welt_td (1)

Upload: carlos801

Post on 07-Aug-2018

212 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/20/2019 welt_td (1)

    1/128

    Weltest 200

    Technical Description

    2001A

  • 8/20/2019 welt_td (1)

    2/128

    Proprietary notice 0

    Copyright ©1996 - 2001 Schlumberger. All rights reserved.

    No part of the "Weltest 200 Technical Description" may be reproduced, stored in a retrieval system, or translated or retransmitted in any

    form or by any means, electronic or mechanical, including photocopying and recording, without the prior written permission of the copyright

    owner.

    Use of this product is governed by the License Agreement. Schlumberger makes no warranties, express, implied, or statutory, with respectto the product described herein and d isclaims without limitation any warranties of merchantability or fitness for a particular purpose.

    Patent information 0

    Schlumberger ECLIPSE reservoir simulation software is protected by US Patents 6,018,497, 6,078,869 and 6,106,561, and UK Patents

    GB 2,326,747 B and GB 2,336,008 B. Patents pending.

    Service mark information 0

    The following are all service marks of Schlumberger:

    The Calculator, Charisma, ConPac, ECLIPSE 100, ECLIPSE 200, ECLIPSE 300, ECLIPSE 500, ECLIPSE Office, EDIT, Extract, Fill, Finder,

    FloGeo, FloGrid, FloViz, FrontSim, GeoFrame, GRAF, GRID, GridSim, Open-ECLIPSE, PetraGrid, PlanOpt, Pseudo, PVT i , RTView, SCAL,

    Schedule, SimOpt, VFPi , Weltest 200.

    Trademark information 0

    Silicon Graphics is a registered trademark of Silicon Graphics, Inc.

    IBM and LoadLeveler are registered trademarks of International Business Machines Corporation.

    Sun, SPARC, Ultra and UltraSPARC are registered trademarks of Sun Microsystems, Inc.

    Macintosh is a registered trademark of Apple Computer, Inc.

    UNIX is a registered trademark of UNIX System Laboratories.Motif is a registered trademark of the Open Software Foundation, Inc.

    The X Window System and X11 are registered trademarks of the Massachusetts Institute of Technology.

    PostScript and Encapsulated PostScript are registered trademarks of Adobe Systems, Inc.

    OpenWorks and VIP are registered trademarks of Landmark Graphics Corporation.

    Lotus, 1-2-3 and Symphony are registered trademarks of Lotus Development Corporation.

    Microsoft, Windows, Windows NT, Windows 95, Windows 98, Windows 2000, Internet Explorer, Intellimouse, Excel, Word and PowerPoint

    are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries..

    Netscape is a registered trademark of Netscape Communications Corporation.

    AVS is a registered trademark of AVS Inc.

    ZEH is a registered trademark of ZEH Graphics Systems.

    Ghostscript and GSview is Copyright of Aladdin Enterprises, CA.

    GNU Ghostscript is Copyright of the Free Software Foundation, Inc.

    IRAP is Copyright of Roxar Technologies.

    LSF is a registered trademark of Platform Computing Corporation, Canada.

    VISAGE is a registered trademark of VIPS Ltd.Cosmo is a trademark and PLATINUM technology is a registered trademark of PLATINUM technology, inc.

    PEBI is a trademark of HOT Engineering AG.

    Stratamodel is a trademark of Landmark Graphics Corporation

    GLOBEtrotter , FLEXlm and SAMreport  are registered trademarks of GLOBEtrotter Software, Inc.

    CrystalEyes is a trademark of StereoGraphics Corporation.

    Tektronix is a registered trade mark of Tektronix, Inc.

  • 8/20/2019 welt_td (1)

    3/128

    iii

    Table of Contents 0

    Table of Contents .................................................................................................................................................................. iii

    List of Figures ..... ...................................................................................................................................................................v

    List of Tables ...... ................................................................................................................................................................. vii

    Chapter 1 - PVT Property Correlations

    PVT property correlations....................................................................................................................................................1-1

    Chapter 2 - SCAL Correlations

    SCAL correlations................................................................................................................................................................2-1

    Chapter 3 - Pseudo variables

    Chapter 4 - Analytical Models

    Fully-completed vertical well................................................................................................................................................4-1

    Partial completion ................................................................................................................................................................4-3

    Partial completion with gas cap or aquifer...........................................................................................................................4-5Infinite conductivity vertical fracture.....................................................................................................................................4-7

    Uniform flux vertical fracture................................................................................................................................................4-9

    Finite conductivity vertical fracture.....................................................................................................................................4-11

    Horizontal well with two no-flow boundaries......................................................................................................................4-13

    Horizontal well with gas cap or aquifer ..............................................................................................................................4-15

    Homogeneous reservoir ....................................................................................................................................................4-17

    Two-porosity reservoir .......................................................................................................................................................4-19

    Radial composite reservoir ................................................................................................................................................4-21

    Infinite acting ...... ..............................................................................................................................................................4-23

    Single sealing fault ............................................................................................................................................................4-25

    Single constant-pressure boundary...................................................................................................................................4-27

    Parallel sealing faults.........................................................................................................................................................4-29

    Intersecting faults ..............................................................................................................................................................4-31

    Partially sealing fault..........................................................................................................................................................4-33

    Closed circle ....... ..............................................................................................................................................................4-35

    Constant pressure circle....................................................................................................................................................4-37

    Closed Rectangle ..............................................................................................................................................................4-39

    Constant pressure and mixed-boundary rectangles..........................................................................................................4-41

    Constant wellbore storage.................................................................................................................................................4-43

    Variable wellbore storage ..................................................................................................................................................4-44

    Chapter 5 - Selected Laplace Solutions

    Introduction......... ................................................................................................................................................................5-1

    Transient pressure analysis for fractured wells ...................................................................................................................5-4

    Composite naturally fractured reservoirs.............................................................................................................................5-5

    Chapter 6 - Non-linear RegressionIntroduction......... ................................................................................................................................................................6-1

    Modified Levenberg-Marquardt method...............................................................................................................................6-2

    Nonlinear least squares.......................................................................................................................................................6-4

    Appendix A - Unit Convention

    Unit definitions.... ............................................................................................................................................................... A-1

    Unit sets.............. ............................................................................................................................................................... A-5

    Unit conversion factors to SI............................................................................................................................................... A-8

  • 8/20/2019 welt_td (1)

    4/128

    iv

    Appendix B - File Formats

    Mesh map formats ..............................................................................................................................................................B-1

    Bibliography

    Index

  • 8/20/2019 welt_td (1)

    5/128

    v

    List of Figures 0

    Chapter 1 - PVT Property Correlations

    Chapter 2 - SCAL CorrelationsFigure 2.1 Oil/water SCAL correlations....................................................................................................................2-1

    Figure 2.2 Gas/water SCAL correlatiuons ...............................................................................................................2-3

    Figure 2.3 Oil/gas SCAL correlations.......................................................................................................................2-4

    Chapter 3 - Pseudo variables

    Chapter 4 - Analytical Models

    Figure 4.1 Schematic diagram of a fully completed vertical well in a homogeneous, infinite reservoir....................4-1

    Figure 4.2 Typical drawdown response of a fully completed vertical well in a homogeneous, infinite reservoir......4-2

    Figure 4.3 Schematic diagram of a partially completed well....................................................................................4-3

    Figure 4.4 Typical drawdown response of a partially completed well. .....................................................................4-4

    Figure 4.5 Schematic diagram of a partially completed well in a reservoir with an aquifer......................................4-5

    Figure 4.6 Typical drawdown response of a partially completed well in a reservoir with a gas cap or aquifer ........4-6

    Figure 4.7 Schematic diagram of a well completed with a vertical fracture .............................................................4-7

    Figure 4.8 Typical drawdown response of a well completed with an infinite conductivity vertical fracture ..............4-8

    Figure 4.9 Schematic diagram of a well completed with a vertical fracture .............................................................4-9

    Figure 4.10 Typical drawdown response of a well completed with a uniform flux vertical fracture..........................4-10

    Figure 4.11 Schematic diagram of a well completed with a vertical fracture ...........................................................4-11

    Figure 4.12 Typical drawdown response of a well completed with a finite conductivity vertical fracture.................4-12

    Figure 4.13 Schematic diagram of a fully completed horizontal well .......................................................................4-13

    Figure 4.14 Typical drawdown response of fully completed horizontal well.............................................................4-14

    Figure 4.15 Schematic diagram of a horizontal well in a reservoir with a gas cap...................................................4-15Figure 4.16 Typical drawdown response of horizontal well in a reservoir with a gas cap or an aquifer...................4-16

    Figure 4.17 Schematic diagram of a well in a homogeneous reservoir ...................................................................4-17

    Figure 4.18 Typical drawdown response of a well in a homogeneous reservoir......................................................4-18

    Figure 4.19 Schematic diagram of a well in a two-porosity reservoir.......................................................................4-19

    Figure 4.20 Typical drawdown response of a well in a two-porosity reservoir .........................................................4-20

    Figure 4.21 Schematic diagram of a well in a radial composite reservoir ................................................................4-21

    Figure 4.22 Typical drawdown response of a well in a radial composite reservoir ..................................................4-22

    Figure 4.23 Schematic diagram of a well in an infinite-acting reservoir...................................................................4-23

    Figure 4.24 Typical drawdown response of a well in an infinite-acting reservoir .....................................................4-24

    Figure 4.25 Schematic diagram of a well near a single sealing fault .......................................................................4-25

    Figure 4.26 Typical drawdown response of a well that is near a single sealing fault...............................................4-26Figure 4.27 Schematic diagram of a well near a single constant pressure boundary..............................................4-27

    Figure 4.28 Typical drawdown response of a well that is near a single constant pressure boundary .....................4-28

    Figure 4.29 Schematic diagram of a well between parallel sealing faults................................................................4-29

    Figure 4.30 Typical drawdown response of a well between parallel sealing faults..................................................4-30

    Figure 4.31 Schematic diagram of a well between two intersecting sealing faults ..................................................4-31

    Figure 4.32 Typical drawdown response of a well that is between two intersecting sealing faults..........................4-32

    Figure 4.33 Schematic diagram of a well near a partially sealing fault ....................................................................4-33

  • 8/20/2019 welt_td (1)

    6/128

    vi

    Figure 4.34 Typical drawdown response of a well that is near a partially sealing fault........................................... 4-34

    Figure 4.35 Schematic diagram of a well in a closed-circle reservoir ..................................................................... 4-35

    Figure 4.36 Typical drawdown response of a well in a closed-circle reservoir........................................................ 4-36

    Figure 4.37 Schematic diagram of a well in a constant pressure circle reservoir ................................................... 4-37

    Figure 4.38 Typical drawdown response of a well in a constant pressure circle reservoir...................................... 4-38

    Figure 4.39 Schematic diagram of a well within a closed-rectangle reservoir......................................................... 4-39

    Figure 4.40 Typical drawdown response of a well in a closed-rectangle reservoir ................................................. 4-40

    Figure 4.41 Schematic diagram of a well within a mixed-boundary rectangle reservoir ......................................... 4-41

    Figure 4.42 Typical drawdown response of a well in a mixed-boundary rectangle reservoir.................................. 4-42

    Figure 4.43 Typical drawdown response of a well with constant wellbore storage................................................. 4-43

    Figure 4.44 Typical drawdown response of a well with increasing wellbore storage (Ca/C < 1) ............................ 4-45

    Figure 4.45 Typical drawdown response of a well with decreasing wellbore storage (Ca/C > 1) ........................... 4-45

    Chapter 5 - Selected Laplace Solutions

    Chapter 6 - Non-linear Regression

    Appendix A - Unit Convention

    Appendix B - File Formats

  • 8/20/2019 welt_td (1)

    7/128

    vii

    List of Tables 0

    Chapter 1 - PVT Property Correlations

    Table 1.1 Values of C1, C2 and C3 as used in [EQ 1.57]......................................................................................1-11

    Table 1.2 Values of C1, C2 and C3 as used in [EQ 1.98]......................................................................................1-19Table 1.3 Values of C1, C2 and C3 as used in [EQ 1.123]....................................................................................1-23

    Chapter 2 - SCAL Correlations

    Chapter 3 - Pseudo variables

    Chapter 4 - Analytical Models

    Chapter 5 - Selected Laplace Solutions

    Table 5.1 Values of f1 and f2 as used in [EQ 5.28] and [EQ 5.29] .........................................................................5-5

    Table 5.2 Values of and as used in [EQ 5.33] ......................................................................................................5-6

    Chapter 6 - Non-linear Regression

    Appendix A - Unit Convention

    Table A.1 Unit definitions ....................................................................................................................................... A-1

    Table A.2 Unit sets................................................................................................................................................. A-5

    Table A.3 Converting units to SI units.................................................................................................................... A-8

    Appendix B - File Formats

  • 8/20/2019 welt_td (1)

    8/128

    viii

  • 8/20/2019 welt_td (1)

    9/128

     PVT Property Correlations

    Rock compressibility 

    1-1

    Chapter 1PVT Property Correlations 

    PVT property correlations 1

    Rock compressibility

    Newman

    Consolidated limestone

     psi [EQ 1.1]

    Consolidated sandstone

     psi [EQ 1.2]

    Unconsolidated sandstone

     psi, [EQ 1.3]

    where

    is the porosity of the rock

    C r 

      exp 4.026 23.07φ– 44.28φ2

    +( )  6–

    ×10=

    C r 

      exp 5.118 36.26φ– 63.98φ2

    +( )  6–

    ×10=

    C r 

      exp 34.012  φ   0.2–( )( )  6–

    ×10= 0.2   φ   0.5≤ ≤( )

    φ

  • 8/20/2019 welt_td (1)

    10/128

    1-2 PVT Property Correlations

    Rock compressibility 

    Hall

    Consolidated limestone

     psi [EQ 1.4]

    Consolidated sandstone

     psi, [EQ 1.5]

     psi,

    where

    is the porosity of the rock

    is the rock reference pressure

    is

    Knaap

    Consolidated limestone

     psi [EQ 1.6]

    Consolidated sandstone

     psi [EQ 1.7]

    where

    is the rock initial pressure

    is the rock reference pressure

    is the porosity of the rock

    is

    is

    C r 

    3.63  5–

    ×102φ

    ------------------------- PRa

    0.58–=

    C r 

    7.89792  4–

    ×102

    ---------------------------------- PRa0.687–=   φ   0.17≥

    C r 

    7.89792  4–

    ×102

    ---------------------------------- PRa

    0.687–   φ0.17----------

      0.42818–×=   φ   0.17<

    φ

    Pa

    P Ra

      depth over burden gradient 14.7   Pa

    –+×( )   2 ⁄ 

    C r 

      0.864  4–

    ×10PRa

    0.42 PRi0.42–

    φ   Pi

      Pa

    –( )---------------------------------   0.96

      7–×10–=

    C r 

      0.292  2–

    ×10P

    Ra0.30 P

    Ri0.30–

    Pi   Pa–---------------------------------   1.86

      7–×10–=

    Pi

    Pa

    φ

    PRi

      depth over burden gradient 14.7   Pi

    –+×( )   2 ⁄ 

    P Ra

      depth over burden gradient 14.7   Pa

    –+×( )   2 ⁄ 

  • 8/20/2019 welt_td (1)

    11/128

     PVT Property Correlations

    Water correlations 

    1-3

    Water correlations

    Compressibility

    Meehan

    [EQ 1.8]

    where

    [EQ 1.9]

    [EQ 1.10]

    where

    is the fluid temperature in ºF

    is the pressure of interest, in psi

    is the salinity (1% = 10,000 ppm)

    Row and Chou

    [EQ 1.11]

    [EQ 1.12]

    [EQ 1.13]

    [EQ 1.14]

    [EQ 1.15]

    [EQ 1.16]

    [EQ 1.17]

    cw

      S c

      a bT F 

      cT F 

    2+ +( )

      6–×10=

    a   3.8546 0.000134 p–=

    b   0.01052– 4.77  7–

    ×10   p+=

    c   3.9267  5–

    ×10 8.8  10–

    ×10   p–=

    S c   1 NaCl

    0.7

    0.052– 0.00027T F    1.14

      6–

    ×10   T F 

    2

    – 1.121

      9–

    ×10   T F 

    3

    + +( )+=

    T F 

     p

    NaCl

    a   5.916365 100 T F 

      1.0357940– 10   2– T F 

      9.270048×+×( )

    1

    T F 

    ------   1.127522 103  1

    T F 

    ------   1.006741 105××+×– ×+

    ×+×=

    b   5.204914 10   3– T F 

      1.0482101 10   5– T F 

      8.328532 10   9–××+×–( )

    1

    T F 

    ------   1.170293–  1

    T F 

    ------   1.022783 102 )××+ ×+

    ×+×=

    c   1.18547 10   8– T F 

      6.599143  11–

    ×10×–×=

    d    2.51660   T F 

      1.11766  2–

    ×10   T F 

      1.70552  5–

    ×10×–( )×+–=

    e   2.84851   T F 

      1.54305  2–

    ×10   T F 

      2.23982  5–

    ×10×+–( )×+=

     f    1.4814–  3–

    ×10   T F 

      8.2969  6–

    ×10   T F 

      1.2469  8–

    ×10×–( )×+=

    g   2.7141  3–

    ×10   T F 

      1.5391–  5–

    ×10   T F 

      2.2655  8–

    ×10×+( )×+=

  • 8/20/2019 welt_td (1)

    12/128

    1-4 PVT Property Correlations

    Water correlations 

    [EQ 1.18]

    [EQ 1.19]

    [EQ 1.20]

    is the fluid temperature in ºF

    is the pressure of interest, in psi

    is the salinity (1% = 10,000 ppm)

      is the specific volume of Water

    is compressibility of Water

    Formation volume factor

    Meehan

    [EQ 1.21]

    • For gas-free water

    [EQ 1.22]

    • For gas-saturated water

    [EQ 1.23]

    [EQ 1.24]

    where

    h   6.2158  7–

    ×10   T F 

      4.0075–  9–

    ×10   T F 

      6.5972  12–

    ×10×+( )×+=

    V w

      a  p

    14.22-------------   b

      p

    14.22-------------   c×+

     Na Cl   1  6–

    ×10

    d NaCl   1  6–

    ×10×   e×+( )

     Na Cl   1  6–

    ×10×  p

    14.22-------------   f NaCl   1

      6–×10×   g   0.5

      p

    14.22-------------   h )××+×+

    ××–

    ×

    ×+×–=

    cw

    b   2.0  p

    14.22-------------   c NaCl   1

      6–×10×   f NaCl   1

      6–×10×   g

      p

    14.22-------------   h×+×+

    ×+××+

    V w

      14.22×------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------=

    T F 

     p

    NaCl

    V w

      cm3 gram ⁄ [ ]

    cw

      1   ps i ⁄ [ ]

     Bw

      a b p c p2

    + +( )S c

    =

    a   0.9947 5.8  6–

    ×10   T F 

      1.02  6–

    ×10   T F 

    2+ +=

    b   4.228  6–

    ×10– 1.8376  8–

    ×10   T F 

      6.77  11–

    ×10   T F 

    2–+=

    c   1.3  10–

    ×10 1.3855  12–

    ×10   T F 

    – 4.285  15–

    ×10   T F 

    2+=

    a   0.9911 6.35  6–

    ×10   T F 

      8.5  7–

    ×10   T F 

    2+ +=

    b   1.093   6–×10– 3.497   9–×10   T F 

    – 4.57   12–×10   T F 2+=

    c   5  11–

    ×10– 6.429  13–

    ×10   T F 

      1.43  15–

    ×10   T F 

    2–+=

    S c

      1 NaCl 5.1  8–

    ×10   p   5.47  6–

    ×10 1.96  10–

    ×10   p–( )   T F 

      60–( )

    3.23  8–

    ×10– 8.5  13–

    ×10   p+( )   T F 

      60–( )2

    +

    +

    [

    ]

    +=

  • 8/20/2019 welt_td (1)

    13/128

     PVT Property Correlations

    Water correlations 

    1-5

    is the fluid temperature in ºF

    is the pressure of interest, in psi

    is the salinity (1% = 10,000 ppm)

    ViscosityMeehan

    [EQ 1.25]

    [EQ 1.26]

    Pressure correction:

    [EQ 1.27]

    where

    is the fluid temperature in ºF

    is the pressure of interest, in psi

    is the salinity (1% = 10,000 ppm)

    Van Wingen

    is the fluid temperature in ºF

    Density

    [EQ 1.28]

    where

    is the salinity (1% = 10,000 ppm)

    is the formation volume factor

      is the Density of Water

    Water Gradient:

    T F 

     p

    NaCl

    µw

      S c

      S  p

      0.02414446.04   T 

    r   252–( ) ⁄ 

    ×10⋅ ⋅=

    S c

      1 0.00187NaCl0.5

    – 0.000218NaCl2.5

    T F 

    0.50.0135T 

    F –( )   0.00276NaCl 0.000344NaCl

    1.5–( )

    +

    +

    =

    S  p

      1 3.5  12–

    ×10   p2

    T F 

      40–( )+=

    T F 

     p

    NaCl

    µw   e   1.003   T F    1.479  2–

    ×10– 1.982

      5–

    ×10   T F ×+( )×+( )=

    T F 

    ρw

    62.303 0.438603NaCl 1.60074  3–

    ×10 NaCl2

    + +

     Bw

    -------------------------------------------------------------------------------------------------------------------=

    NaCl

     Bw

    ρw

      l b f t  3 ⁄ [ ]

  • 8/20/2019 welt_td (1)

    14/128

    1-6 PVT Property Correlations

    Gas correlations 

    Gas correlations

    Z-factor

    Dranchuk, Purvis et al.

    [EQ 1.29]

    [EQ 1.30]

    [EQ 1.31]

    [EQ 1.32]

    [EQ 1.33]

    [EQ 1.34]

    [EQ 1.35]

    where

    is the reservoir temperature, ºK

    is the critical temperature, ºK

    is the reduced temperature

    is the adjusted pseudo critical temperature

    is the mole fraction of Hydrogen Sulphide

    is the mole fraction of Carbon Dioxide

    w

    144.0-------------  [psi/ft]=

     z   1   a1

    a2

    T  R

    ∗---------

    a3

    T  R

    3∗---------+ +

    Pr 

      a4

    a5

    T  R

    ∗---------+

    Pr 

    2   a5a6Pr 5

    T  R

    ∗-------------------

    a7Pr 2

    T  R

    3∗------------   1   a

    8P

    2+( )exp   a

    8P

    2–( )

    + + +

    +

    =

    T  R

    ∗  T 

     R

    T c∗

    --------=

    T c∗   T 

    c

    5 E 3

    9---------

    –=

     E 3   120   Y  H 2S   Y 

    CO2+( )

    0.9Y 

     H 2S   Y 

    CO2+( )

    1.6–

    15   Y  H 2S 

    0.5Y 

     H 2S 

    4–

    +=

    Pr 

    0.27P pr 

     ZT  R

    ∗-------------------=

    P pr 

    P

    Pc∗

    ---------=

    Pc∗

      Pc

    T c∗

    T c

      Y  H 

    2S 

     1   Y  H 

    2S 

    –( ) E 3

    +-----------------------------------------------------------=

    T  R

    T c

    T  R

    T c∗

    Y  H 2S 

    Y CO2

  • 8/20/2019 welt_td (1)

    15/128

     PVT Property Correlations

    Gas correlations 

    1-7

    is the pressure of interest

    is the critical pressure

    is the adjusted pseudo critical Pressure

    is the critical temperature, ºK

    [EQ 1.36]

    Hall Yarborough

    [EQ 1.37]

    where

    is the pseudo reduced pressure

    is

    is the reduced density

     (where is the pressure of interest and is the critical pressure)

    [EQ 1.38]

    (where is the critical temperature and is the

    temperature in ºR) [EQ 1.39]

    Reduced density ( ) is the solution of the following equation:

    [EQ 1.40]

    This is solved using a Newon-Raphson iterative technique.

    P

    Pc

    Pc∗

    T c

    a1   0.31506237=

    a2   1.04670990–=

    a3   0.57832729–=

    a4   0.53530771=

    a5   0.61232032–=

    a6   0.10488813–=

    a7   0.68157001=

    a8

      0.68446549=

     Z 0.06125P

     pr t 

    Y ------------------------------

    exp

    1.2 1   t –( )2

    –( )=

    P pr 

    t    1 pseudo reduced temperature ⁄ 

    P pr 

    P

    Pcrit

    -----------=   P Pcrit

    t T crit

    T  R

    ----------=   T crit

      T  R

    0.06125P pr 

    t e

    1.2 1   t –( )2

    ––

      Y Y 2

    Y 3

    Y 4

    –+ +

    1   Y –( )3

    ----------------------------------------

    14.76t    9.76t 2

    – 4.58t 3

    +( )Y 2

    90.7t    242.2t 2

    – 4.58t 3

    +( )Y  2.18 2.82t +( )

    +

    + 0=

  • 8/20/2019 welt_td (1)

    16/128

    1-8 PVT Property Correlations

    Gas correlations 

    Viscosity

    Lee, Gonzalez, and Akin

    [EQ 1.41]

    where

    Formation volume factor

    [EQ 1.42]

    where

    is the Z-factor at pressure

    is the reservoir temperature

    is the pressure at standard conditions

    is the temperature at standard conditions

    is the pressure of interest

    Compressibility

    [EQ 1.43]

    where

    is the pressure of interest

    is the Z-factor at pressure

    Density

    [EQ 1.44]

    [EQ 1.45]

    where

    is the gas gravity

    is the pressure of interest

    is the Z-factor

    is the temperature in ºR

    µg   10  4–

    K Xp Y ( )exp=

    ρ   1.4935 10   3–( ) p M g zT --------=

     Bg

     ZT  R

    Psc

    T scP-------------------=

     Z P

    T  R

    Psc

    T sc

    P

    C g

    1

    P---

      1

     Z ---

      Z ∂P∂

    ------ –=

    P

     Z P

    ρg

    35.35ρsc

    P

     ZT -------------------------=

    ρsc

      0.0763γ g

    =

    γ g

    P

     Z 

  • 8/20/2019 welt_td (1)

    17/128

     PVT Property Correlations

    Oil correlations 

    1-9

    Condensate correction

    [EQ 1.46]

    where

    is the gas gravity

    is the condensate gravity

    is the condensate gas ratio in stb/scf 

    is the condensate API

    Oil correlationsCompressibility

    Saturated oil

    McCain, Rollins and Villena (1988)  

    [EQ 1.47]

    where

    is isothermal compressibility, psi-1

    is the solution gas-oil ratio at the bubblepoin pressure, scf/STB

    is the weight average of separator gas and stock-tank gas specific gravities

    is the temperature, oR

    Undersaturated oil

    Vasquez and Beggs 

    [EQ 1.48]

    where

    is the oil compressibility 1/psi

    is the solution GOR, scf/STB

    is the gas gravity (air = 1.0)

    γ gcorr

    0.07636γ g

      350   γ con

      cgr 

    ⋅ ⋅( )+

    0.002636350   γ 

    con   cgr ⋅ ⋅

    6084   γ conAPI

      5.9–( )-------------------------------------------------

    +

    ------------------------------------------------------------------------------------=

    γ g

    γ con

    cgr 

    γ conAPI

    co

      7.573– 1.450   p( )ln– 0.383   pb

    ( )ln– 1.402   T ( )ln 0.256   γ  AP I 

    ( )ln 0.449   Rsb

    ( )ln+ + +[ ]exp=

    C o

     Rsb

    γ g

    co

    5 R

    sb

      17.2T    1180γ g

    – 12.61γ API

      1433–+ +( )  5–

    ×10

     p------------------------------------------------------------------------------------------------------------------------------=

    co

     Rsb

    γ g

  • 8/20/2019 welt_td (1)

    18/128

    1-10 PVT Property Correlations

    Oil correlations 

    is the stock tank oil gravity , °API

    is the temperature in °F

    is the pressure of interest, psi

    • Example

    Determine a value for where psia, scf /STB, ,

    °API, °F.

    • Solution

    [EQ 1.49]

    /psi [EQ 1.50]

    Petrosky and Farshad (1993) 

    [EQ 1.51]

    where

      is the solution GOR, scf/STB

    is the average gas specific gravity (air = 1)

    is the oil API gravity, oAPI

    is the tempreature, oF

    is the pressure, psia

    Formation volume factor

    Saturated systems

    Three correlations are available for saturated systems:

    • Standing

    • Vasquez and Beggs

    • GlasO

    • Petrosky

    These are describe below.

    Standing 

    [EQ 1.52]

    where

     = Rs( γ g/γ o )0.5 + 1.25 T [EQ 1.53]

    API

     p

    co   p   3000=   Rsb   500=   γ g   0.80=

    γ API   30=   T    220=

    co

    5 500( )   17.2 220( )   1180 0.8( )– 12.61 30( )   1433–+ +

    3000  5

    ×10--------------------------------------------------------------------------------------------------------------------------------=

    co

      1.43  5–

    ×10=

    C o

      1.705   7–×10   Rs0.69357⋅( )γ 

    g0.1885γ 

     API 0.3272T 0.6729 p   0.5906–=

     Rs

    γ g

    γ  AP I 

     p

     Bo

      0.972 0.000147F 1.175

    +=

  • 8/20/2019 welt_td (1)

    19/128

     PVT Property Correlations

    Oil correlations 

    1-11

    and

    is the oil FVF, bbl/STB

    is the solution GOR, scf/STB

    is the gas gravity (air = 1.0)

    is the oil specific gravity = 141.5/(131.5 + γ API)

    is the temperature in °F

    • Example

    Use Standing’s equation to estimate the oil FVF for the oil system described by the

    data °F, scf / STB, , .

    • Solution

    [EQ 1.54]

    [EQ 1.55]

     bbl / STB [EQ 1.56]

    Vasquez and Beggs 

    [EQ 1.57]

    where

    is the solution GOR, scf/STB

    is the temperature in °F

    is the stock tank oil gravity , °API

    is the gas gravity

    , , are obtained from the following table:

    • Example

    Table 1.1 Values of C1, C2 and C3 as used in [EQ 1.57]

    API ≤ 30 API > 30C1 4.677 10 -4 4.670 10-4

    C2 1.751 10 -5 1.100 10-5

    C3 -1.811 10 -8 1.337 10 -9

     Bo

     Rs

    γ g

    γ o

    T    200=   Rs

      350=g

      0.75=API

      30=

    γ o

    141.5

    131.5 30+------------------------- 0.876= =

    F    350  0.75

    0.876-------------

    0.51.25 200( )+ 574= =

     Bo

      1.228=

     Bo

      1   C 1 R

    s  C 

    2  C 

    3 R

    s+( )   T    60–( )

    γ API

    γ gc

    -----------

    + +=

     Rs

    γ API

    γ gc

    C 1   C 2   C 3

  • 8/20/2019 welt_td (1)

    20/128

    1-12 PVT Property Correlations

    Oil correlations 

    Use the Vasquez and Beggs equation to determine the oil FVF at bubblepoint

    pressure for the oil system described by psia, scf / STB,

    , and °F.

    • Solution

     bb /STB [EQ 1.58]

    GlasO 

    [EQ 1.59]

    [EQ 1.60]

    [EQ 1.61]

    where

    is the solution GOR, scf/STB

    is the gas gravity (air = 1.0)

    is the oil specific gravity,

    is the temperature in °F

    is a correlating number

    Petrosky & Farshad (1993) 

    [EQ 1.62]

    where

    is the oil FVF, bbl/STB

    is the solution GOR, scf/STB

    is the temperature, oF

    Undersaturated systems

      [EQ 1.63]

    where

    is the oil FVF at bubble point , psi .

    is the oil isothermal compressibility , 1/psi

    is the pressure of interest, psi

     pb

      2652=   Rsb

      500=

    γ gc

      0.80=   γ API

      30=   T    220=

     Bo   1.285=

     Bo

      1.0 10 A

    +=

     A   6.58511– 2.91329   Bob

    ∗log 0.27683   Bob

    ∗log( )2

    –+=

     Bob

    ∗   Rs

    γ g

    γ o

    ----- 0.526

    0.968T +=

     Rs

    γ g

    γ o

      γ o

      141.5 131.5   γ API

    +( ) ⁄ =

     Bob

     Bo

      1.0113 7.2046  5–

    ×10   Rs0.3738 γ g0.2914

    γ o0.6265

    ------------------ 0.24626T 0.5371+

    3.0936+=

     Bo

     Rs

     Bo   Bobexp  c o   pb   p–( )( )=

     Bob

      pb

    co

     p

  • 8/20/2019 welt_td (1)

    21/128

     PVT Property Correlations

    Oil correlations 

    1-13

    is the bubble point pressure, psi

    Viscosity

    Saturated systems

    There are 4 correlations available for saturated systems:

    • Beggs and Robinson

    • Standing

    • GlasO

    • Khan

    • Ng and Egbogah

    These are described below.

    Beggs and Robinson 

    [EQ 1.64]

    where

    is the dead oil viscosity, cp

    is the temperature of interest, °F

    is the stock tank gravity

    Taking into account any dissolved gas we get

    [EQ 1.65]

    where

    • Example

    Use the following data to calculate the viscosity of the saturated oil system.

    °F, , scf / STB.

    • Solution

     cp

     pb

    µod    10 x 

    1–=

     x T   1.168–

    exp 6.9824 0.04658γ API

    –( )=

    µod 

    γ API

    µo

      Aµod 

     B=

     A   10.715   Rs

      100+( )  0.515–

    =

     B   5.44   Rs

      150+( )  0.338–

    =

    T    137=   γ API

      22=   Rs

      90=

    1.2658=

    od   17.44=

    0.719=

    0.853=

  • 8/20/2019 welt_td (1)

    22/128

    1-14 PVT Property Correlations

    Oil correlations 

     cp

    Standing 

    [EQ 1.66]

    [EQ 1.67]

    where

    is the temperature of interest, °F

    is the stock tank gravity

    [EQ 1.68]

    [EQ 1.69]

    [EQ 1.70]

    where

    is the solution GOR, scf/STB

    Glas φ

    [EQ 1.71]

    [EQ 1.72]

    [EQ 1.73]

    and

    [EQ 1.74]

    [EQ 1.75]

    whereis the temperature of interest, °F

    is the stock tank gravity

    o  8.24=

    µod 

      0.32  1.8

      7×10

    γ API

    4.53-------------------+

    360

    T    260–------------------

    a=

    a   10

    0.43  8.33

    γ API

    -----------+

    =

    γ API

    µo

      10a

    ( ) µod 

    ( )b

    =

    a Rs   2.2   7–×10   Rs   7.4   4–×10–( )=

    b  0.68

    108.62

      5–×10   R

    s

    -----------------------------------  0.25

    101.1

      3–×10   R

    s

    --------------------------------  0.062

    103.74

      3–×10   R

    s

    -----------------------------------+ +=

     Rs

    µo

      10a

    µod 

    ( )b

    =

    a Rs  2.2

      7–×10   R

    s  7.4

      4–×10–( )=

    b  0.68

    108.62

      5–×10   R

    s

    -----------------------------------  0.25

    101.1

      3–×10   R

    s

    --------------------------------  0.062

    103.74

      3–×10   R

    s

    -----------------------------------+ +=

    µod 

      3.141  10

    ×10   T    460–( )  3.444–

    γ API

    log( )a

    =

    10.313   T    460–( )log( )   36.44–=

    γ API

  • 8/20/2019 welt_td (1)

    23/128

     PVT Property Correlations

    Oil correlations 

    1-15

    Khan 

    [EQ 1.76]

    [EQ 1.77]

    where

    is the viscosity at the bubble point

    is

    is the temperature, °R

    is the specific gravity of oil

    is the specific gravity of solution gas

    is the bubble point pressure

    is the pressure of interest

    Ng and Egbogah (1983)

    [EQ 1.78]

    Solving for , the equation becomes,

    [EQ 1.79]

    where

    is the “dead oil” viscosity, cp

    is the oil API gravity, oAPI

    is the temperature, oF

    uses the same formel as Beggs and Robinson to calculate Viscosity

    Undersaturated systems

    There are 5 correlations available for undersaturated systems:

    • Vasquez and Beggs

    • Standing

    • GlasO

    • Khan

    • Ng and Egbogah

    These are described below.

    µo

      µob

     p

     pb

    -----

      0.14–e

    2.5  4–

    ×10–( )   p pb

    –( )=

    µob

    0.09γ g

    0.5

     Rs

    1 3 ⁄ θ

    4.51   γ 

    o–( )

    3---------------------------------------------=

    µob

    θr 

      T   460 ⁄ 

    γ o

    γ g

     pb

     p

    µod 

      1+( )log[ ]log 1.8653 0.025086γ  AP I 

    – 0.5644   T ( )log–=

    µod 

    µod 

      10101.8653 0.025086γ 

     AP I – 0.5644   T ( )log–( )

    1–=

    µod 

    γ  AP I 

  • 8/20/2019 welt_td (1)

    24/128

    1-16 PVT Property Correlations

    Oil correlations 

    Vasquez and Beggs 

    [EQ 1.80]

    where

    = viscosity at

    = viscosity at

    = pressure of interest, psi

    = bubble point pressure, psi

    where

    Example

    Calculate the viscosity of the oil system described at a pressure of 4750 psia, with

    °F, , , scf / SRB.

    Solution

     psia.

     cp

     cp

    Standing 

    [EQ 1.81]

    where

    is the viscosity at bubble point

    is the bubble point pressure

    is the pressure of interest

    GlasO 

    [EQ 1.82]

    µo

      µob

     p

     pb

    -----

    m=

    µo   p pb>

    µob

      pb

     p

     pb

    m C 1 pC 2

    exp  C 3   C 4 p+( )=

    C 1   2.6=

    C 2

      1.187=

    C 3

      11.513–=

    C 4   8.98  5–

    ×10–=

    T    240=   γ API

      31=   γ g

      0.745=   Rsb

      532=

     pb

      3093=

    µob

      0.53=

    µo

      0.63=

    µo

      µob

      0.001   p pb

    –( )   0.024µob

    1.60.038µ

    ob

    0.56+( )+=

    µob

     pb

     p

    µo

      µob

      0.001   p pb

    –( )   0.024µob

    1.60.038µ

    ob

    0.56+( )+=

  • 8/20/2019 welt_td (1)

    25/128

     PVT Property Correlations

    Oil correlations 

    1-17

    where

    is the viscosity at bubble point

    is the bubble point pressure

    is the pressure of interest

    Khan 

    [EQ 1.83]

    where

    is the viscosity at bubble point

    is the bubble point pressure

    is the pressure of interest

    Ng and Egbogah (1983)

    [EQ 1.84]

    Solving for , the equation becomes,

    [EQ 1.85]

    where

    is the “dead oil” viscosity, cp

    is the oil API gravity, oAPI

    is the temperature, oF

    uses the same formel as Beggs and Robinson to calculate Viscosity

    Bubble point

    Standing

     [EQ 1.86]

    where

    = mole fraction gas =

    = bubble point pressure, psia

    µob

     pb

     p

    µo

      µob

      e9.6

      5–×10   p p

    b–( )

    ⋅=

    µob

     pb

     p

    µod 

      1+( )log[ ]log 1.8653 0.025086γ  AP I 

    – 0.5644   T ( )log–=

    µod 

    µod 

      10101.8653 0.025086γ 

     AP I – 0.5644   T ( )log–( )

    1–=

    µod 

    γ  AP I 

    Pb

      18 Rsb

    γ g

    --------- 0.83  yg

    ×10=

     yg

      0.00091T  R

      0.0125γ API

    Pb

  • 8/20/2019 welt_td (1)

    26/128

    1-18 PVT Property Correlations

    Oil correlations 

    = solution GOR at , scf / STB

    = gas gravity (air = 1.0)

    = reservoir temperature ,°F

    = stock-tank oil gravity, °API

    Example:

    Estimate where  scf / STB,  °F, ,

    °API.

    Solution

    [EQ 1.87]

     psia [EQ 1.88]

    Lasater

    For

    [EQ 1.89]

    For

    [EQ 1.90]

    [EQ 1.91]

    For

    [EQ 1.92]

    For

    [EQ 1.93]

    where

     is the effective molecular weight of the stock-tank oil from API gravity

    = oil specific gravity (relative to water)

    Example

    Given the following data, use the Lasater method to estimate .

     Rsb

      P Pb

    γ g

    T  R

    γ API

     pb

      Rsb

      350=   T  R

      200=   γ g

      0.75=

    γ API

      30=

    γ g

      0.00091 200( )   0.0125 30( )– 0.193–= =

     pb

      18  350

    0.75----------

    0.83 0.193–×10 1895= =

    API 40≤

     M o

      630 10γ API

    –=

    API 40>

     M o

    73110

    γ API

    1.562---------------=

     yg

    1.0

    1.0 1.32755γ o   M o Rsb ⁄ ( )+-----------------------------------------------------------------=

     yg

      0.6≤

    Pb

    0.679exp 2.786 yg

    ( ) 0.323–( )T  R

    γ g

    -----------------------------------------------------------------------------=

     yg

      0.6≥

    Pb

    8.26 yg

    3.561.95+( )T 

     R

    γ g

    ----------------------------------------------------=

     M o

    γ o

     pb

  • 8/20/2019 welt_td (1)

    27/128

     PVT Property Correlations

    Oil correlations 

    1-19

    , scf / STB, , °F,

    . [EQ 1.94]

    Solution

    [EQ 1.95]

    [EQ 1.96]

     psia [EQ 1.97]

    Vasquez and Beggs

    [EQ 1.98]

    where

    Example

    Calculate the bubblepoint pressure using the Vasquez and Beggs correlation andthe following data.

    , scf / STB, , °F,

    . [EQ 1.99]

    Solution

     psia [EQ 1.100]

    GlasO

    [EQ 1.101]

    Table 1.2 Values of C1, C2 and C3 as used in [EQ 1.98]

    API < 30 API > 30

    C1 0.0362 0.0178

    C2 1.0937 1.1870

    C3 25.7240 23.9310

     yg

      0.876=sb

      500=   γ o

      0.876=   T  R

      200=

    API  30=

     M o

      630 10 30( )– 330= =

     yg

    550 379.3 ⁄ 500 379.3 ⁄    350 0.876 330 ⁄ ( )+------------------------------------------------------------------------- 0.587= =

     pb

    3.161 660( )0.876

    --------------------------- 2381.58= =

    Pb

     Rsb

    C 1

    γ g

    expC 3γ API

    T  R   460+

    ----------------------

    --------------------------------------------------

    1

    C 2

    ------

    =

     yg

      0.80=   Rsb

      500=   γ g

      0.876=   T  R

      200=

    γ API

      30=

     pb

    500

    0.0362 0.80( )exp 25.724   30680---------

    ------------------------------------------------------------------------------

    1

    1.0937----------------

    2562= =

    Pb

    ( )log 1.7669 1.7447   Pb∗( )log 0.30218   P

    b∗( )log( )

    2–+=

  • 8/20/2019 welt_td (1)

    28/128

    1-20 PVT Property Correlations

    Oil correlations 

    [EQ 1.102]

    where

    is the solution GOR , scf / STB

    is the gas gravity

    is the reservoir temperature ,°F

    is the stock-tank oil gravity, °API

    for volatile oils is used.

    Corrections to account for non-hydrocarbon components:

    [EQ 1.103]

    [EQ 1.104]

    [EQ 1.105]

    [EQ 1.106]

    where

    [EQ 1.107]

    is the reservoir temperature ,°F

    is the stock-tank oil gravity, °API

    is the mole fraction of Nitrogen

    is the mole fraction of Carbon Dioxide

    is the mole fraction of Hydrogen Sulphide

    Pb∗

     Rs

    γ g

    ----- 0.816 T  p

    0.172

    γ API0.989

    ---------------

    =

     Rs

    γ g

    T F 

    API

    T F 

    0.130

    Pb

    cP

    bc

    CorrCO2   CorrH 2S C orrN  2×××=

    CorrN2 1   a1γ API   a2+–   T F    a3γ API   a4–+[ ]Y N2

    a5γ 

    API

    a6T 

    F   a

    6γ 

    API

    a7a

    8–+   Y 

    N22

    +

    +

    =

    CorrCO2 1 693.8Y CO2T F 1.553–

    –=

    CorrH2S 1 0.9035 0.0015γ API+( )Y H2S– 0.019 45   γ API–( )Y H2S+=

    a1

      2.65  4–

    ×10–=

    a2   5.5  3–

    ×10=

    a3   0.0391=

    a4   0.8295=

    a5   1.954  11–

    ×10=

    a6   4.699=

    a7   0.027=

    a8   2.366=

    T F 

    API

    Y N2

    Y CO2

    Y H2S

  • 8/20/2019 welt_td (1)

    29/128

     PVT Property Correlations

    Oil correlations 

    1-21

    Marhoun

    [EQ 1.108]

    where

    is the solution GOR , scf / STB

    is the gas gravity

    is the reservoir temperature ,°R

    [EQ 1.109]

    Petrosky and Farshad (1993)

    [EQ 1.110]

    where

    is the solution GOR, scf/STB

    is the average gas specific gravity (air=1)

    is the oil specific gravity (air=1)

    is the temperature, oF

    GOR

    Standing

    [EQ 1.111]

    where

    is the mole fraction gas =

    is the solution GOR , scf / STB

    is the gas gravity (air = 1.0)

    is the reservoir temperature ,°F

     pb

      a·  Rs

    bγ 

    g

    cγ 

    o

    d T 

     R

    e⋅ ⋅ ⋅ ⋅=

     Rs

    γ g

    T  R

    a   5.38088  3–

    ×10=

    b   0.715082=

    c   1.87784–=

    d    3.1437=

    e   1.32657=

     pb

      112.727 R

    s0.5774

    γ g0.8439

    ------------------- X 

    ×10   12.340–=

     X    4.561  5–

    ×10   T 1.3911 7.916  4–

    ×10   γ  AP I 1.5410–=

     Rs

    γ g

    γ o

     Rs

      γ g

     p

    18 y

    g×10

    -------------------- 1.204

    =

     yg

      .00091T  R

      0.0125γ AP

     Rs

    γ g

    T F 

  • 8/20/2019 welt_td (1)

    30/128

    1-22 PVT Property Correlations

    Oil correlations 

    is the stock-tank oil gravity, °API

    Example

    Estimate the solution GOR of the following oil system using the correlations ofStanding, Lasater, and Vasquez and Beggs and the data:

     psia, °F, , . [EQ 1.112]

    Solution

     scf / STB [EQ 1.113]

    Lasater

    [EQ 1.114]

    For

    [EQ 1.115]

    For

    [EQ 1.116]

    For

    [EQ 1.117]

    For

    [EQ 1.118]

    where is in °R.

    Example

    Estimate the solution GOR of the following oil system using the correlations ofStanding, Lasater, and Vasquez and Beggs and the data:

     psia, °F, , . [EQ 1.119]

    Solution

    [EQ 1.120]

    [EQ 1.121]

     scf / STB [EQ 1.122]

    API

     p   765=   T    137=   γ API

      22=   γ g

      0.65=

     Rs

      0.65  765

    18  0.15–

    ×10----------------------------

    1.20490= =

     Rs

    132755γ o y

    g

     M o

     1   yg

    –( )-----------------------------=

    API 40≤

     M o

      630 10γ API

    –=

    API 40>

     M o

    73110

    γ API1.562

    ---------------=

     pγ g

      T  ⁄    3.29<

     yg

      0.359ln1.473 pγ 

    g

    T ---------------------- 0.476+

    =

     pγ g   T  ⁄    3.29≥

     yg

    0.121 pγ g

    T ---------------------- 0.236–

    0.281=

     p   765=   T    137=   γ API   22=   γ g   0.65=

     yg

      0.359ln 1.473 0.833( )   0.476+[ ]   0.191= =

    o  630 10 22( )– 41= =

     Rs

    132755 0.922( )  0.191( )410 1 0.191–( )

    ------------------------------------------------------- 70= =

  • 8/20/2019 welt_td (1)

    31/128

     PVT Property Correlations

    Oil correlations 

    1-23

    Vasquez and Beggs

    [EQ 1.123]

    where C1, C2, C3 are obtained from Table 1.3.

    • Example

    Estimate the solution GOR of the following oil system using the correlations of

    Standing, Lasater, and Vasquez and Beggs and the data:

     psia, °F, , . [EQ 1.124]

    • Solution

     scf / STB [EQ 1.125]

    GlasO

    [EQ 1.126]

    [EQ 1.127]

    [EQ 1.128]

    where

    is the specific gravity of solution gas

    is the reservoir temperature ,°F

    is the stock-tank oil gravity, °API

    is the mole fraction of Nitrogen

    is the mole fraction of Carbon Dioxide

    is the mole fraction of Hydrogen Sulphide

    Table 1.3 Values of C1, C2 and C3 as used in [EQ 1.123]

    API < 30 API > 30

    C1 0.0362 0.0178

    C2 1.0937 1.1870

    C3 25.7240 23.9310

     Rs

      C 1

    γ g p

    C 2exp

    C 3γ APIT 

     R  460+

    ----------------------

    =

     p   765=   T    137=   γ API

      22=   γ g

      0.65=

     Rs

      0.0362 0.65( )  765( )1.0937

    exp  25.724 22( )

    137 460+---------------------------   87= =

     Rs

      γ g

    γ API

    0.989

    T F 

    0.172---------------

    Pb∗

    1.2255

    =

    Pb∗   10

    2.8869 14.1811 3.3093   Pbc

    ( )log–( )0.5

    –[ ]=

    Pbc

    Pb

    CorrN2 CorrCO2 CorrH2S+ +---------------------------------------------------------------------------=

    γ g

    T F 

    γ API

    Y N2

    Y CO2

    Y H2S

  • 8/20/2019 welt_td (1)

    32/128

    1-24 PVT Property Correlations

    Oil correlations 

    Marhoun

    [EQ 1.129]

    where

    is the temperature, °R

    is the specific gravity of oil

    is the specific gravity of solution gas

    is the bubble point pressure

    [EQ 1.130]

    Petrosky and Farshad (1993)

    [EQ 1.131]

    where

    [EQ 1.132]

    is the bubble-point pressure, psia

    is the temperature, oF

    Separator gas gravity correction

    [EQ 1.133]

    where

    is the gas gravity

    is the oil API

    is the separator temperature in °F

    is the separator pressure in psia

    Tuning factors

    Bubble point (Standing):

     Rs

      a   γ g

    bγ 

    o

    cT 

    d  p

    b⋅ ⋅ ⋅ ⋅( )

    e=

    γ o

    γ g

     pb

    a   185.843208=

    b   1.877840=

    c   3.1437–=

    d    1.32657–=

    e   1.398441=

     Rs

     pb

    112.727------------------- 12.340+

    γ g0.8439   X ×10

    1.73184=

     X    7.916  4–

    ×10   γ g1.5410 4.561

      5–×10   T 1.3911–=

     pb

    γ gcorr

      γ g

      1 5.912  5–

    ×10   γ API   T F sep

    Psep

    114.7-------------

    log⋅ ⋅ ⋅+

    =

    γ g

    API

    F sep

    Psep

  • 8/20/2019 welt_td (1)

    33/128

     PVT Property Correlations

    Oil correlations 

    1-25

    [EQ 1.134]

    GOR (Standing):

    [EQ 1.135]

    Formation volume factor:

    [EQ 1.136]

    [EQ 1.137]

    Compressibility:

    [EQ 1.138]

    Saturated viscosity (Beggs and Robinson):

    [EQ 1.139]

    [EQ 1.140]

    [EQ 1.141]

    Undersaturated viscosity (Standing):

    [EQ 1.142]

    Pb

      18 FO1 R

    sb

    γ g

    --------- 0.83 γ g

    ×10⋅=

     Rs   γ g

    P

    18 FO1γ g

    ×10⋅

    -----------------------------------

    1.204

    =

     Bo

      0.972 FO2⋅   0.000147 FO3   F 1.175

    ⋅ ⋅+=

    F Rs

    γ g

    γ o

    ----- 0.5

    1.25T F 

    +=

    co

    FO4 5 Rsb

      17.2T F 

      1180γ g

    – 12.61γ API

      1433–+ +( )  5–

    ×10

    P---------------------------------------------------------------------------------------------------------------------------------------------=

    µo

      Aµod 

     B=

     A   10.715 FO5   Rs

      100+( )  0.515–

    ⋅=

     B   5.44 FO6   Rs

      150+( )  0.338–

    ⋅=

    µo   µob   P Pb–( )  FO7 0.024µob1.6

    0.038µob0.56

    +( )[ ]+=

  • 8/20/2019 welt_td (1)

    34/128

    1-26 PVT Property Correlations

    Oil correlations 

  • 8/20/2019 welt_td (1)

    35/128

     SCAL Correlations

    Oil / water 

    2-1

    Chapter 2SCAL Correlations 

    SCAL correlations 2

    Oil / water

    Figure 2.1 Oil/water SCAL correlations

    where

    Kro

    Krw

    0 1

    Swmin

    Kro(Swmin)

    Swmin Swcr 1-Sorw

    Sorw’Krw(Sorw)

    ,Swmax

    ,

    Krw(Swmax)

  • 8/20/2019 welt_td (1)

    36/128

    2-2 SCAL Correlations

    Oil / water 

    is the minimum water saturation

    is the critical water saturation (≥ )

    is the residual oil saturation to water ( )

    is the water relative permeability at residual oil saturation

    is the water relative permeability at maximum water saturation (that

    is 100%)

    is the oil relative permeability at minimum water saturation

    Corey functions

    • Water

    (For values between and )

    [EQ 2.1]

    where is the Corey water exponent.

    • Oil

    (For values between and )

    [EQ 2.2]

    where is the initial water saturation andis the Corey oil exponent.

    swmin

    swc r 

      swmin

    sor w

      1   sorw

    –   swc r 

    >

    k rw  sorw( )

    k rw

     swmax 

    ( )

    k ro

     swmin

    ( )

    S wc r 

      1   S orw

    k rw

      k rw

     sorw

    ( )sw   swc r –

    swmax 

      swc r 

    –   sorw

    –---------------------------------------------------

    C w=

    C w

    swmin

      1   sorw

    k ro

      k ro

     swmin

    ( )s

    wmax   s

    w–   s

    orw–

    swmax 

      swi

    –   sor w

    –-----------------------------------------------

    C o

    =

    swi

    C o

  • 8/20/2019 welt_td (1)

    37/128

     SCAL Correlations

    Gas / water 

    2-3

    Gas / water

    Figure 2.2 Gas/water SCAL correlatiuons

    where

    is the minimum water saturation

    is the critical water saturation (≥ )

    is the residual gas saturation to water ( )

    is the water relative permeability at residual gas saturation

    is the water relative permeability at maximum water saturation (that is

    100%)

    is the gas relative permeability at minimum water saturation

    Corey functions

    • Water

    (For values between and )

    [EQ 2.3]

    where is the Corey water exponent.

    KrgKrw

    0 1Swmin Swcr Sgrw

    Swmin,Krg(Swmin)

    Sgrw,Krw(Sgrw)

    Swmax,Krw(Smax)

    swmin

    swc r 

      swmin

    sgr w   1   sgr w–   swc r >

    k rw

     sgrw

    ( )

    k rw

     swmax 

    ( )

    k rg

     swmin

    ( )

    swc r    1   sgrw–

    k rw

      k rw

     sgrw

    ( )s

    w  s

    wc r –

    swmax 

      swc r 

    –   sgrw

    –---------------------------------------------------

    C w

    =

    C w

  • 8/20/2019 welt_td (1)

    38/128

    2-4 SCAL Correlations

    Oil / gas 

    • Gas

    (For values between and )

    [EQ 2.4]

    where is the initial water saturation and

    is the Corey gas exponent.

    Oil / gas

    Figure 2.3 Oil/gas SCAL correlations

    where

    is the minimum water saturation

    is the critical gas saturation (≥ )

    is the residual oil saturation to gas ( )

    is the water relative permeability at residual oil saturation

    is the water relative permeability at maximum water saturation (that

    is 100%)

    is the oil relative permeability at minimum water saturation

    swmin

      1   sgrw

    k rg

      k rg

     swmin

    ( )s

    wmax   s

    w–   s

    grw–

    swmax 

      swi

    –   sgr w

    –-----------------------------------------------

    C g

    =

    swi

    C g

    0

    Sliquid

    1-Sgcr 1-SgminSwmin Sorg+Swmin

    Swmin,K

    rg(S

    wmin)

    Sorg+Swmin,Krg(Sorg)

    Swmax

    ,Krw(Smax)

    swmin

    sgc r 

      sgmin

    sor g   1   sorg–   swc r >

    k rg

     sor g

    ( )

    k rg

     swmin

    ( )

    k ro

     swmin

    ( )

  • 8/20/2019 welt_td (1)

    39/128

     SCAL Correlations

    Oil / gas 

    2-5

    Corey functions

    • Oil

    (For values between and )

    [EQ 2.5]

    where is the initial water saturation and

    is the Corey oil exponent.

    • Gas

    (For values between and )

    [EQ 2.6]

    where is the initial water saturation and

    is the Corey gas exponent.

    Note  In drawing the curves is assumed to be the connate water saturation.

    swmin

      1   sorg

    k ro   k ro   sgmin( )

    sw

      swi

    –   sor g

    1   swi

    –   sorg

    –------------------------------------

    C o

    =

    swi

    C o

    swmin

      1   sorg

    k rg

      k rg

      sorg

    ( )1   s

    w–   s

    gc r –

    1   swi

    –   sorg

    –   sgc r 

    –--------------------------------------------------

    C g

    =

    swi

    C g

    swi

  • 8/20/2019 welt_td (1)

    40/128

    2-6 SCAL Correlations

    Oil / gas 

  • 8/20/2019 welt_td (1)

    41/128

     Pseudo variables

    Pseudo Variables 

    3-1

    Chapter 3Pseudo variables 

    Pseudo pressure transformations

    The pseudo pressure is defined as:

    [EQ 3.1]

    It can be normalized by choosing the variables at the initial reservoir condition.

    Normalized pseudo pressure transformations

    [EQ 3.2]

    The advantage of this normalization is that the pseudo pressures and real pressures

    coincide at and have real pressure units.

    Pseudo time transformations

    The pseudotime transform is

    m p( )   2  p

    µ   p( ) z p( )----------------------   pd 

     pi

     p

     =

    mn

      p( )   pi

    µi z

    i

     pi

    ---------  p

    µ   p( ) z p( )---------------------   pd 

     pi

     p

     +=

     pi

  • 8/20/2019 welt_td (1)

    42/128

    3-2 Pseudo variables

    Pseudo Variables 

    [EQ 3.3]

    Normalized pseudo time transformationsNormalizing the equation gives

    [EQ 3.4]

    Again the advantage of this normalization is that the pseudo times and real times

    coincide at and have real time units.

    m t ( )  1

    µ   p( )ct 

      p( )------------------------   t d 

    0

     =

    mn

      t ( ) µic

    i1

    µ   p( )ct 

      p( )------------------------   t d 

    0

     =

     pi

  • 8/20/2019 welt_td (1)

    43/128

     Analytical Models

    Fully-completed vertical well 

    4-1

    Chapter 4Analytical Models 

    Fully-completed vertical well 4

    Assumptions

    • The entire reservoir interval contributes to the flow into the well.

    • The model handles homogeneous, dual-porosity and radial composite reservoirs.

    • The outer boundary may be finite or infinite.

    Figure 4.1 Schematic diagram of a fully completed vertical well in a homogeneous, infinite reservoir.

    Parameters

    k  horizontal permeability of the reservoir

  • 8/20/2019 welt_td (1)

    44/128

    4-2 Analytical Models

    Fully-completed vertical well 

    s wellbore skin factor

    Behavior

    At early time, response is dominated by the wellbore storage. If the wellbore storage

    effect is constant with time, the response is characterized by a unity slope on thepressure curve and the pressure derivative curve.

    In case of variable storage, a different behavior may be seen.

    Later, the influence of skin and reservoir storativity creates a hump in the derivative.

    At late time, an infinite-acting radial flow pattern develops, characterized bystabilization (flattening) of the pressure derivative curve at a level that depends on thek * h product.

    Figure 4.2 Typical drawdown response of a fully completed vertical well in a homogeneous, infinite reservoir

    pressure derivative 

    pressure 

  • 8/20/2019 welt_td (1)

    45/128

     Analytical Models

    Partial completion 

    4-3

    Partial completion 4

    Assumptions

    • The interval over which the reservoir flows into the well is shorter than thereservoir thickness, due to a partial completion.

    • The model handles wellbore storage and skin, and it assumes a reservoir of infiniteextent.

    • The model handles homogeneous and dual-porosity reservoirs.

    Figure 4.3 Schematic diagram of a partially completed well

    Parameters

    Mech. skin

    mechanical skin of the flowing interval, caused by reservoir damage

    k  reservoir horizontal permeability

    kz reservoir vertical permeability

    Auxiliary parameters

    These parameters are computed from the preceding parameters:

     pseudoskin

    skin caused by the partial completion; that is, by the geometry of thesystem. It represents the pressure drop due to the resistance encounteredin the flow convergence.

    total skin

    a value representing the combined effects of mechanical skin and partialcompletion

    htp 

    h kz 

     f   S 

    t   S 

    r –( )l( )   h ⁄ =

  • 8/20/2019 welt_td (1)

    46/128

    4-4 Analytical Models

    Partial completion 

    Behavior

    At early time, after the wellbore storage effects are seen, the flow is spherical orhemispherical, depending on the position of the flowing interval. Hemispherical flowdevelops when one of the vertical no-flow boundaries is much closer than the other to

    the flowing interval. Either of these two flow regimes is characterized by a –0.5 slopeon the log-log plot of the pressure derivative.

    At late time, the flow is radial cylindrical. The behavior is like that of a fully completedwell in an infinite reservoir with a skin equal to the total skin of the system.

    Figure 4.4 Typical drawdown response of a partially completed well.

    pressure derivative 

    pressure 

  • 8/20/2019 welt_td (1)

    47/128

     Analytical Models

    Partial completion with gas cap or aquifer 

    4-5

    Partial completion with gas cap or aquifer 4

    Assumptions

    • The interval over which the reservoir flows into the well is shorter than thereservoir thickness, due to a partial completion.

    • Either the top or the bottom of the reservoir is a constant pressure boundary (gascap or aquifer).

    • The model assumes a reservoir of infinite extent.

    • The model handles homogeneous and dual-porosity reservoirs.

    Figure 4.5 Schematic diagram of a partially completed well in a reservoir with an aquifer

    Parameters

    Mech. skin

    mechanical skin of the flowing interval, caused by reservoir damage

    k  reservoir horizontal permeability

    kz reservoir vertical permeability

    Auxiliary Parameters

    These parameters are computed from the preceding parameters:

     pseudoskin

    skin caused by the partial completion; that is, by the geometry of thesystem. It represents the pressure drop due to the resistance encounteredin the flow convergence.

    total skin

    a value for the combined effects of mechanical skin and partial completion.

    ht 

    h kz 

  • 8/20/2019 welt_td (1)

    48/128

    4-6 Analytical Models

    Partial completion with gas cap or aquifer 

    Behavior

    At early time, after the wellbore storage effects are seen, the flow is spherical orhemispherical, depending on the position of the flowing interval. Either of these twoflow regimes is characterized by a –0.5 slope on the log-log plot of the pressure

    derivative.When the influence of the constant pressure boundary is felt, the pressure stabilizesand the pressure derivative curve plunges.

    Figure 4.6 Typical drawdown response of a partially completed well in a reservoir with a gas cap or aquifer

    pressure derivative 

    pressure 

  • 8/20/2019 welt_td (1)

    49/128

     Analytical Models

    Infinite conductivity vertical fracture 

    4-7

    Infinite conductivity vertical fracture 4

    Assumptions

    • The well is hydraulically fractured over the entire reservoir interval.

    • Fracture conductivity is infinite.

    • The pressure is uniform along the fracture.

    • This model handles the presence of skin on the fracture face.

    • The reservoir is of infinite extent.

    • This model handles homogeneous and dual-porosity reservoirs.

    Figure 4.7 Schematic diagram of a well completed with a vertical fracture

    Parametersk  horizontal reservoir permeability

    xf  vertical fracture half-length

    Behavior

    At early time, after the wellbore storage effects are seen, response is dominated bylinear flow from the formation into the fracture. The linear flow is perpendicular to thefracture and is characterized by a 0.5 slope on the log-log plot of the pressurederivative.

    At late time, the behavior is like that of a fully completed infinite reservoir with a lowor negative value for skin. An infinite-acting radial flow pattern may develop.

    xf 

    well 

  • 8/20/2019 welt_td (1)

    50/128

    4-8 Analytical Models

    Infinite conductivity vertical fracture 

    Figure 4.8 Typical drawdown response of a well completed with an infinite conductivity vertical fracture

    pressure derivative 

    pressure 

  • 8/20/2019 welt_td (1)

    51/128

     Analytical Models

    Uniform flux vertical fracture 

    4-9

    Uniform flux vertical fracture 4

    Assumptions

    • The well is hydraulically fractured over the entire reservoir interval.

    • The flow into the vertical fracture is uniformly distributed along the fracture. Thismodel handles the presence of skin on the fracture face.

    • The reservoir is of infinite extent.

    • This model handles homogeneous and dual-porosity reservoirs.

    Figure 4.9 Schematic diagram of a well completed with a vertical fracture

    Parameters

    k  Horizontal reservoir permeability in the direction of the fracturexf  vertical fracture half-length

    Behavior

    At early time, after the wellbore storage effects are seen, response is dominated bylinear flow from the formation into the fracture. The linear flow is perpendicular to thefracture and is characterized by a 0.5 slope on the log-log plot of the pressurederivative.

    At late time, the behavior is like that of a fully completed infinite reservoir with a lowor negative value for skin. An infinite-acting radial flow pattern may develop.

    xf 

    well 

  • 8/20/2019 welt_td (1)

    52/128

    4-10 Analytical Models

    Uniform flux vertical fracture 

    Figure 4.10 Typical drawdown response of a well completed with a uniform flux vertical fracture

    pressure derivative 

    pressure 

  • 8/20/2019 welt_td (1)

    53/128

     Analytical Models

    Finite conductivity vertical fracture 

    4-11

    Finite conductivity vertical fracture 4

    Assumptions

    • The well is hydraulically fractured over the entire reservoir interval.

    • Fracture conductivity is uniform.

    • The reservoir is of infinite extent.

    • This model handles homogeneous and dual-porosity reservoirs.

    Figure 4.11 Schematic diagram of a well completed with a vertical fracture

    Parameters

    kf-w  vertical fracture conductivity

    k  horizontal reservoir permeability in the direction of the fracture

    xf  vertical fracture half-length

    Behavior

    At early time, after the wellbore storage effects are seen, response is dominated by theflow in the fracture. Linear flow within the fracture may develop first, characterized bya 0.5 slope on the log-log plot of the derivative.

    For a finite conductivity fracture, bilinear flow, characterized by a 0.25 slope on the log-log plot of the derivative, may develop later. Subsequently the linear flow (with slope

    of 0.5) perpendicular to the fracture is recognizable.At late time, the behavior is like that of a fully completed infinite reservoir with a lowor negative value for skin. An infinite-acting radial flow pattern may develop.

    xf 

    well 

  • 8/20/2019 welt_td (1)

    54/128

    4-12 Analytical Models

    Finite conductivity vertical fracture 

    Figure 4.12 Typical drawdown response of a well completed with a finite conductivity vertical fracture

    pressure derivative 

    pressure 

  • 8/20/2019 welt_td (1)

    55/128

     Analytical Models

    Horizontal well with two no-flow boundaries 

    4-13

    Horizontal well with two no-flow boundaries 4

    Assumptions

    • The well is horizontal.

    • The reservoir is of infinite lateral extent.

    • Two horizontal no-flow boundaries limit the vertical extent of the reservoir.

    • The model handles a permeability anisotropy.

    • The model handles homogeneous and the dual-porosity reservoirs.

    Figure 4.13 Schematic diagram of a fully completed horizontal well

    Parameters

    Lp  flowing length of the horizontal well

    k  reservoir horizontal permeability in the direction of the well

    k y reservoir horizontal permeability in the direction perpendicular to thewell

    kz reservoir vertical permeability

    Z w standoff distance from the well to the reservoir bottom

    Behavior

    At early time, after the wellbore storage effect is seen, a radial flow, characterized by aplateau in the derivative, develops around the well in the vertical ( y-z) plane.

    Later, if the well is close to one of the boundaries, the flow becomes semi radial in thevertical plane, and a plateau develops in the derivative plot with double the value ofthe first plateau.

    After the early-time radial flow, a linear flow may develop in the y -direction,characterized by a 0.5 slope on the derivative pressure curve in the log-log plot.

    Lp 

    dw 

  • 8/20/2019 welt_td (1)

    56/128

    4-14 Analytical Models

    Horizontal well with two no-flow boundaries 

    At late time, a radial flow, characterized by a plateau on the derivative pressure curve,may develop in the horizontal x-y  plane.

    Depending on the well and reservoir parameters, any of these flow regimes may ormay not be observed.

    Figure 4.14 Typical drawdown response of fully completed horizontal well

    pressure derivative 

    pressure 

  • 8/20/2019 welt_td (1)

    57/128

     Analytical Models

    Horizontal well with gas cap or aquifier 

    4-15

    Horizontal well with gas cap or aquifer 4

    Assumptions

    • The well is horizontal.

    • The reservoir is of infinite lateral extent.

    • One horizontal boundary, above or below the well, is a constant pressure boundary. The other horizontal boundary is a no-flow boundary.

    • The model handles homogeneous and dual-porosity reservoirs.

    Figure 4.15 Schematic diagram of a horizontal well in a reservoir with a gas cap

    Parameters

    k reservoir horizontal permeability in the direction of the well

    k y reservoir horizontal permeability in the direction perpendicular to thewell

    kz reservoir vertical permeability

    Behavior

    At early time, after the wellbore storage effect is seen, a radial flow, characterized by aplateau in the derivative pressure curve on the log-log plot, develops around the wellin the vertical ( y-z) plane.

    Later, if the well is close to the no-flow boundary, the flow becomes semi radial in thevertical y-z plane, and a second plateau develops with a value double that of theradial flow.

    At late time, when the constant pressure boundary is seen, the pressure stabilizes, andthe pressure derivative curve plunges.

    Lp 

    dw 

  • 8/20/2019 welt_td (1)

    58/128

    4-16 Analytical Models

    Horizontal well with gas cap or aquifier 

    Note  Depending on the ratio of mobilities and storativities between the reservoirand the gas cap or aquifer, the constant pressure boundary model may not beadequate. In that case the model of a horizontal well in a two-layer medium(available in the future) is more appropriate.

    Figure 4.16 Typical drawdown response of horizontal well in a reservoir with a gas cap or an aquifer

    pressure derivative 

    pressure 

  • 8/20/2019 welt_td (1)

    59/128

     Analytical Models

    Homogeneous reservoir 

    4-17

    Homogeneous reservoir 4

    Assumptions

    This model can be used for all models or boundary conditions mentioned in"Assumptions" on page 4-1.

    Figure 4.17 Schematic diagram of a well in a homogeneous reservoir

    Parameters

     phi Ct storativity

    k  permeability

    h reservoir thickness

    Behavior

    Behavior depends on the inner and outer boundary conditions. See the page describingthe appropriate boundary condition.

    well 

  • 8/20/2019 welt_td (1)

    60/128

    4-18 Analytical Models

    Homogeneous reservoir 

    Figure 4.18 Typical drawdown response of a well in a homogeneous reservoir

    pressure derivative 

    pressure 

  • 8/20/2019 welt_td (1)

    61/128

     Analytical Models

    Two-porosity reservoir 

    4-19

    Two-porosity reservoir 4

    Assumptions

    • The reservoir comprises two distinct types of porosity: matrix and fissures. The matrix may be in the form of blocks, slabs, or spheres. Three choices of flowmodels are provided to describe the flow between the matrix and the fissures.

    • The flow from the matrix goes only into the fissures. Only the fissures flow into thewellbore.

    • The two-porosity model can be applied to all types of inner and outer boundaryconditions, except when otherwise noted. \

    Figure 4.19 Schematic diagram of a well in a two-porosity reservoir

    Interporosity flow modelsIn the Pseudosteady state model, the interporosity flow is directly proportional to thepressure difference between the matrix and the fissures.

    In the transient model, there is diffusion within each independent matrix block. Twomatrix geometries are considered: spheres and slabs.

    Parameters

    omega storativity ratio, fraction of the fissures pore volume to the total porevolume. Omega is between 0 and 1.

    lambda interporosity flow coefficient, which describes the ability to flow from thematrix blocks into the fissures. Lambda is typically a very small number,ranging from1e  – 5 to 1e  – 9.

  • 8/20/2019 welt_td (1)

    62/128

    4-20 Analytical Models

    Two-porosity reservoir 

    Behavior

    At early time, only the fissures contribute to the flow, and a homogeneous reservoirresponse may be observed, corresponding to the storativity and permeability of thefissures.

    A transition period develops, during which the interporosity flow starts. It is marked by a “valley” in the derivative. The shape of this valley depends on the choice ofinterporosity flow model.

    Later, the interporosity flow reaches a steady state. A homogeneous reservoirresponse, corresponding to the total storativity (fissures + matrix) and the fissurepermeability, may be observed.

    Figure 4.20 Typical drawdown response of a well in a two-porosity reservoir

    pressure derivative 

    pressure 

  • 8/20/2019 welt_td (1)

    63/128

     Analytical Models

    Radial composite reservoir 

    4-21

    Radial composite reservoir 4

    Assumptions

    • The reservoir comprises two concentric zones, centered on the well, of differentmobility and/or storativity.

    • The model handles a full completion with skin.

    • The outer boundary can be any of three types:

    • Infinite

    • Constant pressure circle

    • No-flow circle

    Figure 4.21 Schematic diagram of a well in a radial composite reservoir

    Parameters

    L1 radius of the first zone

    re radius of the outer zone

     mr  mobility (k /µ) ratio of the inner zone to the outer zone

    sr  storativity ( phi * Ct) ratio of the inner zone to the outer zone

    SI Interference skin

    Behavior

    At early time, before the outer zone is seen, the response corresponds to an infinite-acting system with the properties of the inner zone.

    well 

    re 

  • 8/20/2019 welt_td (1)

    64/128

    4-22 Analytical Models

    Radial composite reservoir 

    When the influence of the outer zone is seen, the pressure derivative varies until itreaches a plateau.

    At late time the behavior is like that of a homogeneous system with the properties ofthe outer zone, with the appropriate outer boundary effects.

    Figure 4.22 Typical drawdown response of a well in a radial composite reservoir

    Note  This model is also available with two-porosity options.

    pressure derivative 

    pressure 

     mr  >

     mr  <

     mr  >

     mr  

  • 8/20/2019 welt_td (1)

    65/128

     Analytical Models

    Infinite acting 

    4-23

    Infinite acting 4

    Assumptions

    • This model of outer boundary conditions is available for all reservoir models andfor all near wellbore conditions.

    • No outer boundary effects are seen during the test period.

    Figure 4.23 Schematic diagram of a well in an infinite-acting reservoir

    Parameters

    k  permeability

    h reservoir thickness

    Behavior

    At early time, after the wellbore storage effect is seen, there may be a transition periodduring which the near wellbore conditions and the dual-porosity effects (if applicable)may be present.

    At late time the flow pattern becomes radial, with the well at the center. The pressureincreases as log t, and the pressure derivative reaches a plateau. The derivative valueat the plateau is determined by the k * h product.

    well 

  • 8/20/2019 welt_td (1)

    66/128

    4-24 Analytical Models

    Infinite acting 

    Figure 4.24 Typical drawdown response of a well in an infinite-acting reservoir

    pressure derivative 

    pressure 

  • 8/20/2019 welt_td (1)

    67/128

     Analytical Models

    Single sealing fault 

    4-25

    Single sealing fault 4

    Assumptions

    • A single linear sealing fault, located some distance away from the well, limits thereservoir extent in one direction.

    • The model handles full completion in homogenous and dual-porosity reservoirs.

    Figure 4.25 Schematic diagram of a well near a single sealing fault

    Parameters

    re  distance between the well and the fault

    Behavior

    At early time, before the boundary is seen, the response corresponds to that of aninfinite system.

    When the influence of the fault is seen, the pressure derivative increases until itdoubles, and then stays constant.

    At late time the behavior is like that of an infinite system with a permeability equal tohalf of the reservoir permeability.

    re

    well

  • 8/20/2019 welt_td (1)

    68/128

    4-26 Analytical Models

    Single sealing fault 

    Figure 4.26 Typical drawdown response of a well that is near a single sealing fault

    Note  The first plateau in the derivative plot, indicative of an infinite-acting radialflow, and the subsequent doubling of the derivative value may not be seen ifre  is small (that is the well is close to the fault).

    pressure derivative 

    pressure 

  • 8/20/2019 welt_td (1)

    69/128

     Analytical Models

    Single Constant-Pressure Boundary 

    4-27

    Single constant-pressure boundary 4

    Assumptions

    • A single linear, constant-pressure boundary, some distance away from the well,limits the reservoir extent in one direction.

    • The model handles full completion in homogenous and dual-porosity reservoirs.

    Figure 4.27 Schematic diagram of a well near a single constant pressure boundary

    Parameters

    re  distance between the well and the constant-pressure b