weltman revised (1)

532
Math 1314 College Algebra Fall 2010 LSC – North Harris

Upload: nani2020

Post on 25-Nov-2015

35 views

Category:

Documents


2 download

DESCRIPTION

College Algebra

TRANSCRIPT

  • Math1314

    CollegeAlgebra

    Fall2010

    LSCNorthHarris

    LturnellText BoxLatest UpdateNovember 21, 2012

  • Materialtakenfrom:

    Weltman,Perez,Tiballiunpublishedmaterial

    CollegeAlgebraversion 73

    byStitzandZeager

    GotoLSCNorthHarrisMathDepartmentwebsiteforupdatedandcorrected

    versionsofthismaterial.

    MathDeptWebsite:nhmath.lonestar.edu

  • Page 1

    Ellen TurnellRectangle

  • Page 2

    Ellen TurnellRectangle

  • Page 3

    Ellen TurnellRectangle

  • Page 4

    Ellen TurnellRectangle

  • Page 5

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 6

    Ellen TurnellRectangle

  • Page 7

    Ellen TurnellRectangle

  • Page 8

    Ellen TurnellRectangle

  • Page 9

    Ellen TurnellRectangle

  • Page 10

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 11

    Ellen TurnellRectangle

  • Page 12

    Ellen TurnellRectangle

  • Page 13

    Ellen TurnellRectangle

  • Page 14

    Ellen TurnellRectangle

  • x-6 -5 -4 -3 -2 -1 1 2 3 4 5 6 x-6 -5 -4 -3 -2 -1 1 2 3 4 5 6

    x-6 -5 -4 -3 -2 -1 1 2 3 4 x-6-5-4-3-2-1 1 2 3 4 5 6 7 8 910

    x-1 1 2 3 4 5 6 7 8 9 1011

    x-1 -23

    -13

    13

    23

    1

    x2 73

    83

    3 103

    113

    4

    Section 2.4-Absolute Value

    1. 8 or 8 x x 3. 6 or 6 x x 5. 5 5 or 4 4

    x x

    7. 4 or 3 x x 9. 10 or 2 x x 11. 7 or 22

    x x

    13. 82 or 3 x x 15. No solution 17. 10 14 or

    3 3 x x

    19. 88 or 3

    x x 21. 52

    x 23. 14 8 or 5 5

    x x

    25. 4 2 or 15 3

    x x 27. 5 or 4 x x 29. 102 or 3

    x x

    31. 13

    x 33. No solution 35. 17 13 or 12 12

    x x

    37. 3 or 1 x x 39. 2 or 4 x x 41. 112

    x

    43. 5 1 or 3 5

    x x 45. 113 or 7

    x x 51. 5 5 , 53. 1 1 , ( , ) 55. 4 2[ , ] 57. 5 9[ , ] 59. 11 1 , [ , ) 61. 5 7 , [ , ) 63. 5 4 , 65. 1

    3x

    67. No Solution 69. 1133

    ,

    Page 15

    LturnellText BoxAnswers

  • x-2 -1 1 2 3 4 x-2 -32

    -1 -12

    12

    1 32

    2

    x-4 -2 2 42/3

    x1 2 3 4 5 6 7 8 9 1011x-3-8

    3-73-2-5

    3-43-1-2

    3-13

    13231

    x-3 -2 -1 1 2 3 4 5 6 7 8 x-3 -2 -1 1 2 3

    x -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 x-2 -1 1 2 3 4 5 6 7

    x-5 -4 -3 -2 -1 1 2 x-3 -2 -1 1 2 3

    x-6 -5 -4 -3 -2 -1 1 2 3 4 5 6

    71. 1 33

    , ( , ) 73. 1 1 1 or 2 2 2

    , ,x

    75. , 77. 223

    , ,

    79. 4 8, 81. 7 13 ,

    83. 1 5, [ , ) 85. 9 74 4, , 87. 9 1 , 89. 1 5 ,

    91. 10 23 3

    , , 93. 0 1 , ( , )

    Page 16

  • Absolute Value Inequalities

    Solve the inequalities. Graph your answer on a number line. Write answers in interval notation. 1. 3x 2. 5x < 3. 2 7x + 4. 3 5 10x <

    5. 2 43

    x <

    6. 2 3 10x + 7. 4 2 3 9x + < 8. 3 1 7 10x + 9. 1 4 7 2x < 10. 1 2 4 1x 11. 4x 12. 7x > 13. 1 8x + 14. 2 1 7x

    15. 1 35

    x >

    16. 3 4 8x + 17. 2 10 16x +

    18. 3 1 2 4x > 19. 9 2 2 1x 20. 2 4 5 8x + > 21. 2 3 12x < 22. 2 5 9x + 23. 2 3 5 13x + 24. 4 1 7 13x > 25. 2 1 12 5x + + = 26. 4 5 4x = 27. 2 5 6x

    28. 1 02x +

    29. 6 7 0x+ 30. 362 >++x 31. 486 ++ x 32. 1 0x + > 33. 5513

  • Absolute Value Inequalities- Answers

    1. [ ]3,3 2. ( )5,5 3. [ ]9,5 4. 5 ,5

    3

    5. ( )10,14 6. 13 7,

    2 2

    7. ( )5,1 8. [ ]0,2 9. 31,

    2

    10. [ ]1,2 11. ( ] [ ), 4 4, 12. ( ) ( ), 7 7, 13. ( ] [ ), 9 7, 14. ( ] [ ), 3 4, 15. ( ) ( ), 14 16, 16. ( ] 4, 4 ,3

    17. ( ] [ ), 18 2, 18. ( ) ( ), 1 3, 19. ( ] [ ),4 5, 20. 21 5, ,

    2 2

    21. 9 15,2 2

    22. ( ] [ ), 7 2, 23. [ ]1,7 24. ( ) ( ), 4 6, 25. 26. 5x = 27. ( ), 28. ( ), 29. 6

    7x =

    30. ( ), 31. 32. ( ) ( ), 1 1, 33. 34.

    Page 18

  • Page 19

    Ellen TurnellRectangle

  • Page 20

    Ellen TurnellRectangle

  • Page 21

    Ellen TurnellRectangle

  • Page 22

    Ellen TurnellRectangle

  • Page 23

    Ellen TurnellRectangle

  • Page 24

    Ellen TurnellRectangle

  • Page 25

    Ellen TurnellRectangle

  • Page 26

    Ellen TurnellRectangle

  • Page 27

    Ellen TurnellRectangle

  • Page 28

    Ellen TurnellRectangle

  • Page 29

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 30

    Ellen TurnellRectangle

  • Page 31

    Ellen TurnellRectangle

  • Page 32

    Ellen TurnellRectangle

  • Page 33

    Ellen TurnellRectangle

  • Section 2.5Quadratic Equations

    1. 1,53

    3. 1 3,2 2

    5. 1,04

    7. { }2,2

    9. { }1,4

    11. { }4,5

    13. 3

    2

    15. { }7,3

    17. { }3

    19. 3 5

    5

    21. 11

    2

    23. { }3 7

    25. { }2,1

    27. 3 6

    2

    29. { }2 2

    31. 1

    3i

    33. { }2 2

    35. { }6, 2

    37. { }3 10

    39. { }5 3i

    41. 5 13

    2

    43. 2 3

    2

    45. 5 57

    4

    47. 1 59

    6

    i

    49. { }1 3

    51. { }4 i

    53. 5

    2

    55. { }3 5i

    57. 7

    0,2

    59. 3

    2

    i

    61. 2 5

    3

    63. { }4 2

    65. 4,03

    67. 2

    2

    69. 1 5

    3

    i

    71. 3 7

    7

    73. 1 2

    3

    i

    75. 1, 3

    2

    77. 1

    2

    i

    Page 34

    LturnellText BoxAnswers

  • Page 35

    Ellen TurnellRectangle

  • Page 36

    Ellen TurnellRectangle

  • Page 37

    Ellen TurnellRectangle

  • Page 38

    Ellen TurnellRectangle

  • Page 39

    Ellen TurnellRectangle

  • Page 40

    Ellen TurnellRectangle

  • Page 41

    Ellen TurnellRectangle

  • Page 42

    Ellen TurnellRectangle

  • Page 43

    Ellen TurnellRectangle

  • Page 44

    Ellen TurnellRectangle

  • Page 45

    Ellen TurnellRectangle

  • Section 2.7Miscellaneous Equations

    1. 2

    0, ,35

    3. { }0, 5, 2

    5. 3,1, 1

    2

    7. 2 2

    2, ,3 3

    9. 1, 23

    i

    11.

    1 33,1,

    2 2

    i

    13.

    12, ,1 32

    i

    15. 5

    2

    17.

    19. { }4

    21. { }9

    23. { }1

    25. { }6

    27. { }1

    29. { }32

    31. { }3

    33. { }1

    35. { }3

    37. 3, 2

    3

    39. 3,2

    i

    41. { }2 13

    43. 7 3

    2

    45. 1,8

    27

    47. 27 1,

    8 8

    49. 1, 44

    51. { }9

    53. 2, 33

    55. 1, 24

    57. 9 15,4 4

    59. 1 3,3 5

    61. { }7,3

    63. 1, 22

    65. { }1,15

    67. { }16,11

    69. { }31,33

    71. 80

    3

    Page 46

    LturnellText BoxAnswers

  • Quadratic Types of Equations

    Find all solutions of the equation. 1. 4 213 40 0x x + = 2. 4 25 4 0x x + = 3. 6 32 3 0x x = 4. 6 37 8 0x x+ = 5.

    2 13 33 2 5x x+ =

    6. 4 2

    3 35 6 0x x + = 7.

    1 12 42 1 0x x + =

    8. 1 1

    2 44 4 0x x + = 9.

    1 12 44 9 2 0x x + =

    10. 1 1

    2 43 2 0x x + = 11.

    2 13 32 5 3 0x x =

    12. 2 1

    3 33 5 2 0x x+ = 13.

    4 23 34 65 16 0x x + =

    14. 2 110 24 0x x = 15. 2 13 7 6 0x x = 16. 2 12 7 4 0x x = 17. 2 17 19 6x x + = 18. 2 15 43 18x x = 19. 2 16 2x x + = 20. 4 29 35 4 0x x = 21. ( ) ( )22 7 2 12 0x x+ + + + = 22. ( ) ( )22 5 2 5 6 0x x+ + = 23. ( ) ( )23 4 6 3 4 9 0x x+ + + = 24. ( ) ( )22 2 20 0x x + = 25. ( ) ( )22 1 5 1 3x x+ + = 26. ( ) ( )1 12 42 11 2 18x x =

    Page 47

  • Answers

    Quadratic Types of Equations 1. 2 2, 5x = 2. 2, 1x = 3. 3 3, 1x = 4. 2,1x = 5.

    125 ,127

    x =

    6. 2 2, 3 3 x = 7. 1x = 8. 16x = 9.

    1 ,16256

    x = 10. 16,1x = 11.

    1 ,278

    x =

    12. 1 , 827

    x =

    13. 1 , 648

    x =

    14. 2 5,3 8

    x =

    15. 3 1,2 3

    x =

    16. 12,4

    x =

    17. 7 1,2 3

    x =

    18. 5 1,2 9

    x =

    19. 32,2

    x =

    20. 13 ,2

    x i= 21. 5, 6x = 22.

    71,2

    x =

    23. 13

    x = 24. 7, 2x = 25.

    32,2

    x = 26. 6563,18x =

    Page 48

  • Page 49

    Ellen TurnellRectangle

  • Page 50

    Ellen TurnellRectangle

  • Page 51

    Ellen TurnellRectangle

  • Page 52

    Ellen TurnellRectangle

  • Page 53

    Ellen TurnellRectangle

  • Page 54

    Ellen TurnellRectangle

  • Page 55

    Ellen TurnellRectangle

  • Page 56

    Ellen TurnellRectangle

  • Page 57

    Ellen TurnellRectangle

  • Page 58

    Ellen TurnellRectangle

  • Page 59

    Ellen TurnellRectangle

  • Page 60

    Ellen TurnellRectangle

  • Page 61

    Ellen TurnellRectangle

  • -2 -53

    -43

    -1 -23

    -13

    13

    23

    1 -1 1 2 3 4 5 6 7

    -2 -1 1 2 3 4 5 6

    -1 -12

    12

    12 3 2 + 3

    4 2 4 + 2-5 -4 -3 -2 -1 1 2 3 4 5

    -7 -6 -5 -4 -3 -2 -1 1 2 3 4

    -1 1 2 3 4 -2 -1 1 2 3 4

    -1 -12

    12

    1 32

    2 52

    3 -7 -6 -5 -4 -3 -2 -1 1 2 3 4

    -4 -3 -2 -1 1 2 1 2 3 4 5 6

    Section 2.8-Polynomial and Rational Inequalities

    1. 123

    , 3. 4 5 , ( , )

    5. 9 02

    , [ , ) 7. 1 5 , 9. 1

    2x 11. 2 3 2 3 ,

    13. 4 2 4 2 , , 15. , 17. No Solution 19. 5 3 2 , ( , ) 21. 1 2 3 3 , ( , ) ( , ) 23. 1 ,

    25. 1 302 2

    , , 27. 5 3 3 , , 29. 3 , 31. 2 5,

    Page 62

    LturnellText BoxAnswers

  • -2 -1 1 2 3 4 5 6 7 -4 -72-3 -5

    2-2 -3

    2-1 -1

    212

    1

    -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 -8 -7 -6 -5 -4

    -3 -2 -1 1 2 3 4 5 -1 1 2 3 4 5 6

    -10 -8 -6 -4 -2 2 4 6 -8-7-6-5-4-3-2-1 1 2 3 4 5 6

    -6 -4 -2 2 -8 -7 -6 -5 -4 -3 -2 -1 1 2

    33. 1 6 , ( , ) 35. 13 2 , ,

    37. 6 5 , 39. 6 , 41. 2 4 , 43. 2 4 , ( , ) 45. 10 4 , ( , ) 47. 6 1 4 , ( , )

    49. 4 2 , ( , ) 51. 13 4 12 , ,

    Page 63

  • Page 64

    Ellen TurnellRectangle

  • Page 65

    Ellen TurnellRectangle

  • Page 66

    Ellen TurnellRectangle

  • Page 67

    Ellen TurnellRectangle

  • Page 68

    Ellen TurnellRectangle

  • Page 69

    Ellen TurnellRectangle

  • Page 70

    Ellen TurnellRectangle

  • Page 71

    Ellen TurnellRectangle

  • Page 72

    Ellen TurnellRectangle

  • Page 73

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 74

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 75

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 76

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 77

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 78

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 79

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 80

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 81

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 82

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 83

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 84

    Ellen TurnellRectangle

    LturnellRectangle

  • Page 85

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 86

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Section 3.1-Relations and Functions 1.

    -4 -3 -2 -1 1 2 3 4

    -2-1

    123456

    A

    B

    C

    D

    3. 10, (3, 1)d M 5. 317, ( ,1)

    2d M

    7. 2 29, (3,3)d M 9. 5 17 2, ,

    2 2d M

    11. 109 11 1, ,12 8 4

    d M 13. 23.05 4.8, ( 0.15, 2)d M 15. 53 13, , 2

    2d M

    17. 1 12, ,

    2x hd h M y

    19. (10,11)B 21. 11( ,6)

    2

    23. 10 6 5, 20P A 27. (7, 2);( 9,2) 29. ( 3,12);( 3,2) 31. (0,9);(0, 7) 37. ( 3,0); 37Center radius

    Page 87

    LturnellText BoxAnswers

  • Page 88

    Ellen TurnellRectangle

    LturnellRectangle

  • Page 89

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 90

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 91

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 92

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 93

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 94

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 95

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 96

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 97

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 98

    Ellen TurnellRectangle

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • In exercises 25-42 an equation and its graph are given. Find the intercepts of the graph, and determine whether the graph is symmetric with respect to the x-axis, y-axis, and/or the origin. 25. 26. 27.

    -4 -3 -2 -1 1 2 3 4

    -3-2-1

    123456

    y = x2

    -4 -3 -2 -1 1 2 3 4

    -3-2-1

    123456

    y = x4 y=3 |x|

    28. 29. 30.

    x = y2 + 2 y = 2x y = 3x

    31. 32. 33.

    x2 + y2 = 4 4x2 + 9y2 = 36 y =1x

    Page 99

  • 34. 35. 36.

    1x2 + 1

    x = |y| + 3

    y = 4 x

    37. 38. 39.

    x2 y2 = 1 y2 x2 = 1

    x = y2 4

    40. 41. 42.

    y = 4 x2 y = x2 + 2

    x = 4 y2

    Page 100

  • Page 101

    Ellen TurnellRectangle

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • In exercises 69-72, sketch a graph that is symmetric to the given graph with respect to the y-axis. 69. 70.

    71. 72.

    In exercises 73-76, sketch a graph that is symmetric to the given graph with respect to the x-axis. 73. 74.

    Page 102

  • 75. 76.

    In exercises 77-80, sketch a graph that is symmetric to the given graph with respect to the origin. 77. 78.

    79. 80.

    Write Algebra 81. Explain what it means for the graph of an equation to be symmetric with respect to the

    y-axis, x-axis, or the origin.

    82. How do you find the intercepts of the graph of an equation? 83. Describe a strategy for finding the graph of an equation.

    Page 103

  • Section 3.2-Graphs of Equations 1. 3. 5.

    -4 -3 -2 -1 1 2 3 4

    -4-3-2-1

    1234

    -4 -3 -2 -1 1 2 3 4

    -4-3-2-1

    1234

    -4 -3 -2 -1 1 2 3 4

    -12

    -9

    -6

    -3

    3

    7. 9. 11.

    -4 -3 -2 -1 1 2 3 4

    -4-3-2-1

    1234

    13. 15. 17.

    -2 -1 1 2 3 4 5 6

    -4-3-2-1

    1234

    -4 -3 -2 -1 1 2 3 4

    -4-3-2-1

    1234

    -6 -5 -4 -3 -2 -1 1 2

    -4-3-2-1

    1234

    Page 104

  • 19. 21. 23.

    -4 -3 -2 -1 1 2 3 4 5 6

    -2-1

    123456

    -6 -5 -4 -3 -2 -1 1 2 3 4

    -2-1

    123456

    -4 -3 -2 -1 1 2 3 4

    -4-3-2-1

    1234

    25. (0,0); symmetric with respect to y-axis 27. (0,3), ( 3,0), (3,0); symmetric with respect to y-axis 29. (0,0); symmetric with respect to origin 31. (0, 2), ( 2,0), (2,0); symmetric with respect to y-axis, x-axis, and origin

    33. No intercepts; symmetric with respect to origin 35. (3,0); symmetric with respect to x-axis 37. ( 1,0); symmetric with respect to y-axis, x-axis, and origin 39. (0, 2), ( 4,0); symmetric with respect to x-axis 41. (0, 2); symmetric with respect to y-axis

    43. 45. 47.

    -4 -3 -2 -1 1 2 3 4

    -4

    -3

    -2

    -1

    1

    2

    -4 -3 -2 -1 1 2 3 4-1

    123456

    49. 51. 53.

    -2 -1 1 2 3 4 5 6

    -4-3-2-1

    1234

    -2 -1 1 2 3 4 5 6

    -4-3-2-1

    1234

    -2 -1 1 2 3 4 5 6-2-1

    12345678

    Page 105

  • 55. 57. 59.

    -2 -1 1 2 3 4 5 6-2-1

    12345678

    -2 -1 1 2 3 4 5 6

    -4-3-2-1

    1234

    -2-1 1 2 3 4 5 6 7 8 910

    -4-3-2-1

    1234

    61. 63. 65.

    -2 -1 1 2 3 4 5 6 7 8

    -4-3-2-1

    1234

    -4 -3 -2 -1 1 2 3 4

    -4-3-2-1

    1234

    -4 -3 -2 -1 1 2 3 4

    -4-3-2-1

    1234

    67. 69. 71.

    -4 -3 -2 -1 1 2 3 4

    -2-1

    123456

    73.

    75. 77.79.

    Page 106

  • Page 107

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 108

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 109

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 110

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 111

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 112

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 113

    Ellen TurnellRectangle

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 114

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 115

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 116

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 117

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 118

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Section 3.4-Relations and Functions

    1. Yes, it is a function 3. No, not a function 5. Yes, it is a function 7. Yes, it is a function 9.

    3 50 42 10

    1 3 12 3

    23 3 3

    3

    ( )( )( )( )( ) ( )

    ( ) ( )

    ( ) ( )

    ffff x xf x f

    xf h f

    hf x h f x

    h

    11.

    2

    3 130 52 3

    1 2 4 32 2 4

    23 3 2 12

    4 2

    ( )( )( )( )( ) ( )

    ( ) ( )

    ( ) ( )

    ffff x x xf x f x

    xf h f h

    hf x h f x x h

    h

    13.

    2

    3 100 72 5

    1 2 102 6

    23 3 2

    2 4

    ( )( )( )( )( ) ( )

    ( ) ( )

    ( ) ( )

    ffff x x xf x f x

    xf h f h

    hf x h f x x h

    h

    15.

    2

    3 150 92 5

    1 3 5 72 3 7

    23 3 3 17

    6 3 1

    ( )( )( )( )( ) ( )

    ( ) ( )

    ( ) ( )

    ffff x x xf x f x

    xf h f h

    hf x h f x x h

    h

    17.

    533

    0522

    511

    2 52 2

    3 3 53 35

    ( )

    ( )

    ( )

    ( )

    ( ) ( )

    ( ) ( )( )

    ( ) ( )( )

    f

    f undefined

    f

    f xx

    f x fx x

    f h fh h

    f x h f xh x x h

    19.

    136

    103

    2 1114

    2 12 3

    3 3 16 6

    13 3

    ( )

    ( )

    ( )

    ( )

    ( ) ( )

    ( ) ( )( )

    ( ) ( )( )( )

    f

    f

    f

    f xx

    f x fx x

    f h fh h

    f x h f xh x x h

    Page 119

    LturnellText BoxAnswers

  • 21. 3 6

    0 0223

    2 213

    2 42 3 4

    3 3 818

    4 4

    ( )( )

    ( )

    ( )

    ( ) ( )( )

    ( ) ( )( )

    ( ) ( )( )( )

    ff

    f

    xf xx

    f x fx x

    f h fh h

    f x h f xh x x h

    23. 2 2 , ( , ) 25. ,

    27. 52

    , 29. 2 5 ( , ] [ , ) 31. , 33. 2 , 35. , 37. 3 3 4 4 , ( , ) ( , ) 39. , 41. , 43. 0 3 3 , , 45. 5 ,

    Page 120

  • 50 Relations and Functions

    1.5.1 Exercises

    1. Suppose f is a function that takes a real number x and performs the following three steps inthe order given: (1) square root; (2) subtract 13; (3) make the quantity the denominator ofa fraction with numerator 4. Find an expression for f(x) and find its domain.

    2. Suppose g is a function that takes a real number x and performs the following three steps inthe order given: (1) subtract 13; (2) square root; (3) make the quantity the denominator ofa fraction with numerator 4. Find an expression for g(x) and find its domain.

    3. Suppose h is a function that takes a real number x and performs the following three steps inthe order given: (1) square root; (2) make the quantity the denominator of a fraction withnumerator 4; (3) subtract 13. Find an expression for h(x) and find its domain.

    4. Suppose k is a function that takes a real number x and performs the following three steps inthe order given: (1) make the quantity the denominator of a fraction with numerator 4; (2)square root; (3) subtract 13. Find an expression for k(x) and find its domain.

    5. For f(x) = x2 3x+ 2, find and simplify the following:

    (a) f(3)

    (b) f(1)(c) f

    (32

    )(d) f(4x)

    (e) 4f(x)

    (f) f(x)

    (g) f(x 4)(h) f(x) 4(i) f

    (x2)

    6. Repeat Exercise 5 above for f(x) =2

    x3

    7. Let f(x) = 3x2 + 3x 2. Find and simplify the following:

    (a) f(2)

    (b) f(2)(c) f(2a)

    (d) 2f(a)

    (e) f(a+ 2)

    (f) f(a) + f(2)

    (g) f(

    2a

    )(h) f(a)2(i) f(a+ h)

    8. Let f(x) =

    x+ 5, x 3

    9 x2, 3 < x 3x+ 5, x > 3

    (a) f(4)(b) f(3)

    (c) f(3)

    (d) f(3.001)

    (e) f(3.001)(f) f(2)

    Page 121

    Ellen TurnellText Box

    Ellen TurnellTypewritten TextAdditional Exercises taken from Stitz and Zeager Book

    Suggested problems are p. 50: 5-10

    Ellen TurnellRectangle

  • 1.5 Function Notation 51

    9. Let f(x) =

    x2 if x 1

    1 x2 if 1 < x 1x if x > 1

    Compute the following function values.

    (a) f(4)

    (b) f(3)(c) f(1)

    (d) f(0)

    (e) f(1)(f) f(0.999)

    10. Find the (implied) domain of the function.

    (a) f(x) = x4 13x3 + 56x2 19(b) f(x) = x2 + 4

    (c) f(x) =x+ 4

    x2 36(d) f(x) =

    6x 2

    (e) f(x) =6

    6x 2(f) f(x) = 3

    6x 2

    (g) f(x) =6

    46x 2(h) f(x) =

    6x 2x2 36

    (i) f(x) =3

    6x 2x2 + 36

    (j) s(t) =t

    t 8(k) Q(r) =

    r

    r 8(l) b() =

    8

    (m) (y) = 3

    y

    y 8(n) A(x) =

    x 7 +9 x

    (o) g(v) =1

    4 1v2

    (p) u(w) =w 8

    5w

    11. The population of Sasquatch in Portage County can be modeled by the function P (t) =150t

    t+ 15, where t = 0 represents the year 1803. What is the applied domain of P? What range

    makes sense for this function? What does P (0) represent? What does P (205) represent?

    12. Recall that the integers is the set of numbers Z = {. . . ,3,2,1, 0, 1, 2, 3, . . .}.8 Thegreatest integer of x, bxc, is defined to be the largest integer k with k x.

    (a) Find b0.785c, b117c, b2.001c, and bpi + 6c(b) Discuss with your classmates how bxc may be described as a piece-wise defined function.

    HINT: There are infinitely many pieces!

    (c) Is ba+ bc = bac+ bbc always true? What if a or b is an integer? Test some values, makea conjecture, and explain your result.

    8The use of the letter Z for the integers is ostensibly because the German word zahlen means to count.

    Page 122

    Ellen TurnellRectangle

  • 1.5 Function Notation 53

    1.5.2 Answers

    1. f(x) =4

    x 13Domain: [0, 169) (169,)

    2. g(x) =4

    x 13Domain: (13,)

    3. h(x) =4x 13

    Domain: (0,)

    4. k(x) =

    4

    x 13

    Domain: (0,)

    5. (a) 2

    (b) 6

    (c) 14

    (d) 16x2 12x+ 2(e) 4x2 12x+ 8(f) x2 + 3x+ 2

    (g) x2 11x+ 30(h) x2 3x 2(i) x4 3x2 + 2

    6. (a)2

    27(b) 2(c)

    16

    27

    (d)1

    32x3

    (e)8

    x3

    (f) 2x3

    (g)2

    (x 4)3 =2

    x3 12x2 + 48x 64

    (h)2

    x3 4 = 2 4x

    3

    x3

    (i)2

    x6

    7. (a) 16

    (b) 4

    (c) 12a2 + 6a 2(d) 6a2 + 6a 4(e) 3a2 + 15a+ 16

    (f) 3a2 + 3a+ 14

    (g) 12a2

    + 6a 2(h) 3a

    2

    2 +3a2 1

    (i) 3a2 + 6ah+ 3h2 + 3a+ 3h 2

    8. (a) f(4) = 1(b) f(3) = 2

    (c) f(3) = 0

    (d) f(3.001) = 1.999

    (e) f(3.001) = 1.999

    (f) f(2) =

    5

    9. (a) f(4) = 4

    (b) f(3) = 9(c) f(1) = 0

    (d) f(0) = 1

    (e) f(1) = 1(f) f(0.999) 0.0447101778

    Page 123

    Ellen TurnellRectangle

  • 54 Relations and Functions

    10. (a) (,)(b) (,)(c) (,6) (6, 6) (6,)(d)

    [13 ,

    )(e)

    (13 ,

    )(f) (,)(g)

    [13 , 3) (3,)

    (h)[

    13 , 6) (6,)

    (i) (,)(j) (, 8) (8,)(k) [0, 8) (8,)(l) (8,)

    (m) (, 8) (8,)(n) [7, 9]

    (o)(,12) (12 , 0) (0, 12) (12 ,)

    (p) [0, 25) (25,)

    11. The applied domain of P is [0,). The range is some subset of the natural numbers becausewe cannot have fractional Sasquatch. This was a bit of a trick question and well address thenotion of mathematical modeling more thoroughly in later chapters. P (0) = 0 means thatthere were no Sasquatch in Portage County in 1803. P (205) 139.77 would mean there were139 or 140 Sasquatch in Portage County in 2008.

    12. (a) b0.785c = 0, b117c = 117, b2.001c = 3, and bpi + 6c = 9

    Page 124

    Ellen TurnellRectangle

  • 1.6 Function Arithmetic 61

    4. Find and simplify the difference quotientf(x+ h) f(x)

    hfor the following functions.

    (a) f(x) = 2x 5(b) f(x) = 3x+ 5(c) f(x) = 6

    (d) f(x) = 3x2 x(e) f(x) = x2 + 2x 1(f) f(x) = x3 + 1

    (g) f(x) =2

    x

    (h) f(x) =3

    1 x(i) f(x) =

    x

    x 9(j) f(x) =

    x 3

    (k) f(x) = mx+ b where m 6= 0(l) f(x) = ax2 + bx+ c where a 6= 0

    3Rationalize the numerator. It wont look simplified per se, but work through until you can cancel the h.

    Page 125

    Ellen TurnellTypewritten TextTaken from Stitz and Zeager

    Ellen TurnellRectangle

  • 1.6 Function Arithmetic 63

    4. (a) 2

    (b) 3(c) 0

    (d) 6x+ 3h 1(e) 2x h+ 2(f) 3x2 + 3xh+ h2

    (g) 2x(x+ h)

    (h)3

    (1 x h)(1 x)(i)

    9(x 9)(x+ h 9)

    (j)1

    x+ h+x

    (k) m

    (l) 2ax+ ah+ b

    Page 126

    Ellen TurnellTypewritten TextANSWERS

    Ellen TurnellRectangle

  • Domain of a Function

    Find the domain of the following (write answers in interval notation):

    1. 22( )5 6xf x

    x x= + +

    2. 2( ) 9xf xx

    =

    3. 23 7( )

    6 27xf x

    x x+=

    4. 3 28( )

    8 2 3xf x

    x x x+=

    5. 24( )

    25xf x

    x=

    6. ( ) 3 5f x x= 7. ( ) 5f x x= + 8. ( ) 3 7f x x= 9. ( ) 12 24f x x= 10. ( ) 9 27f x x= + 11. 5( ) 2f x x=

    12. 1( )3 1

    f xx

    = +

    13. 12( )5

    xf xx

    =

    14. 2

    5 7( )9

    xf xx

    +=

    15. 2( ) 4f x x= 16. 2( ) 12 11 5f x x x= + 17. 2( ) 5 6f x x x= + + 18. 43)( 2 = xxxf 19. 2( ) 2 8f x x x= 20. 2( ) 9f x x= 21. 2( ) 100f x x= 22. 4)( 2 += xxf 23. 2( ) 6 12f x x x= 24. 2( ) 15 4 3f x x x=

    25. 25( )

    121xf x

    x=

    26. 4( ) 3 15f x x=

    Page 127

  • Domain of a Function-Answers

    1. ( ) ( ) ( ), 3 3, 2 2, 2. ( ) ( ) ( ), 3 3,3 3, 3. ( ) ( ) ( ), 3 3,9 9, 4. 1 1 3 3, ,0 0, ,

    2 2 4 4

    5. ( ) ( ) ( ), 5 5,5 5, 6. ( ), 7. [ 5, )

    8. 7 ,3

    9. [2, ) 10. ( ],3 11. ( ), 12. 1 ,

    3

    13. ( )5, 14. ( ) ( ), 3 3,

    15. ( ] [ ), 2 2, 16. 5 1, ,

    4 3

    17. ( ] [ ), 3 2, 18. ( ] [ ), 1 4, 19. ( ] [ ), 2 4, 20. [ ]3,3 21. [ ]10,10 22. ( ), 23. 4 3, ,

    3 2

    24. 1 3, ,3 5

    25. [ ) ( )5,11 11, 26. [5, )

    Page 128

  • Page 129

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 130

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 131

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 132

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 133

    Ellen TurnellRectangle

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 134

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 135

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 136

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 137

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 138

    Ellen TurnellRectangle

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 139

    Ellen TurnellRectangle

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 140

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • In exercises 21-38 determine the domain and range of each functions whose graph is given. Express your answers using interval notation. 21. 22. 23.

    -4 -3 -2 -1 1 2 3 4

    -5-4-3-2-1

    12345

    -4 -3 -2 -1 1 2 3 4

    -3-2-1

    123456

    -4 -3 -2 -1 1 2 3 4

    -5-4-3-2-1

    12345

    24. 25. 26.

    -4 -3 -2 -1 1 2 3 4

    -5-4-3-2-1

    12345

    -4 -3 -2 -1 1 2 3 4

    -4-3-2-1

    1234

    -4 -3 -2 -1 1 2 3 4

    -4-3-2-1

    1234

    27. 28. 29.

    -4 -3 -2 -1 1 2 3 4

    -4-3-2-1

    1234

    -4 -3 -2 -1 1 2 3 4

    -4-3-2-1

    1234

    -4 -3 -2 -1 1 2 3 4

    -4-3-2-1

    1234

    Page 141

  • 30. 31. 32.

    -4 -3 -2 -1 1 2 3 4

    -4-3-2-1

    1234

    -4 -3 -2 -1 1 2 3 4

    -4-3-2-1

    1234

    -4 -3 -2 -1 1 2 3 4

    -3

    -2

    -1

    1

    2

    3

    33. 34. 35.

    -4 -3 -2 -1 1 2 3 4

    -3

    -2

    -1

    1

    2

    3

    -4 -3 -2 -1 1 2 3 4

    -2-1

    12345

    -4 -3 -2 -1 1 2 3 4

    -2-1

    12345

    36. 37. 38.

    -4 -3 -2 -1 1 2 3 4

    -2-1

    12345

    -4 -3 -2 -1 1 2 3 4

    -2

    -1

    1

    2

    3

    -4 -3 -2 -1 1 2 3 4

    -2

    -1

    1

    2

    3

    Page 142

  • In exercises 39-40, use the graphs to determine the intervals where each function is increasing, decreasing, or constant. Express your answers using interval notation. 39. 40.

    -6 -4 -2 2 4 6

    -6

    -4

    -2

    2

    4

    6 G(x)

    Sketch the following piecewise functions:

    41. 2 1 0( )5 0

    x if xf xx if x+ = >

    42. 3 0( )

    2 0x if xf x

    x if x = + >

    43. 1 2( )

    3 9 2x if xf x

    x if x+ = + >

    44. 3 2( )3 5 2

    x if xf x

    x if x = >

    45. 23 1

    ( ) 1

    x if xf x

    x if x= >

    46. 4 2( )2 2

    if xf xx if x

    = >

    47. 3 5 2( )

    1 2x if xf x

    if x+ = >

    48. 4 1( )

    1 1x if xf x

    if x+ = =

    49. 2 1 2( )5 2

    x if xf xif x

    = =

    50. 2 0( )

    3 0x if xf x

    if x = =

    51. 2 1( )

    4 1x if xf x

    if x = =

    52.

    1 5 22

    ( ) 3 7 2 31 3

    x if x

    f x x if xx if x

    + < = + + >

    53.

    6 41( ) 7 4 22

    5 2

    x if x

    f x x if x

    x if x

    + < = + + >

    54. 2 5 0

    ( ) 5 0 42 4

    x if xf x if x

    x if x

    +

  • Section 3.5-Interpreting Graphs 1. 3 3. 3 5. 1 7. 2 9. 4 11. Yes, it is a function 13. No, not a function 15. Yes, it is a function 17. Yes, it is a function 19. No, not a function

    21. ( )4

    = =

    ,[ , )

    DR

    23. ( )0

    = =

    ,[ , )

    DR

    25. ( )( )

    = =

    ,,

    DR

    27. ( )4

    = =

    ,[ , )

    DR

    29. 3 31 2

    = =

    [ , ][ , ]

    DR

    31. ( ){ }All integers

    = =

    ,DR

    33. ( )

    1 0

    = =

    ,[ , )

    DR

    35. ( )

    2 2

    = =

    ,( , ) ( , )

    DR

    37. 0 40 2

    ==

    [ , ][ , ]

    DR

    ( )( )

    3 1 5

    3 3 5

    1 3

    39. Intervals of Increasing: , ( , )Intervals of Decreasing: , ( , )Intervals of Constant: ( , )

    41. 2 1 0( )5 0

    x if xf x

    x if x+ = >

    43. 1 2( )

    3 9 2x if x

    f xx if x+ = + >

    45. 23 1

    ( ) 1

    x if xf x

    x if x= >

    Page 144

    LturnellText BoxAnswers

  • 47. 3 5 2( )

    1 2x if x

    f xif x

    + = > 49.

    2 1 2( )5 2

    x if xf x

    if x = =

    51. 2 1( )

    4 1x if xf x

    if x = =

    53.

    6 41( ) 7 4 22

    5 2

    x if x

    f x x if x

    x if x

    + < = + + > 55.

    1 1( ) 1 1

    1 1

    if xf x x if x

    if x

    < =

  • 1.7 Graphs of Functions 73

    Example 1.7.4. Given the graph of y = f(x) below, answer all of the following questions.

    (2, 0) (2, 0)

    (4,3)(4,3)

    (0, 3)

    x

    y

    4 3 2 1 1 2 3 4

    4

    3

    2

    1

    1

    2

    3

    4

    1. Find the domain of f .

    2. Find the range of f .

    3. Determine f(2).

    4. List the x-intercepts, if any exist.

    5. List the y-intercepts, if any exist.

    6. Find the zeros of f .

    7. Solve f(x) < 0.

    8. Determine the number of solutions to theequation f(x) = 1.

    9. List the intervals on which f is increasing.

    10. List the intervals on which f is decreasing.

    11. List the local maximums, if any exist.

    12. List the local minimums, if any exist.

    13. Find the maximum, if it exists.

    14. Find the minimum, if it exists.

    15. Does f appear to be even, odd, or neither?

    Solution.

    1. To find the domain of f , we proceed as in Section 1.4. By projecting the graph to the x-axis,we see the portion of the x-axis which corresponds to a point on the graph is everything from4 to 4, inclusive. Hence, the domain is [4, 4].

    2. To find the range, we project the graph to the y-axis. We see that the y values from 3 to3, inclusive, constitute the range of f . Hence, our answer is [3, 3].

    3. Since the graph of f is the graph of the equation y = f(x), f(2) is the y-coordinate of thepoint which corresponds to x = 2. Since the point (2, 0) is on the graph, we have f(2) = 0.

    Page 146

    Ellen TurnellTypewritten Text

    Ellen TurnellText BoxAdditional problems taken from Stitz and Zeager

    Suggested assignment: p. 73: 1-10

    Ellen TurnellRectangle

  • 1.7 Graphs of Functions 77

    1.7.2 Exercises

    1. Sketch the graphs of the following functions. State the domain of the function, identify anyintercepts and test for symmetry.

    (a) f(x) =x 2

    3(b) f(x) =

    5 x (c) f(x) = 3x (d) f(x) = 1

    x2 + 1

    2. Analytically determine if the following functions are even, odd or neither.

    (a) f(x) = 7x

    (b) f(x) = 7x+ 2

    (c) f(x) =1

    x3

    (d) f(x) = 4

    (e) f(x) = 0

    (f) f(x) = x6 x4 + x2 + 9(g) f(x) = x5 x3 + x

    (h) f(x) = x4+x3+x2+x+1

    (i) f(x) =

    5 x(j) f(x) = x2 x 6

    3. Given the graph of y = f(x) below, answer all of the following questions.

    x

    y

    5 4 3 2 1 1 2 3 4 5

    54321

    1

    2

    3

    4

    5

    (a) Find the domain of f .

    (b) Find the range of f .

    (c) Determine f(2).(d) List the x-intercepts, if any exist.

    (e) List the y-intercepts, if any exist.

    (f) Find the zeros of f .

    (g) Solve f(x) 0.(h) Determine the number of solutions to the

    equation f(x) = 2.

    (i) List the intervals where f is increasing.

    (j) List the intervals where f is decreasing.

    (k) List the local maximums, if any exist.

    (l) List the local minimums, if any exist.

    (m) Find the maximum, if it exists.

    (n) Find the minimum, if it exists.

    (o) Is f even, odd, or neither?

    Page 147

    Ellen TurnellText BoxAdditional problems taken from Stitz and Zeager

    Suggested assignment: p. 77: 3 (a-j)

    Ellen TurnellRectangle

  • 1.7 Graphs of FunctionsStitz and Zeager Book ANSWERS p. 73:1-15 1. 4 4[ , ] 2. 3 3[ , ] 3. 2 0( )f = 4. 2 0 2 0( , ),( , ) 5. 0 3( , ) 6. 2 2,x = 7. 4 2 2 4[ , ] ( , ] 8. 2 solutions 9. 4 0[ , ) 10. 0 4( , ] 11. 0 3( , ) 12. none 13. 3 14. 3 15. yes, even p. 77: 3 (a-j) ANSWERS

    Page 148

  • Page 149

    Ellen TurnellRectangle

    Ellen TurnellRectangle

    Ellen TurnellRectangle

    LturnellText Box Cube Root Function

    LturnellText Box

    LturnellStamp

    LturnellPlaced Image

  • Page 150

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 151

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 152

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 153

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 154

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 155

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 156

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 157

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 158

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 159

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 160

    Ellen TurnellRectangle

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 161

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • 3.6Additional Graphing Techniques In problems 1-40 use the techniques of shifting, reflecting, and stretching to sketch the graph of the following functions. 1. 2( ) ( 1) 3f x x 2. 2( ) ( 1) 4f x x 3. ( ) 1 2f x x 4. ( ) 2 1f x x 5. 3( ) 3 2f x x 6. 3( ) 2 2 1f x x 7. ( ) 4 4f x x 8. ( ) 2 3 3f x x 9. 3( ) 2 3f x x 10. 3( ) 1 2f x x 11. ( ) 2 1 1f x x 12. 2( ) 2 3 2f x x 13. 2( ) 3f x x 14. 21( )

    4f x x

    15. ( ) 3f x x 16. ( ) 1f x x 17. ( ) 4f x x 18. ( ) 1f x x 19. 1( ) 3 3

    2f x x 20. 1( ) 2 1

    2f x x

    21. ( ) 1 3f x x 22. 1( ) 1 42

    f x x 23. 3( ) 2 1 2f x x 24. ( ) 3f x x 25. 31( ) 2 1

    2f x x 26. 3( ) 3f x x

    27. 2( ) 2 3 5f x x 28. 31( ) 1 42

    f x x 29. 3( ) 2 1 2f x x 30. 3( ) 2 3f x x 31. 1( ) 3 2

    2f x x 32. ( ) 2 1 1f x x

    33. 31( ) 1 32

    f x x 34. 1( ) 4 22

    f x x 35. 3( ) 2 1f x x 36. 31( ) 4 1

    2f x x

    37. 3( ) 4 1f x x 38. 3( ) 3 1f x x 39. ( ) 2 3 1f x x 40. 3( ) 5 3f x x

    Page 162

  • Page 163

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 164

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 165

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 166

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • -4 -3 -2 -1 1 2 3 4

    -5-4-3-2-1

    12345

    -4 -3 -2 -1 1 2 3 4

    -5-4-3-2-1

    12345

    Section 3.6-Graphing Techniques 1. 3. 5.

    -4 -3 -2 -1 1 2 3 4

    -5-4-3-2-1

    12345

    -4 -3 -2 -1 1 2 3 4

    -5-4-3-2-1

    12345

    -2 -1 1 2 3 4 5 6

    -5-4-3-2-1

    12345

    7. 9. 11. 13. 15. 17. 19. 21. 23.

    -1 1 2 3 4 5 6 7-2-1

    12345678

    -1 1 2 3 4 5 6 7-2-1

    12345678

    -6 -5 -4 -3 -2 -1 1 2

    -4-3-2-1

    1234

    -2 -1 1 2 3 4 5 6

    -3-2-1

    1234567

    -4 -3 -2 -1 1 2 3 4

    -5-4-3-2-1

    12345

    -4 -3 -2 -1 1 2 3 4

    -4-3-2-1

    1234

    -4 -3 -2 -1 1 2 3 4

    -5-4-3-2-1

    12345

    Page 167

    LturnellText BoxAnswers

  • 25. 27. 29. 31. 33. 35. 37. 39. 41i.

    -8 -7 -6 -5 -4 -3 -2 -1 1 2

    -4-3-2-1

    1234

    -3 -2 -1 1 2 3 4 5 6

    -4-3-2-1

    1234

    -6-5-4-3-2-1 1 2 3 4 5 6

    -6-5-4-3-2-1

    123456

    41ii. 41iii. 41iv.

    -6-5-4-3-2-1 1 2 3 4 5 6

    -6-5-4-3-2-1

    123456

    -6-5-4-3-2-1 1 2 3 4 5 6

    -6-5-4-3-2-1

    123456

    -6-5-4-3-2-1 1 2 3 4 5 6

    -6-5-4-3-2-1

    123456

    -4 -3 -2 -1 1 2 3

    -5-4-3-2-1

    1234

    -4 -3 -2 -1 1 2 3

    -5-4-3-2-1

    1234

    -2 -1 1 2 3 4 5 6

    -8-7-6-5-4-3-2-1

    1

    -2 -1 1 2 3 4 5 6

    -5-4-3-2-1

    1234

    -4 -3 -2 -1 1 2 3-2-1

    1234567

    -6 -5 -4 -3 -2 -1 1 2

    -4-3-2-1

    1234

    Page 168

  • 41v. 41vi. 41vii.

    -6-5-4-3-2-1 1 2 3 4 5 6

    -6-5-4-3-2-1

    123456

    -6-5-4-3-2-1 1 2 3 4 5 6

    -6-5-4-3-2-1

    123456

    -6-5-4-3-2-1 1 2 3 4 5 6

    -5-4-3-2-1

    12345

    41viii. 43i. 43ii.

    -9-8-7-6-5-4-3-2-1 1 2 3

    -9-8-7-6-5-4-3-2-11234

    -4 -3 -2 -1 1 2 3 4 5 6 7 8

    -4-3-2-1

    123456

    -4 -3 -2 -1 1 2 3 4 5 6 7 8

    -4-3-2-1

    123456

    43iii. 43iv. 43v.

    -4 -3 -2 -1 1 2 3 4 5 6 7 8

    -4-3-2-1

    123456

    -4 -3 -2 -1 1 2 3 4 5 6 7 8

    -6-5-4-3-2-1

    1234

    -4 -3 -2 -1 1 2 3 4 5 6 7 8

    -4-3-2-1

    123456

    Page 169

  • 43vi. 43vii. 43viii.

    -6 -5 -4 -3 -2 -1 1 2 3 4 5 6

    -4-3-2-1

    123456

    -6 -5 -4 -3 -2 -1 1 2 3 4 5 6

    -6-5-4-3-2-1

    1234

    -4 -3 -2 -1 1 2 3 4 5 6 7 8

    -4-3-2-1

    123456

    45. even 47. neither

    49. odd 51. neither

    53. odd 55. even

    57. even 61. neither

    63. even 65. odd

    67. 69. 71.

    -4 -3 -2 -1 1 2 3 4

    -2-1

    12345

    -4 -3 -2 -1 1 2 3 4

    -2-1

    12345

    -2

    -1

    1

    2

    73. 75. 77.

    -4 -3 -2 -1 1 2 3 4

    -4-3-2-1

    1234

    -4 -3 -2 -1 1 2 3 4

    -5-4-3-2-1

    12345

    -4 -3 -2 -1 1 2 3 4

    -4-3-2-1

    1234

    Page 170

  • 104 Relations and Functions

    1.8.1 Exercises

    1. The complete graph of y = f(x) is given below. Use it to graph the following functions.

    x

    y

    (2, 0)

    (0, 4)

    (2, 0)

    (4,2)

    4 3 1 1 3 4

    4321

    1

    2

    3

    4

    The graph of y = f(x)

    (a) y = f(x) 1(b) y = f(x+ 1)

    (c) y = 12f(x)

    (d) y = f(2x)

    (e) y = f(x)(f) y = f(x)

    (g) y = f(x+ 1) 1(h) y = 1 f(x)(i) y = 12f(x+ 1) 1

    2. The complete graph of y = S(x) is given below. Use it to graph the following functions.

    x

    y

    (2, 0)

    (1,3)

    (0, 0)

    (1, 3)

    (2, 0)2 1 1

    3

    2

    1

    1

    2

    3

    The graph of y = S(x)

    (a) y = S(x+ 1)

    (b) y = S(x+ 1)(c) y = 12S(x+ 1)(d) y = 12S(x+ 1) + 1

    Page 171

    Ellen TurnellTypewritten TextTaken from Stitz and Zeager

    Ellen TurnellRectangle

  • 1.8 Transformations 105

    3. The complete graph of y = f(x) is given below. Use it to graph the following functions.

    (3, 0)

    (0, 3)

    (3, 0)x

    y

    3 2 1 1 2 31

    1

    2

    3

    (a) g(x) = f(x) + 3

    (b) h(x) = f(x) 12(c) j(x) = f

    (x 23

    )(d) a(x) = f(x+ 4)

    (e) b(x) = f(x+ 1) 1(f) c(x) = 35f(x)

    (g) d(x) = 2f(x)(h) k(x) = f

    (23x)

    (i) m(x) = 14f(3x)(j) n(x) = 4f(x 3) 6(k) p(x) = 4 + f(1 2x)(l) q(x) = 12f

    (x+4

    2

    ) 34. The graph of y = f(x) = 3

    x is given below on the left and the graph of y = g(x) is given

    on the right. Find a formula for g based on transformations of the graph of f . Check youranswer by confirming that the points shown on the graph of g satisfy the equation y = g(x).

    x

    y

    1110987654321 1 2 3 4 5 6 7 8

    54321

    1

    2

    3

    4

    5

    y = 3x

    x

    y

    1110987654321 1 2 3 4 5 6 7 8

    54321

    1

    2

    3

    4

    5

    y = g(x)

    5. For many common functions, the properties of algebra make a horizontal scaling the sameas a vertical scaling by (possibly) a different factor. For example, we stated earlier that

    9x = 3x. With the help of your classmates, find the equivalent vertical scaling produced

    by the horizontal scalings y = (2x)3, y = |5x|, y = 327x and y = (12x)2. What abouty = (2x)3, y = | 5x|, y = 327x and y = (12x)2?

    Page 172

    Ellen TurnellRectangle

  • 1.8 Transformations 107

    1.8.2 Answers

    1. (a) y = f(x) 1

    x

    y

    (2,1)

    (0, 3)

    (2,1)

    (4,3)

    4 3 12 1 2 3 4

    4321

    1

    2

    3

    4

    (b) y = f(x+ 1)

    x

    y

    (3, 0)

    (1, 4)

    (1, 0)

    (3,2)

    4 3 12 1 2 3 4

    4321

    1

    2

    3

    4

    (c) y = 12f(x)

    x

    y

    (2, 0)

    (0, 2)

    (2, 0) (4,1)4 3 1 1 3 4

    4321

    1

    2

    3

    4

    (d) y = f(2x)

    x

    y

    (1, 0)

    (0, 4)

    (1, 0)

    (2,2)

    4 3 2 2 3 4

    432

    1

    2

    3

    4

    (e) y = f(x)

    x

    y

    (2, 0)

    (0,4)

    (2, 0)

    (4, 2)

    4 3 12 1 2 3 4

    4321

    1

    2

    3

    4

    (f) y = f(x)

    x

    y

    (2, 0)

    (0, 4)

    (2, 0)

    (4,2)

    4 3 1 1 3 4

    4321

    1

    2

    3

    4

    Page 173

    Ellen TurnellRectangle

  • 108 Relations and Functions

    (g) y = f(x+ 1) 1

    x

    y

    (3,1)

    (1, 3)

    (1,1)

    (3,3)

    4 3 12 1 2 3 4

    4321

    1

    2

    3

    4

    (h) y = 1 f(x)

    x

    y

    (2, 1)

    (0,3)

    (2, 1)

    (4, 3)

    4 3 12 1 2 3 4

    4321

    1

    2

    3

    4

    (i) y = 12f(x+ 1) 1

    x

    y

    (3,1)

    (1, 1)

    (1,1)

    (3,2)

    4 3 12 1 2 3 4

    4321

    1

    2

    3

    4

    2. (a) y = S(x+ 1)

    x

    y

    (3, 0)

    (2,3)

    (1, 0)

    (0, 3)

    (1, 0)3 2 1

    3

    2

    1

    1

    2

    3

    (b) y = S(x+ 1)

    x

    y

    (3, 0)

    (2,3)

    (1, 0)

    (0, 3)

    (1, 0) 1 2 3

    3

    2

    1

    1

    2

    3

    Page 174

    Ellen TurnellRectangle

  • 1.8 Transformations 109

    (c) y = 12S(x+ 1)

    x

    y

    (3, 0)

    (2, 3

    2

    )

    (1, 0)

    (0, 3

    2

    )

    (1, 0) 1 2 3

    2

    1

    1

    2

    (d) y = 12S(x+ 1) + 1

    x

    y

    (3, 1)

    (2, 1

    2

    )

    (1, 1)

    (0, 5

    2

    )

    (1, 1)

    1 1 31

    1

    2

    3

    3. (a) g(x) = f(x) + 3

    (3, 3)

    (0, 6)

    (3, 3)

    x

    y

    3 2 1 1 2 31

    1

    2

    3

    4

    5

    6

    (b) h(x) = f(x) 12

    (3, 1

    2

    )

    (0, 5

    2

    )

    (3, 1

    2

    )x

    y

    3 2 1 1 2 31

    1

    2

    3

    (c) j(x) = f(x 23

    )

    ( 7

    3, 0)

    (23, 3)

    (113, 0)x

    y

    3 2 1 1 2 31

    1

    2

    3

    (d) a(x) = f(x+ 4)

    (7, 0)

    (4, 3)

    (1, 0)x

    y

    7 6 5 4 3 2 1

    1

    2

    3

    (e) b(x) = f(x+ 1) 1

    (4,1)

    (1, 2)

    (2,1)

    x

    y

    4 3 2 1 1 21

    1

    2

    (f) c(x) = 35f(x)

    (3, 0)

    (0, 9

    5

    )

    (3, 0)x

    y

    3 2 1 1 2 31

    1

    2

    Page 175

    Ellen TurnellRectangle

  • 110 Relations and Functions

    (g) d(x) = 2f(x)(3, 0)

    (0,6)

    (3, 0)

    x

    y

    3 2 1 1 2 3

    6

    5

    4

    3

    2

    1

    (h) k(x) = f(

    23x)

    ( 9

    2, 0)

    (0, 3)

    (92, 0)x

    y

    4 3 2 1 1 2 3 41

    1

    2

    3

    (i) m(x) = 14f(3x)

    (1, 0)

    (0, 3

    4

    )(1, 0)

    x

    y

    1 1

    1

    (j) n(x) = 4f(x 3) 6

    (0,6)

    (3, 6)

    (6,6)

    x

    y

    1 2 3 4 5 6

    6

    5

    4

    3

    2

    1

    1

    2

    3

    4

    5

    6

    (k) p(x) = 4 + f(1 2x) = f(2x+ 1) + 4

    (1, 4)

    (12, 7)

    (2, 4)

    x

    y

    1 1 21

    1

    2

    3

    4

    5

    6

    7

    (l) q(x) = 12f(x+42

    ) 3 = 12f ( 12x+ 2) 3(10,3)

    (4, 9

    2

    )(2,3)

    x

    y

    10987654321 1 2

    4321

    4. g(x) = 2 3x+ 3 1 or g(x) = 2 3x 3 1

    Page 176

    Ellen TurnellRectangle

  • Piecewise Functions

    Graph the following:

    1. = =2 0( )1 0

    x if xf x

    if x

    2. 3 0( )4 0x if x

    f xif x

    =

  • Piecewise Functions

    1. 2 0

    ( )1 0

    x if xf x

    if x= = 2.

    3 0( )4 0x if x

    f xif x

    =

  • 10. 2 1 11 1 x if x

    f xx if x

    11. 1 -1

    0 1 11 1

    x if xf x if x

    x if x

    12. 1 0

    1 0x if x

    f xif x

    13. 1 32 8 3

    x if xf x

    x if x 14.

    10 1

    2 1

    x if xf x if x

    x if x

    15.

    2

    2 4 14 1

    1 1

    x if xf x if x

    x if x

    16. 01 0x if x

    f xif x

    17. 1 1

    2 1

    x if xf x

    if x

    Page 179

  • Page 180

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 181

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 182

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 183

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 184

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 185

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 186

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 187

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 188

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 189

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 190

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 191

    Ellen TurnellRectangle

  • Page 192

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 193

    Ellen TurnellRectangle

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 194

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 195

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 196

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 197

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 198

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 199

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • y = 0

    y = -3

    Section 3.7-Linear Functions 1. 3. 5. 7. 9.

    11. 54

    m =

    13. 29

    m =

    15. m undefined= 17. 2m = 19. 1m =

    21. 23. 25.

    y = 12x + 3

    y = 3x x = 3

    f(x) = 2x 4

    y = 13x 14

    3 y = 2x + 7

    Page 200

    LturnellText BoxAnswers

  • 27. 29.

    1 143 3

    = y x 31. 2 7= +y x 33. 3= y 35. 4= x 37.

    5 294 4= +y x

    39. 2 19 9

    = y x 41. 4=x 43. 2=y 45.

    2 25

    = y x

    47. 2

    7mb

    = = 49.

    352

    m

    b

    ==

    51. 04

    mb

    ==

    53. m undefinedb none

    == 55.

    123

    m

    b

    ==

    57. 4 1= +y x 59.

    3 95 5= +y x

    61. 4 83 3

    = +y x 63. 3= x 65. 5=y 67.

    1 214 4= +y x

    69. 5 193 3

    = +y x

    71. 3 314 4= y x

    73. 4=y 75. 3=x

    x = 4

    y = 2x + 7y =

    35x 2

    y = 4

    x = 2

    y = 12x + 3

    Page 201

  • Page 202

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 203

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 204

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 205

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 206

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 207

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 208

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 209

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 210

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 211

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 212

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 213

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Section 3.8Circles 1. 3. 5. 7. 9. 11. 13. 15. 17.

    -4 -3 -2 -1 1 2 3 4

    -4-3-2-1

    1234

    x2 + y2 = 1

    -5 -4 -3 -2 -1 1 2 3 4 5 6

    -6-5-4-3-2-1

    1234

    (x 1)2 + (y + 1)2 = 16

    -1 1 2 3 4 5 6 7 8 9 10

    -4-3-2-1

    123456

    (x 5)2 + (y 2)2 = 9

    -5 -4 -3 -2 -1 1 2 3 4 5 6-2-1

    12345678

    (x 1)2 + (y 3)2 = 20

    -7 -6 -5 -4 -3 -2 -1 1 2

    -7-6-5-4-3-2-1

    12(x + 3)2 + (y + 4)2 = 5

    -3 -2 -1 1 2 3

    -2

    -1

    1

    2

    3

    4x + 1

    22 +

    y 532 = 9

    4

    -10 -8 -6 -4 -2 2 4 6

    -4-2

    2468

    10(x + 3)2 + (y 2)2 = 25

    -7 -6 -5 -4 -3 -2 -1 1 2

    -7-6-5-4-3-2-1

    12

    (x + 2)2 + (y + 5)2 = 5

    -10 -8 -6 -4 -2 2 4 6-2

    2468

    1012

    (x + 2)2 + (y 5)2 = 41

    Page 214

  • 19. 21. 23. 25. 27. 29. No graph 31. ( 5,3)

    33. 35. 1 5,3 3

    37.

    -4 -3 -2 -1 1 2 3 4-1

    12345678r = 12

    C=(1/2,5/2)

    -8 -7 -6 -5 -4 -3 -2 -1 1 2

    -4-3-2-1

    123456r = 70

    2C=(-3,1)

    39. No graph 41. 2 2( 2) ( 5) 25x y+ + = 43. 2 2( 6) ( 6) 36x y + + = 45. 3 25

    4 4y x= +

    -2 2 4 6

    -8-7-6-5-4-3-2-1

    1

    r = 2C=( 5 , -3 )

    -6 -4 -2 2

    -6

    -5

    -4

    -3

    -2

    -1

    1r = 7C=( -2 , -3 )

    -6 -5 -4 -3 -2 -1 1 2 3 4 5 6

    123456789

    101112

    r = 13 C=( 0 , 7 )

    -4 -2 2 4

    -6-5-4-3-2-1

    12r = 6

    C=( 0 , -2 )

    -4 -2 2 4 6 8 10

    -4

    -2

    2

    4

    6

    8

    10r = 5 C=( 3 , 2 )

    Page 215

  • Circles

    Complete the square and write the equation in standard form. Then give the center and radius of each circle.

    1. 2 2 415 8 04

    x y x y+ + + =

    2. 2 2 3 2952 02 16

    x y x y+ + =

    3. 2 2 453 02

    x y x y+ + =

    4. 2 2 216 7 04

    x y x y+ + + =

    5. 2 2 794 04

    x y x y+ + =

    6. 2 2 279 3 02

    x y x y+ + =

    7. 2 2 1 2 2567 02 3 144

    x y x y+ + + =

    8. 2 2 10 35 03 36

    x y x y+ + + =

    Find an equation of the circle that satisfies the given conditions.

    9. Center ( )8, 3 ; tangent to the x-axis. 10. Center ( )4,5 ; tangent to the x-axis. 11. Center ( )8, 3 ; tangent to the y-axis. 12. Center ( )4,5 ; tangent to the y-axis. 13. Center at the origin; passes through ( )5, 3 14. Center at the origin; passes through ( )2,7 15. Endpoints of the diameter are P ( )1,1 and Q ( )5,5 16. Endpoints of the diameter are P ( )1,3 and Q ( )7, 5 17. Endpoints of the diameter are P ( )3,4 and Q ( )5,1 18. Endpoints of the diameter are P ( )3, 8 and Q ( )6,6

    Page 216

  • Circles-Answers

    1. ( )2 25 4 122x y + + = ; Center = 5 ,42

    ; r=2 3

    2. ( )2 23 1 204x y + + = ; Center = 3 , 14

    ; r=2 5

    3. 2 21 3 25

    2 2x y + + = ; Center =

    1 3,2 2

    ; r=5

    4. ( ) 22 73 162x y + + = ; Center =

    73,2

    ; r=4

    5. ( ) 22 12 242x y + + = ; Center = 12,2

    ; r=2 6

    6. 2 29 3 9

    2 2x y + = ; Center =

    9 3,2 2

    ; r=3

    7. 2 21 1 18

    4 3x y + + + = ; Center =

    1 1,4 3

    ; r=3 2

    8. 2 25 1 4

    3 2x y + + = ; Center =

    5 1,3 2

    ; r=2

    9. ( ) ( )2 28 3 9x y + + = 10. ( ) ( )+ + =2 24 5 25x y 11. ( ) ( )2 28 3 64x y + + = 12. ( ) ( )2 24 5 16x y+ + = 13. 2 2 34x y+ = 14. 2 2 53x y+ = 15. ( ) ( )2 22 3 13x y + = 16. ( ) ( )2 23 1 32x y + + = 17. ( ) 22 3 134 2 4x y

    + =

    18. ( ) + + = 2

    23 27712 4

    x y

    Page 217

  • Page 218

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 219

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 220

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 221

    Ellen TurnellRectangle

  • Page 222

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 223

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 224

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 225

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 226

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 227

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 228

    Ellen TurnellRectangle

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 229

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 230

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 231

    Ellen TurnellRectangle

  • Page 232

  • In problems 61-66, use the given functions f and g to find the indicated function values. 61. ( )( 3)f g D 62. ( )(1)g fD 63. ( )(3)f gD 64. ( )(7)f gD 65. ( )( 5)g f D 66. ( )(3)g fD Additional problems : A. ( )(0)f gD B. ( )(9)g fD C. ( )( 10)f g D D. ( )( 1)f g D E. ( )(3)g fD F. ( )(6)g fD

    x

    y

    g(x)

    x

    y

    f(x)

    Page 233

  • Section 3.9-Operations on Functions 1. 2 3 15 2 4 6 7 3

    2 3( )( ) ; ( )( ) ; ( )( ) ; ( )f xf g x x f g x x fg x x x x

    g x ++ = = + = =

    3. 2 2 3 2 22 42 1 2 7 2 4 6 12

    3( )( ) ; ( )( ) ; ( )( ) ; ( )f xf g x x x f g x x x fg x x x x x

    g x + = + = + = + = +

    5. 2

    2 2 3 2 5 26 4 4 8 28 126

    ( )( ) ; ( )( ) ; ( )( ) ; ( )f x xf g x x x f g x x x fg x x x x xg x

    + ++ = + = + + = =

    7. ( )( ) ( )( ) ( )( ) ( )3 1 7 2 2 43 2 3 2 3 2 3

    + + ++ = = = = + + + ( )( ) ; ( )( ) ; ( )( ) ; ( )x x f xf g x f g x fg x x

    gx x x x x x x

    9. 2

    2 2 3 2 202 15 25 6 15 100 45

    + + = + = = + = = + ( )( ) ; ( )( ) ; ( )( ) ; ( )f x xf g x x x f g x x fg x x x x x xg x

    11. 2 2 2 24 4 4 4( )( ) ; ( )( ) ; ( )( ) ( ); ( )

    ( )f xf g x x x f g x x x fg x x x xg x

    + = + = + = =

    13. 2 218 48 39 6 17( )( ) ; ( )( )f g x x x g f x x= + = + 15. 2 210 24 4 4( )( ) ; ( )( )f g x x x g f x x x= + = + 17. 22 2( )( ) ; ( )( )f g x x g f x x= = 19. 3 1 1

    3( )( ) ; ( )( )xf g x g f x

    x x+= = +

    21. 3 3 4 82 2 1

    ( )( ) ; ( )( )x xf g x g f xx x+ = = + +

    23. 1 13 3

    ( )( ) ; ( )( )f g x g f xx x

    = = 25. 9 4x + 27. 32 29. ( ), 31. 2 33. 236 42 16x x + 35. 76 37. 3 47. 22 37( ( ))( ) (( ) ))( )f g h x f g h x x= = 49. 1 51. 1 53. 8 55. 2 57. 3 59. 4 61. 1 63. 1 65. 1

    Page 234

    LturnellText BoxAnswers

  • 60 Relations and Functions

    1.6.1 Exercises

    1. Let f(x) =x, g(x) = x+ 10 and h(x) =

    1

    x.

    (a) Compute the following function values.

    i. (f + g)(4) ii. (g h)(7) iii. (fh)(25) iv.(h

    g

    )(3)

    (b) Find the domain of the following functions then simplify their expressions.

    i. (f + g)(x)

    ii. (g h)(x)

    iii. (fh)(x)

    iv.

    (h

    g

    )(x)

    v.(gh

    )(x)

    vi. (h f)(x)

    2. Let f(x) = 3x 1, g(x) = 2x2 3x 2 and h(x) = 3

    2 x .

    (a) Compute the following function values.

    i. (f + g)(4) ii. (g h)(1) iii. (fh)(0) iv.(h

    g

    )(1)

    (b) Find the domain of the following functions then simplify their expressions.

    i. (f g)(x) ii. (gh)(x) iii.(f

    g

    )(x) iv.

    (f

    h

    )(x)

    3. Let f(x) =

    6x 2, g(x) = x2 36, and h(x) = 1x 4.

    (a) Compute the following function values.

    i. (f + g)(3)

    ii. (g h)(8)iii.

    (f

    g

    )(4)

    iv. (fh)(8)

    v. (g + h)(4)vi.

    (h

    g

    )(12)

    (b) Find the domain of the following functions and simplify their expressions.

    i. (f + g)(x)

    ii. (g h)(x)iii.

    (f

    g

    )(x)

    iv. (fh)(x)

    v. (g + h)(x)

    vi.

    (h

    g

    )(x)

    Page 235

    Ellen TurnellTypewritten TextTaken from Stitz and Zeager

    Ellen TurnellRectangle

  • 62 Relations and Functions

    1.6.2 Answers

    1. (a) i. (f + g)(4) = 16 ii. (gh)(7) = 1187

    iii. (fh)(25) =1

    5iv.

    (h

    g

    )(3) =

    1

    39

    (b) i. (f + g)(x) =x+ x+ 10

    Domain: [0,)ii. (g h)(x) = x+ 10 1

    x

    Domain: (, 0) (0,)iii. (fh)(x) =

    1x

    Domain: (0,)

    iv.

    (h

    g

    )(x) =

    1

    x(x+ 10)

    Domain: (,10)(10, 0)(0,)v.(gh

    )(x) = x(x+ 10)

    Domain: (, 0) (0,)vi. (h f)(x) = 1

    xx

    Domain: (0,)

    2. (a) i. (f + g)(4) = 23 ii. (g h)(1) = 6 iii. (fh)(0) = 32

    iv.

    (h

    g

    )(1) = 1

    3

    (b) i. (f g)(x) = 2x2 + 3x+ 3x+ 1Domain: [0,)

    ii. (gh)(x) = 6x 3Domain: (, 2) (2,)

    iii.

    (f

    g

    )(x) =

    3x 1

    2x2 3x 2Domain: [0, 2) (2,)

    iv.

    (f

    h

    )(x) = xx+ 13x+ 2

    x 23

    Domain: [0, 2) (2,)

    3. (a) i. (f + g)(3) = 23

    ii. (g h)(8) = 1114

    iii.

    (f

    g

    )(4) =

    22

    20

    iv. (fh)(8) =

    46

    4

    v. (g + h)(4) = 1618

    vi.

    (h

    g

    )(12) = 1

    1728

    (b) i. (f + g)(x) = x2 36 +6x 2

    Domain:

    [1

    3,)

    ii. (g h)(x) = x2 36 1x 4

    Domain: (, 4) (4,)iii.

    (f

    g

    )(x) =

    6x 2x2 36

    Domain:

    [1

    3, 6

    ) (6,)

    iv. (fh)(x) =

    6x 2x 4

    Domain:

    [1

    3, 4

    ) (4,)

    v. (g + h)(x) = x2 36 + 1x 4

    Domain: (, 4) (4,)vi.

    (h

    g

    )(x) =

    1

    (x 4) (x2 36)Domain:(,6) (6, 4) (4, 6) (6,)

    Page 236

    Ellen TurnellRectangle

  • Page 237

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 238

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 239

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 240

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 241

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 242

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 243

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 244

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 245

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 246

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 247

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 248

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 249

    Ellen TurnellRectangle

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 250

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 251

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 252

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 253

    LturnellRectangle

    LturnellRectangle

  • Section 3.10Inverse Functions 1. one-to-one 3. not one-to-one 5. one-to-one 7. one-to-one

    9. not one-to-one 11. one-to-one 13. not one-to-one 15. not one-to-one

    17. not one-to-one 19. inverses 21. not inverses 23. not inverses

    25. not inverses 27. inverses 29. inverses 31. not inverses

    33. 35. 37. 39. 41. 43. 45. 47.

    49. 1 3 3( )

    2 4f x x = +

    51. 1 3 4( )5

    xf x += 53. not one-to-one 55.

    1 2( ) 4, 0f x x x = 57. 1( ) 2f x x = + 59. 1( ) 1f x x =

    61. not one-to-one 63. not one-to-one 65.

    ( )31( ) 1f x x = 67.

    1 2 1( ) xf xx

    += 69.

    ( ) 4000900

    C xx =

    -4 -3 -2 -1 1 2 3 4

    -4-3-2-1

    1234

    f-1(x) = x + 4

    -4 -3 -2 -1 1 2 3 4

    -4-3-2-1

    1234

    f-1(x) = x 52

    -2 -1 1 2 3 4 5 6 7 8-2-1

    12345678

    f-1(x) = x2 + 4;x 0

    -4 -3 -2 -1 1 2 3 4

    -6-5-4-3-2-1

    123456

    -4 -3 -2 -1 1 2 3 4

    -4-3-2-1

    1234f-1(x) = x 2

    -4 -3 -2 -1 1 2 3 4

    -4-3-2-1

    1234f-1(x) = 3 x 2

    -4 -3 -2 -1 1 2 3 4

    -4-3-2-1

    1234

    -5 -4 -3 -2 -1 1 2 3 4 5

    -4

    -3

    -2

    -1

    1

    2

    3

    4

    Page 254

    LturnellText BoxAnswers

  • Page 255

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 256

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 257

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 258

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 259

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 260

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 261

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 262

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 263

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 264

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 265

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 266

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 267

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Section 4.1-Quadratic Functions 1. 2 3. 38 5. 29 7. 51 11. yes 13. no 15. no 17. 3 13

    2 2= ,x

    19. 3= x 21. 1 3= x 23. Axis: 0x = ; Range: ( ,0]

    -4 -3 -2 -1 1 2 3 4

    -4

    -3

    -2

    -1

    1

    2

    Vertex( 0 , 0 )

    25. Axis: 0x = ; Range: [ 3, )

    -4 -3 -2 -1 1 2 3 4

    -4

    -3

    -2

    -1

    1

    2

    Vertex( 0 , -3 )

    27. Axis: 2x = ; Range: ( ,0]

    -4 -3 -2 -1 1 2 3 4

    -4

    -3

    -2

    -1

    1

    2

    Vertex( 2 , 0 )

    29. Axis: 2x = ; Range: [2, )

    -4 -3 -2 -1 1 2

    -2

    -1

    1

    2

    3

    4

    Vertex( -2 , 2 )

    31. Axis: 1

    2x = ;

    Range: ( ,1]

    -3 -2 -1 1 2 3

    -3

    -2

    -1

    1

    2

    Vertex(1/2,1)

    33. Axis: 5x = ; Range: [ 2, )

    -8 -7 -6 -5 -4 -3 -2 -1 1 2

    -3

    -2

    -1

    1

    2

    3

    Vertex( -5 , -2 )

    35. x-int(s): 1 6x = 2( ) ( 1) 6f x x= +

    -4 -3 -2 -1 1 2 3 4

    -8

    -7

    -6

    -5

    -4

    -3

    -2

    -1

    1

    2

    Vertex( -1 , -6 )

    37. x-int(s): none

    2( ) ( 1) 7= + f x x

    -4 -3 -2 -1 1 2 3 4

    -12

    -10

    -8

    -6

    -4

    -2

    2

    Vertex( -1 , -7 )

    39. x-int(s): 0,2x = 2( ) 4( 1) 4= +f x x

    -4 -3 -2 -1 1 2 3 4

    -2

    -1

    1

    2

    3

    4

    5

    6

    Vertex( 1 , 4 )

    Page 268

    LturnellText BoxAnswers

  • 41. x-int(s): 4x 2( ) ( 4)f x x

    -2 -1 1 2 3 4 5 6

    -2

    -1

    1

    2

    3

    Vertex( 4 , 0 )

    43. x-int(s): none

    2( ) ( 4) 1f x x

    -6 -5 -4 -3 -2 -1 1 2

    -2

    -1

    1

    2

    3

    Vertex( -4 , 1 )

    45. x-int(s): none

    21 3( ) ( )2 4

    f x x

    -3 -2 -1 1 2 3 4

    -2

    -1

    1

    2

    3

    Vertex(1/2,3/4)

    47. x-int(s): 3 192

    x 23 19( ) ( )

    2 2 f x x

    -6 -5 -4 -3 -2 -1 1 2 3

    -10

    -8

    -6

    -4

    -2

    2

    Vertex(-3/2,-19/2)

    49. x-int(s): 24,

    3x 25 49( ) ( )

    3 3f x x

    -4 -3 -2 -1 1 2

    -4

    -2

    2

    4

    6

    8

    10

    12

    14

    16 Vertex(-5/3,49/3)

    51. x-int(s): 0,9x

    29 27( ) ( )2 2

    f x x

    -2 -1 1 2 3 4 5 6 7 8 9 10

    -4

    -2

    2

    4

    6

    8

    10

    12

    14

    16

    Vertex(9/2,27/2)

    53. x-int(s): 5,4 x , Minimum value = 81

    4

    55. x-int(s): 32

    x , Minimum value = 9 57. x-int(s): 3

    2 x ,

    Minimum value = 0 59. x-int(s): none, Maximum value = 2 61. x-int(s): 0,9x , Maximum value = 405

    4

    63. 21( ) 1 24

    f x x 65. 8c

    Page 269

  • Quadratic Functions-Worksheet

    Find the vertex and a and then use to sketch the graph of each function. Find the intercepts, axis of symmetry, and range of each function. Remember the domain is ( , ) 1. 2( ) 4 1f x x 2. 2( ) 3 1f x x 3. 21( ) 1 22f x x 4. 21( ) 3 12f x x 5. 2( ) 2 3f x x 6. 2( ) 2 2 1f x x 7. 2( ) 1 4f x x

    8. 2( ) 2 2f x x 9. 2( ) 2 5f x x x 10. 2( ) 2 8f x x x 11. 2( ) 4 7f x x x 12. 2( ) 2 3f x x x 13. 2( ) 6 3f x x x 14. 2( ) 2 4 3f x x x 15. 2( ) 2 2f x x x

  • Quadratic Functions Worksheet--Answers 1. x-int(s): 3, 5x Axis: 4x ; Range: [ 1, )

    -3 -2 -1 1 2 3 4 5 6 7 8

    -3

    -2

    -1

    1

    2

    3

    4

    5

    Vertex( 4 , -1 )

    2. x-int(s): 2, 4x Axis: 3x ; Range: ( , 1]

    -6 -5 -4 -3 -2 -1 1 2 3 4

    -4

    -3

    -2

    -1

    1

    2

    3

    4

    Vertex( -3 , 1 )

    3. x-int(s): NONE Axis: 1x ; Range: [2, )

    4. x-int(s): NONE Axis: 3x ; Range: [1, )

    5. x-int(s): 2 3x Axis: 2x ; Range: [ 3, )

    -6 -5 -4 -3 -2 -1 1 2 3 4

    -4

    -3

    -2

    -1

    1

    2

    3

    4

    5

    6

    Vertex( -2 , -3 )

    6. x-int(s): 12

    2x

    Axis: 2x ; Range: [ 1, )

    -5 -4 -3 -2 -1 1 2 3

    -3

    -2

    -1

    1

    2

    3

    4

    5

    Vertex( -2 , -1 )

    7. x-int(s): 1, 3x Axis: 1x ; Range: ( , 4]

    -4 -3 -2 -1 1 2 3 4 5

    -4

    -3

    -2

    -1

    1

    2

    3

    4

    5 Vertex( 1 , 4 )

    8. x-int(s): 2 2x Axis: 2x ; Range: ( , 2]

    -6 -5 -4 -3 -2 -1 1 2 3

    -4

    -3

    -2

    -1

    1

    2

    3

    4

    5

    Vertex( -2 , 2 )

    9. x-int(s): 1 6x Axis: 1x ; Range: [ 6, )

    2( ) ( 1) 6f x x

    -4 -3 -2 -1 1 2 3 4

    -8

    -7

    -6

    -5

    -4

    -3

    -2

    -1

    1

    2

    Vertex( -1 , -6 )

  • Quadratic Functions Worksheet--Answers

    10. x-int(s): none 2( ) ( 1) 7f x x

    Axis: 1x ; Range: ( , 7]

    -4 -3 -2 -1 1 2 3 4

    -12

    -10

    -8

    -6

    -4

    -2

    2

    Vertex( -1 , -7 )

    11. x-int(s): 1 6x

    2( ) ( 2) 11f x x Axis: 2x ; Range: [ 11, )

    -6 -5 -4 -3 -2 -1 1 2 3

    -12-11-10-9-8-7-6-5-4-3-2-1

    12

    Vertex( -2 , -11 )

    12. x-int(s): 1, 3x 2( ) ( 1) 4f x x

    Axis: 1x ; Range: ( , 4]

    -5 -4 -3 -2 -1 1 2 3 4 5

    -5

    -4

    -3

    -2

    -1

    1

    2

    3

    4

    5Vertex( 1 , 4 )

    13. x-int(s): 3 6x

    2( ) ( 3) 6f x x Axis: 3x ; Range: [ 6, )

    -8 -7 -6 -5 -4 -3 -2 -1 1 2 3

    -6

    -5

    -4

    -3

    -2

    -1

    1

    2

    3

    4

    Vertex( -3 , -6 )

    14. x-int(s): 2 102

    x 2( ) ( 1) 5f x x

    Axis: 1x ; Range: [ 5, )

    -5 -4 -3 -2 -1 1 2 3

    -6

    -5

    -4

    -3

    -2

    -1

    1

    2

    3

    4

    Vertex( -1 , -5 )

    15. x-int(s): NONE

    2( ) ( 1) 1f x x Axis: 1x ; Range: ( , 1]

    -5 -4 -3 -2 -1 1 2 3 4 5

    -7

    -6

    -5

    -4

    -3

    -2

    -1

    1

    2

    3

    Vertex( 1 , -1 )

  • Page 270

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 271

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 272

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 273

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 274

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 275

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 276

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 277

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 278

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 279

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 280

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 281

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 282

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 283

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 284

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 285

    Ellen TurnellRectangle

    Ellen TurnellRectangle

    LturnellStamp

    LturnellStamp

    LturnellStamp

  • Section 4.2-Graphs of Higher Degree Polynomial Functions 1. Yes, Degree=1; Leading coefficient=5 3. Yes, Degree=2 ; Leading coefficient=1 5. No 7. Yes, Degree=3 ; Leading coefficient=1 9. Yes, Degree=4 ; Leading coefficient=30 11.

    -4 -3 -2 -1 1 2 3 4

    -4

    -3

    -2

    -1

    1

    2

    3

    4

    13. (a) even (b) neither (c) even (d) odd 15. 2a 17. (a)

    -4 -3 -2 -1 1 2 3 4

    -4

    -3

    -2

    -1

    1

    2

    3

    4

    17. (b)

    -4 -3 -2 -1 1 2 3 4

    -4

    -3

    -2

    -1

    1

    2

    3

    4

    (c)

    -4 -3 -2 -1 1 2 3 4

    -4

    -3

    -2

    -1

    1

    2

    3

    4

    (d)

    -4 -3 -2 -1 1 2 3 4

    -4

    -3

    -2

    -1

    1

    2

    3

    4

    17. (e)

    -3 -2 -1 1 2 3

    -2

    -1

    1

    2

    3

    4

    5

    6

    7

    8

    19.

    -4 -3 -2 -1 1 2 3 4

    -2

    -1

    1

    2

    3

    4

    5

    6

    7

    8

    21.

    -4 -3 -2 -1 1 2 3 4

    -2

    -1

    1

    2

    3

    4

    5

    6

    7

    8

    Page 286

    LturnellText BoxAnswers

  • 23. 25. 27. 29. 31. 33. 35. 37. 39. 41. 43. 45.

    -4 -3 -2 -1 1 2 3 4

    -8

    -7

    -6

    -5

    -4

    -3

    -2

    -1

    1

    2

    -4 -3 -2 -1 1 2 3 4

    -2

    -1

    1

    2

    3

    4

    5

    6

    7

    8

    -4 -3 -2 -1 1 2 3 4

    -4

    -3

    -2

    -1

    1

    2

    3

    4

    -4 -3 -2 -1 1 2 3 4

    -8-7-6-5-4-3-2-1

    1234

    -4 -3 -2 -1 1 2 3 4

    -2

    -1

    1

    2

    3

    4

    5

    6

    -4 -3 -2 -1 1 2 3 4

    -2

    -1

    1

    2

    3

    4

    5

    6

    -4 -3 -2 -1 1 2 3 4

    -6-5-4-3-2-1

    123456

    -3 -2 -1 1 2 3

    -3

    -2

    -1

    1

    2

    3

    -4 -3 -2 -1 1 2 3 4

    -10-9-8-7-6-5-4-3-2-1

    1234

    -4 -3 -2 -1 1 2 3 4

    -2

    -1

    1

    2

    3

    4

    5

    6

    -4 -3 -2 -1 1 2 3 4

    -4

    -3

    -2

    -1

    1

    2

    3

    4

    -4 -3 -2 -1 1 2 3

    -3

    -2

    -1

    1

    2

    3

    Page 287

  • 47. 49. 51. 53. 55. ( ,1) (1, )

    -3 -2 -1 1 2 3

    -3

    -2

    -1

    1

    2

    3

    -4 -3 -2 -1 1 2 3 4

    -2

    -1

    1

    2

    3

    4

    5

    6

    -4 -3 -2 -1 1 2 3 4

    -2

    -1

    1

    2

    3

    4

    5

    6

    -4 -3 -2 -1 1 2 3 4

    -4

    -3

    -2

    -1

    1

    2

    3

    4

    -4 -3 -2 -1 1 2 3 4

    -9-8-7-6-5-4-3-2-1

    12345678

    Page 288

  • Page 289

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 290

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 291

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 292

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 293

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 294

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 295

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 296

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 297

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 298

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 299

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Section 4.3-Division of Polynomials

    1. 62 15

    xx

    + + 3. 3 6x + 5. 9 8x 7. 2 25 4

    3 1x

    x+ +

    9. 2 59 7 25

    x xx

    11. 32 63

    xx

    + + 13. 3 2x + 15. 2 52 3 4

    2 3x x

    x+ + +

    17. 3 2 52 3 12 6

    x x xx

    + + +

    19. 2 22 12 4

    3xx x

    x x + + +

    21. 3 2 1x x x+ + + 23. 2

    42 12 3

    xx x

    + +

    25. 2 23 56 22 4

    xx xx+ + +

    27. 4 3 2 222 2 3

    3 1x x x x

    x + + +

    29. 312

    xx

    +

    31. 172 42

    xx

    + +

    33. 2 62 43

    x xx

    35. 2 22 32

    x xx

    + +

    37. 2 43 14

    x xx

    + +

    39. 2 34 2 412

    x xx

    ++

    41. 3 22 4 6x x x 43. 3 2 516 12 4

    34

    x xx

    + +

    45. 2 5 25x x + 47. 5 4 3 22 4 8 16 32x x x x x+ + + + + 49. 3x + 51. 3 2 122 2 2 2

    2x x x

    x + +

    Page 300

    LturnellText BoxAnswers

  • Page 301

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 302

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 303

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 304

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 305

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 306

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 307

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 308

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 309

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 310

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 311

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 312

    Ellen TurnellRectangle

    Ellen TurnellRectangle

    LturnellText Box #44.This should say 2 and -1 are zeros

  • Section 4.4The Remainder and Factor Theorems 1. 34 3. 316 5. 0

    7. 31081

    9. 11 11. 174 13. 5 2 2+ 15. 8 17. Yes, it is a zero 19. No, it is not a zero 21. No, it is not a zero 23. No, it is not a zero 25. Yes, it is a factor 27. Yes, it is a zero 29. No, it is not a factor 31. No, it is not a factor 33. No, it is not a factor 35. Yes, it is a factor 37. 2 3 1 1 + ( )( )( )x x x 39. 25 2 3 1+ + ( ) ( )( )x x x 41. 34 3 1+ ( )( )x x 43. 2 1 2 1+ + ( )( )( )x x x 45. 3 22 29 30 +x x x 47. 3 21 33

    2 2 x x x or 3 22 6 3 x x x

    49. 4 3 214 123

    + +x x x x or 4 3 23 14 3 36 + +x x x x

    53. 272

    =k 55. 2= k

    Page 313

    LturnellText BoxAnswers

  • Page 314

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 315

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 316

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 317

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 318

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 319

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 320

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 321

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 322

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 323

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 324

    Ellen TurnellRectangle

    Ellen TurnellRectangle

    LturnellText BoxFor an alternate method for 29-48 please see page 337

  • Page 325

    Ellen TurnellRectangle

    Ellen TurnellRectangle

    LturnellTypewritten Text

    LturnellTypewritten Text

    LturnellTypewritten Text

    LturnellTypewritten Text

    LturnellRectangle

    LturnellStamp

    LturnellRectangle

    LturnellStamp

    LturnellStamp

    LturnellRectangle

    LturnellStamp

    LturnellRectangle

  • Section 4.5Real Zeros of Polynomial Functions

    1. (a) 51 32

    , ,x ,(b) 143 ,x , (c) 0 2 ,x (d) 1 3 x

    21. 1 3 9 , , 23. 1 2 5 101 2 5 10

    3 3 3 3 , , , , , , ,

    25. 1 31 2 3 62 2

    , , , , ,

    27. 1 1 11 28 2 4

    , , , 29. 5 2 1 ( )( )( )x x x 31. 1 2 1 1 ( )( )( )x x x 33. 22 1 ( ) ( )x x 35. 2 2 2 1 3 1 ( )( )( )x x x x 37. 2 21 1 2 3 ( )( ) ( )x x x 39. 16

    2 ,x

    41. 1 5 2 ,x 43. 21 2 1

    3 , ,x

    45. 3 5 2 ,x 47. 1 5 11

    2 4 , ,x

    51. 2 6 2 1 ( )( )x x 53. 2 2 4 2 ( )( )x x x 55. 2 2 1 1 3 2 ( )( )x x x x

    Page 326

    LturnellText BoxAnswers

  • Page 327

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 328

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 329

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 330

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 331

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 332

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 333

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 334

    Ellen TurnellRectangle

    Ellen TurnellRectangle

    Ellen TurnellText Boxf(x) = x3 - 10x - 12

    Ellen TurnellText Boxf(x) = 4x3 - 11x - 7

    Ellen TurnellText Boxf(x) = 2x4 + 3x3 + x2 - 20x - 20

    LturnellText BoxFor an alternate method for 1-20, please see page 337

  • Page 335

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Page 336

    Ellen TurnellRectangle

    Ellen TurnellRectangle

  • Exercises 4.5Graphical Approach-Alternate Method In exercises 29-47, use the Rational Zeros Theorem, the given graph, and synthetic division to find all zeros of each polynomial function. 29. 3 2( ) 4 7 10f x x x x 31. 3 2( ) 2 2 1f x x x x 33. 3 2( ) 3 4f x x x 35. 4 3 2( ) 6 25 4 4f x x x x x 37. 5 4 3 2( ) 4 8 7 17 3 9f x x x x x x 39. 3 2( ) 2 12 6f x x x x 41. 3 2( ) 4 8f x x x 43. 4 3 2( ) 3 5 7 3 2f x x x x x

    -5 -4 -3 -2 -1 1 2 3 4 5

    -5 -4 -3 -2 -1 1 2 3 4 5

    -5 -4 -3 -2 -1 1 2 3 4 5

    -5 -4 -3 -2 -1 1 2 3 4 5

    -2 -1 1 2 -5 -4 -3 -2 -1 1 2 3 4 5

    -5 -4 -3 -2 -1 1 2 3 4 5

    -3 -2 -1 1 2 3

    Page 337

  • 45. 4 3( ) 2 5 10f x x x x 47. 4 3 2( ) 4 7 2 4 1f x x x x x

    Exercises 4.6 Graphical Approach-Alternate Method In exercises 9-19, use the Rational Zeros Theorem, the given graph, and synthetic division to find all zeros of each polynomial function. 9. 3( ) 10 12f x x x 11. 3( ) 4 11 7f x x x 13. 4 3 2( ) 2 3 20 20f x x x x x 15. 4 2( ) 4 12 9f x x x x 17. 4 3 2( ) 4 12 13 12 9f x x x x x 19. 5 4 3 2( ) 3 3 9 4 12f x x x x x x

    -3 -2 -1 1 2 3 -3 -2 -1 1 2 3

    -3 -2 -1 1 2 3 4 5

    -5 -4 -3 -2 -1 1 2 3 4 5

    -4 -3 -2 -1 1 2 3 4

    -3 -2 -1 1 2 3 4 5

    -3 -2 -1 1 2 3

    -3 -2 -1 1 2 3

    Page 338

  • Section 4.6Complex Zeros of Polynomial Functions

    1. 95

    =x

    3. 1 174

    =x 5. 1 3= ,x i 7. 0 3= ,x i 9. 2 1 7= ,x 11. 1 2 2 1

    2= ,x

    13. 5 55 1 24

    = , ,ix 15. 3 1 1 2= , ,x i 17. 3

    2= ,x i (multiplicity of 2)

    19. 2 3= , ,x i 21. ( )2 9 1 1 3 3+ = +( ) ( )( )( )x x x x i x i 23. ( )2 5 55 5 552 2 5 10 2 4 4 4 4 + + = + + + ( ) ( )

    i ix x x x x x x x

    25. ( )2 2 21 2 3 2 3 + = + ( ) ( ) ( )( )x x x x i x i 27. ( )( )2 25 1 5 5 + = + +( )( )( )( )x x x x x i x i 29. ( )( )2 22 2 4 1 1 2 2 + + = + +( )( )( )( )x x x x i x i x i x i 31. ( )( )2 10 26 1 1 5 5 + = + ( )( )( )x x x x x i x i 33. 3 2 16 16+ + +x x x 35. 4 3 210 38 64 40 + +x x x x 37. 4 3 214 98 406 841 + +x x x x 39.