лекция №1

25
МОЛЕКУЛЯРНАЯ ФИЗИКА. СТАТИСТИЧЕСКАЯ ФИЗИКА И ТЕРМОДИНАМИКА.

Upload: yerinconstantine

Post on 11-Nov-2014

1.008 views

Category:

Documents


0 download

Tags:

DESCRIPTION

 

TRANSCRIPT

Page 1: лекция №1

МОЛЕКУЛЯРНАЯ ФИЗИКА.

СТАТИСТИЧЕСКАЯ ФИЗИКА И

ТЕРМОДИНАМИКА.

Page 2: лекция №1

Лекция №1.Методы рассмотрения систем многих частиц.

Предмет молекулярной физики. Масса и размеры атомов и молекул. Количество вещества. Агрегатные состояния веществ.

Признаки агрегатных состояний. Модель идеального газа. Динамический, статистический и

термодинамический методы.

Page 3: лекция №1

Литература.

Савельев И.В. Курс общей физики. – Т.1. – М., 1987.

Гершензон Е.М., Малов Н.Н. Курс общей физики. Молекулярная физика. – М., 1987.

Матвеев А.Н. Молекулярная физика. – М., 1987.

Трофимова Т.И. Курс физики. – М., 2001.

Page 4: лекция №1

1. Предмет молекулярной физики.

Молекулярная физика представляет собой раздел физики, изучающий строение и свойства вещества исходя из так называемых молекулярно-кинетических представлений. Согласно этим представлениям:

- Любое тело – твердое, жидкое или газообразное состоит из большого числа обособленных частиц – молекул.

- Молекулы всякого вещества находятся в беспорядочном, не имеющим какого-либо преимущественного направления движении.

В настоящее время существует ряд методов, которые позволяют как непосредственно наблюдать молекулы и атомы, таки косвенно обнаружить их наличие.

Page 5: лекция №1

Методы наблюдения молекул

прямые косвенные

- электронный микроскоп,- ионный проектор

- броуновское движение, - давление газа на стенки сосуда,- диффузия газов и жидкостей,- вязкое трение

Page 6: лекция №1

Броуновское движение

Page 7: лекция №1

Электронный микроскоп

Электронный микроскоп

Поверхность куриного яйца под электронным

микроскопом

Page 8: лекция №1

2. Масса и размеры атомов и молекул.

В молекулярной физике принято характеризовать массы атомов и молекул не их абсолютными значениями, а относительными безразмерными величинами:• относительной атомной массой Аr

• относительной молекулярной массой Мr

...11066,112

2712

меакгm

m Cu

В качестве единичной атомной массы принимается 1/12 массы изотопа углерода 12С:

Page 9: лекция №1

Относительная молекулярная масса есть масса молекулы, выраженная в а.е.м.

u

молекулыr m

mM

u

атомаr m

Абсолютные значения атомных масс составляют около 10-25–10-27 кг, а относительные значения 1–100. Для крупных молекул, состоящих из большого числа атомов относительная молекулярная масса порядка несколько сотен тысяч.

Относительная атомная масса есть масса атома, выраженная в а.е.м.

Page 10: лекция №1

3. Количество вещества.В молекулярной физике часто используют понятие количество вещества. В СИ количество вещества выражается в молях.

1231002,6 мольN A

легко видеть, что

молькгNm Au /10 3

Таким образом, моль любого вещества содержит одинаковое число структурных элементов. Это число называют постоянной Авогадро:

Моль равен количеству вещества рассматриваемой системы, которое содержит столько же структурных элементов, сколько структурных элементов (атомов) содержится в 0,012 кг изотопа углерода 12С.

Page 11: лекция №1

В молекулярной физике часто используется понятие молярной массы

Aмолекулы NmM молькгM /

Молекулярная и молярная массы связаны между собой простым соотношением:

молькгMM r /10 3

Число молей связано с числом структурных элементов N при помощи соотношения:

M

m

mN

mN

N

N

молекулыA

молекулы

A

Молекулярная масса с достаточной степенью точности может быть вычислена сложением атомных масс, входящих в состав молекулы атомов.

Page 12: лекция №1

Пример. Рассчитаем из простых соотношений размер атома ртути. Будем полагать, что атомы ртути вплотную соприкасаются друг с другом в жидком состоянии.

V

mN

V

m атома

КонцентрацияатомаmV

Nn

Величина обратная концентрации, т.е. показывает

какой объем приходится на один атом (или молекулу)

N

Vn 1

Плотность

Page 13: лекция №1

Диаметр молекулы можно найти из следующих соображений:

3

1

3

131 6

24

3

3

4

nRd

nRRn

кгmN

Mm Hg

Aатома

2723

3

103451002,6

10208

)18(/13550 3 СмкгHg

3281328 1025,0104 мnмn

нммd 365,01065,3 10

Page 14: лекция №1

4. Агрегатные состояния веществ. Признаки агрегатных состояний.

Между атомами и молекулами действуют как силы взаимного притяжения, так и отталкивания. Атомы и молекулы находятся в непрерывном хаотическом движении и, следовательно, обладают кинетической энергией. Силы притяжения стремятся связать атомы или молекулы в единое целое, а наличие кинетической энергии этому препятствует.Если потенциальная энергии притяжения по абсолютной величине много больше кинетической энергии, то вещество находится в твердом состоянии, если много меньше – то в газообразном. Жидкое состояние реализуется при примерном равенстве этих энергий.

Page 15: лекция №1

r0

U

r0

Потенциальная энергия взаимодействия как функция расстояния между центрами сблизившихся молекул.

В минимуме силы притяжения уравновешиваются силами отталкивания.

Page 16: лекция №1

В газообразном состоянии

вещество не сохраняет ни формы, ни объема. Большую часть времени каждая молекула движется без взаимодействия, затем в небольшой области, в результате столкновения с другой молекулой меняет направление движения. Расстояние пролетаемое молекулой между соударениями в сотни и тысячи раз больше диаметра самой молекулы.

Page 17: лекция №1

Движение молекул в твердых, жидких и газообразных телах

Page 18: лекция №1

В твердом состоянии

вещество сохраняет и форму и объем. При деформации возникают силы, препятствующие изменению объема и формы. Молекулы или атомы располагаются в определенных местах и образуют кристаллическую решетку. Они колеблются около средних положений, называемых узлами кристаллической решетки. Линия, вдоль которой происходят колебания, и амплитуда колебаний медленно меняются со временем. Вдоль некоторой линии совершается достаточно много колебаний, прежде чем направление колебаний изменится.

Page 19: лекция №1

Жидкое состояние

характеризуется тем, что вещество стремится сохранить объем, но не сохраняет формы. Молекулы в жидкости находятся близко друг к другу, но их положения не фиксированы и они сравнительно медленно их меняют друг относительно друга. Иногда молекулы объединяются в агрегаты, состоящие из большого числа молекул, причем их агрегатное расположение определенным образом упорядоченно.

Page 20: лекция №1

5. Модель идеального газа.

Наиболее простой моделью системы многих частиц является модель идеального газа. Это газ, состоящий из точечных материальных частиц, между которыми отсутствуют силы, действующие на расстоянии. Эти частицы сталкиваются между собой по законам соударения шаров, так что в результате удара изменяются абсолютные величины скоростей частиц. Наиболее близко свойствам идеального газа соответствуют достаточно разреженные газы.

Page 21: лекция №1

6. Динамический, статистический и термодинамический методы.

Динамический метод.

x7, y7, p7

x11, y11, p11

x10, y10, p10

x8, y8, p8

x9, y9, p9

x5, y5, p5

x6, y6, p6x4, y4, p4

x3, y3, p3

x2, y2, p2

x1, y1, p1

x’7, y’7, p’7

x’11, y’11, p’11

x’10, y’10, p’10

x’8, y’8, p’8

x’9, y’9, p’9x’5, y’5, p’5

x’6, y’6, p’6

x’4, y’4, p’4

x’3, y’3, p’3

x’2, y’2, p’2

x’1, y’1, p’1

Page 22: лекция №1

Для записи положений и скоростей всех молекул в этом объеме нужно зафиксировать 16,2·1019 чисел.

Пример. NL= 2,7·1019 молекул (число Лошмидта). Количество молекул в 1 см3 при н.у.

Суперкомпьютер в Лаборатории моделирования Земли (Япония) производит 40·1012 операций в сек. Для фиксации такого массива чисел ему нужно 47 дней! Для вычисления кинет. энергии всех молекул – 191 день!И еще 15 дней на фиксацию значений энергии.

Каждая молекула испытывает примерно 109 столкновений в секунду. Если изменить направление скорости одной молекулы, то уже через 10-7с изменятся скорости 1030 молекул, т.е. всех в нашем объеме 1 см3 и неоднократно. динамический метод непригоден для описания реальных систем с большим числом частиц.

Page 23: лекция №1

Статистический метод.

Информация должна относиться не к каждой частице в отдельности, а ко всем частицам в целом. Законы поведения совокупностей большого числа частиц называются

статистическими.

Средняя скорость молекул <v>

Средняя кинетическая энергия молекул <Ek>

Page 24: лекция №1

Термодинамический метод.

Используются понятия и физические величины, относящиеся к системе в целом (термодинамические параметры).

Давление p

Объем V

Температура T

Энтропия S

Свободная энергия F

Энтальпия H

Page 25: лекция №1

Статистический и термодинамический методы взаимно дополняют друг друга. Термодинамический метод характеризуется своей общностью и позволяет изучать явления без знания их внутренних механизмов. Статистический метод помогает понять суть явлений, установить связь поведения системы в целом с поведением и свойствами отдельных частиц и подсистем. Комбинированное применение того и другого методов способствует наиболее эффективному решению научной проблемы.

Вывод: