what will the global light-duty vehicle fleet look like ... · what will the global light-duty...

22
June 2016 WHAT WILL THE GLOBAL LIGHT-DUTY VEHICLE FLEET LOOK LIKE THROUGH 2050? Gal Sitty, Nathan Taft Fuel Freedom Foundation 18100 Von Karman Avenue, Suite 870 Irvine, California 92612

Upload: doandan

Post on 07-Sep-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

June2016

WHATWILLTHEGLOBALLIGHT-DUTYVEHICLEFLEETLOOKLIKETHROUGH2050?

GalSitty,NathanTaft

FuelFreedomFoundation

18100VonKarmanAvenue,Suite870

Irvine,California92612

AbstractThisstudyexaminesseveralscenariosusingtheLight-DutyVehicleFleetProjectionTool(“Tool”),whichisdesignedtoprojectthesizeandcompositionofthegloballight-dutyvehicle(LDV)fleetthroughtheyear2050.Theinitialsizeandcompositionofthe2015fleetwasdeterminedthroughacomprehensiveliteraturereview,whiletheageofthefleetwasdeterminedviaaback-castingmethodology.TheinteractiveToolincorporatesuser-suppliedgrowthratesbyvehiclepowertraintoprojectvehiclesales,fleetsize,andcompositionthrough2050.ThisstudyinputninescenariosintotheTool,basedonLow,Medium,andHighLDVfleetgrowthscenariosandthreeelectricvehicle(EV)salesgrowthscenarios.TheEVsalesgrowthscenarioswerederivedfromreportsfromtheInternationalEnergyAgency(IEA),BloombergNewEnergyFinance(BNEF),andGoldmanSachs(GS).Intheyear2050,allninescenariosmodeledshowedincreasesintheEVfleet,thealternativefuelvehicle(AFV)fleet,andtheoverallfleetsize,andallbutoneshowedincreasesinthesizeoftheinternalcombustionengine(ICE)fleet.TwooftheninescenariosfoundEVsalesexceedingICEvehiclesalesinfutureyears,andonlyonescenariofoundEVstocomprisealargerportionofthefleetthanICEvehicles.ThehighestEVfleetpenetration,withEVscomprising49percentoftheLDVfleetin2050,wasfoundinthescenariocombininglowoverallfleet-growthwithIEAtargetsforEVsales.Itshowedthat,evenundertheIEA’soptimisticforecastforEVgrowth,combinedwithaslowgrowthofthefleetoverall,therewouldstillbemorethan900millionICEvehiclesontheroadby2050.ThelowestEVfleetpenetrationin2050,withEVscomprising16percentoftheLDVfleet,wasfoundinthehighfleet-growthscenariowithEVsalesderivedfromGSprojections.Underthisscenario,theglobalICEfleetwouldcontainalmost3billionvehicles–nearlytriplewhatitisnow.

Contents

Executive Summary ........................................................................................................................................ 4

1. Introduction .................................................................................................................................................... 5 2. Methodology ................................................................................................................................................... 5 2.1 Establishing the global 2015 fleet ................................................................................................... 6 2.2 Projected sales growth rates ............................................................................................................ 6 2.3 Limits on EV, AFV and ICE sales .................................................................................................. 6 2.4 Vehicle retirement ............................................................................................................................ 7 2.5 Fleet composition ............................................................................................................................. 7 2.6 Graphs ................................................................................................................................................ 8 3. Scenarios ................................................................................................................................................................... 8 3.1 Scenario findings ............................................................................................................................. 9 4. Discussion ....................................................................................................................................................... 11 4.1 Impact on emissions ...................................................................................................................... 11 4.1.1 GHGs .............................................................................................................. 12 4.1.2 Air quality ....................................................................................................... 12 4.1.3 Potential mitigation strategies ....................................................................... 12 4.2 Impact on infrastructure ................................................................................................................. 13 4.2.1 Battery production capacity ........................................................................... 13 4.2.2 Charging infrastructure ................................................................................. 13 4.3 Energy security ................................................................................................................................ 14 4.4 Potential pathways to reduce the impact of ICE vehicles ............................................................. 14 4.4.1 Addressing the need for more liquid fuel options ......................................... 14 4.4.2 Combining advanced ICE technology with fuel development ...................... 15 4.5 Model limitations ............................................................................................................................. 15 4.5.1 Regional variation .......................................................................................... 15 4.5.2 Vehicle retirement .......................................................................................... 16 4.5.3 AFV variability ............................................................................................... 16 4.5.4 Uncertainties in the market ........................................................................... 16 4.6 Opportunities for further building out the model ........................................................................... 16 4.6.1 Adding emissions outputs .............................................................................. 17 4.6.2 Localized versions of the model ..................................................................... 17 5. Conclusion ...................................................................................................................................................... 17 References ......................................................................................................................................................... 19

4

ExecutiveSummary

TheLight-DutyFleetProjection(“Tool”)wasdesignedtoprojectthesizeandmakeupofthegloballight-dutyvehicle(LDV)fleetthroughtheyear2050,brokenoutbetweeninternalcombustionengine(ICE)vehicles,electricvehicles(EVs),andotheralternativefuelvehicles(AFVs).TheToolallowsuserstoinputassumptionsonglobalsalesgrowthratesforeachvehicletype,andusesthoseassumptionstoprojectglobalgrowthineachcategorythrough2050.OurstudyusedtheTooltoexamineninedifferentscenarioswithvaryinggrowthratesfortotalLDVsandEVs.Itfoundthefollowing:

• UnderthemostoptimisticforecastforEVsalesgrowth,EVsareprojectedtoaccountfor—atbest—justunder50percentofthetotalfleetbytheyear2050.Therestwereinternal-combustionengine(ICE)vehicles(andarelativelysmallfractionofalternative-fuelvehicleslikehydrogenfuelcells).

• Through2050,onlyonescenarioprojectedthesizeoftheEVfleetsurpassingthesizeoftheICEfleet,andonlytwoscenariosprojectedEVsalessurpassingICEsales.

• TheprojectedaveragesizeoftheEVfleetin2050was819million,withalowof611millionandahighof1.11billion.TheprojectedaveragesizefortheICEvehiclefleetin2050was1.97billion,withalowof900millionandahighof3billion.

• TheoverallLDVfleetwasprojectedtonumbersomewherebetween2.28and3.87billion.Consideringthesefindings,asingularrelianceonEVstosolvetransportationrelatedproblemsassociatedwithemissionsandpetroleumdependenceappearstobeaninadequatestrategy.PoliciesthataddressthecontinuedprevalenceofICEvehiclesthroughtheuseofalternativeliquidfuels,fuelefficiency,etc.intandemwithanEVgrowthstrategycouldnotonlyhelpusreachclimate,urbanpollution,economic,andpetroleumreductiongoalsfaster,butprovideuswithmoreconfidencethatthosegoalswillindeedbereached.Allowingindustry,policymakersandconsumerstochoosebetweenmultipleplans(including,butnotlimitedto,biofuels,high-octanefuels,fuelcells,etc.,oracombination),couldensurearobust,competitivemarketplacethatdrivesinnovationandbringsusclosertoalesspollutedworld.

5

1. Introduction Sincethemainstreamingoftheautomobileintheearly1900s,personalmobilityhasexploded:Today,therearemorethan1.2billionvehiclesaroundtheworld,andmorethan95percentofthosearelight-dutyvehicles(LDVs)[1]—carsandtrucksweighinglessthan8,500pounds.By2050,thatnumberislikelytobesignificantlyhigherthanitisnow,withmanyforecastsestimatingthattheglobalvehiclefleetwillnumber2billionormore[2][3][4].Othersprojectfleetsizesofnearly3billion[5],andaslargeas4billion[6].Insupportoftheseestimatesisthefactthatglobalvehiclesaleshavesteadilyincreasedbyalmost3percenteveryyearfortwodecades[7],andvehiclesarestayingontheroadforlongerperiodsoftime[8].WhileitisanearempiricalcertaintythattheLDVfleetof2050willbelargerthanitistoday,exactlyhowmuchlarger,andwhattypeofvehiclesitwillbecomposedof,isstillverymuchinquestion.Morethan95percentofLDVsinusetodayarepoweredbyaninternalcombustionengine(ICE),fueledwithgasolineordiesel[9].TheremainderofLDVsarealternativefuelvehicles(AFVs)thatareeithernaturalgasvehicles(NGVs),petroleumautogasvehicles(PAVs),orhydrogenfuelcellvehicles(FCVs),andbattery/plug-inhybridelectricvehicles(EVs)propelledbyelectricity.Combined,theAFVpowertrainsmakeupabout4percentoftheglobalfleet,withEVsaccountingforlessthan1percent.Currently,policymakersaroundtheworldareworkingtofigureouthowtocombatclimatechange.Emissionsfromthetransportationsectorconstitute23percentofenergy-relatedglobalgreenhousegas(GHG)emissions,ofwhich72percentisfromon-roadtransport[10].Whenaccountingfortheemissionsfromthefulllifecycleofproduction,distributionandconsumptionoftransportationfuels,thatfigureisevenhigher.UnderstandingthecompositionoftheLDVfleethasimportantimplicationsforpolicydevelopment,meetingemissionsgoals,infrastructureinvestment,businessplanningandmore.Suchknowledgecouldaidindevelopingstrategiesforenergysecurity,globaldevelopmentandformeetingclimategoalsandemissions-reductiontargets.Knowingthepotentialmarketsizeforvariousvehicletechnologiesandfuelscouldhelpinbusinessplanningforproducersandsuppliersintherelevantindustries.Thenumberofvehiclesontheroadcouldalsoinfluenceurbanplanningandtrafficmanagement.TheLight-DutyVehicleFleetProjectionTool(“Tool”),wasbuilttohelpprovideinformationonalloftheaboveissues.Itallowsuserstoinputtheirassumptionsonthegrowthrateoftheoverallfleet,thegrowthrateofEVs,andthegrowthrateofAFVs,inordertoshowwhatLDVsalesandthetotalLDVfleetwilllooklikeeachyearfrom2016through2050.Thegoalistoallowusersandpolicymakerstolookatmultiplescenarioswithdifferingassumptionsandplanaccordingly.2. Methodology ToconstructtheTool,firstwehadtoestablishthesizeandcompositionofthecurrentLDVfleet.Fromthisinitialassessment,webuiltaworksheetinMicrosoftExceltocalculateannualsalesforeachvehicletechnology,theirmarketshare,andtheirrespectiveshareofthetotalLDVfleetinanygivenyearthrough2050.ThenumberscalculatedbytheToolaredependentonthegrowthratepercentagesinputbytheuserforLDVsales,EVsales,andAFVsales.Toaccountforvehicleretirement,weusedcomponentsfromArgonneNationalLaboratory’sVISIONmodel[11]todevelopthreeworksheetsforvehicleretirementbyageandtechnologytype.

6

2.1 Establishing the global 2015 fleet Webeganwithaliteraturereviewtodeterminethesizeandmakeupofthecurrentfleet,assessforecastedsales,andanalyzehistoricalsalesdata.WereliedonNavigant’s“TransportationForecast:Light-DutyVehicles”fortheapproximate2015LDVfleetsize[12].Tobegin,weneededtodefineeachvehiclepowertrainclassification.Becauseoneofthegoalsofthisprojectwastoinvestigatetheproliferationofgrid-connectedvehicles,weclassifiedthetwotypesofthesevehicles–plug-inhybridelectricvehicles(PHEVs)andbatteryelectricvehicles(BEVs)—asEVs.Therestofthevehiclesontheroadwerethenclassifiedintooneoftwocategories:ICEvehiclesorAFVs.TheICEvehiclecategoryiscomprisedofvehiclesthatrelyonaninternalcombustionengineprimarilypoweredbygasoline,diesel,orethanol.Despitehavinganelectricmotor,hybridelectricvehicles(HEVs)areincludedinthiscategory,astheyrequireliquidfuelstofunction.Othertechnologiesthatdidnotfallintothatcategory—includingnaturalgasvehicles(NGVs),propaneautogasvehicles(PAVs),alsoreferredtoasliquidpropanegas(LPG),andfuelcellvehicles(FCVs)—wereclassifiedasalternativefuelvehicles(AFVs).ThetechnologiesintheAFVcategoryrequirefuelsandinfrastructurethataremostlyincompatiblewitheitherEVorgasoline/dieselICEtechnologies.Forthevariousvehicleplatforms,weassembleddatafromamultitudeofsources:FortheEVfleet,wesummedtheannualsalesofEVsfrom2010through2015[13][14][15][16],assumingthatsalesbefore2010werenegligible.FortheAFVfleet,wesummedthesizeofthelight-dutyNGVfleet[17],thePAVfleet[18],andthehydrogenFCVfleet[19].TodeterminethesizeoftheICEfleet,wesubtractedthesumoftheEVfleetandtheAFVfleetfromthesizeofthetotalLDVfleet.Toestablishtheageofthefleet,wereliedonsalesgrowthratesderivedfromMcKinsey’sreport“ARoadMaptotheFutureoftheAutoIndustry”[20].Fromthis,wedeterminedthevehiclesalesgrowthratesin10-yearperiodsdatingbackto1964,andusedtheseratestoback-castvehiclesalesfrom2014to1970.Thecombineddatagaveustheapproximatesize,composition,andageofthe2015fleet.2.2 Projected sales growth rates Afterassessingthesizeandmakeupofthe2015fleet,webeganbuildingtheprimarymechanismthattheToolreliesontomakeprojections—howdifferentsalesgrowthratesassumedbytheuserforLDVs,EVs,andAFVsaffectannualsalesandfleetmakeupthrough2050.UserassumptionsonthegrowthratesforLDVs,EVs,andAFVscanbeenteredfor5-yearperiodsfrom2016through2050.Theseassumptionsareusedtocalculatesaleswiththefollowingformula:Previousyear’ssales+(Previousyear’ssales*Salesgrowthrate)ForICEvehiclesaleswetookadifferentapproach:SinceICEvehiclesarethedominanttechnologyinthemarkettoday,aregenerallythemostaffordableLDVoption,andhavethelargestfuelingdistributionnetwork,weassumedthatanydemandforLDVsthatisnotmetbyEVorAFVsaleswouldbemetbyICEvehiclesales.Thus,ICEvehiclesalesarecalculatedasthedifferencebetweenoverallLDVdemandandcombinedEVandAFVsales.2.3 Limits on EV, AFV and ICE sales Asmentionedabove,ICEvehiclesalesaredeterminedbythegapbetweenLDVdemandandthesumofEVandAFVsales.Thismethodologynecessitatedthedevelopmentofboundariesforsalesforeach

7

technologytype.NosinglevehicleplatformcouldoutsellLDVsintotal,norcouldthecombinationofthethreetypesbegreaterthanLDVdemand.Therefore,wedevelopedcolumnsinthe“Outputs”worksheettotakeintoaccounttheaboveassumptionsthatnewtechnologyvehicletypeswilloffsetsalesofICEvehicles,andthatanyvehicledemandnotmetbynewtechnologytypeswillbemetbyICEvehicles.Toaccountforthis,wecreatedseparatecolumnsintheworksheetthatshowvehiclesalesforeachtechnologyiftheywerenotboundbyLDVdemand,andcolumnsthatmadeuseof“IF”formulastopreventEVandAFVsalesfromexceedingLDVdemand.SincetheToolprioritizesEVsasthepreferredalternativetechnology,AFVsalesarefurtherboundbyEVsales—thatis,ifAFVsalesandEVsalescombinedexceedLDVdemand,AFVsalesareadjusteddownwardtoequalthedifferencebetweenLDVdemandandEVsales.SuchascenariocouldcrowdoutICEvehiclesales,aswellasAFVsales,ifEVsalesweresufficientlyhigh.Lastly,weconsideredascenarioinwhichaminimumnumberofICEandAFVvehiclescontinuetobesoldevenifEVsbecomethedominantpowertrain.WedidthistoaccountforareasoftheworldthatfacechallengesinbuildingoutEVcharginginfrastructure,aswellasotherconstraintsonelectricityproductionandtransmission,andalsotoconsidernicheapplicationsfortheothertechnologies.Forthisscenario,weassumedaminimumof5percentofLDVdemandwouldbeICEvehicles,andaminimumof4percent(thecurrentrateofAFVfleetpenetration)ofLDVdemandwouldbeAFVs.Toincorporatethis,weaddedmorecolumnsthatlimitEVsalesto91percentofLDVdemandandlimitEVandAFVsalescombinedtonomorethan95percentofLDVdemand—ensuringthatAFVsaleswillnotfallbelow4percentandICEvehiclesaleswillnotfallbelow5percentofLDVdemand.Uncheckingtheboxmarked“AllowMaxEVSales?”incellB11ofthe“AdjustableInputs”tabenablesthisscenario.2.4 Vehicle retirement Projectingfleetnumbersrequiresnotjustestimatingvehiclesalesbutalsounderstandinghowmanyvehiclesaretakenofftheroadeachyear.WeaccountedforthisbyusingthemethodologyestablishedintheVISIONmodeldevelopedandmaintainedbyArgonneNationalLaboratory.Weadoptedthreedifferentworksheetsforeachvehicletechnologytypetocalculatevehicleretirementrates.LiketheVISIONmodel,foreverygivenyearfrom1970through2050,thecompositionofthefleetbyageisdeterminedbasedonpreviousyear’ssalesandretirements,aswellasnewsales.Asaplaceholder,weincorporatedretirementratesbasedonvehicleageusedbytheVISIONmodel.TheauthorsrecognizethatsincetheVISIONmodelwasdevelopedfordomesticuse,thesenumbersreflectU.S.vehicleretirementstatisticsandmaynotbefullyrepresentativeofinternationalretirementrates.However,giventhelackofdatainthisarea,wedeemeditbesttousetheseestablishedrates,whileaimingtoupdateourToolasmoreinformationbecomesavailable.2.5 Fleet composition Thecompositionofthevehiclefleetforanygivenyearwascalculatedseparatelyinthe“ICE,”“EV,”and“AFV”tabs.Thiswasdonebyaddingupthenumberofsurvivingvehiclesfromeachofthepast23yearsandaddingnewvehiclesales.Thetotalforeachvehicletypeisthenlinkedtothe“Outputs”tabandsummedtogivetheuserthetotalsizeoftheLDVfleet.

8

2.6 Graphs Onthe“GraphicalOutputs”tab,webuiltfourgraphsthatdisplayfleetcompositionandvehiclesalessharesbytechnologytypethrough2050.Thegraphsarelinkedtotheresultsontheseparate“Outputs”tabandautomaticallyupdatewhentheadjustableinputsarealtered. The“VehiclesSoldbyPowertrainthrough2050”graphdisplaysthenumberofvehicles,inmillions,soldforeachtechnology.“VehicleFleetthrough2050byPowertrain”showsthetotalLDVfleetsizeandcompositionbytechnologytypethroughtheyear2050.ThesetwographssummarizethemajorfindingsoftheTool:thenumberofvehiclesalesbytypeandthefleetcomposition.TohighlighttheresultsspecificallyforEVsandICEvehicles,weaddedthegraphstitled“EVsandICEvehiclessoldperyear”and“EVsandICEvehiclefleetsize.”ThesegraphsmoreclearlydisplayEVandICEvehiclesalesforeachyearandthefleetsizebypowertrainforeachyearthrough2050.Ourhopeisthatthesegraphsmakeiteasierfortheusertobothseehowmanyofeachvehicletypewillbeontheroadthrough2050,andwhen/ifEVsalesand/ortheEVfleetsurpassICEsalesandfleetsize.3. Scenarios WhileuserscaninputanyLDVgrowthratetheywant,forthepurposesofthispaperwemodeledthreescenariosforLDVgrowth(Low,Medium,High).ThesenumberswerederivedfromexistingliteraturediscussedinSection1.TheLowscenarioassumesagrowthrateof2percentthrough2040,thena1percentgrowthratethrough2050,toaccountformarketsaturation,endingwithanLDVfleetofjustunder2.3billion.TheMediumandHighscenariosfunctionsimilarly,butwithstartinggrowthratesof3and4percentrespectively,decreasingto2and3percentrespectivelyafter2040.TheMediumscenarioprojectsanLDVfleetsizeofjustunder3billionandtheHighscenarioprojectsanLDVfleetsizeofnearly3.9billion.ForeachoftheseLDVgrowthscenarios,wealsoranthreeEVgrowthscenariosbasedonestimatesfortheEVmarketdevelopedbytheInternationalEnergyAgency(IEA)[21],BloombergNewEnergyFinance(BNEF)[22],andGoldmanSachs(GS)[23].It’simportanttonotethatwhiletheBNEFandGSnumbersareforecasts,theIEAnumbersarebasedonaroadmapforEVadoptionthattheyurgegovernmentsandpeoplearoundtheworldtofollowinordertoachieve2050GHGtargets.TheIEAroadmapisbasedonseveralkeyassumptions:First,itassumesthatexistinggovernmentincentivesforEVadoptionwillstayinplacethroughatleast2020(beingphasedoutsometimebetween2020and2030),butgovernmentsupportforexpandingrecharginginfrastructurewillcontinueallthewaythrough2030.Second,itassumesrapidproliferationofdifferentEVmodelsafter2015,andasteepdecreaseinbatterytechnologycosttobelow$300perkWh,withfullrecyclingsystemscomingonlineinthe2020s,aswellasanewgenerationofbatteriesthat“significantlyoutperform”lithiumionbatteriesinthe2030s.Finally,itassumesfastchargingorbatteryswappingtechnologywillbe“well-established”duringthe2020s.Also,“OECDandothermajoreconomies”willhavenearlyfinishedbuildingouttheirentirecharginginfrastructureinthe2030sandwillbeginexpandingtotherestoftheworld.GoldmanSachs’“TheLowCarbonEconomy”reportpredictscompoundannualgrowthratesat37percentforEVsthrough2025.Thereportcites“regulatorypressure”andeffortscurrentlybeingundertakentodecreaseproductioncosts—“batterycostsareexpectedtofallbymorethan60percentoverthenextfiveyears”—asthemaindevelopmentssupportinghighgrowthinEVsales.

9

BloombergNewEnergyFinanceforecastsEVsalestoriseto41millionannuallyby2040asaresultofcontinueddecreasesinbatteryproductioncosts,falling“wellbelow$120perkWhby2030.”Assumingalineargrowthrate,wecalculatedthattorepresenta19percentcompoundannualgrowthratefortheyears2016to2040.Werecognize,however,thatifthegrowthrateweretooccurinanon-linearfashionitwouldaltertheageandcompositionofthefleet.SinceboththeGoldmanSachsandtheBloombergforecastsdonotextendto2050,wemodeledthegrowthintheremainingyearsbasedontheIEAroadmap.Asnotedabove,theIEAgrowthratesexperienceaninitialramp-up,attributedtoadvancesinbatterytechnologyandregulations,amongotherthings,andthendeclineasthetechnologymaturesandmarketsaturationbeginstosetin.GoldmanSachsandBloombergcitesimilarreasonsforaramp-upinEVsales.Thus,toextendtheprojectionsto2050,wedeemeditappropriatetomodelaslowdowninthegrowthrateinthesamefashionasintheIEAreport.Todothis,wefirstdeterminedthepercentagedecreaseinthegrowthratefromeach10-yearperiodcomparedwiththeprevious10-yearperiod.Then,toextendtheGoldmanSachsprojections,weappliedthesamepercentagedecreaseinthegrowthratesforeach10-yearperiodafter2025,thelastyearforwhichtheirreporthasprojections.WeappliedthesamemethodologyforextendingtheBloombergprojectionsfrom2040to2050.TheEVsalesgrowthrateassumptionsforeachofthethreeestimatesarelistedbelow:

Table1:EVroadmapsandforecasts(rowsinblueindicatethesourcehadnoprojectionforthoseyears,andtocontinuetheprojectionsthrough2050,weusedtheIEArateofgrowthdepreciationforthatperiod).Forallnineofthesescenarios,anAFVgrowthrateof10percent(consistentwiththegrowthofAFVsalesfrom2014to2015[24][25][26][27])wasusedthrough2020,followedbyagrowthrateof5percentfortheremainderofthetimeasEVsbecomeubiquitous.Forthepurposesofdevelopingfindingsforthesescenarios,weonlyboundEVsalesbytotalLDVdemand,allowingICEvehicleandAFVsalestofalltozeroshouldEVsalesprovesufficientlyhigh.3.1 Scenario findings Table2showsthepercentageofEVsintheglobalvehiclefleetintheyear2050foreachoftheninescenariosweran.TheestimatedEVpenetrationfor2050isneverhigherthan50percent,norisitlowerthan15percent.Theaveragepenetrationpercentagein2050is28percent.

10

Table3illustratesEVsales’sharepercentageintheyear2050.Thissharerangesfrom62percentintheIEALowgrowthscenarioto16percentintheGSHighgrowthscenario.Theaveragesalesshareintheninescenariosmodeledis36percentin2050.ThescenariothatshowsthestrongestEVadoption,at49%oftheoverallfleet,istheLowLDVgrowthscenariocombinedwithIEA’sEVroadmapprojections(Graph1).Inthisscenario,therearestill903millionICEvehiclesontheroadin2050,comprising40percentoftheLDVfleet,and23percentofnewsales.DespiteEVsalesoutstrippingICEsalesin2039,EVsontheroaddon’tsurpassICEvehiclesontheroaduntil2048.Thisisalsotheonlyscenarioinwhichthisoccurs,withnootherscenarioshowingEVsmakingupmoreofthefleetthanICEvehiclesby2050.TheICEvehiclefleetpeaksin2031,at1.3billion.

Graph1:GlobalLDVfleetcompositionintheLowgrowth,IEAroadmapEVprojectionsscenarioTheleast-friendlyscenarioforEVadoptionistheHighLDVgrowthscenario,withGS’marketprojections(Graph2).Inthisscenario,theICEvehiclefleethasstillnotpeakedby2050,andEVsonlycomprise16percentoftheLDVfleet,comparedtoICEvehicles’77percentshare.611millionvehiclesintheLDVfleetareEVs,while3billionareICEvehicles.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

2015 2020 2025 2030 2035 2040 2045 2050

Billion

s

VehicleFleetthrough2050bydrivetrain

AFVFleet

EVFleet

ICEFleet

11

Graph2:GlobalLDVfleetcompositionintheHighgrowth,GSEVprojectionsscenarioAsshowninTable4,onlytwooftheninescenariosprojectEVsalesexceedingICEvehiclessalesbefore2050.Inthosetwoscenarios—aswellasintheLowgrowth,GSprojectionscenarioandtheMediumgrowth,BNEFprojectionscenario—theICEfleetpeakssometimebetween2031and2047,withICEvehiclesnumberingsomewherebetween1.3and2billion.Intheotherfivescenarios,theICEvehiclefleetcontinuestogrowthroughtheyear2050.4. Discussion Althoughsomeresultsvariedgreatly,oneconstantacrossallthescenarioswasthatprojectedandtargetedEVgrowthalonewillnotsufficientlydecreasethenumberofICEvehiclesontheroadtolevelsthatallowtheworldtomeetclimate,airquality,energysecurity,andothertransportationgoals.WhileEVsmayholdmanyadvantagesoverICEvehicles,itisbecomingmoreapparentthatICEvehicleswillnotdisappearanytimesoon.Thisimpliesthatiftheilleffectsfromagrowingvehiclefleetaretobefurthermitigated,additionalstrategies(besidesincreasingEVgrowth)mustbeconsidered.Sucheffortscouldincludedevelopmentofotheralternativevehicletechnologies;improvingtheefficiencyofICEvehicles;oremployinglesspollutingfuels(likeethanolandmethanol)topowertheenginesalreadyontheroad—andthemanymoreexpectedtobethereinthefuture.4.1 Impact on emissions Acrosseveryscenario,withoutexception,thenumberofLDVsprojectedtobeontheroadin2050was

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

2015 2020 2025 2030 2035 2040 2045 2050

Billion

sVehicleFleetthrough2050bydrivetrain

AFVFleet

EVFleet

ICEFleet

12

morethandoublethecurrentnumber.Regardlessofthemakeupofthefleet,beitoverwhelminglyelectricorICE—or,morelikely,amixofthetwo—thisisproblematicforGHGsandairquality.4.1.1 GHGs Inrecentyears,anthropogenicgreenhousegas(GHG)emissionshavebeenagrowingcauseforconcern.EffortstoreduceGHGemissionsandmitigatethepotentialimpactshavereceivedincreasedattention,culminatingintherecentConferenceofPartiesgatheringinParis.EVsarethemosttalkedaboutoptionforachievingthesegoalsinthetransportationsector.However,evenifoptimisticEVadoptionratesarerealized,thefindingsinthisreportsuggestthatitstillmightnotbeenoughtomeaningfullydecreasethenumberofICEvehiclesontheroad.IfICEvehiclesremainadominantmodeofpersonaltransportthroughoutmostofthe21stcentury,astheywereduringthe20thcentury,anystrategytodecreasetransportation-relatedemissionsshouldnotoverlookpathwaystoachievesignificantemissionsreductionsfromICEvehicles.InconsideringGHGemissions,thefulllife-cycleemissionsoffuelproduction,distributionandmarketing,knownas“upstreamemissions,”aswellas“downstreamemissions”fromvehicleuse,mustbeconsidered.WhiledownstreamemissionsinICEvehiclesrepresentamajorityoflife-cycleemissions,upstreamemissionsincreasinglycontributealargershareasvehiclesbecomemoreefficient.ThistrendisespeciallynoticeableinEVs,whichproducenotailpipeGHGemissions.ArgonneLab’sGREETmodelshowsthatanEVpoweredbyelectricityderivedonlyfromcoalcanhavenearlythesameGHGimpactastheaveragegasolinepoweredU.S.vehicle,andcanhavehigheremissionsthananew,efficientICEvehicle[28].InIndiaandChina,twofast-growingvehiclemarketswhereapproximatelythree-fourthsofelectricityisgeneratedfromcoal[29],rapidEVadoptionmayactuallyincreaseoverallGHGemissions.Thiscomplexinteractionofboththelife-cyclecarbonintensityofthetransportationfuelandthemixofvehiclesinusehighlightshowcomplicateditwillbetoachieveGHGgoals.4.1.2 Air quality Anotherimportantconcernregardingairpollutionareharmfulemissionsfromtailpipesaswellasfuelproductionanditstransport.Thishasimportantramificationsfordevelopingcountriesandmarketswheremostvehiclegrowthislikelytooccur[30],andwhereurbanambientairpollutionisalreadyexceedingWorldHealthOrganization(WHO)limits.AccordingtothelatestreportfromWHO,“98percentofcitiesinlow-andmiddle-incomecountrieswithmorethan100,000inhabitantsdonotmeetWHOairqualityguidelines.”[31]Thisproblemwillonlybeexacerbatedbytheincreasingnumberofvehiclesontheroad.Thisshouldraiseredflagsforpolicymakers,aspoorairqualitycanleadtoincreasedriskofarangeofhealthproblems,including,butnotlimitedto,stroke,lungcancer,respiratorydisease,andheartdisease.TherealsoisagrowingbodyofevidencelinkingairpollutiontobraindiseaseslikeAlzheimer’sandParkinson’s[32].4.1.3 Potential mitigation strategies TomitigatetheriskofnegativeairqualityandGHGexternalitiesassociatedwithincreasedvehicleownershipworldwide,variousstrategiescouldbepursued.

13

InadditiontoputtinginplacepoliciesthatsupportincreasedEVownership,equallyimportantisensuringthattheelectricitypoweringthosecarscomesfromcleanersources,suchasrenewablesandnaturalgas.Forfurtherdiscussiononthisissue,refertoSection4.2.2.AnothersignificantareaonwhichpolicymakersmightfocuswillbeexpandingliquidfueloptionsforICEvehiclestoincludehigh-octanefuelsandbiofuelsthatproducefeweremissions.Forfurtherdiscussiononthisissue,refertoSection4.4.1.Evengreaterbenefitscanpotentiallybeachievedbydevelopingenginesthatareoptimizedtorunonsuchfuels(seeSection4.4.2).Considerationshouldalsobegiventothemethodoffuelproductionandtheirdistributionnetworks.4.2 Impact on infrastructure AsnotedinSection4.1,thenumberofvehiclesislikelytoatleastdouble,andmayevenincreasethree-fold.Thislargeincreaseinvehicleswillhaveasubstantialimpactonresourcesandinfrastructure.Below,wehighlightedsomeoftheseissuesspecificallyrelatedtoEVs,butnotethatmanyotherissuesrelatedtovehiclegrowthingeneralshouldnotbeoverlooked.Theseincludetheabilitytomanufactureanddistributeasignificantlyhighernumberofvehicles(regardlessofpowertrain);theburdenonglobalresources;andtheabilityofcitiesandtownstoaccommodateagreaternumberofvehicles,amongstotherissues. 4.2.1 Battery production capacity AcommonthemethroughouttheliteratureonforecastinggrowthinEVsalesistheneedtodecreasebatteryproductioncosts.Indoingso,itappearsthateconomiesofscale,advancesinbatterytechnologyanddevelopmentinproductioninfrastructureareneeded.Advancesintheproductionanddistributionoftherawmaterialsforbatteryproductionarealsoimportant.GMandothersarenowsecuringbatteriesfortheirEVsatacostof$145perkWh[33],lessthanhalfthecostseeninthemarketrecently.TeslaMotorCompanytookthisefforttobuildbatteriesatalargerscalebybuildinga“gigafactory”inNevada[34].Thisproject,andperhapsotherstofollow,couldhavethepotentialtorealizeefficienciesinthemanufacturingofbatteriesthatwouldinturnhelplowertheperunitcostofEVproduction.ResearchinitiativessuchasthosespearheadedbytheU.S.DepartmentofEnergy[35]canalsoadvancebatterytechnology,andinturnreducebatterypricesthrougheitherbatteryefficiencyorreductionsinproductioncosts,orboth.Withglobalreservesoflithium,cobalt,nickel,manganeseandotherrawinputsofbatteryproductionbothlimitedandgeographicallydiverse,theproductionandtransportationsystemofthesematerialsmightbecometaxedasEVdemandincreases.Investmentsandadvancementsinsafeminingandtransportationpracticesforthesematerials,aswellasrecyclingwherepossible,couldhelppreventshortagesandpricespikes,ensuringcontinuedgrowthinbatteryproduction. 4.2.2 Charging infrastructure Fordevelopedcountriesthatalreadyhaveestablishedelectricalgridsandblossomingrenewableenergysectors,developingamorerobustEVcharginginfrastructureisalreadyachallengingprospect.IntheUnitedStates,98percentofchargingisdoneeitherathomeorattheworkplace,yetmuchofthecapitalinvestedinexpandingEVcharginginfrastructureisnotgoingtowardbuildingstationsinthosetwoplaces[36].Thisisespeciallyproblematicwhenyouconsiderthatmanymulti-familyresidencesdonot

14

havetheappropriateelectricalcapacityandconduitsforEVcharging.ChangingthisdynamicinbothexistingdwellingsandinthebuildingcodesappliedtonewonescouldhelptoaccelerateEVadoptioninOECDcountries.However,evenindevelopedcountries,electricalgridcapacityandinfrastructuredevelopmentandrepairsmayneedtobeaddressedasgridsarefacedwithhigherloadsthatmaycomefromEVcharging.However,theproblemsfacedbyOECDcountriespalecomparedwiththechallengesinvolvedwithincreasingEVownershipindevelopingcountries,wheregettingenoughreliableelectricitytochargeamobilephone—muchlessavehicle—isacommonplaceissueforlargesegmentsofthepopulation[37].BeforeEVscanevenbeginpenetratingthosemarkets,astrongandreliableelectricalinfrastructuremustbedeveloped.Howthosecountriesgeneratetheelectricitythatflowsintotheirgridsisacriticalcomponent.Thelargestsourceofpowergenerationworldwideiscoal[38],aresourcethat—asdiscussedinsection4.1—hassignificantnegativeexternalitiesintermsofbothGHGsandairquality.LookingtoEVstosolveclimateandairqualityproblemscouldbecounter-intuitiveiftheelectricitypoweringthemdoesnotprovidesignificantlife-cycleemissionsbenefitoverICEvehicles.PolicymakersmusttakethisintoconsiderationaswellwhenplanningforhighEVpenetrationscenarios.4.3 Energy security Asismentionedabove,todaymorethan1billionICEvehiclesarepoweredbypetroleumderivedgasolineanddiesel.Likewise,totalglobalpetroleumconsumptionwasnearly94millionbarrelsperdayin2015[39],orabout34billionbarrelsfortheentireyear.Thislevelofpetroleumconsumptionalreadyhassignificantgeopoliticalandemissionsimplications.Thecontinuedproliferationofpetroleum-dependentICEvehicles,potentiallythreetimesashighasthecurrentamount,wouldservetoexacerbatethesituationandmayevenbeunattainable.However,strategiesexisttoreduceoreliminatetheneedforpetroleumconsumptioninICEvehicles.Chiefamongtheseisemployingnon-petroleumfuelsthatareeithercompatiblewithexistingvehicles,canbeusedinnewvehiclesthatmayormaynotbespecificallydesignedtorunonthesefuels,orboth.Thesecouldincludealcoholfuelsderivedfromamultitudeofsources,gasoline-likefuelsfrompyrolysisofbiomass,aswellasrenewablediesel,biodiesel,DMEandmore.4.4 Potential pathways to reduce the impact of ICE vehicles AsthereisstillasignificantprobabilitythatICEvehicleswillcontinuetodominatetheworld’sroadsinthecomingdecades,strategiesthataimtoreduceemissionsofGHGsandotherpollutantsfromlight-dutytransportshouldnotoverlookthissegmentofvehicles.4.4.1 Addressing the need for more liquid fuel options Giventhatthisstudyfindsthat,atbest,therewillstillbe900millionICEvehiclesontheroadin2050,and,atworst,3billion(2billionmorethanarein-usetoday),itisimperativetointroducecleanerliquidfueloptionsintothemarketplace.TherearemultipleavenuestowardcleanerliquidfuelsinICEvehicles,anditwillbeuptoindividualpolicymakerstodecidewhichpathisbestforthemandtheircountries.Butthereareafewoptionsthat

15

couldfeasiblybeusedinfleetsaroundtheworld.Oneoftheseistheexpandeduseofhigh-octanefuelsthat,whenruninaproperlydesignedengine,cansignificantlyincreasefueleconomyanddecreaseairpollutionandGHGemissions[40].Sourcesofhigh-octanefuelsincludegasolinethathashaditsoctaneincreasedwithadditives,oralcoholfuelslikeethanolandmethanolthatcanbederivedfromplants,naturalgas,orwaste.Biofuelsareapromisingoption,andBrazilalreadyhassuccessfullyimplementedanethanolbiofuelsprogramthathasreducedtheirGHGemissions[41],whileitappearsthatregulationsonvehicleemissionswillleadtotheprogrambringinganoverallimprovementinairqualityaswell[42].Biofuelslikelywillbeattractivetomanypolicymakersbecausetheycanbemadefromawidevarietyoflocallyavailablesources.High-octanefuelsandlocallysourcedlow-carbonfuelscanbecomplementarytoeachotheraswell.Biomass,waste,naturalgasandothersourcesforlow-carbonfuelcancreatehigh-octaneethanolormethanoltobeusedeitherasafuel,anoctaneenhancer,orboth.4.4.2 Combining advanced ICE technology with fuel development Inrecentyears,engineefficiencyandtechnologyhavebeengreatlyimproved,leadingtodecreasedfuelconsumptionandotherbenefits.Thesetechnologiesincludemakinguseofadvancedenginetechniquessuchasdirectinjection,multiplesparkignition,turbocharging,andmore.Other,moreestablishedtechniquesforincreasingengineefficiency,suchasincreasingthecompressionratio,havealsoseengreaterdeploymentinrecentyears.Further,fuelpropertiesinherentlyeffecthowanenginereactsandhowefficientlyorinefficientlyitoperates.Fuelpropertiesthatcouldgreatlyaffectadvancedcombustionregimesincludeoctane,boilingpoint,solubility,andmore.Forexample,high-octanefuelsaremoreresistanttopre-ignitionandthuscouldallowforhigh-compression,turbochargingorothersuchtechniquesthatcouldincreaseefficiency.Astrategythatoptimizesenginedesignandcombustionregimeswithfuelsspecificallydesignedtoruninadvancedenginescouldhelptobettertakeadvantageofbothadvancedenginedesignsandinherentfuelpropertiestoachievegreaterefficienciesandreducedemissions4.5 Model Limitations WerecognizethattherearemanydifficultiesassociatedwithaToolthatmakesglobalprojections35yearsintothefuture,andbelowweaddresssomeofthosedeficiencies.Thisisaworkingmodel,andwewelcomefeedbackandsuggestionsonhowtoimprovetheTool. 4.5.1 Regional variation WhilethisToolattemptstoprovideapictureoftheworldatlarge,werecognizethatthemakeupoffleetsaroundtheworldvariessignificantlyfromregiontoregion.NGVsaremuchmoreprevalentinEastAsia,theMiddleEast,andSouthAmerica[43],whilePAVsarehighlyconcentratedinRussia,Turkey,andEasternEurope[44],andEVproliferationisthehighestintheU.S.,China,Japan,andScandinaviancountries[45].

16

What’smore,certainareasoftheworldlikeWesternEuropearemuchmorereliantondieselICEvehiclesasopposedtogasolineICEvehicles,withdieselcarscomposingmorethan53percentofnewvehicleregistrationsinEuropein2014[46].Thus,whiletheToolcanbeespeciallyusefultopolicymakersthinkingonamacro,globalscale,considerationofregionalvariationshouldbetakenintoaccountwhenapplyingtheresultsoftheTooltospecificregionsoftheworld.4.5.2 Vehicle retirement DevelopingvehicleretirementratesprovedtobeoneofthebiggestchallengesindevelopingtheTool.WewereunabletoidentifyanypreexistingresearchonthelongevityofLDVsworldwide,despitewelldocumentedinformationonthiswithintheU.S.Giventheimportanceofunderstandingtheglobalfleetcompositionwhenconsideringglobalissues,wehopethatmoreeffortwillbeinvestedinthisarea.WewillupdateourToolwhenandifsuchdatabecomeavailableinordertoimproveprojections.4.5.3 AFV variability GivenourfocusonEVs,inthisfirstversionoftheToolwedecidedtocombineallotheralternativetechnologiesintoonecategory.Webelievethiscanstillallowforuserstoaccountforgrowthordeclineinnewandestablishedalternativetechnologies,suchasfuelcellsandnaturalgas-poweredvehicles.Butweacknowledgethatitrequirestheusertocombineassumptionsforthosetechnologiesanddoesnotreturnindividualresultsforeachtype.Thisisanareawehopetoimproveinafutureupdate.4.5.4 Uncertainties in the market Thereareotheremergingtechnologiesforlight-dutyvehicletransportbeyondadvancesandalternativesinpowertrainsthatcouldimpactfleetgrowth,compositionandage.Suchtechnologiesincludeautonomousvehiclesandride-sharingserviceslikeLyft,Uber,ZipCar,andothers.Whilewedidnotattempttomodelthesetechnologies’impactonthefleet,wenotethattheymightmeaningfullyaltertheresults—althoughthereisstillmuchdebateastowhattheirimpactwillbe.Questionssurroundingtheseuncertaintiesmayinclude:Willincreasedaccessanddecreasedcostsduetoride-sharingincreasethedemandforlight-dutytransportation,resultinginmorevehiclemilestraveled?Willthesharingofvehiclesbeenoughtoovercomeanyincreaseddemandforlight-dutytransportandkeepfleetgrowthlow?Orwilltheincreaseddemandacceleratefleetgrowth?Willacceleratedvehicledegradationduetosharingcausethefleettoturnovermorequickly,decreasingtheaverageage?Howwouldacceleratedfleetturnoveraffectadoptionofnewpowertraintechnologies?Whatpowertraintechnologiesarebettersuitedforvehicle-sharingandautonomousdriving?Willexistinginfrastructurerequireupdatingtosupportautonomousvehicles?Whileourtooldoesnotanswerthesequestions,webelieveithastheabilitytoestimatethefleetimpact,basedontheyet-to-be-determinedanswerstothesequestions.Lastly,thesetechnologiesmayalsonotaffectthefleetuniformlyacrosstheglobe.Forexample,developednationsmayadoptthesetechnologiesquickly,whiledevelopingnationsmaybeslowertoadopt.Moredenselypopulatedareasmaybebettersuitedforadoptingthesetechnologies,whileruralandpossiblysuburbanareaswillbelesslikely.4.6 Opportunities for further building out the model

17

WhileuserscangeneratefindingsfromtheToolregardingthenumberofvehiclesontheroadandtheirmakeup,theTooldoesnotprojecttheimplicationsthosevehicleswillhaveonemissionsnordoesitfocusonspecificregions.ItisourhopethatfutureversionsoftheToolwillincorporatemoreofthoseaspects. 4.6.1 Adding emissions outputs Aspolicymakerscontinuetograpplewithstrategiestoreduceemissions,understandingtheimpactsoftransportationpolicy-relatedemissionsreductionswillbecrucial.Light-dutyvehiclesaccountforthemajorityoftransportation-relatedGHGemissionsintheU.S.[47],theE.U.[48],andaremajorsourcesofharmfulemissionsworldwide.KnowingtotalemissionslevelsfromLDVsandtheimpactsofemissions-reductionstrategieswillbehelpfulinassessingtheeffectivenessofpoliciesandtheirpotentialtoreachemissionsgoals.AsthisToolhelpstodetermineprojectionsfortheglobalLDVfleet,incorporatingadditionalprocessesanddatatoderivetheemissionsimpactofthefleetcouldbeabeneficialadditiontothisendeavor.Similartoothersucheffortstomodelemissionsimpactsfromtransport,thiscouldrequireaddingmodulestoaccountforvehiclemilestraveled,carbonintensity,andemissionsofvariousfuelsandfuelproductionpathways,aswellasgreaterdetailonthetypesofvehiclesandtheiruses,includingdifferenceswithinvehiclepowertrains.4.6.2 Localized versions of the model Duetothewidelyvaryingfleetmakeupsandvehiclepreferencesofregionsandcountriesaroundtheworld—asdiscussedinsection4.4.1—werealizethattheToolmightmisssomeofthenuancesthatwouldsurfaceiftheToolwerecustomizedfordifferentregions.Futureregion-specificiterationsofthemodelcouldtakethisintoaccountbychangingtheinitialglobalassumptionsonthefleetsizeandsalesforLDVs,EVs,NGVs,PAVs,andFCVs,andhistoricalsalesforeachtypeofvehicleusedbytheToolandreplacingthemwithregionalnumbers.Thefleetscrappageratecouldbealteredaswelltoreflectthescrappagerateoftheregioninquestion.5. Conclusion Whenlookingatthefutureoflight-dutyvehicletransport,muchfocusisgiventosalesofnewvehicles,whilethecurrentfleetofexistingvehiclesthatwillremainontheroadformanyyearsreceiveslessattention.Thefindingsofthisreporthighlightthatvehiclescontributetothefleetformanyyearsaftertheiroriginalsale.Whenconsideringtheeffectsoftransportationonclimatechange,urbanpollution,congestion,theeconomy,anddependenceonoil,industryandpolicymakerswouldbewellservedbyaccountingforallofthedifferenttypesofvehiclesontheroad.Today,therearealreadyoveronebillionICEvehiclesontheworld’sroads,andmanymorewillcontinuetoenterthefleet,evenifalternativetechnologiesexperienceunprecedentedgrowth.ThisdoesnotimplythatweshouldnotembraceEVsorprogramsandpoliciesthatsupporttheirproliferation,butratherthatweshouldconsidermultipleavenuestomitigatethenegativeexternalitiesthatwillaccompanyalargeroverallvehiclefleet.TheonecommonalityoftheninescenariosweexploredisthattheLDVfleetwillalmostcertainlybe

18

significantlylargerthanitisrightnow.Further,muchoftheliteraturesuggeststhatalargeportionofthisgrowthwillcomeindevelopingmarketsthatlackcleansourcesofelectricityorreliableelectricalgrids,makingcleanEVadoptioninagrowingfleetevenmorechallenging.Supportingeffortstodevelopandexpandavailabilityofalternativeliquidfuelsandotherstrategies,intandemwithanEVgrowthstrategy,couldnotonlyhelpusreachourgoalssooner,butprovideuswithmoreconfidencethatthosegoalswillindeedbereached.SuchastrategycouldalsoensurethatwearenotoverlyburdenedwithunanticipatedexternalitiesrelatedtorapidEVadoption.Encouragingindustry,policymakersandconsumerstochoosebetweenmultiplestrategies(including,butnotlimitedto,biofuels,high-octanefuels,fuelcells,etc.,oracombinationofstrategies),couldensurearobust,competitivemarketplacethatdrivesinnovationandbringsusclosertoalesspollutedworld.

References

19

[1] Shepard, S., & Jerram, L. (2015, April). Transportation Forecast: Light Duty Vehicles (Rep.). Retrieved March 1, 2016, from Navigant Research website: https://www.navigantresearch.com/wp-assets/brochures/MD-LDV-15-Executive-Summary.pdf [2] Stansfield, R. (2013, November 8). The world in 2050: 9 billion people, 2 billion cars and congested megacities. Retrieved March 23, 2016, from http://www.automotiveworld.com/analysis/world-2050-9-billion-people-2-billion-cars-congested-megacities/ [3] GFEI Partners, Bandivadekar, A. (ICCT), Miller, J. (ICCT), Kodjak, D. (ICCT), Muncrief, R. (ICCT), Yang, Z. (ICCT), de Jong, R. (UNEP), Fabian, B. (UNEP), Fulton, L. (UC Davis), Perkins, S. (ITF), Kauppila, J. (ITF), Cazzola, P. (IEA), Clarke, R. (FIA Foundation), Hill, N. (Ricardo Energy and Environment) (2016, January 11). Fuel Economy State of the World 2016 (Rep.). Retrieved March 23, 2016, from FIA Foundation website: http://www.globalfueleconomy.org/media/203446/gfei-state-of-the-world-report-2016.pdf [4] IEA. (2016). Transport. Retrieved March 23, 2016, from https://www.iea.org/aboutus/faqs/transport/ [5] Michelson, M. (2008, May 30). Ghosn sees global car numbers up sharply by 2050. Retrieved March 14, 2016, from http://www.reuters.com/article/us-autos-ghosn-idUSL3090613120080530 [6] Staniford, S. (2008, February 18). Four Billion Cars in 2050? Retrieved March 23, 2016, from http://www.theoildrum.com/node/3636 [7] Gao, P., Hensley, R., & Zielke, A. (2014, October). A road map to the future for the auto industry. Retrieved February 24, 2016, from http://www.mckinsey.com/industries/automotive-and-assembly/our-insights/a-road-map-to-the-future-for-the-auto-industry [8] IHS. (2015, July 29). Average Age of Light Vehicles in the U.S. Rises Slightly in 2015 to 11.5 years, IHS Reports. Retrieved February 24, 2016, from http://press.ihs.com/press-release/automotive/average-age-light-vehicles-us-rises-slightly-2015-115-years-ihs-reports [9] Shepard, S., & Jerram, L. (2015, April). Transportation Forecast: Light Duty Vehicles (Rep.). Retrieved March 1, 2016, from Navigant Research website: https://www.navigantresearch.com/wp-assets/brochures/MD-LDV-15-Executive-Summary.pdf [10] IPCC. (2015). Climate change 2014. Mitigation of climate change. Working group III contribution to the IPCC fifth assessment report. Cambridge: Cambridge University Press. Retrieved April 19, 2016, from https://www.ipcc.ch/pdf/assessment-report/ar5/wg3/ipcc_wg3_ar5_full.pdf. [11] Argonne National Laboratory. (2015, September 16). The VISION Model / VISION 2015 AEO Base Case (United States, Department of Energy, Office of Science). Retrieved March 15, 2016, from http://www.anl.gov/energy-systems/project/vision-model [12] Shepard, S., & Jerram, L. (2015, April). Transportation Forecast: Light Duty Vehicles (Rep.). Retrieved March 1, 2016, from Navigant Research website: https://www.navigantresearch.com/wp-assets/brochures/MD-LDV-15-Executive-Summary.pdf [13] DiBenedetto, B. (2010). J.D. Power: Hybrid and EV Cars Will Be 3.5% of Sales by 2015. Retrieved February 24, 2016, from http://www.triplepundit.com/2010/06/j-d-power-hybrid-and-ev-cars-will-be-3-5-of-sales-by-2015/

20

[14] Clean Energy Minsterial, EVI, & IEA. (2013, April). Global EV Outlook (Rep.). Retrieved February 24, 2016, from IEA website: https://www.iea.org/publications/globalevoutlook_2013.pdf [15] Shahan, Z. (2014). World Electrified Vehicle Sales (2013 Report). Retrieved February 24, 2016, from http://evobsession.com/world-electrified-vehicle-sales-2013/ [16] EV Volumes. (2016, February). Plug-in Volumes 2015 and YTD February 2016. Retrieved February 24, 2016, from http://www.ev-volumes.com/ [17]Hurst, D., & Gartner, J. (2012, Fall). Light Duty Natural Gas Vehicles, Natural Gas Passenger Cars and Light Duty Pickup Trucks, SUVs, Vans, and Light Commercial Vehicles: Global Market Analysis and Forecasts. Retrieved June 1, 2016, from http://marcelluscoalition.org/wp-content/uploads/2012/08/Pike-Research_NGVs.pdf [18] WLPGA. (2015, September 15). The autogas market. Retrieved February 24, 2016, from http://auto-gas.net/about-autogas/the-autogas-market/ [19] Vaughan, A. (2015). The future is here: Mass-market hydrogen cars take to Britain's roads. Retrieved February 24, 2016, from http://www.theguardian.com/environment/2015/nov/04/the-future-is-here-mass-market-hydrogen-cars-take-to-britains-roads [20] Gao, P., Hensley, R., & Zielke, A. (2014, October). A road map to the future for the auto industry. Retrieved February 24, 2016, from http://www.mckinsey.com/industries/automotive-and-assembly/our-insights/a-road-map-to-the-future-for-the-auto-industry [21] IEA. (2011, June). Electric and plug-in hybrid vehicle roadmap (Rep.). Retrieved April 6, 2016, from International Energy Agency website: https://www.iea.org/publications/freepublications/publication/EV_PHEV_brochure.pdf [22] BNEF. (2016, February 15). EV Forecast (Rep.). Retrieved April 6, 2016, from Bloomberg website: http://about.bnef.com/press-releases/electric-vehicles-to-be-35-of-global-new-car-sales-by-2040/ [23] Kooroshy, J., Ibbotson, A., Lee, B., Bingham, D. R., & Simons, W. (2015, November 30). The Low Carbon Economy (Rep.). Retrieved April 6, 2016, from Goldman Sachs website: http://www.goldmansachs.com/our-thinking/pages/new-energy-landscape-folder/report-the-low-carbon-economy/report.pdf [24] Seisler, J. (2014, October 6). NGVs Past & Prologue. Lecture presented at Clean Cities Webinar. Retrieved February 24, 2016, from https://cleancities.energy.gov/files/u/news_events/document/document_url/13/ngv_markets.pdf [25] Seisler, J. (2015, September 9-10). NGVs in their Global Context: Opportunities, Challenges, & Strategies. Lecture presented at Clean Cities Transportation in Israel, Tel Aviv. Retrieved February 24, 2016, from http://energy.gov.il/subjects/ng/documents/cng/dr%20%20jeffry%201.pdf [26] NC Clean Energy Technology Center. (2015). Financing Models: Propane Autogas Vehicles and Infrastructure (Rep.). Retrieved February 24, 2016, from NC State University website: https://nccleantech.ncsu.edu/wp-content/uploads/Propane-Finance-Models.pdf

21

[27] WLPGA. (2015, September 15). The autogas market. Retrieved February 24, 2016, from http://auto-gas.net/about-autogas/the-autogas-market/ [28] Wang, M. (2015, October 02). GREET 2015. Retrieved May 19, 2016, from https://greet.es.anl.gov/ [29] World Bank. (2016). Electricity production from coal sources (% of total) Retrieved May 16, 2016, from http://data.worldbank.org/indicator/EG.ELC.COAL.ZS [30] Nielsen. (2014, January 20). Behind the Wheel: Developing Markets Will Drive New and Used Car Sales. Retrieved May 16, 2016, from http://www.nielsen.com/us/en/insights/news/2014/behind-the-wheel-developing-markets-will-drive-new-and-used-car-sales.html [31] WHO. (2016). WHO Global Urban Ambient Air Pollution Database (update 2016). Retrieved May 16, 2016, from http://www.who.int/phe/health_topics/outdoorair/databases/cities/en/ [32] Reuben, A. (2015, June 26). Does air pollution cause Alzheimer’s and Parkinson’s? Retrieved May 16, 2016, from http://grist.org/science/does-air-pollution-cause-alzheimers-and-parkinsons/ [33] Cole, J. (2015, October). GM: Chevrolet Bolt Arrives In 2016, $145/kWh Cell Cost, Volt Margin Improves $3,500. Retrieved May 26, 2016, from http://insideevs.com/gm-chevrolet-bolt-for-2016-145kwh-cell-cost-volt-margin-improves-3500/ [34] Tesla Gigafactory. (n.d.). Retrieved May 17, 2016, from https://www.teslamotors.com/gigafactory [35] Vehicle Technologies Office: Batteries. (n.d.). Retrieved May 17, 2016, from http://www.energy.gov/eere/vehicles/vehicle-technologies-office-batteries [36] Higham, J. (2016, April). Overview Of Plug-In Electric Car Charging Infrastructure In The U.S. – Part 1. Retrieved May 16, 2016, from http://insideevs.com/overview-of-plug-in-electric-car-charging-infrastructure-in-the-u-s-part-1/ [37] World Bank. (2016). Access to electricity (% of population). Retrieved May 16, 2016, from http://data.worldbank.org/indicator/EG.ELC.ACCS.ZS/countries [38] World Bank. (2016). Breakdown of Electricity Generation by Energy Source. Retrieved May 16, 2016, from http://www.tsp-data-portal.org/Breakdown-of-Electricity-Generation-by-Energy-Source#tspQvChart [39] U.S. Energy Information Administration - EIA - Independent Statistics and Analysis. (2016, May 17). Retrieved June 17, 2016, from http://www.eia.gov/forecasts/aeo/er/index.cfm [40] MIT. (2014, May 28). Economic and Environmental Benefits of Higher-Octane Gasoline (Rep.). doi:10.1021/es405557p [41] World Bank. (2010, June). Brazil Low Carbon Country Case Study (Rep.). Retrieved May 17, 2016, from Energy Sector Management Assistance Program website: http://sdwebx.worldbank.org/climateportalb/doc/ESMAP/FINAL_LCCGP_Brazil.pdf [42] Anderson, L. G. (2015, July 21). Ethanol fuel use in Brazil: Air quality impacts (Rep.). doi:10.1039/b906057j

22

[43] Seisler, J. (2015, September 9-10). NGVs in their Global Context: Opportunities, Challenges, & Strategies. Lecture presented at Clean Cities Transportation in Israel, Tel Aviv. Retrieved February 24, 2016, from http://energy.gov.il/subjects/ng/documents/cng/dr%20%20jeffry%201.pdf [44] WLPGA. (2015, September 15). The autogas market. Retrieved February 24, 2016, from http://auto-gas.net/about-autogas/the-autogas-market/ [45] Cobb, J. (2016, May 09). Norway Is Fourth Country To Register 100,000 Plug-in Cars. Retrieved May 18, 2016, from http://www.hybridcars.com/norway-is-fourth-country-to-register-100000-plug-in-cars/ [46] Reed, S. (2015, September 29). Despite Volkswagen Scandal, Europe’s Diesel Habit Could Be Hard to Kick. Retrieved May 18, 2016, from http://www.nytimes.com/2015/09/30/business/international/volkswagen-diesel-europe.html?_r=0 [47] Fast Fast Facts Facts U.S. Transportation Sector Greenhouse Gas Emissions 1990-2013. (2015, October). Retrieved May 17, 2016, from https://www.epa.gov/sites/production/files/2016-02/documents/420f15032.pdf [48] Delcampe, D. (n.d.). GHG emissions of Transport. Retrieved May 17, 2016, from http://www.eutransportghg2050.eu/cms/assets/Session-1-Transport-GHG-emissions-trends-David-Delcampe-EEA.pdf