wykonał: kamil kuraśkiewicz klasa 1e – 2011/2012

18
Wykonał: Kamil Kuraśkiewicz klasa 1e – 2011/2012

Upload: jory

Post on 11-Jan-2016

44 views

Category:

Documents


1 download

DESCRIPTION

KOROZJA. Wykonał: Kamil Kuraśkiewicz klasa 1e – 2011/2012. Korozja - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Wykonał: Kamil Kuraśkiewicz klasa 1e – 2011/2012

Wykonał:

Kamil Kuraśkiewiczklasa 1e – 2011/2012

Page 2: Wykonał: Kamil Kuraśkiewicz klasa 1e – 2011/2012

Page 3: Wykonał: Kamil Kuraśkiewicz klasa 1e – 2011/2012

Page 4: Wykonał: Kamil Kuraśkiewicz klasa 1e – 2011/2012

Page 5: Wykonał: Kamil Kuraśkiewicz klasa 1e – 2011/2012

Page 6: Wykonał: Kamil Kuraśkiewicz klasa 1e – 2011/2012

Korozja (łac. corrosio – zżeranie) – procesy stopniowego niszczenia materiałów,

zachodzące między ich powierzchnią i otaczającym środowiskiem. Zależnie od

rodzaju materiału dominujące procesy mają charakter reakcji chemicznych, procesów

elektrochemicznych, mikrobiologicznych lub fizycznych (np. topnienie i inne przemiany

fazowe, uszkodzenia przez promieniowanie).

Page 7: Wykonał: Kamil Kuraśkiewicz klasa 1e – 2011/2012

Korozja Pojęcie „korozja” jest stosowane w odniesieniu do

niszczenia struktury: -metali – mechanizm elektrochemiczny lub chemiczny -materiałów niemetalicznych, np.: • betonu i żelbetu – chemiczne i fizykochemiczne

niszczenie spoiwa i kruszywa, elektrochemiczna korozja zbrojenia

• drewna (zgnilizna korozyjna drewna) – procesy mikrobiologiczne i chemiczne

• skał, szkła, tworzyw sztucznych – topnienie, rozpuszczanie, ługowanie

Page 8: Wykonał: Kamil Kuraśkiewicz klasa 1e – 2011/2012

Straty korozyjne

Analizuje się bezpośrednie straty ekonomiczne oraz straty pośrednie, np. związane z narażeniem ludzi na utratę zdrowia lub życia. Oszacowano, że w skali globalnej korozja niszczy rocznie 10–25 mln ton stali[1]. Według danych z roku 2010 światowe roczne straty korozyjne, w przeliczeniu na jednego mieszkańca, wynosiły 1000 – 1500 $. Odnosząc te dane do warunków Polski obliczono, że stanowi to około ¼ zadłużenia zagranicznego (per capita).

Poza stratami bezpośrednimi (koszty zniszczonych materiałów i koszty ochrony konstrukcji) bierze się pod uwagę straty pośrednie, np. związane z narażeniem zdrowia i życia ludzi, które wywołuje np. korozja konstrukcji budowlanych, mostów, środków transportu, rurociągów transportujących produkty naftowe. Katastrofy spowodowane korozją są groźne również dla środowiska (np. wycieki niebezpiecznych mediów do wód i gleby). W roku 2010 oszacowano, że bezpośrednie i pośrednie koszty korozji stanowiły w Polsce około 8% PKB, co odpowiadało sumie 100 mld zł, 25 razy większej od krajowego budżetu na naukę. Wiedza o przyczynach i mechanizmie korozji oraz o możliwościach przeciwdziałania tym zjawiskom jest teoretyczną podstawą dla krajowych strategii zmniejszenia tych strat i dla projektów poszczególnych inwestycji.

Page 9: Wykonał: Kamil Kuraśkiewicz klasa 1e – 2011/2012

Mechanizm i przyczyny korozji:

Aby skutecznie przeciwdziałać korozji, należy dokładnie poznać jej mechanizm i przyczyny. Codzienna obserwacja naszego otoczenia wystarcza do stwierdzenia, że żelazo nie rdzewieje w obecności wody oraz nie rdzewieje w obecności tlenu. Oprócz wody i tlenu czynnikiem wybitnie przyspieszającym rdzewienie żelaza są jony wodorowe. Obserwacje te pozwalają na ułożenie przypuszczalnego mechanizmu procesu rdzewienia. W pierwszym etapie powierzchnia żelaza ulega pod wpływem wody częściowemu zjonizowaniu :

Fe Fe2+ + 2e Jony wodorowe wychwytują elektrony przesuwając reakcję w prawo 2e + 2H+ H2 Ponieważ wodór gazowy nie wydziela się w procesie rdzewienia a w warunkach

beztlenowych korozja nie występuje, należy przyjąć, że atomy wodoru wchodzą w reakcje z tlenem, przesuwając obie reakcje w prawo

H2 + O2 -> H2O Przedstawiony schemat rdzewienia żelaza nie obejmuje jeszcze wszystkich przyczyn

wpływających na intensywność procesów korozyjnych. Wskazuje na to proste doświadczenie. Chemicznie czysty cynk wrzucony do probówki z kwasem solnym lub siarkowym rozpuszcza się bardzo powoli a pęcherzyki gazu są ledwo widoczne. Zupełnie inaczej zachowuje się cynk techniczny. Reakcja przebiega od początku energicznie i stale zwiększa się jej szybkość. Analogicznie różnice obserwuje się podczas rozpuszczania chemicznie czystego i technicznego żelaza.

Page 10: Wykonał: Kamil Kuraśkiewicz klasa 1e – 2011/2012

Korozja metali Korozja metali–tworzyw (np. materiałów konstrukcyjnych) jest nieuchronnym procesem powrotu

metali–pierwiastków do stanu, w jakim występują w rudach (stan równowagi termodynamicznej). Z tego punktu widzenia ochrona metali przed korozją polega na zmniejszaniu szybkości tego procesu (kontrola kinetyczna). Ochrony nie trzeba stosować tylko w odniesieniu do metali szlachetnych, które w środowisku występują w stanie niezwiązanym (np. samorodki złota).

Klasyfikacja

Podstawowa klasyfikacja procesów korozji metali jest oparta na określeniu ich mechanizmu. Wyróżnia się:

• korozję chemiczną – zachodzącą w suchych gazach, w warunkach wykluczających możliwość kondensacji par na powierzchni metalu, oraz w cieczach nie przewodzących prądu elektrycznego (np. w tłuszczach)

• korozję elektrochemiczną – zachodzącą w środowiskach przewodzących prąd elektryczny, takich jak zawierająca elektrolity woda, ziemia, wilgotne gazy (metale zanurzone w elektrolicie lub powierzchniowe warstewki elektrolitów na korodującej powierzchni); czynniki inicjujące lub wpływające na szybkość korozji mogą mieć charakter fizyczny (np. naprężenia wskutek obciążeń i odkształceń, promieniowanie) lub biologiczny (np. działanie bakterii i grzybów)

Page 11: Wykonał: Kamil Kuraśkiewicz klasa 1e – 2011/2012

Zasada elektrochemicznej korozji kontaktowej

Page 12: Wykonał: Kamil Kuraśkiewicz klasa 1e – 2011/2012

Przykład ogniwa korozyjnegoAtmosferyczna korozja kontaktowa

Page 13: Wykonał: Kamil Kuraśkiewicz klasa 1e – 2011/2012

Ochrona metali przed korozją Straty związane z korozją elektrochemiczną zmniejsza się stosując,

np.:• zasadę unikania możliwości powstawania ogniw korozyjnych (różnic

potencjałów standardowych między fragmentami powierzchni materiałów konstrukcyjnych i między elementami konstrukcyjnymi)

• ochronę galwaniczną, polegającą na użyciu zewnętrznego źródła napięcia i zewnętrznej trwałej elektrody o kontrolowanym potencjale, połączonej w obwód elektryczny z wszystkimi elementami chronionej konstrukcji (poprzez grunt lub wodę jako elektrolit)

• ochronę elektrolityczną, polegającą na stosowaniu takiej zewnętrznej elektrody (protektora), której materiał jest mniej szlachetny od materiału wszystkich elementów konstrukcji, stanowiących z protektorem zamknięty obwód elektryczny (zamiast konstrukcji rozpuszcza się mało wartościowa elektroda)

• stosowaniu warstw ochronnych, izolujących korodujący metal od środowiska korozji

Page 14: Wykonał: Kamil Kuraśkiewicz klasa 1e – 2011/2012

Korozja niemetaliBeton i żelbet

Beton i żelbet są popularnymi materiałami konstrukcyjnymi, które cechuje ogniotrwałość,

wytrzymałość na znaczne obciążenia statyczne i dynamiczne oraz swoboda w kształtowaniu elementów. Beton koroduje wskutek wietrzenia, wymywania składników przez wodę (ługowanie) oraz reakcji chemicznych zachodzących wewnątrz materiału. Produkty reakcji są wymywane lub pozostają w strukturze betonu, co wpływa na jego wytrzymałość. Rodzaj chemicznej korozji betonu zależy od składu wody, migrującej przez porowatą strukturę, w tym od zawartości dwutlenku węgla. Ochrona betonu przed korozją polega przede wszystkim na zmniejszaniu porowatości. Odrębnym problemem jest ochrona prętów zbrojeniowych żelbetu przed korozją elektrochemiczną[

Skały

Skały ulegają korozji magmowej, zachodzącej w zbiornikach magmowych, czyli nadtapianiu już wydzielonych minerałów przez powtórnie rozgrzaną magmę (zobacz: skały magmowe)[8]. Jako materiały konstrukcyjne (np. kruszywo w betonie, płyty elewacyjne) skały korodują wskutek wietrzenia i wymywania składników przez wodę (ługowanie), zwłaszcza wtedy, gdy zawiera dwutlenek węgla. Dotyczy to przede wszystkim węglanowych porowatych skał osadowych (np. gips, wapienie, dolomity).

Zabezpieczenie naturalnych materiałów kamiennych przed korozją polega przede wszystkim na

zmniejszeniu porowatości i nadaniu właściwości hydrofobowych. Stosowane są np. mydła, woski, żywice, oleje, sole kwasu fluorokrzemowego, szkło wodne, silikony

Page 15: Wykonał: Kamil Kuraśkiewicz klasa 1e – 2011/2012

Korozja niemetaliSzkło

Szkło jest materiałem o odpornym na działanie większości czynników chemicznych, w tym mocnych kwasów, z wyjątkiem kwasu fluorowodorowego. Odporność na działanie ługów jest wielokrotnie mniejsza. Działanie czystej wody powoduje hydrolizę zawartych w szkle krzemianów z utworzeniem krzemionki w formie żelu (nalot). Zjawisko nie występuje w przypadku specjalnych gatunków szkła, takich jak szkło borowe (np. Pyrex, naczynia laboratoryjne).

Tworzywa sztuczne

Tworzywa sztuczne są stosunkowo odporne na działanie kwasów, zasad i soli. Rozpuszczalność w rozpuszczalnikach organicznych jest na ogół zgodna z zasadą podobnej polarności (dobra rozpuszczalność związku polarnego w rozpuszczalniku polarnym i niepolarnego w niepolarnym). Zdecydowana większość polimerów nie rozpuszcza się w wodzie, a tylko w różnym stopniu pęcznieje, co utrudnia biodegradację tworzyw odpadowych. Polimerem o największej chemicznej odporności jest policzterofluoroetylen (teflon)[

Drewno konstrukcyjne

Drewno, jako materiał stosowany w technice, charakteryzuje brak odporności na roztwory alkaliów i kwasy nieorganiczne (pęcznienie i hydroliza). Pod działaniem stężonego kwasu siarkowego może następować zwęglenie celulozy. Większość soli mineralnych impregnuje i konserwuje drewno[15]. Przyczyną korozyjnej zgnilizny, niszczącej strukturę, jest porażenie przez grzyby[11]. Rozwój grzybów powoduje zakwaszenie otoczenia, co wywołuje korozję materiałów budowlanych, które kontaktują się ze zmurszałym drewnem.

Page 16: Wykonał: Kamil Kuraśkiewicz klasa 1e – 2011/2012

Efekty korozji żelbetu

Page 17: Wykonał: Kamil Kuraśkiewicz klasa 1e – 2011/2012

Uszkodzona tkanka drewna

Page 18: Wykonał: Kamil Kuraśkiewicz klasa 1e – 2011/2012

Wykonał:

Kamil Kuraśkiewiczklasa 1e – 2011/2012