať aj trajektóriu častice. častice v tomto prípade vyrábajú svoju vlastnú fotografiu. V 40. rokoch minulého storočia

Obrázok č.3 - Fotografia trajektórie častíc pomocou bublinkovej komory

Dokonca bolo možné pomocou scintilátorov vypočítať dobu letu a tým aj rýchlosť

častice. Identifikácia častíc bola však metódou pokusu a omylu. Priradená energia a hybnosť

častice musela súhlasiť s vstupnými hodnotami experimentu. Bolo to zdĺhavé ale v 60. rokoch

iná metóda nebola.

3.4 Od bubliniek k iskrám

Udržovanie kvapaliny v tzv. prehriatej fáze bolo náročné takže sa vedci museli vydať

iným smerom. Základný model iskrovej komory sa skladá z paralelne usporiadaných veľmi

tenkých kovových dosiek vzdialených od seba len niekoľko milimetrov. Dosky sú vo vnútri

komory uložené vo vzácnych plynoch, napr. neóne. Keď komorou preletí nabitá častica,

zanechá za sebou stopu ionizovaného plynu. Vtedy preletí komorou pulz vysokého napätia

a okolo ionizovaných častíc trajektórie sa vytvoria iskry - je to ako blesk pri búrke. Trasa

výboja sa dá odfotografovať a vznikne obrázok trajektórie dráh častíc. Iskrové komory

dokážu pracovať 1000krát rýchlejšie než tie bublinkové.

3.5 Detektory v urýchľovači

Napriek všetkému elektronické detektory poskytujú najrýchlejšie a najlepšie výsledky.

Taktiež majú jednu dôležitú vlastnosť - môžu sa totižto nachádzať vo vnútri urýchľovača,

teda priamo pri zrážke. V LHC majú lúče častíc schopnosť prechádzať detektorom cez 40

miliónkrát za sekundu. Pri každom prechode by mali byť schopné vytvoriť 25 kolízií - to

znamená 25 miliárd zrážok za sekundu. Do počítačov sa dostáva 1,5 miliónov údajov za

sekundu. Tieto informácie sú online spracovávané a ak sa vyskytne anomália, úlohou

počítačov je ju odstrániť a zregulovať. Pokiaľ sa nedá odstrániť automaticky, tak je

upozornení pracovník CERNu. 12

Page 13:  · Web viewAk použije rad takýchto dosiek môžeme dostať aj trajektóriu častice. častice v tomto prípade vyrábajú svoju vlastnú fotografiu. V 40. rokoch minulého storočia

Detektor ATLAS je vysoký 26m a dokáže zmerať dráhy častíc s presnosťou na stotinu

milimetra.

Detektor CMS má podobnú veľkosť. Je zložený z troch častí, pričom každá časť

zachytáva iné častice. Vnútorná časť sa nazýva „vnútorný stopár“. Úlohou stopára je

sledovať nabité častice s presnosťou na stotinu milimetra a umožniť počítačom

zrekonštruovať ich dráhu, ktorá bola zakrivená silným magnetickým polom. Ďalšou strednou

časťou je dvojdielny kalorimeter, ktorý má za úlohu merať energiu všetkých častíc. Vnútorná

časť detekuje elektróny a fotóny, stredná meria energiu hadrónov. Vonkajšia vrstva je zložená

z tzv. miónových komôr, ktoré detekujú mióny - elektricky nabité častice, ktoré sa dokážu

prevŕtať až tak ďaleko. Jediné častice, ktoré sa nedokážu detekovať sú neutriná. Stopa, ktorú

po sebe zanechajú je len v podobe chýbajúcej energie a hybnosti, ktorá musí byť zachovaná

pri každom type premeny.

4 Stratený Higgs

Poznáme častice, ktoré umožňujú jadrovú reakciu v Slnku alebo niektoré typy

rádioaktivity. Hovoríme presnejšie o fotónoch a bozónoch W a Z. Ale kde sa vzala hmotnosť

častíc ? Základný model fundamentálnych častíc a síl, ktoré medzi nimi pôsobia, vysvetľuje

hmotu zavedením tzv. Higgsovho pola (Peter Higgs, matematik, 1964).

Higgsovo pole postupuje celým priestorom. Hmota vzniká v skratke tak, že častice

reagujú práve s týmto polom. Fotóny ako častice svetla nereagujú s polom, a tým pádom sú

nehmotné. Bozóny, kvarky a leptony naopak s polom reagujú a sú hmotné, inak povedané

majú hmotnosť. Podobne ako elektromagnetické pole produkuje energetické balíčky kvantá,

tak aj Higgsovo pole by malo produkovať balíčky tzv. Higgsových bozónov. Precíznym

meraním na urýchľovači LHC v kombinácií s matematikou kvantovej teórie sa dá

predpokladať, pri akej energii, by mal byť Higgsov bozón zaznamenaný. Pôvod hmotnosti sa

teda datuje presnejšie do podmienok milióntiny milióntiny sekundy po Veľkom tresku. Vtedy

teplota vesmíru poklesla na tisíc miliónov miliónov stupňov. Táto častica pri experimentoch

vzniká s pravdepodobnosťou jedného objavenia na 20 miliónov miliónov kolízií častíc. To

znamená, že pri miliarde kolízií za sekundu by sa mal Higgsov bozón objaviť priemerne raz

za deň na každom z príslušných experimentov LHC.

13

Page 14:  · Web viewAk použije rad takýchto dosiek môžeme dostať aj trajektóriu častice. častice v tomto prípade vyrábajú svoju vlastnú fotografiu. V 40. rokoch minulého storočia

Prevratný objav nakoniec prišiel : "Môžem potvrdiť, že došlo k objavu častice, ktorá

zodpovedá teórii Higgsovho bozónu."( John Worsley, Riaditeľ britskej Rady vedeckých a

technologických zariadení (STFC), na seminári CERN-u v Ženeve,4. Júla,2012). Len ďalšie

experimenty potvrdia alebo vyvrátia objav bozónu. Dovtedy budeme musieť v napätí čakať.

Záver

Aj napriek technickému pokroku, stále nie sme schopný sformulovať a pochopiť všetky

zákony fyziky. Časticové urýchľovače sú len ďalším krokom k odpovediam ukrytým vo

vesmíre. Pochopiť všetko avšak nie je možné. Ľudia túžia po poznaní a to ich poháňa v pred.

Časticová fyzika je odbor ktorý ide do hĺbky samotnej hmoty. Urýchľovače sú ako

mikroskopy do tohto malého sveta. Vďaka nim vidíme nepozorovateľné. Vedci neustále

pracujú na nových teóriách a experimentoch, ktorými tieto teórie overujú. Vďaka

urýchľovačom sme dosiahli pokroky v medicíne a dokonca samotný World Wide Web

vznikol v CERNe. Pôvodne šlo o rozosielanie výsledkov experimentov do celého sveta

laboratóriám a vedeckým ústavom. V súčasnosti sa internet stal základným aspektom tohto

sveta.

14

Page 15:  · Web viewAk použije rad takýchto dosiek môžeme dostať aj trajektóriu častice. častice v tomto prípade vyrábajú svoju vlastnú fotografiu. V 40. rokoch minulého storočia

Zoznam použitej literatúry http://www.cas.sk/clanok/227418/potvrdene-vedci-z-cern-u-tvrdia-ze-maju-bozsku-casticu.html

Close Frank : Částicová fyzika. Průvodce pro každého, Dokořán 2008, ISBN 978-80-7363-160-4

Polkinghorne John : Kvantová teorie. Průvodce pro každého, Dokořán 2008, ISBN 978-80-7363-084-3

BBC : The Big Bang Machine, Gideon Bradshaw, Brian Cox, 2008

15

Page 16:  · Web viewAk použije rad takýchto dosiek môžeme dostať aj trajektóriu častice. častice v tomto prípade vyrábajú svoju vlastnú fotografiu. V 40. rokoch minulého storočia

Príloha č.1

Obrázok č.5 - Detektor ATLAS vo vnútri LHC

Obrázok č.6 - Detektor CMS vo vnútri urýchľovača LHC

16

Page 17:  · Web viewAk použije rad takýchto dosiek môžeme dostať aj trajektóriu častice. častice v tomto prípade vyrábajú svoju vlastnú fotografiu. V 40. rokoch minulého storočia

Obrázok č.7 - Lawrencov cyklotron o priemere 13cm

17