what size neural network gives optimal generalization ... · what size neural network gives optimal...

35
What Size Neural Network Gives Optimal Generalization? Convergence Properties of Backpropagation Steve Lawrence , C. Lee Giles , Ah Chung Tsoi , NEC Research Institute, 4 Independence Way, Princeton, NJ 08540 Department of Electrical and Computer Engineering University of Queensland, St. Lucia 4072, Australia Technical Report UMIACS-TR-96-22 and CS-TR-3617 Institute for Advanced Computer Studies University of Maryland College Park, MD 20742 June 1996 (Revised August 1996) Abstract One of the most important aspects of any machine learning paradigm is how it scales according to problem size and complexity. Using a task with known optimal training error, and a pre-specified maximum number of training updates, we investigate the convergence of the backpropagation algorithm with respect to a) the complexity of the required function approximation, b) the size of the network in relation to the size required for an optimal solution, and c) the degree of noise in the training data. In general, for a) the solution found is worse when the function to be approximated is more complex, for b) oversized networks can result in lower training and generalization error in certain cases, and for c) the use of committee or ensemble techniques can be more beneficial as the level of noise in the training data is increased. For the experiments we performed, we do not obtain the optimal solution in any case. We further support the observation that larger networks can produce better training and generalization error using a face recognition example where a network with many more parameters than training points generalizes better than smaller networks. Keywords: Local Minima, Generalization, Committees, Ensembles, Convergence, Backpropagation, Smoothness, Network Size, Problem Complexity, Function Approximation, Curse of Dimensionality. Also with the Institute for Advanced Computer Studies, University of Maryland, College Park, MD 20742. 1

Upload: dinhthuan

Post on 29-Apr-2018

223 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: What Size Neural Network Gives Optimal Generalization ... · What Size Neural Network Gives Optimal Generalization? Convergence Properties of Backpropagation Steve Lawrence , C. Lee

WhatSizeNeuralNetwork GivesOptimalGeneralization?ConvergencePropertiesof Backpropagation

SteveLawrence��� ���

, C. LeeGiles����

, Ah ChungTsoi���� ��������������� ���� ��!������"�$#&%�'(#���)�%*#� �%

, + , ����-�!�����-��. �� �0/*#&�"1(#&�"���$#2��304�NECResearchInstitute,4 IndependenceWay, Princeton,NJ08540�

Departmentof ElectricalandComputerEngineeringUniversityof Queensland,St. Lucia4072,Australia

TechnicalReportUMIACS-TR-96-22andCS-TR-3617

Institutefor AdvancedComputerStudiesUniversityof Maryland

CollegePark,MD 20742

June1996(RevisedAugust1996)

Abstract

Oneof the most importantaspectsof any machinelearningparadigmis how it scalesaccordingto problemsizeandcomplexity. Using a taskwith known optimal training error, anda pre-specifiedmaximumnumberof trainingupdates,we investigatetheconvergenceof thebackpropagationalgorithmwith respectto a) thecomplexity of therequiredfunctionapproximation,b) thesizeof thenetwork inrelationto thesizerequiredfor anoptimal solution,andc) thedegreeof noisein the trainingdata. Ingeneral,for a) thesolutionfoundis worsewhenthe functionto beapproximatedis morecomplex, forb) oversizednetworks canresult in lower training andgeneralizationerror in certaincases,andfor c)theuseof committeeor ensembletechniquescanbemorebeneficialasthelevel of noisein thetrainingdatais increased.For theexperimentswe performed,wedonot obtaintheoptimalsolutionin any case.We furthersupporttheobservationthat largernetworkscanproducebettertrainingandgeneralizationerrorusinga facerecognitionexamplewhereanetwork with many moreparametersthantrainingpointsgeneralizesbetterthansmallernetworks.

Keywords: Local Minima, Generalization,Committees,Ensembles,Convergence,Backpropagation,Smoothness,Network Size,ProblemComplexity, FunctionApproximation,Curseof Dimensionality.

5769828;:.<>=2=�?2?;?�@BA�C�D;E�@BAGF�@HA�C�D�@ID�JLKM=�6GJ�KNC�:GO;P9C�Q�=2R9O�?9S9C;AGD�CTAlso with theInstitutefor AdvancedComputerStudies,Universityof Maryland,CollegePark,MD 20742.U 69828;:.<>=2=�?2?;?�@BA�C�D;E�@BAGF�@HA�C�D�@ID�JLKM=�6GJ�KNC�:GO;P9C�Q�=�PNE;R;C�Q�@H698VKMR

1

Page 2: What Size Neural Network Gives Optimal Generalization ... · What Size Neural Network Gives Optimal Generalization? Convergence Properties of Backpropagation Steve Lawrence , C. Lee

1 Intr oduction

Statementsregardingthe trainingandgeneralizationerrorof MLPs similar to thefollowing occuroften intheneuralnetwork literatureandcommunity:

1. “BP is actuallya gradientmethod,and therefore, there is no guaranteeat all that theabsoluteminimumcanbereached.In spiteof this theoretical remark,researchers involvedwith BP applicationsknowthat this is not a veryseriousproblem. BP often leadsto a global minimum,or at leastmakes it possibleto meetpractical stoppingcriteria.”

2. “We havefoundlocal minimato beveryrare andthat thesystemlearnsin a reasonableperiodof time.”

3. “Backpropagationworkswell byavoidingnon-optimalsolutions.”

4. “We shouldnotusea networkwith moreparameters thanthenumberof datapointsavailable.”

Statements1 to 3 saythatwhile localminimaareexpected,they neverthelesseitherdonotaffect thequalityof the solutiongreatly, or they occurso infrequentlythat the effect canbe ignoredin practice(Breiman(1994)makesthe following commentaboutlocal minima: “Almost noneof theneural netpeopleseemtoworry aboutlandingin local minima”). Statement4 expressestheintuition that thedegreesof freedominthemodelshouldbelessthanthetotalnumberof datapointsavailablefor training.

In thispaper, weshow thatasolutionneartheoptimalsolutionis oftennotobtained.Therelative qualityofthesolutionobtainedwill beinvestigatedasa functionof thefollowing variables:a) thecomplexity of therequiredfunctionapproximation,b) thesizeof the network in relationto thesizerequiredfor anoptimalsolution,andc) the degreeof noisepresentin the data. The resultsindicatethat a) the solutionfound isworsewhenthe function to be approximatedis morecomplex, b) oversizednetworks canresult in lowertrainingandgeneralizationerrorin certaincases,andc) theuseof committeeor ensembletechniquescanbemorebeneficialastheamountof noisein thetrainingdatais increased.Furthersupportfor theobservationthatlargernetworkscan,in certaincases,producebettertrainingandgeneralizationerroris providedwith afacerecognitionexamplewhereanetwork with 364timesmoreparametersthantrainingpointsgeneralizesbetterthansmallernetworks. Techniquesto control generalizationarenot usedin orderto illustratethiscase.

2 Local Minima

It hasbeenshown that the error surfaceof a backpropagationnetwork with onehiddenlayer and WYX[Zhiddenunitshasnolocalminima,if thenetwork is trainedwith anarbitrarysetcontainingW differentinputs1

(Yu, 1992).

In practice,however, otherfeaturesof theerrorsurfacesuchas“ravines”and“plateaus”(Baldi andHornik,1988)canpresentdifficulty for optimisation.For example,thetwo errorfunctionsshown in figure1 (from(Gori, 1996))do not have local minima. However, thefunctionon the left is expectedto bemoredifficultto optimisewith gradientdescent.For thepurposesof thispaper, thecriterionof interestconsideredis “thebestsolutionfoundin agivenpracticaltime limit.”

1For large \ , it maybeimpracticalto useanetwork largeenoughin orderto ensurethatthereareno localminima.

2

Page 3: What Size Neural Network Gives Optimal Generalization ... · What Size Neural Network Gives Optimal Generalization? Convergence Properties of Backpropagation Steve Lawrence , C. Lee

Figure1. Examplesof two possibleerror functionsof onedimension(from (Gori, 1996)). The abscissacorrespondsto thevalueof thesingleparameterandtheordinatecorrespondsto theerrorfunction.Althoughneitherof thesefunctionscontainslocal minima,thefunctionon theleft is expectedto belesssuitableforgradientdescentoptimisationdueto the“flat” regions.

3 Prior Work

The error surfaceof very small networks hasbeencharacterizedpreviously, e.g. for an XOR network(Hamey, 1995).However, practicalnetworksoftencontainhundredsor thousandsof weights2 and,in gen-eral, theoreticalandempirical resultson small networks do not scaleup to large networks. Onereasonmaybeattributedto the interferenceeffect in the trainingprocess.Considerthebackpropagationtrainingalgorithm,if thehiddenlayerneuronsarenot all in saturation,thegradientsevaluatedat thehiddenlayerneuronsarecoupled(theupdateof eachparametergenerallyaffectsmany otherparameters).For anetworkwith morehiddenlayerneurons,this interferenceeffect is expectedto bemorepronounced.

CaruanapresentedatutorialatNIPS93(Caruana,1993)with generalizationresultsonavarietyof problemsasthesizeof thenetworkswasvariedfrom“too small” to “too large”. “Toosmall”and“too large” arerelatedto the numberof parametersin the model(without considerationof the distribution of the data,the errorsurface,etc.). Caruanareportedthat largenetworks rarely do worsethansmall networkson theproblemshe investigated.Theresultsin this paperpartially correlatewith thatobservation. Caruanasuggestedthat“backpropignoresexcessparameters”.

Crane,Fefferman,Markel andPearson(1995)usedreal-valueddatageneratedby a randomtargetnetwork,andattemptedtrainingnew networksonthedatain orderto approximatethenumberof minimaontheerrorsurfaceundervaryingconditions.Theuseof randomtargetnetworksin this fashionhasbeenreferredto asthestudentteacherproblem(SaadandSolla,1995).Motivatedby thiswork,averysimilar techniqueis usedin this paperin orderto evaluatethequality of thelocal minimawhich arefoundusingbackpropagationasa functionof variousparameters.

SaadandSolla(1996)usedthestudentteacherproblemto analyzetheeffectof noiseonon-linelearning.For

2Networkswith up to 1.5million weightshavebeenusedfor speechphonemerecognition(BourlardandMorgan,1994).

3

Page 4: What Size Neural Network Gives Optimal Generalization ... · What Size Neural Network Gives Optimal Generalization? Convergence Properties of Backpropagation Steve Lawrence , C. Lee

thecaseof trainingexamplescorruptedwith additiveoutputnoise(they alsoanalyzemodelnoise),SaadandSollahave shown thatsmallnoiselevelsmayshortenthesymmetricphaseof learningwhile largervaluesmaylengthenthephase.Generalizationerror increasesasthenoiselevel is increased.For theasymptoticcase,training with a fixed learningrateresultsin a non-vanishingasymptoticgeneralizationerror. Theyshow thatlearningratedecayschemescanremove theeffectsof additive outputnoiseasymptotically.

Muller, Finke, Schulten,MurataandAmari (1996)alsousedrandomlygenerated“teacher”networks inorderto createtrainingexamplesfor “student”networks. They performa detailedstudyof generalizationas a function of the numberof training samplesfor classificationtasks3. For networks with up to 256weights,they demonstratestrongoverfitting for a small numberof training examples,a region wherethegeneralizationerrorscalesaccordingto ZG];^ �_` where _` is thenumberof trainingexamples,andasymptoticscalingaccordingto ^bac]MdM^ _` whereea is thenumberof weightsin thenetwork.

Thereareseveral theoriesfor determiningthe optimal network sizee.g. the NIC (Network InformationCriterion) (Amari, 1995) which is a generalizationof the AIC (Akaike Information Criterion) (Akaike,1973;Akaike, 1974)widely usedin statisticalinference,the generalizedfinal predictionerror4 (GPE)asproposedby Moody (1992),andthe Vapnik-Chervonenkis(VC) dimension(Maass,1995;Abu-Mostafa,1989;Bartlett,1993)– which is a measureof theexpressive power of a network5. NIC relieson a singlewell-definedminimum to the fitting function andcanbe unreliablewhen thereareseveral local minima(Ripley, 1995). Thereis very little publishedcomputationalexperienceof the NIC, or the GPE.Theirevaluationis prohibitively expensive for largenetworks.

VC boundshavebeencalculatedfor variousnetwork types(CohnandTesauro,1992).EarlyVC-dimensionwork handlesonly thecaseof discreteoutputs.For thecaseof realvaluedoutputs,amoregeneralnotionofa “dimension”is required.Sucha “pseudo-dimension”canbedefinedby consideringa lossfunctionwhichmeasuresthedeviation of predictionsfrom thetargetvalues(Maass,1995).VC boundsarelikely to betooconservative becausethey providegeneralizationguaranteessimultaneouslyfor any probabilitydistributionandany trainingalgorithm. Thecomputationof VC boundsfor practicalnetworks is difficult. Apart fromsmallexamples,we areunawareof any systematicproceduresfor theevaluationof VC boundsfor typicalpracticalnetworks.

Other work addressinglocal minima or the numberof samplesrequiredwith respectto generalizationinclude (Baum and Haussler, 1989; Sartori and Antsaklis,1991; McInerny, Haines,Biafore and Hecht-Nielsen,1989;Yu, 1992;Gori andTesi,1992). Theseapproachesarelimited dueto theassumptionstheymake, e.g. typical limitationsincludeapplicabilityonly to linearly separableproblems,considerationonlyof true local minimaasopposedto regionswheregradientdescentbecomes“stuck” (suchas“plateaus”),andnoconsiderationof limits on trainingtime.

3With respectto theresultsreportedhere,overfittingbehaviour for classificationtasksis expectedto bedifferentdueto theuseof trainingpatternswith asymptotictargets.

4Thefinal predictionerror(FPE)is analternativemethodfor determiningtheorderof adynamicalprocess,originally proposedby Akaike (1970),andgeneralizedto theneuralnetwork settingby Moody(1992).

5Very briefly, this is the largestsetof examplesthatcanbeshatteredby thenetwork, wherea setof f examplesis “shattered”by thenetwork if for eachof the g�h possiblewaysof dividing the f samplesinto disjoint sets i�j and i�k , thereexistsa functioncomputableby the network suchthat the output is 1 for membersof i j and the output is 0 for membersof i k (for a binaryclassificationproblem).

4

Page 5: What Size Neural Network Gives Optimal Generalization ... · What Size Neural Network Gives Optimal Generalization? Convergence Properties of Backpropagation Steve Lawrence , C. Lee

4 Artificial Task

To investigateempirical performancewe have chosenan artificial task so that we a) know the optimalsolution,andb) cancarefullycontrolvariousparameters.The taskis asfollows andis very similar to theprocedureusedin (Craneetal., 1995):

1. An MLP with lnm input nodes,lpo hiddennodes,and lpq outputnodes(denotedby lnmsr�lpopr�lpq andlaterreferredto asthe“datageneratingnetwork”) is initializedwith randomweights,uniformly selectedwithin a specifiedrange,i.e., tYm in therange X(u to u , wheretYm aretheweightsof thenetwork exceptthe biases,and u is a constant. u is 1.0 for the resultsreportedin this paperexceptwhenotherwisespecified. The biasweightsare initialized to small randomvaluesin the range vwX(x�yHZMzVx�yHZG{ . As u isincreased,the“complexity” of the functionmappingis increasedaswill bediscussedin moredetail insection6.2.

2. ^ _` datapointsarecreatedby selectingrandominputswith zeromeanandunit varianceandpropagatingthemthroughthenetwork to find thecorrespondingoutputs.This dataset| formsthe trainingdataforsubsequentsimulations.Theprocedureis repeatedto createa testdatasetwith ^ _H} points. ^ _H} is 5000for all simulationsreportedin this paper. The choiceof zeromeanandunit varianceinputsis not toounrealisticbecausetheinputsto anMLP areoftennormalisedto have zeromeanandunit variance(thedistribution maynotbenormalhowever) (Le Cun,1993).

3. Thetrainingdataset| is usedto trainnew MLPs,known subsequentlyasthe“trainednetworks” with thefollowing architecture:lnmcr~ln�o r�lpq . For certaintests,ln�o is variedfrom lpo to � , where� ����lpo .The initial weightsof thesenew networksaresetusingtheproceduresuggestedin Haykin (1994)(i.e.they arenotequalto theweightsin thenetwork usedto createthedataset).They areinitializedonanodeby nodebasisasuniformly distributedrandomnumbersin therange vwX�d�y���]���m�z�d�y���]���mw{ where ��m is thefan-inof neuron� . Theoretically, if ln�o�� lpo , thentheoptimal trainingseterror is zero(for the casewherenonoiseis addedto thedata).

Figure2 shows theprocessgraphically.

5 Methodologyfor Exploring Convergence

Theartificial taskwill beusedto exploretheconvergenceof thenetworkswhile varyingcertainparametersin a controlledmanner. Both the training and the generalizationperformancewill be investigated.Thebaselinenetwork topologyis 20:10:1,where20,10,and1 werechosento representatypicalnetwork wherethenumberof inputsis greaterthanthenumberof hiddennodesandthespecificvalueswerechosensuchthatthetotal trainingtimeof thesimulationswasreasonable.Thefollowing methodologyis used:

1. The following parametersof the simulationsarevariedoneat a time: a) the maximumvalueusedforsetting the weights in the generatingnetwork ( Z���u ��Z9x ), b) the size of the trainednetworks

5

Page 6: What Size Neural Network Gives Optimal Generalization ... · What Size Neural Network Gives Optimal Generalization? Convergence Properties of Backpropagation Steve Lawrence , C. Lee

Figure2. Theprocessof creatingthedatasets.

( Z9x���ln�o ���Mx , c) the size of the training dataset( dMx0x���^ _` ��dMx�zVx0x0x , and d) the amountofzeromeanGaussiannoiseaddedto the training data(from zeroto a standarddeviation of 2% of thestandarddeviationof theinputdata).

2. Eachconfigurationof the MLP is testedwith ten simulations,eachwith a differentstartingcondition(randomweights).

3. Stoppingcriterion. No stoppingcriterion,andno methodof controllinggeneralization6 is used(otherthana maximumnumberof updates)in orderto demonstratethis case.All networksaretrainedfor anidenticalnumberof stochasticupdates( ����Z9x0� ). It is expectedthatoverfittingcouldoccur.

We usedthestandardMLP: ����7� �¢¡G£¥¤§¦©¨ jmª"« t¬�� m � �H­ �m¯® where ���� is theoutputof neuron° in layer ± , ^ � is

thenumberof neuronsin layer ± , t �� m is theweightconnectingneuron° in layer ± to neuron� in layer ±�X²Z ,���« � Z (bias),and � is the hyperbolictangentfunction. The numberof weightsin eachnetwork is thusv³lnm�´µZG{&lpo�´¶v³lpo(´·ZG{&lpq .Standardbackpropagationwasusedwith stochasticupdate(updateaftereachtrainingpoint). Batchupdatewasalsoinvestigated–convergencewasfoundto beverypoorevenwhentrainingtimeswereextendedbyanorderof magnitude.Thequadraticcostfunctionwasused: ¸ � �� £ ¤mª ��¹ �m � �� £ ¤mª � £·º¼»� ª � v>½ � m X�� � m { � ,where ½ � m is thedesiredvalueof the ° th outputneuronfor the � th trainingsamplefrom the trainingdataset | , and � � m is thevalueof ° th outputneuronof theMLP, in responseto the � th trainingsample.Thelearningratewas0.05.

6Therearemany waysof controllinggeneralization,e.g.a)earlystopping,b)weightdecayorweightelimination,andc) pruning– e.g.OBD (optimalbraindamage)(Le Cun,DenkerandSolla,1990)andOBS(optimalbrainsurgeon)(HassibiandStork,1993).

6

Page 7: What Size Neural Network Gives Optimal Generalization ... · What Size Neural Network Gives Optimal Generalization? Convergence Properties of Backpropagation Steve Lawrence , C. Lee

6 Simulation Results

Resultsfor varyingthenetwork size,thetrainingsetsize,thefunctioncomplexity, andtheamountof noiseaddedto thetrainingdataarepresentedin thefollowing sections.

6.1 Network Size

This sectioninvestigatesthe trainingandgeneralizationbehavior of thenetworkswith thegeneratingnet-work sizefixedbut thetrainednetwork sizeincreasing.For all cases,thedatawascreatedwith ageneratingnetwork architecturedMx¾r Z9x¾r Z , andtherandomweightmaximumvalue, u , was1. Thetrainednetworkshadthefollowing architecture:dMx¿r�ln�o r�Z , whereln�o wasvariedfrom 10 to 50. Theoretically, theoptimaltrainingseterror for all networkstestedis zero,as l � o � lpo . However, noneof thenetworkstrainedhereobtainedtheoptimalerror(usingbackpropagationfor ���ÀZ9x � updates)7.

Consideringthatnetworkswith morethan10hiddenunitscontainmoredegreesof freedomthanis necessaryfor zeroerror, areasonableexpectationwouldbefor theperformanceto beworse,onaverage,asthenumberof hiddenunits is increased.Figure3 shows thetrainingandtestseterrorasthenumberof hiddenunitsinthetrainednetwork is variedfrom 10to 50. Thenumberof trainingpoints, _` , is 2000.Onaverage,abettersolutionis foundin thelargernetworkswhencomparedwith the10 hiddenunitsnetworks. Thebestmeantrainingandgeneralisationerroroccursfor networks with 40 hiddenunits. This trendvariesaccordingtothegeneratingnetwork size(numberof inputs,hiddennodesandoutputs),thenatureof thetargetfunction,etc.For example,theoptimalsizenetworksperformbestfor certaintasks,andin othercasestheadvantageof largernetworkscanbeevengreater.

Figure4 shows the resultsfor the caseof 20,000andthe caseof 200 training points. Similar resultsareobtainedfor 20,000trainingpoints,i.e. on average,a bettersolutionis found in the largernetworkswhencomparedwith the10 hiddenunitsnetworks. Thebestmeantrainingandgeneralisationerroralsooccursfor networkswith 40hiddenunitsin thiscase.

For 200datapoints,thebestmeantrainingerroroccursat 50hiddenunitsandthebestmeangeneralisationerroroccursat 30 hiddenunits. However, in this casethegeneralisationerroris quitepoorfor all networks(thenumberof datapointsis probablytoo smallto accuratelycharacterisethetargetfunction,cf. thecurseof dimensionality).Thenumberof parametersin thenetworks is greaterthan200,even for thecaseof 10hiddenunits,asshown in table1. This leadsto thequestion:would networkssmallerthanthegeneratingnetwork generalisebetter?In this casetheanswerwasno – networkswith 5 to 9 hiddenunits resultedinworseperformance.

7Alternative optimizationtechniques(e.g. conjugategradient)canimprove convergencein many cases.However, thesetech-niquesoftenlosetheiradvantagewith largerproblems.

7

Page 8: What Size Neural Network Gives Optimal Generalization ... · What Size Neural Network Gives Optimal Generalization? Convergence Properties of Backpropagation Steve Lawrence , C. Lee

0

0.0005

0.001

0.0015

0.002

0.0025

10 20 30 40 50

Tra

in N

MS

Number of Hidden Nodes

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

10 20 30 40 50

Tes

t NM

SEÁ

Number of Hidden Nodes

Figure3. Theerror for networkswith a topology20:Â7ÃÄ :1 using2,000trainingpoints. Thegraphon the top is thetraining error. The graphon the bottomis the testerror. The abscissacorrespondsto the numberof hiddennodes.Eachresult is averagedover ten simulations.Box-whiskersplots areshown on the left in eachcasealongwith themeanplusor minusonestandarddeviationwhich is shown on theright in eachcase.

Numberof hiddennodes 10 20 30 40 50

Numberof parameters 221 441 661 881 1101

Table1. Thenumberof parametersin thenetworksasthenumberof hiddennodesis variedfrom 10 to 50.

It is of interestto observe theeffectof noiseon this problem.Figure5 shows theresultsfor thecaseof 200trainingpointswhenGaussiannoiseis addedto theinput datawith a standarddeviation equalto 1% of thestandarddeviation of the input data.A similar trendto figure4 is observed. Thebestgeneralizationerror,onaverage,is obtainedfor networkscontaining40hiddennodesin thiscase.

The resultsin this sectionshouldnot be taken to indicatethat oversizednetworks shouldalwaysbeused.However, the resultsdo indicatethat oversizednetworks maygeneralizewell, andthat if training is moresuccessfulin the largernetworks thenit is possiblefor the larger to alsogeneralizebetterthanthesmallernetworks.A few observations:

1. It remainsdesirableto find solutionswith thesmallestnumberof parameters.

8

Page 9: What Size Neural Network Gives Optimal Generalization ... · What Size Neural Network Gives Optimal Generalization? Convergence Properties of Backpropagation Steve Lawrence , C. Lee

0

0.001

0.002

0.003

0.004

0.005

0.006

10 20 30 40 50

Tra

in N

MS

Number of Hidden Nodes

20,000trainingpoints

0

0.001

0.002

0.003

0.004

0.005

0.006

10 20 30 40 50

Tes

t NM

SEÁ

Number of Hidden Nodes

20,000trainingpoints

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

10 20 30 40 50

Tra

in N

MS

Number of Hidden Nodes

200trainingpoints

0.1

0.15

0.2

0.25

0.3

0.35

10 20 30 40 50

Tes

t NM

SEÁ

Number of Hidden Nodes

200trainingpoints

Figure4. Theerrorfor thetrainednetworksasshown in figure3 whenusing20,000trainingpointsandwhenusing200 trainingpoints. From top to bottom: 20,000trainingpoints– trainingerror, 20,000trainingpoints– testerror,200trainingpoints– trainingerror, 200trainingpoints– testerror.

9

Page 10: What Size Neural Network Gives Optimal Generalization ... · What Size Neural Network Gives Optimal Generalization? Convergence Properties of Backpropagation Steve Lawrence , C. Lee

0

0.0005

0.001

0.0015

10 20 30 40 50

Tra

in N

MS

Number of Hidden Nodes

0.15

0.2

0.25

0.3

0.35

10 20 30 40 50

Tes

t NM

SEÁ

Number of Hidden Nodes

Figure5. Theerrorfor thetrainednetworksasshown in figure4 for 200trainingpointsandwith noiseaddedto theinput data. ThenoisewasGaussianwith a standarddeviation equalto 1% of the standarddeviation of the originaldata.Top to bottom:trainingandtesterrors.

2. A similar resultwould not beexpectedif a globally optimalsolutionwasfound in thesmall networks,i.e. if the10hiddenunit networksweretrainedto zeroerrorthenit wouldbeexpectedthatany networkswith extradegreesof freedomwould resultin worseperformance.

3. The distribution of the resultsis important. For example,observe in figure 4 that theadvantageof thelargernetworksfor 20,000trainingpointsis decreasedwhenconsideringtheminimumerrorratherthanthemeanerror.

4. Thenumberof trials is important.If sufficiently many trials areperformedthenit shouldbepossibletofind a nearoptimal solutionin theoptimal sizenetworks (in the limit of an infinite numberof randomstartingpoints,findingaglobaloptimumis guaranteed).Any advantagefrom usinglargersizenetworkswouldbeexpectedto disappear.

5. Note that therehasdeliberatelybeenno control of the generalizationcapabilityof the networks (e.g.using a validation set or weight decay),other than a maximumnumberof updates.Thereare manysolutionswhich fit the training datawell that will not generalizewell. Yet, contraryto what might beexpected,the resultsindicatethat it is possiblefor oversizednetworks to provide bettergeneralization.Successive pruningandretrainingof a largernetwork (HassibiandStork,1993)mayarrive ata networkwith similar sizeto thesmallernetworksherebut with improvedtrainingandgeneralizationerror.

6. In termsof computationon serialmachines,it may be desirableto investigateperformancewhenthenumberof individual weight updates(the numberof iterationstimesthe numberof weights)is equalratherthanthenumberof trainingiterations(i.e. moretrainingiterationscouldbedonein thesametimefor thesmallernetworks). What theseresultsshow is that the local optimumfoundfor largernetworks

10

Page 11: What Size Neural Network Gives Optimal Generalization ... · What Size Neural Network Gives Optimal Generalization? Convergence Properties of Backpropagation Steve Lawrence , C. Lee

maybebetterwhendoingthesamenumberof updatesperweightandalsothat this maycorrespondtobettergeneralization,i.e. this sayssomethingaboutthenatureof theerrorsurfaceasthenetwork sizeisincreased(theextradegreesof freedommayhelpavoid poorlocalminima).Theexperimentsin thenextsectionwith a facerecognitionproblemshow that it is possibleto observe thesamephenomenonevenwhenthesmallernetworksaretrainedfor a greaternumberof iterations.

6.1.1 Degreesof Freedom

Rulesbasedon the degreesof freedomin the modelhave beenproposedfor selectingthe topologyof anMLP, e.g. “The numberof parameters in the networkshouldbe (significantly)lessthan the numberofexamples” or “Each parameterin an MLP cancomfortablystore 1.5 bits of information. A networkwithmore thanthiswill tendto memorizethedata.” (accordingto CMU folklore).

Theserulesaim to preventoverfitting,but they areunreliableastheoptimalnumberof parametersis likelyto dependon other factors,e.g. the quality of the solutionfound, the distribution of the datapoints, theamountof noise,andthenatureof thefunctionbeingapproximated.

Specificrules,suchas thosementionedabove, arenot commonlybelieved to be accurate(Sarle,1996).However, thestipulationthatthenumberof parametersmustbelessthanthenumberof examplesis typicallybelievedto betruefor commondatasets.Theresultshereindicatethatthis is notalwaysthecase.

FaceRecognition Example This sectionpresentsresultson real data. Figure7 shows the resultsoftraininganMLP to classify10 peoplefrom imagesof their faces8. Thetrainingsetcontains5 imagesperperson,for a total of 50 trainingpatterns9. Thetestsetcontaineda differentsetof 5 imagesperperson.Asmall window wassteppedover the imagesandthe imagesamplesat eachpoint werequantizedusingatwo dimensionalself-organizingmap (Kohonen,1995). The outputsof the self-organizingmapfor eachimagesamplewereusedastheinputsto theMLP . A subsetof theimagesis shown in figure6. In eachcase,thenetworksweretrainedfor 25,000updates.Thenetworksusedcontainmany moreparametersthanthenumberof trainingpoints,asshown in table2, yet thebesttrainingerrorandthebestgeneralizationerrorcorrespondsto thelargestmodel.Notethata) generalizationhasnot beencontrolledusing,for example,avalidationsetor weightdecay, andb) overfittingwouldbeexpectedwith sufficiently largenetworks.

Whensimulatedon serialmachines,largernetworks requirelongertraining timesfor thesamenumberofupdates.Hence,it is of interestto comparewhathappenswhenthesmallernetworksaretrainedfor longer

8This is notproposedasanintelligentfacerecognitiontechnique.9Thedatabaseusedis theORL databasewhich containsa setof facestakenbetweenApril 1992andApril 1994at theOlivetti

ResearchLaboratoryin Cambridgeandis availablefrom69828;:�<³=2=�?2?2?.@ID;OLKMÅ;J�S�R�@ID�J�@BÆ;ÇN=�È�O9D;C;É�O�8GO�ÊGO9Q;C�@H698VK0R

. Thereare10differentimagesof 40 distinctsubjectsin thedatabase.Therearevariationsin facialexpressionandfacialdetails.All theimagesaretakenagainstadarkhomogeneousbackgroundwith thesubjectsin anup-right,frontalposition,with tolerancefor sometiltingandrotationof up to about20 degrees.Thereis somevariationin scaleof up to about10%.Theimagesaregreyscale(256levels)with aresolutionof 92x112.

11

Page 12: What Size Neural Network Gives Optimal Generalization ... · What Size Neural Network Gives Optimal Generalization? Convergence Properties of Backpropagation Steve Lawrence , C. Lee

Figure6. A subsetof thefaceimagesusedin theexperiments.

10

20

30

40

50

60

70

6 8 10 12 14

Tes

t Err

or %

Number of Hidden Nodes

Figure7. Facerecognitionexperimentsshowing thattheoptimalnumberof weightsin anetwork canbemuchlargerthan the numberof datapoints. The smallestmodel,with six hiddennodes,has156 timesmoreparametersthantraining points (7810parameters).The largestmodel,with 14 hiddennodes,has364 timesmoreparametersthantrainingpoints(18210parameters).Thetesterroris givenasthepercentageof examplesincorrectlyclassified.

Numberof hiddennodes 6 8 10 12 14

Numberof weights 7810 10410 13010 15610 18210

Table2. Thenumberof parametersin thefacerecognitionnetwork asthenumberof hiddennodesis increased.

thanthelargernetworks.Figure8 presentstheresultsof trainingall of thenetworkstwiceaslong. It canbeobservedthattheresultsdonotchangesignificantly.

Experimentswith MLP networks for speechphonemerecognitionhave alsosuggestedthat betterperfor-mancecan be obtainedby overspecifyingthe numberof parametersand using a cross-validation set toterminatetraining(Renals,Morgan,CohenandFranco,1992;Robinson,1994).

12

Page 13: What Size Neural Network Gives Optimal Generalization ... · What Size Neural Network Gives Optimal Generalization? Convergence Properties of Backpropagation Steve Lawrence , C. Lee

10

20

30

40

50

60

70

6 8 10 12 14

Tes

t Err

or %

Number of Hidden Nodes

Figure8. As perfigure7 with thenetworkstrainedfor twiceaslong.

6.2 Function Complexity

This sectioninvestigatesthe quality of the solution found by backpropagationas the maximumrandomweight in thegeneratingnetwork, u , is increased. Figure10 shows the resultsfor target andgeneratingnetworks with topology dMxËrYZ9xÌrYZ . ^ _` � dMx0x0x and ^ _H} � �Mx0x0x . It is difficult to visualizethe targetfunctionas u is increased.A simplemethodwhich providesan indicationof thecomplexity is plottedinfigure9 andis createdasfollows:

ÍIÎ~Ï�Ð�Ñ�ÒMÓÔÎ�ÕGÖ;×�ÕNÖ$ØÍ>Î�Ï�Ð�Ñ�ÒMÓÚÙÜÛ�×�ÕGÖ �Ý Ð2Ö�Ñ�ÞÜÞ.ÙÜÛ�×�ÕNÖ ÝÔß� � Ð9à.Õ�Ñ�Þ�ÖwÎ x×�Þ ÎMÖ$Î�ÕNÖ�×�ÕGÖ�ØáÑ Ý Ù©Û�×�ÕGÖ � Ù Ý�â ÑMÏIÙ Ð9ãáÍwÏäÎ�åçæ&èÔÖLοèÏBÐM×~Ð�ÑNÖ Z9x Ö�Ù©å�Ð ÝÝ Ð2Ö�Ñ�ÞéÞ�ÙÜÛ�×�ÕGÖ Ý�ß� � Ð9à�Õ�Ñ�Þ�ÖLξêëÑ�Õ Ý�Ý Ù Ñ�Û�ÏäÑ�ÛNã�Î�å â Ñ�ÞÜÕNÐ ÝíìIî � x�ï�ð � � ZGñ×�Þ ÎMÖ�Î�ÕGÖ;×�ÕNÖYØÔÑ Ý Ù©Û�×�ÕNÖ � Ù Ý�â Ñ0ÏIÙ Ð9ã¿ÍwÏäÎ�åçæ&èÔÖLÎáè

Fromfigure9, it canbeobserved that the function“complexity” increaseswhen u is increasedfrom 1 to5. Hence,u may be consideredasa parametercontrolling the function “complexity” althougha precisedefinitionof “complexity” 10 is notbeingused.

Again,theoptimaltrainingseterrorfor all networksis zerobecausel � o � lpo . As u increases,correspond-ing to the target function becomingmore“complex”, it canbe observed that the solutionfound becomessignificantlyworse.Worsegeneralizationmaybeexpectedas u increases,however thefocushereis on thetrainingerrorwhencomparedto theoptimalerrorof zero.

This behaviour canbe explainedby consideringthe error surfaceas u is increased.MLP error surfacescanhave many areaswith shallow slopesin multipledimensions(Hecht-Nielsen,1990).This is typically a

10Large weightsdo not alwayscorrespondto target functionswhich arenot “smooth”, for examplethis is not the casewhenfitting thefunctionsechòf0ó usingtwo \>ô�õ�ö sigmoids(Cardell,JoerdingandLi, 1994)(becausesechòf~ó.÷nøúùúûYüwýÿþ�ò \>ô�õ�ö�òf ��� ó��\>ô�õ�ö�òf~óIó�� � , i.e. theweightsbecomeindefinitelylargeastheapproximationimproves).

13

Page 14: What Size Neural Network Gives Optimal Generalization ... · What Size Neural Network Gives Optimal Generalization? Convergence Properties of Backpropagation Steve Lawrence , C. Lee

K=1

K=5

Figure9. Plotsindicatingthecomplexity of the target functionfor varying � . Above ��� , below �� . Thenetworksusedfor creatingtheseplotshadthetopology20:10:1.Therows correspondto thefirst five inputsof thesenetworks. Thefirst columncorrespondsto thecasewhereall otherinputsaresetto zero,andtheremainingcolumnscorrespondto the caseswherethe other inputsareset to randomvalues,asper the pseudo-code.The abscissaofeachindividual plot correspondsto thevalueof the input for thatrow andrangesfrom -2 to 2. Theordinateof eachindividualplot correspondsto thenetwork output.

resultof theweightedsumat oneor moreof thehiddennodesbecominglarge,which causestheoutputofthesehiddennodesto becomeinsensitive to smallchangesin therespective weights(theunit is operatingina tail of thesigmoidfunctionwheretheslopeis small). As u increases,theoptimalsolutionrequiresthenodesto operatein theregionwheretheslopeis smallmoreoften.

This resulthighlightsa point regardingtheapplicationof MLP models:thenatureof thetarget functionisoftennotconsideredin detail.Perhapsconsiderationof theimplicit biastowards“smooth”modelscanbeofhelpandpreprocessingefforts couldbedirectedtowardsformulatingtherequiredapproximationto bettersuit theMLP. Additionally, it is expectedthatif therequiredapproximationis “smoother”thentheweightsof thenetwork arelesslikely to bedriven towardslargevalues,nodesarelesslikely to becomesaturated,andgeneralizationperformancemaybeexpectedto improve.

6.3 Ensemblesof Networks and NoisyTraining Data

Committees,or an ensembleof networks, are known to be able to improve generalizationperformance(Jacobs,1995;Drucker, Cortes,Jackel, Le CunandVapnik,1994;Krogh andVedelsby, 1995;Perroneand

14

Page 15: What Size Neural Network Gives Optimal Generalization ... · What Size Neural Network Gives Optimal Generalization? Convergence Properties of Backpropagation Steve Lawrence , C. Lee

-0.05

0

0.05

0.1

0.15

2 3 4 5 6 7 8 9 10

Tra

in N

MS

Maximum Random Weight

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

2 3 4 5 6 7 8 9 10

Tes

t NM

SEÁ

Maximum Random Weight

Figure10. Error for networkswith thetopology20:10:1asthemaximumrandomweightfor thegeneratingnetworkis increased.The graphon the top is the training error. The graphon the bottom is the test error. The abscissacorrespondsto thevalueof � . Eachresultis averagedover tensimulations– plusandminusonestandarddeviationerrorbarsareplottedateachpoint.

Cooper, 1993). This sectioninvestigatesthe effect of usingcommitteesasthe amountof noiseaddedtothe training dataincreases.A simpleweightedensembleof networks is used. Considerthe bias/variancedilemmaasin (Geman,BienenstockandDoursat,1992)wheretheMSEmaybedecomposedinto biasandvariancecomponents:

MSE� m���� � v>¸���� � v��§{���X�¸�� ��� ���³{ � (1)

MSE !� ` m"�!#%$ } � ¸ �'& v � v��§{ëXÀ¸ � � � v��§{��³{ �)( (2)

where � representstheexpectationwith respectto a trainingset, * , and � v��"{ is theapproximatingfunc-tion. With finite training data,reducingthe bias generallyincreasesthe varianceand vice versa. Fora multilayerperceptron,thereis anothervarianceterm dueto convergenceto local minima which canbereducedusingensembles,andthe effect of this reductionis greaterif the individual networks have largervariance(see(Naftaly, Intrator andHorn, 1995)). Increasingnoiselevels, and the resultingpoorercon-vergence,may inducethis condition. Therefore,it is expectedthat the ensembletechniquemay be morebeneficialasthenoiselevel is increased.

Figure11 shows the resultsof using1 to 4 committeenetworks as the standarddeviation of zeromeanGaussiannoiseaddedto thetrainingdatais variedfrom 0 to 2%of thestandarddeviation of theinputdata.It canbeobserved that theuseof morenetworks in theensembledoesappearto bemoresuccessfulasthenoiseis increased.Thenetworkshadtopology20:10:1andweretrainedfor �¬�nZ9x0� updates. _` was2,000andeachresultwasaveragedover10differentstartingconditions.

15

Page 16: What Size Neural Network Gives Optimal Generalization ... · What Size Neural Network Gives Optimal Generalization? Convergence Properties of Backpropagation Steve Lawrence , C. Lee

-0.002

0

0.002

0.004

0.006

0.008

0.01

1 2 3 4

Tes

t NM

SEÁ

Number of Committee Networks

nonoise

0

0.01

0.02

0.03

0.04

0.05

1 2 3 4

Tes

t NM

SEÁ

Number of Committee Networks

1%noise

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1 2 3 4

Tes

t NM

SEÁ

Number of Committee Networks

2%noise

Figure11. Testerrorasthenumberof committeenetworksis increasedfrom 1 to 4 in eachplot. Fromtop to bottom:no noise,andGaussiannoisewith a standarddeviation of 1%, and2% of the standarddeviation of the input datarespectively.

7 Discussion

Usinganartificial taskwheretheoptimaltrainingerrorwasknown anda samplerealworld problemalongwith apre-specifiedmaximumnumberof trainingupdates,it wasshown that:

1. Thesolutionfoundby gradientdescentwith a practicaltrainingtime is oftensignificantlyworsethanagloballyoptimalsolution.

16

Page 17: What Size Neural Network Gives Optimal Generalization ... · What Size Neural Network Gives Optimal Generalization? Convergence Properties of Backpropagation Steve Lawrence , C. Lee

2. In certaincases,the bestgeneralizationcan occur when the numberof parametersin the network isgreaterthanthenumberof datapoints.Thiscanoccurwhenthelargernetworksareeasierto train.

This resultshouldnot be taken to indicatethat oversizednetworks shouldalwaysbe used. However,the resultdoesindicatethat, in certaincases,training canbe moresuccessfulin larger networks, andconsequently, it is possiblefor largernetworksto resultin improvedgeneralization.It remainsdesirableto find solutionswith thesmallestnumberof parameters.

3. The solutionfound by gradientdescentcanbe significantlyworseasthe function to be approximatedbecomesmorecomplex.

4. Theuseof ensembletechniquescanbe increasinglybeneficialasthe level of noisein the trainingdataincreases.

5. Giventhesetof functionsthata particularMLP canapproximateanda pre-specifiedmaximumnumberof trainingupdates,certainfunctionsare“harder” to approximateusingbackpropagationthanothers.

7.1 Network Sizeand Degreesof Freedom

A simpleexplanationfor why largernetworkscansometimesprovide improvedtrainingandgeneralisationerror is that the extra degreesof freedomcanaid convergence,i.e. the additionof extra parameterscandecreasethechanceof becomingstuckin local minimaor on “plateaus”,etc. (Kroseandvan derSmagt,1993).

This sectionprovidesplotsof thefunctionapproximatedby the trainednetworksandthenetwork weightswhich indicatethe following: a) the function approximatedby the oversizednetworks remainsrelatively“smooth”,andb) aftertraining,theextradegreesof freedomin thelargernetworkscontributeto thefunctionapproximatedin only aminorway. Theplotsin thissectionwerecreatedusingasmallertaskin orderto aidvisualisation:thegeneratingnetworkshadtopology5:5:1andthetrainednetworkshad5, 15,and25hiddenunits.1,000trainingdatapointswereusedandtherandomweightmaximumvaluewas2.

Figures12 to 14provideanindicationof thefunctionapproximatedby thenetworksasthenetwork size(5,15, and25 hiddenunits)andamountof noise(Gaussiannoisewith standarddeviation 0, 5%, and10%ofthe input standarddeviation) in thedataarevaried. Theplotsaregeneratedasdescribedin section4. Thedottedlines show the target function (from the generatingnetwork) andthe solid line shows the functionapproximatedby thetrainednetwork. Observations:a) thetrainingnetwork approximationtendsto belessaccuratefor theoptimalsizenetwork, b) theapproximationappearsrelatively “smooth” in all cases.

Figures15 to 17 show theweightsin thetrainednetworksasthenetwork size(5, 15, and25 hiddenunits)andamountof noise(Gaussiannoisewith standarddeviation0,5%,and10%of theinputstandarddeviation)

17

Page 18: What Size Neural Network Gives Optimal Generalization ... · What Size Neural Network Gives Optimal Generalization? Convergence Properties of Backpropagation Steve Lawrence , C. Lee

5 hiddenunits

15hiddenunits

25hiddenunits

Figure 12. The function approximatedby networks with 5, 15, and 25 hiddenunits for the caseof nonoise.Theplotsaregeneratedasdescribedin section4. Thedottedlinesshow thetargetfunction(from thegeneratingnetwork) andthesolid line shows thefunctionapproximatedby thetrainednetwork.

in thedataarevaried. Eachdiagramis plottedasfollows: Thecolumns(1 to 6) correspondto theweights

18

Page 19: What Size Neural Network Gives Optimal Generalization ... · What Size Neural Network Gives Optimal Generalization? Convergence Properties of Backpropagation Steve Lawrence , C. Lee

5 hiddenunits

15hiddenunits

25hiddenunits

Figure13. Thefunctionapproximatedby networkswith 5, 15,and25hiddenunitsfor thecaseof Gaussiannoisewith standarddeviation5%of thestandarddeviationof theinputs.Theplotsaregeneratedasdescribedin section4. Thedottedlinesshow thetargetfunction(from thegeneratingnetwork) andthesolidline showsthefunctionapproximatedby thetrainednetwork.

19

Page 20: What Size Neural Network Gives Optimal Generalization ... · What Size Neural Network Gives Optimal Generalization? Convergence Properties of Backpropagation Steve Lawrence , C. Lee

5 hiddenunits

15hiddenunits

25hiddenunits

Figure14. Thefunctionapproximatedby networkswith 5, 15,and25hiddenunitsfor thecaseof Gaussiannoisewith standarddeviation 10% of the standarddeviation of the inputs. The plots are generatedasdescribedin section4. The dottedlines show the target function (from the generatingnetwork) andthesolid line shows thefunctionapproximatedby thetrainednetwork.

20

Page 21: What Size Neural Network Gives Optimal Generalization ... · What Size Neural Network Gives Optimal Generalization? Convergence Properties of Backpropagation Steve Lawrence , C. Lee

from thehiddennodesto thebiasandthe5 input nodes.The rows areorganisedinto groupsof two witha spacebetweeneachgroup. Thenumberof groupsis equalto thenumberof hiddennodesin the trainednetwork. For thetwo rows in eachgroup,thetoprow correspondsto thegeneratingnetwork andthebottomrow correspondsto the trainednetwork. The ideais to comparetheweightsin thegeneratingandtrainednetworks. Therearea coupleof difficultieswhich arisein this comparisonwhich areresolved asfollows.Firstly, thereis no reasonfor hiddennode1 in the generatingnetwork to correspondto hiddennode1 inthetrainednetwork, etc.Thisproblemis resolvedby finding thebestmatchingsetof weightsin thetrainednetwork for eachhiddenunit in thegeneratingnetwork (usingtheEuclideandistancebetweentheweightvectors),andmatchingthehiddennodesof thetrainedandgeneratingnetworksaccordingly. Additionally,thesebestmatchesareorderedaccordingto the respective distancesbetweenthe weight vectors,i.e. thetop two rows shows thegeneratingnetwork hiddennodewhichwasbestapproximatedby ahiddennodeinthetrainednetwork. Likewise,theworstmatchis at thebottom. A secondproblemis that trying to matchtheweightsfrom thehiddennodesto the input nodesdoesnot take into accounttheoutputlayerweights,e.g. exactly thesamehiddennodefunctioncouldbecomputedwith differentweightsif thehiddennodesweightsarescaledandtheoutputlayerweightsarescaledaccordingly. For thecaseof onlyoneoutputwhichis consideredhere,the solutionis simple: thehiddenlayerweightsarescaledaccordingto the respectiveoutputlayerweight.Eachindividual weight(scaledby theappropriateoutputweight)is plottedasfollows:thesquareis shadedin proportionto themagnitudeof theweight,wherewhite equals0 andblackequalsthemaximumvaluefor all weightsin thenetworks.Negativeweightsareindicatedby awhitesquareinsidetheouterblacksquarewhichsurroundseachweight.

Observations: a) the generatingnetwork weightsareoften matchedmorecloselyby the larger networks(considerthefourthandfifth bestmatchinggroupsof two rows),b) theextraweightsin thelargernetworkscontribute to the final approximationin only a minor way, and c) the resultsindicatethat pruning (andoptionallyretraining)thelargernetworksmayperformwell.

A conclusionis thatbackpropagationcanresultin theunderutilisationof network resourcesin certaincases(i.e. someparametersmaybeineffective or only partiallyeffective dueto sub-optimalconvergence).

Sincereportingthe work containedin this paper, S. Hansonhasstated(Hassoun,Cherkassky, Hanson,Oja, SarleandSudjianto,1996): “Whether in the language of approximationtheory(overfitting etc.) orstatisticalestimation(biasvs.variance)it is clear that toomanyparameters in somenonparametricmodelscanbegrievous,however with manyNeural Networks,more parameters canactuallyimprovethings.” and“Such [phenomena]which arise uniquelyin Neural Networkapplicationsshouldbe more of a focusforstatisticiansrather thanan anomalyto be ignored”. This sectionhasinvestigatedthephenomenonundercontrolledconditionsanddiscussedhow thephenomenonmayarise.

Thephenomenonhasalsobeenobserved by others,e.g. Dadson(1996)states“I find that in practicenet-workswith a veryparsimoniousnumberof neuronsare hard to train” , Slomka(1996)statesthat slightlylarger thanoptimalsizenetworkshave often improvedperformance,andBack(1992)statesthat “o verpa-rameterizedsynapsesgivelowerMSEandvariancethanexactordersynapses”in thecontext of modellingnonlinearsystemswith FIR andIIR MLP networks.

21

Page 22: What Size Neural Network Gives Optimal Generalization ... · What Size Neural Network Gives Optimal Generalization? Convergence Properties of Backpropagation Steve Lawrence , C. Lee

5 hiddenunits 15hiddenunits 25hiddenunits

Figure15. Theweightsafter trainingin networkswith 5, 15, and25 hiddenunits for thecaseof no noise.In eachcase,the resultsareshown for two networkswith differentrandomstartingweights. Theplottingmethodis describedin the text. For eachpair of rows, the top row correspondsto thegeneratingnetworkandthebottomrow correspondsto thetrainednetwork. Observe thata) thegeneratingnetwork weightsareoftenmatchedmorecloselyby thelargernetworks(comparethefourthandfifth setof two rows),andb) theextraweightsin thelargernetworkscontributeto thefinal approximationin only aminorway.

7.2 Occam’s Razor

Theresultsshowing thatlargerthanoptimalsizenetworkscangeneralizebetter, in certaincases,arenot incontradictionwith Occam’s razor. Occam’s razor,which advocatesthesimplerout of a numberof possiblesolutions,is not applicableto the situationwhereeachsolutionis of a differentquality, i.e. while larger

22

Page 23: What Size Neural Network Gives Optimal Generalization ... · What Size Neural Network Gives Optimal Generalization? Convergence Properties of Backpropagation Steve Lawrence , C. Lee

5 hiddenunits 15hiddenunits 25hiddenunits

Figure16. Theweightsafter trainingin networkswith 5, 15, and25 hiddenunits for thecaseof Gaussiannoisewith standarddeviation5%of thestandarddeviationof theinputs.In eachcase,theresultsareshownfor two networkswith differentrandomstartingweights.Theplotting methodis describedin thetext. Foreachpair of rows, the top row correspondsto the generatingnetwork andthe bottomrow correspondstothe trainednetwork. Observe that a) the generatingnetwork weightsareoften matchedmorecloselybythe larger networks (comparethe fourth andfifth setof two rows), andb) the extra weightsin the largernetworkscontributeto thefinal approximationin only aminorway.

networks canprovide improved generalizationperformance,this typically only happenswhen the largernetworksarebettermodelsof thetrainingdata.

23

Page 24: What Size Neural Network Gives Optimal Generalization ... · What Size Neural Network Gives Optimal Generalization? Convergence Properties of Backpropagation Steve Lawrence , C. Lee

5 hiddenunits 15hiddenunits 25hiddenunits

Figure17. Theweightsafter trainingin networkswith 5, 15, and25 hiddenunits for thecaseof Gaussiannoisewith standarddeviation10%of thestandarddeviationof theinputs.In eachcase,theresultsareshownfor two networkswith differentrandomstartingweights.Theplotting methodis describedin thetext. Foreachpair of rows, the top row correspondsto the generatingnetwork andthe bottomrow correspondstothe trainednetwork. Observe that a) the generatingnetwork weightsareoften matchedmorecloselybythe larger networks (comparethe fourth andfifth setof two rows), andb) the extra weightsin the largernetworkscontributeto thefinal approximationin only aminorway.

7.3 Learning Theory

Theresultsarealsonot in contradictionwith statisticallearningtheory. Vapnik(1995)statesthatmachineswith a smallVC dimensionarerequiredto avoid overfitting. However, healsostatesthat “it is difficult to

24

Page 25: What Size Neural Network Gives Optimal Generalization ... · What Size Neural Network Gives Optimal Generalization? Convergence Properties of Backpropagation Steve Lawrence , C. Lee

approximatethetraining data”, i.e. for a givenproblemin MLP approximation,thegoal is to find theap-propriatenetwork sizein orderto minimizethetradeoff betweenoverfittingandpoorapproximation.Vapniksuggeststhattheuseof a priori knowledgeis requiredfor smalltrainingerrorandsmallgeneralisationerror.

For thecaseof linearoutputneurons,Barron(1991;1992)hasderivedthefollowing boundon thetotal riskfor anMLP estimator: +-,�.0/lpo21 ´ +3, lpo�lnm^ _`54�687 ^ _` 1 (3)

where.0/ is thefirst absolutemomentof theFouriermagnitudedistribution of thetargetfunction � andis ameasureof the“complexity” of � . Again,a tradeoff canbeobservedbetweentheaccuracy of thebestap-proximation(whichrequireslarger lpo ), andtheavoidanceof overfitting(whichrequiresasmallerlpo�];^ _`ratio). However, this doesnot take into accountlimited training time anddifferent ratesof convergencefor different � . The left-handterm (the approximationerror) correspondsto the error betweenthe targetfunctionandtheclosestfunctionwhich theMLP canimplement.For theartificial task,theapproximationerroris zerofor l � o � Z9x . Basedonthisequation,it is likely that l � o � Z9x wouldbeselectedastheoptimalnetwork size(notethattheresultsreportedhereusesigmoidalratherthanlinearoutputneurons).

RecentworkbyBartlett(1996)correlateswith theresultsreportedhere.Bartlettcomments:“the VC-boundsseemloose;neural networksoftenperformsuccessfullywith trainingsetsthatareconsiderablysmallerthanthenumberof networkparameters” . Bartlettshows (for classification)thatthenumberof trainingsamplesonly needsto grow accordingto 9 � � (ignoringlog factors)to avoid overfitting, where 9 is a boundon thetotal weightmagnitudefor a neuronand ± is thenumberof layersin thenetwork. This resultandeitheranexplicit (weightdecayetc.)or implicit biastowardssmallerweightsleadsto thephenomenonobservedhere,i.e. largernetworksmaygeneralizewell andthereforebettergeneralizationis possiblefrom largernetworksif they canbetrainedmoresuccessfullythanthesmallernetworks.

7.4 The Curseof Dimensionality

Consider� m;:=< # . The regression,� v��"{ is a hypersurface in < # . If � v��§{ is arbitrarily complex andunknown then densesamplesare requiredto approximatethe function accurately. However, it is hardto obtaindensesamplesin high dimensions.This is the “curseof dimensionality”11 (Friedman,1995).The relationshipbetweenthe samplingdensityand the numberof points requiredis >�^ j? (Friedman,1995)where @ is thedimensionalityof the input spaceand ^ is thenumberof points. Thus,if ^ � is thenumberof pointsfor a givensamplingdensityin 1 dimension,thenin orderto keepthesamedensityasthedimensionalityis increased,thenumberof pointsmustincreaseaccordingto ^ #� .

Kolmogorov’s theoremshows that any continuousfunctionof @ dimensionscanbecompletelycharacter-izedby a 1-dimensionalcontinuousfunction. Specifically, Kolmogorov’s theorem(Friedman,1995;Kol-mogorov, 1957;Kurkova,1991;Kurkova,1995)statesthatany continuous

� v�� � zA� � z9y9y9yNzA�B#�{ � � #�C �DE ª ��F /HG #DmHª �JI mLK E v���m {NM (4)

11Otherdefinitionsof the“curseof dimensionality”exist, however weusethedefinitionof Friedman(1995).

25

Page 26: What Size Neural Network Gives Optimal Generalization ... · What Size Neural Network Gives Optimal Generalization? Convergence Properties of Backpropagation Steve Lawrence , C. Lee

where O I mNP # � areuniversalconstantsthat do not dependon � , O%K E vRQ�{!P � #�C �� areuniversaltransformationswhichdonotdependon � , and F / v�S"{ is acontinuous,one-dimensionalfunctionwhich totally characterises� v�� � zA� � z9y9y9y�zA�B#.{ ( F / is typically highly nonsmooth),i.e. thereis a onedimensionalcontinuousfunctionthatcharacterisesany continuousfunctionof @ arguments.As such,we canseethat theproblemis not somuchthedimensionality, but thecomplexity of thefunction(high dimensionalfunctionstypically have thepotentialto be morecomplex) (Friedman,1995), i.e. the curseof dimensionalityessentiallysaysthat inhigh dimensions,the lessdatapointswe have, the simplerthe function hasto be in order to representitaccurately. TheNo FreeLunchtheorem(WolpertandMacready, 1995)shows that,if we do not make anyassumptionsregardingthetargetfunction,noalgorithmperformsbetterthanany otheronaverage.In otherwords,we needto make assumptions.A convenientandusefulassumption(whichcorrespondsto commonsensorydatain many instances)is thatof smoothness.As demonstrated,smootherfunctionscorrespondtofasterconvergence.Intuitively this is reasonable– morecomplex functionscorrespondto a greaterdegreeof saturationin thenodes,andthebackpropagatederrorapproacheszeroin saturatedregions.

7.5 Weight Distributions

In certaincases,standardbackpropagationcanleadto an implicit biastowardssmallerweightsasthe fol-lowing experimentshows. Networksweretrainedasbeforeusingdatageneratedfrom anetwork initialisedusing u � dMx , ^ _` � dMx�zVx0x0x (cf. thecurseof dimensionalityandmorepointsrequiredfor morecomplextarget functions),no generalizationcontrol,and �¿� Z9x0� iterations.Figure18 shows box-whiskersplotsofthedistribution of weightsaftertrainingfor networkswith 10 to 50hiddennodes.Observe thattheweightsin thetrainednetworksare,onaverage,smallerthanthosein thegeneratingnetwork.

0

5

10

15

20

Generating 10 20 30 40 50

Wei

ght m

agni

tudeT

Figure18. Box-whiskersplots showing the weight magnitudedistribution for the generatingnetwork (10 hiddennodes,on theleft) andthetrainednetworkswith 10 to 50hiddennodes.Averagedover10 trials in eachcase.

7.6 UniversalApproximation

Theresultsarenegative in termsof thepossibilityof traininglargehomogeneousMLPs to parsimoniouslyrepresentarbitraryfunctions.Evenfor thecaseof relatively smallmaximumweightsin thenetwork, it can

26

Page 27: What Size Neural Network Gives Optimal Generalization ... · What Size Neural Network Gives Optimal Generalization? Convergence Properties of Backpropagation Steve Lawrence , C. Lee

beseenthatconvergencemaybedifficult for themostparsimonioussolutions.While largeMLPshavebeensuccessfulin patternrecognition(e.g.speechphonemerecognition(BourlardandMorgan,1994)),wesug-gestthatit canbedifficult to find parsimonioussolutionswhichemploy appropriateinternalrepresentations.

With referenceto biological neuralnetworks, the reasonthat we can learnthe thingswe do is, perhaps,critically linkedto thepre-wiringof thehumanbrain.For example,weknow thatwehavea lot of difficultytraining a chimpanzeeto learna humanlanguage,let aloneMLPs. This conclusionappliesto the homo-geneousMLP typeof universalapproximationapproachto learningby example.Thereis a wholeclassofalgorithmsfor learningby examplewhichoperateon thebasisof looking for regularitiesandthenincorpo-ratingtheseregularitiesinto themodel(e.g.grammarinductionalgorithms).In contrast,thecomputationalcapacityof MLPs is static.

Finally, wequoteMinsky andPapert’s epilogueto “Perceptrons”(1988):

“In the early years of cybernetics,everyoneunderstoodthat hill-climbing wasalwaysavailable for working easyproblems,but that it almostalwaysbecameimpractical for problemsof larger sizesandcomplexities. We were verypleasedto discoverthat [perceptronconvergence]couldberepresentedashill-climbing; however thatveryfact ledusto wonderwhethersuch procedurescoulddependablybegeneralized,evento thelimitedclassof multi-layermachineswehavenamedGambaperceptrons.Thesituationseemsnot to havechangedmuch – wehaveseennocontemporaryconnectionistpublicationthat castsmuch new theoretical light on the situation. Thenwhy has [backpropagation,gradientdescent]becomesopopular in recentyears? In part this is becauseit is sowidelyapplicableandbecauseit doesindeedyield new results(at leaston problemsof rathersmallscale).Its reputationalsogains,wethink, fromit beingpresentedin formsthat shares,albeit to a lesserdegree, thebiological plausibility of [the perceptron]. Butwefear that its reputationalsostemsfromunfamiliarity with themannerin which hill-climbing methodsdeterioratewhenconfrontedwith larger scaleproblems.

Minsky andPapert’s assertionthat local minimaandrelateddifficultiesarea problemappearsto bevalid.We agree– it doesnot appearthatstandardMLP networks trainedwith backpropagationcanbescaledupto arbitrarily largeproblems.However, while therearecertainfundamentallimitationsto theperformanceof this classof learningalgorithms,MLPs have producedbetterresultsthansomenotablealternatives,e.g.perceptronswith thresholdunits (Werbos,1974). The impositionof the sigmoidnon-linearitiesin MLPsallows theuseof gradientdescentoptimisationandempiricalresultssuggeststhat theerrorsurfacecanbe(relatively speaking)quitesuitablefor agradientdescentbasedoptimizationprocess.

8 Appendix A: Generalizationand Overfitting

Thissectionprovidesabrief overview of generalizationandoverfitting.

Generalizationrefersto how well a modelperformson unseendata,i.e. themodelis trainedusinga giventrainingsetandgeneralizationcorrespondsto theexpectedperformanceof themodelonnew patterns.

Mathematically, the goal of MLP training canbe formulatedasminimizationof a costfunction (Bengio,1996):

¸ _`VUG} �XWZY � [ ¹ v � v�\ zA]¾{�z_^ {a`ëv�\ z_^c{�½b\ ½Z^ (5)

27

Page 28: What Size Neural Network Gives Optimal Generalization ... · What Size Neural Network Gives Optimal Generalization? Convergence Properties of Backpropagation Steve Lawrence , C. Lee

where¹ is a localcostfunction, � is thefunctionimplementedby theMLP, \ is theinput to themodel, ^ isthedesiredoutputof themodel,] correspondsto theweightsin thenetwork,and representstheprobabilitydistribution. Theobjective of trainingis to optimisetheparameters] suchthat ¸ _`VUG} is minimised:c] ��d�e 7bfhgjik W Y � [ ¹ v � v�\ zA]n{�z_^c{a`ëv�\ z_^ {í½l\ ½l^ (6)

¸ _`VUG} is thegeneralizationerror(Bengio,1996),i.e. theexpectedperformanceof theMLP onnew patternsrandomlychosenfrom `ëv�\ z_^c{ . In practiceëv�\ z_^ { is notknown. Instead,a trainingset m � On\�o�z_^poqP ¤srt isgiven,where o is thenumberof patterns,andanapproximationof ¸ _`VUG} is minimisedwhich is calledtheempiricalerror (Vapnik,1982)or trainingerror(Bengio,1996):

¸ � ¤srDoGª � ¹ v�\ o z_^ o { (7)

Thequadraticandrelative entropy costfunctionsareexamplesof suchanerrorfunction.

A very importantquestionis how well a modeltrainedto minimise ¸ generalises(i.e. how low ¸ _`NUN} is).This is importantbecauselow ¸ (performanceon the training set)doesnot necessarilymeanlow ¸ _`NUN}(expectedperformanceonnew patterns).

An MLP providesafunctionmappingfrom inputvaluesto desiredoutputvalues.Thismappingis generally“smooth” (in a sensedefinedby thenatureof theactivation function,thetopologyof thenetwork, andthetraining algorithm)andallows interpolationbetweenthe training points. Considerthe simplecaseof aninput with only onedimensionasshown in figure19. The trainingpatterns,marked with a cross,containnoise. The true,underlyingfunctionmappingmaybe that shown in themiddlegraph. However, withoutany controllingscheme,the MLP may seriouslyunderfit(the left-handgraphin figure 19) or overfit (theright-handgraphin figure 19) the data. Observe that the averageerror on the training samplesis highestfor theunderfittinggraphin figure19 andlowestfor theoverfitting graph. For thecaseof overfitting, theerroronthetrainingsamplesmaybevery low, but erroron testsamplesmaybehigh(considertestpointsinbetweenthetrainingpointson theoverfitting graph),i.e. for a givenMLP, astrainingis continuedpastthe“correctfit” point,generalizationperformancemaydecrease.This is thewell known bias/variancetradeoff(Gemanetal., 1992)– in theunderfittingcase,theMLP estimatorproducesestimateswhichhave highbiasbut low variance(an estimatoris said to be biasedif, on average,the estimatedvalue is different to theexpectedvalue). In the overfitting case,biasof the estimatoris low but varianceis high. Thereexistsanoptimumbetweenthetwo extremes.

The degreeto which overfitting is possibleis relatedto the numberof training patternsand the numberof parametersin the model. In general,with a fixed numberof training patterns,overfitting can occurwhenthe modelhastoo many parameters(too many degreesof freedom). Figure20 illustratesthe ideausingpolynomialapproximation.A training datasetwascreatedwhich contained21 pointsaccordingtothe equation� �vu gji v��§]�w~{Y´�x where x is a uniformly distributed randomvariablebetween-0.25 and0.25. The equationwasevaluatedat x�z�ZMz�d�z9y9y9yMz�dMx . This datasetwasthenusedto fit polynomialmodels(Rivlin, 1969;Press,Teukolsky, VetterlingandFlannery, 1992)with ordersbetween2 and20. For order2, the approximationis poor asshown in figure 20. For order10, the approximationis reasonablygood.However, astheorder(andnumberof parameters)increases,significantoverfitting is evident. At order20,theapproximatedfunctionfits thetrainingdataverywell, however theinterpolationbetweentrainingpointsis verypoor.

28

Page 29: What Size Neural Network Gives Optimal Generalization ... · What Size Neural Network Gives Optimal Generalization? Convergence Properties of Backpropagation Steve Lawrence , C. Lee

Figure19. Underfittingandoverfitting.

Figure21shows theresultsof usinganMLP to approximatethesametrainingset12. As for thepolynomialcase,the smallestnetwork with onehiddenunit (4 weightsincluding biasweights),did not approximatethedatawell. With two hiddenunits(7 weights),theapproximationis reasonablygood. In contrastto thepolynomialcasehowever, networks with 10 hiddenunits (31 weights)and50 hiddenunits (151 weights)alsoresultedin reasonablygoodapproximations.Hence,for this particular(very simple)example,MLPnetworks trainedwith backpropagationdo not leadto a largedegreeof overfitting, evenwith morethan7timesasmany parametersasdatapoints. It is certainlytrue thatoverfitting canbea seriousproblemwithMLPs. However, this examplehighlightsthe possibility that MLPs trainedwith backpropagationmaybebiasedtowardssmootherapproximations.

Figure22 shows a differentexamplewheresignificantoverfitting canbeseenin largerMLP models.Thesameequationwasusedasfor thepreviousexampleexcepttheequationwasonly evaluatedat x�z�ZMz�d�z9y9y9yNz�� ,creating6 datapoints. The figure shows the resultsof usingMLP modelswith 1 to 4 hiddennodes.Forthis example,the3 and4 hiddennodecasesproduceanapproximationwhich is expectedto resultin worsegeneralization.A test datasetwas createdby evaluatingthe equationwithout noise( � �yu gji v��"]�w~{ ) atintervalsof 0.1.Tables3 and4 show theresultson thetestsetfor themodelstrainedon thefirst andsecondexamplerespectively. For thefirst example,thelargestnetwork providedthebestgeneralization.However,for thesecondexample,thenetwork with 2 hiddennodesprovidedthebestgeneralization– largernetworksresultedin worsegeneralizationdueto overfitting.

HiddenNodes 1 2 10 50

TrainingMSE 0.373 0.0358 0.0204 0.0204TestMSE 0.257 0.0343 0.0222 0.0201

Table3. Resultsfor MLP interpolationof the function z�{�|�}�~B�a�����%� in the range0 to 20. Thebestgeneralizationcorrespondedto thelargestnetwork testedwhichhad50hiddennodes.

12Training detailswereas follows. A singlehiddenlayer MLP, backpropagation,100,000stochastictraining updates,andalearningrateschedulewith aninitial learningrateof 0.5wereused.

29

Page 30: What Size Neural Network Gives Optimal Generalization ... · What Size Neural Network Gives Optimal Generalization? Convergence Properties of Backpropagation Steve Lawrence , C. Lee

-1.5

-1

-0.5

0

0.5

1

1.5

0 10 20

y�

x

ApproximationTraining Data

Target Function without Noise

-1.5

-1

-0.5

0

0.5

1

1.5

0 10 20

y�

x

ApproximationTraining Data

Target Function without Noise

Order2 Order10

-1.5

-1

-0.5

0

0.5

1

1.5

0 10 20

y�

x

ApproximationTraining Data

Target Function without Noise

-1.5

-1

-0.5

0

0.5

1

1.5

0 10 20

y�

x

ApproximationTraining Data

Target Function without Noise

Order16 Order20

Figure20. Polynomialinterpolationof thefunction ���-�!�j�2�������b���'x in therange0 to 20 astheorderofthemodelis increasedfrom 2 to 20. x is a uniformly distributedrandomvariablebetween-0.25and0.25.Significantoverfittingcanbeseenfor orders16and20.

HiddenNodes 1 2 10 50

TrainingMSE 0.0876 0.0347 4.08e-5 7.29e-5TestMSE 0.0943 0.0761 0.103 0.103

Table4. Resultsfor MLP interpolationof the function z;{�|�}�~B�j�����%� in the range0 to 5. The bestgeneralizationcorrespondedto 2 hiddennodes– largernetworksresultedin highererrordueto overfitting.

Acknowledgments

We would like to acknowledgeuseful discussionswith and commentsfrom R. Caruana,S. Hanson,G.Heath,B.G.Horne,T. Lin, K.-R. Muller, T. Rognvaldsson,andW. Sarle.Theopinionsexpressedhereinarethoseof theauthors.Thiswork hasbeenpartiallysupportedby theAustralianResearchCouncil(ACT) andtheAustralianTelecommunicationsandElectronicsResearchBoard(SL). Thanksto theOlivetti ResearchLaboratoryandF. Samariafor compilingandmaintainingtheORL database.

30

Page 31: What Size Neural Network Gives Optimal Generalization ... · What Size Neural Network Gives Optimal Generalization? Convergence Properties of Backpropagation Steve Lawrence , C. Lee

-1.5

-1

-0.5

0

0.5

1

1.5

0 10 20

y�

x

ApproximationTraining Data

Target Function without Noise

-1.5

-1

-0.5

0

0.5

1

1.5

0 10 20

y�

x

ApproximationTraining Data

Target Function without Noise

1 HiddenNode 2 HiddenNodes

-1.5

-1

-0.5

0

0.5

1

1.5

0 10 20

y�

x

ApproximationTraining Data

Target Function without Noise

-1.5

-1

-0.5

0

0.5

1

1.5

0 10 20

y�

x

ApproximationTraining Data

Target Function without Noise

10HiddenNodes 50HiddenNodes

Figure21. MLP interpolationof thefunction �h���_�j�����2���b����x in therange0 to 20asthenumberof hiddennodesis increasedfrom 1 to 50. x is a uniformly distributedrandomvariablebetween-0.25and0.25. Alargedegreeof overfittingcannotbeobserved.

References

Abu-Mostafa,Y. (1989),‘The Vapnik-Chervonenkisdimension:Informationversuscomplexity in learning’,NeuralComputation1(3), 312–317.

Akaike,H. (1970),‘Statisticalpredictoridentification’,Annalsof theInstitutefor StatisticalMathematics22, 203–217.

Akaike, H. (1973),Informationtheoryandan extensionof the maximumlikelihoodprinciple, in B. N. Petrov andF. Csaki,eds,‘Proceeding2nd InternationalSymposiumon InformationTheory’, AkademiaKiado, Budapest,pp.267–281.

Akaike, H. (1974), ‘A new look at the statisticalmodel identification’, IEEE Transactionson AutomaticControl19, 716–723.

Amari, S. (1995),Learningandstatisticalinference,in M. A. Arbib, ed.,‘The Handbookof BrainTheoryandNeuralNetworks’, MIT Press,Cambridge,Massachusetts,pp.522–526.

Back,A. (1992),New Techniquesfor NonlinearSystemIdentification:A RapprochementBetweenNeuralNetworksandLinearSystems,PhDthesis,Departmentof ElectricalEngineering,Universityof Queensland.

31

Page 32: What Size Neural Network Gives Optimal Generalization ... · What Size Neural Network Gives Optimal Generalization? Convergence Properties of Backpropagation Steve Lawrence , C. Lee

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1 2 3 4 5

y�

x

ApproximationTraining Data

Target Function without Noise

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1 2 3 4 5

y�

x

ApproximationTraining Data

Target Function without Noise

1 HiddenNode 2 HiddenNodes

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1 2 3 4 5

y�

x

ApproximationTraining Data

Target Function without Noise

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1 2 3 4 5

y�

x

ApproximationTraining Data

Target Function without Noise

3 HiddenNodes 4 HiddenNodes

Figure22. MLP interpolationof thefunction �h���_�j���������b����x in therange0 to 5 asthenumberof hiddennodesis increasedfrom 1 to 4. x is a uniformly distributedrandomvariablebetween-0.25and0.25. Thenetwork with two hiddennodesprovidesthebestgeneralizationperformance– largernetworksresultedinworsegeneralizationdueto overfitting.

Baldi,P. andHornik,K. (1988),‘Neuralnetworksandprincipalcomponentanalysis:Learningfrom exampleswithoutlocalminima’, Neural Networks2(1), 53–58.

Barron,A. (1991),Complexity regularizationwith applicationto artificial neuralnetworks,in G. Roussas,ed.,‘Non-parametricFunctionalEstimationandRelatedTopics’, Kluwer AcademicPublishers,Dordrecht,The Nether-lands,pp.561–576.

Barron,A. (1992),Neuralnetapproximation,in ‘Proceedingsof theSeventhYaleWorkshoponAdaptiveandLearningSystems’,YaleUniversity, New Haven,CT, pp.69–72.

Bartlett,P. (1993),‘Vapnik-Chervonenkisdimensionboundsfor two-andthree-layernetworks’, Neural Computation5(3), 371–373.

Bartlett,P. (1996),The samplecomplexity of patternclassificationwith neuralnetworks: the sizeof the weightsismoreimportantthanthesizeof thenetwork, Technicalreport,AustralianNationalUniversity.

Baum,E. andHaussler, D. (1989),‘What sizenetgivesvalid generalization?’,Neural Computation1(1), 151–160.

Bengio,Y., ed.(1996),Neural Networksfor Speech andSequenceRecognition, Thomson.

32

Page 33: What Size Neural Network Gives Optimal Generalization ... · What Size Neural Network Gives Optimal Generalization? Convergence Properties of Backpropagation Steve Lawrence , C. Lee

Bourlard,H. andMorgan,N. (1994),ConnnectionistSpeech Recognition: A Hybrid Approach, Kluwer AcademicPublishers,Boston,MA.

Breiman,L. (1994), ‘Discussionof neuralnetworks and relatedmethodsfor classification’,Journal of the RoyalStatisticalSocietyB 56(3), 409–456.

Cardell,N. S., Joerding,W. andLi, Y. (1994),‘Why somefeedforwardnetworks cannotlearnsomepolynomials’,Neural Computation6(4), 761–766.

Caruana,R. (1993),Generalizationvs.NetSize, NeuralInformationProcessingSystems,Tutorial,Denver, CO.

Cohn,D. andTesauro,G. (1992),‘How tight aretheVapnik-Chervonenkisbounds?’,Neural Computation4(2), 249–269.

Crane,R., Fefferman,C., Markel, S. and Pearson,J. (1995), Characterizingneuralnetwork error surfaceswith asequentialquadraticprogrammingalgorithm,in ‘MachinesThatLearn’,Snowbird.

Dadson,J. (1996),‘Article in comp.ai.neural-nets,messageid: [email protected],23July’.

Drucker, H., Cortes,C.,Jackel, L., Le Cun,Y. andVapnik,V. (1994),‘Boostingandotherensemblemethods’,NeuralComputation6, 1289–1301.

Friedman,J. (1995),‘Introductionto computationallearningandstatisticalprediction’,Tutorial Presentedat NeuralInformationProcessingSystems,Denver, CO.

Geman,S.,Bienenstock,E. andDoursat,R. (1992),‘Neural networksandthebias/variancedilemma’,Neural Com-putation4(1), 1–58.

Gori, M. (1996),‘An introductionto computationalsuspiciousness’,Seminarpresentedat theUniversityof Queens-land,Brisbane,Australia.

Gori, M. andTesi,A. (1992),‘On theproblemof local minima in backpropagation’,IEEE Transactionson PatternAnalysisandMachineIntelligence14(1), 76–86.

Hamey, L. (1995),Analysisof theerrorsurfaceof theXORnetworkwith two hiddennodes,TechnicalReport95/167C,MacquarieUniversity, Sydney, Australia.

Hassibi,B. andStork,D. G. (1993),Secondorderderivativesfor network pruning: OptimalBrain Surgeon,in C. L.Giles,S.J.HansonandJ.D. Cowan,eds,‘Advancesin NeuralInformationProcessingSystems’,Vol. 5, MorganKaufmann,SanMateo,CA.

Hassoun,M., Cherkassky, V., Hanson,S.,Oja, E., Sarle,W. andSudjianto,A. (1996),Panelon neuralnetworksandstatisticalmodels,in ‘InternationalConferenceon NeuralNetworks,ICNN 96’, IEEE,Piscataway, NJ,pp.18–22.

Haykin,S. (1994),Neural Networks,A ComprehensiveFoundation, Macmillan,New York, NY.

Hecht-Nielsen,R. (1990),Neurocomputing, AddisonWesley, New York.

Jacobs,R. (1995),‘Methodsfor combiningexperts’probabilityassessments’,Neural Computation7, 867–888.

Kohonen,T. (1995),Self-OrganizingMaps, Springer-Verlag,Berlin, Germany.

Kolmogorov, A. (1957), ‘On the representationof continuousfunctionsof several variablesby superpositionsofcontinuousfunctionsof onevariableandaddition’,Dokl 114, 679–681.

Krogh, A. andVedelsby, J. (1995),Neuralnetwork ensembles,crossvalidation,andactive learning,in G. Tesauro,D. Touretzky andT. Leen,eds,‘Advancesin NeuralInformationProcessingSystems’,Vol. 7, TheMIT Press,pp.231–238.

Krose,B. andvanderSmagt,P., eds(1993),AnIntroductionto Neural Networks, fifth edn,Universityof Amsterdam.

Kurkova,V. (1991),‘Kolmogorov’stheoremis relevant’, Neural Computation3(4), 617–622.

Kurkova, V. (1995),Kolmogorov’s theorem,in M. A. Arbib, ed., ‘The Handbookof Brain TheoryandNeuralNet-works’, MIT Press,Cambridge,Massachusetts,pp.501–502.

33

Page 34: What Size Neural Network Gives Optimal Generalization ... · What Size Neural Network Gives Optimal Generalization? Convergence Properties of Backpropagation Steve Lawrence , C. Lee

Le Cun,Y. (1993),‘Efficientlearningandsecondordermethods’,TutorialpresentedatNeuralInformationProcessingSystems5.

Le Cun,Y., Denker, J.andSolla,S. (1990),OptimalBrain Damage,in D. Touretzky, ed.,‘Advancesin NeuralInfor-mationProcessingSystems’,Vol. 2, (Denver1989),MorganKaufmann,SanMateo,pp.598–605.

Maass,W. (1995),Vapnik-Chervonenkisdimensionof neuralnetworks,in M. A. Arbib, ed.,‘The Handbookof BrainTheoryandNeuralNetworks’, MIT Press,Cambridge,Massachusetts,pp.522–526.

McInerny, J., Haines,K., Biafore,S. andHecht-Nielsen,R. (1989),Backpropagationerrorsurfacescanhave localminima, in ‘InternationalJointConferenceon NeuralNetworks’, Vol. 2, (Washington1989),IEEE,New York,p. 627.

Minsky, M. andPapert,S. (1988),Perceptrons, expandedversionof theoriginal 1969edn,MIT Press,Cambridge,MA.

Moody, J. (1992),Theeffective numberof parameters:An analysisof generalizationandregularizationin nonlinearlearningsystems,in J.Moody, S.J.HansonandR.P. Lippmann,eds,‘Advancesin NeuralInformationProcessingSystems’,Vol. 4, MorganKaufmann,SanMateo,CA, pp.847–854.

Muller, K., Finke, M., Schulten,K., Murata,N. and Amari, S. (1996), ‘A numericalstudy on learningcurves instochasticmulti-layerfeed-forwardnetworks’, Neural Computationp. in press.

Naftaly, U., Intrator, N. andHorn, D. (1995),Trainingsinglenetworks for optimal ensembleperformance,in T. L.GeraldTesauro,David Touretzky, ed., ‘Advancesin Neural Information ProcessingSystems7’, MIT Press,Cambridge,Massachusetts.

Perrone,M. P. andCooper, L. N. (1993),Whennetworksdisagree:Ensemblemethodfor neuralnetworks, in R. J.Mammone,ed.,‘NeuralNetworksfor SpeechandImageprocessing’,Chapman-Hall.

Press,W., Teukolsky, S.,Vetterling,W. andFlannery, B. (1992),NumericalRecipes, secondedn,CambridgeUniver-sity Press,Cambridge.

Renals,S.,Morgan,N., Cohen,M. andFranco,H. (1992),Connectionistprobabilityestimationis theDecipherspeechrecognitionsystem,in ‘ProceedingsIEEE InternationalConferenceon Acoustics,Speech,andSignalProcess-ing’, pp.601–604.

Ripley, B. (1995), ‘Statistical ideasfor selectingnetwork architectures’,Invited Presentation,Neural InformationProcessingSystems8.

Rivlin, T. (1969),An Introductionto theApproximationof Functions, BlaisdellPublishingCompany, Waltham,Mas-sachusetts.

Robinson,A. (1994),‘An applicationof recurrentnetsto phoneprobabilityestimation’,IEEETransactionsonNeuralNetworks5(2), 298–305.

Saad,D. andSolla,S. (1995),‘Exact solutionfor on-line learningin multilayer neuralnetworks’, PhysicalReviewLetters74, 4337–4340.

Saad, D. and Solla, S. (1996), Learning from corruptedexamples in multilayer networks, Technical ReportNCRG/96/019,AstonUniversity, UK.

Sarle,W. (1996), ‘Comp.ai.neural-netsfrequentlyasked questions’,�%�%�������¡ ��8�)¢¤£a¢s¥)�J£�¦¨§¨©b�n��©¨ªZ��©�«n¦n¬l¦n�l��¬l¦n­q«�£L®¯ ¬q«)­l¦¨ q«¡� ¯ ¥¡®¨� ¯%° �n¬8¦¡©�  ¯%± ®n¬8¦¨�Z« .Sartori,M. A. andAntsaklis,P. (1991),‘A simplemethodto derive boundson thesizeandto train multilayerneural

networks’, IEEETransactionsonNeural Networks2, 467–471.

Slomka,S.(1996),‘Personalcommunication’.

Vapnik,V. (1982),Estimationof DependenciesBasedonEmpiricalData, Springer-Verlag,Berlin.

Vapnik,V. (1995),TheNatureof StatisticalLearningTheory, Springer.

34

Page 35: What Size Neural Network Gives Optimal Generalization ... · What Size Neural Network Gives Optimal Generalization? Convergence Properties of Backpropagation Steve Lawrence , C. Lee

Werbos,P. (1974),BeyondRegression:New Toolsfor PredictionandAnalysisin theBehavioral Sciences,PhDthesis,HarvardUniversity.

Wolpert,D. H. andMacready, W. G. (1995),No freelunchtheoremsfor search,TechnicalReportSFI-TR-95-02-010,TheSantaFeInstitute.

Yu,X.-H. (1992),‘Canbackpropagationerrorsurfacenothavelocalminima’, IEEETransactionsonNeural Networks3, 1019–1021.

35