Численные методы(часть1)

72
МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ СХІДНОУКРАЇНСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ імені ВОЛОДИМИРА ДАЛЯ МЕТОДИЧНІ ВКАЗІВКИ до виконання індивідуальних завдань по дисципліні «ЧИСЕЛЬНI МЕТОДИ» (електронне видання)

Upload: -

Post on 09-Mar-2016

233 views

Category:

Documents


0 download

DESCRIPTION

Численные методы с использованием MathCad

TRANSCRIPT

Page 1: Численные методы(часть1)

МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИСХІДНОУКРАЇНСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ

імені ВОЛОДИМИРА ДАЛЯ

МЕТОДИЧНІ ВКАЗІВКИдо виконання індивідуальних завдань

по дисципліні «ЧИСЕЛЬНI МЕТОДИ»(електронне видання)

Луганск 2007

Page 2: Численные методы(часть1)

МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИСХІДНОУКРАЇНСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ

імені ВОЛОДИМИРА ДАЛЯ

МЕТОДИЧНІ ВКАЗІВКИдо виконання індивідуальних завдань

по дисципліні «ЧИСЕЛЬНI МЕТОДИ»(для студентів усіх спеціальностей напрямку

„Економічна кібернетика”)електронне видання

Затвердженона засіданні кафедриекономічної кібернетики.Протокол №2 от05.09.07

Луганск 2007

2

Page 3: Численные методы(часть1)

УДК 519.2.261.02 (07)

Методичні вказівки до виконання індивідуальних завдань по дисципліні "Чисельні методи" (для студентів усіх спеціальностей напрямку «Економічна кібернетика» ) / Уклад.: Н.А. Калиненко, С.М. Танченко.– Луганськ: Вид-во СНУ ім. В. Даля, 2007. – 59 с.

Приведені основні поняття, алгоритми, рекомендації, та докладні демонстрацiйнi приклади, які надають можливість самостійного виконання завдань. Усі теми мають набір варіантів завдань для самостійного рішення.

Укладачі: Каліненко H.А., доц.

Танченко С.М., асист.

Відп.за випуск Рамазанов С.К., проф., зав. каф. eконом. кіберн.

Рецензент Ульшин В. А., проф.

3

Page 4: Численные методы(часть1)

При розробці алгоритмів рішення конкретних інженерних задач часто доводиться вдаватися до методів чисельного аналізу. Мета даних методичних вказівок – закріплення теоретичного матеріалу і придбання практичних навиків алгоритмізації і програмування з використанням обчислювальних методів.

Дані методичні вказівки містять основні поняття і рекомендації, необхідні при виконанні конкретних індивідуальних завдань.

При підготовці до виконання індивідуального завдання слід уважно прочитати відповідні методичні вказівки, вивчити необхідний теоретичний матеріал, розібрати приклади рішення задач, які наведені.

В результаті підготовки студент повинен : знати мету, основні теоретичні положення і зміст iндивiдуальної

роботи; вміти складати алгоритми і програми рішення на ЕОМ типових

задач згідно темі завдання.Звіт про виконання індивідуального завдання оформляється студентом

на аркушах формату А4. На титульному листі вказується : назва університету та кафедри,

найменування дисципліни, номер групи, прізвище і ініціали студента.Зміст звіту : назва і мета роботи умови завдання схема алгоритму рішення програма на алгоритмічній мові або за допомогою комп’ютерного

пакету MathCAD результати рішення задачі висновки.

Оформлений звіт надається студентом до захисту.

4

Page 5: Численные методы(часть1)

ІНДИВІДУАЛЬНЕ ЗАВДАННЯ 1

ОБЧИСЛЕННЯ КІНЦЕВИХ СУМ ФУНКЦІОНАЛЬНОГО ТА ЧИСЛОВОГО РЯДУ

Мета завдання – закріплення теоретичного матеріалу, отримання практичних навиків програмування циклічних процесів за допомогою методу ітерацій ( методу послідовних наближень ).

Порядок виконання завдання

1. Уважно прочитати відповідні відомості з теорії.2. Згідно умови варіанта індивідуального завдання (табл..1.1.)

одержати рекурентне співвідношення для обчислення членів функціонального (числового ) ряду.

3. Скласти схему алгоритму обчислення кінцевої суми функціонального (числового) ряду.

4. Скласти програму рішення задачі на алгоритмічній мови або в пакеті MathCAD, одержати результат.

5. Обчислити точне значення функції Y. Порівняти результати.6. Оформити звіт і надати його до захисту.

Т а б л и ц я 1 . 1 .Варіанти індивідуальних завдань

№ п/п Сума S Умова

закінченняТочне значення

функції Y1 2 3 4

1

2 N=10

Продовження табл.1.15

Page 6: Численные методы(часть1)

1 2 3 4

3

4 N=20

5

6 N=30

7 “+” при x > 1,“-” при x < -1

8 N=20

9 N=30

10

11 N=20

Продовження табл.1.11 2 3 4

12

6

Page 7: Численные методы(часть1)

13 N=30

14

15 N=20

16 N=30

17 N=20

18

19 N=30

20 N=20

Продовження табл.1.11 2 3 4

21 N=20

22 N=10

7

Page 8: Численные методы(часть1)

23

24

25 N=30

26 N=10

27

28 N=10

29 N=10 1/(1-1)(1-1)1-целое число

30 e=2,718282

Короткі відомості з теорії

Основні поняття

Якщо {an} – числова послідовність, то послідовність {Sn}:S1 = a1 ; S1 = a1 ;S2 = a1 + a2 S2 = S1 + a2 ;…. ….

Sn = Sn-1 + an

8

Page 9: Численные методы(часть1)

Sn = = a1 + a2+…. +an

називають послідовністю часткових (кінцевих) сум (нескінченного) ряду, який позначають

a1 + a2+…. +an або

an називають загальним членом ряду.

Нескінченний ряд, побудований з функціональної послідовності {n(x)}

1(x)+2(x)+… +n(x)+ …,

називається функціональним рядом.Розміри кінцевих сум можуть визначатися кількістю членів (задане n),

що враховуються, або необхідною точністю (задане ε). В останньому випадку додавання нових членів слід припинити, якщо | an | < εПроцедура обчислення кінцевих сум заснована на методі ітерацій (методі послідовних наближень).

Для скорочення часу рахунку при обчисленні членів ряду рекомендується користуватися рекурентними співвідношеннями, тобто черговий член ряду виражається через попередній.

Приклад 1

Отримати рекурентне співвідношення для членів ряду:

, n – - й член функціонального ряду ;

, (n+1) – й член функціонального ряду ;

– відношення ( n + 1) -го члена до n-го ;

9

Page 10: Численные методы(часть1)

– рекурентне співвідношення між

членами ряду.

Приклад 2

Обчислити sin(), використовуючи його представлення кінцевою сумою ряду

де n = 15.

Рекомендація : обчислення sin() організувати таким чином.

Крок 1. Привласнити S = , а = , n = 1. ()2Крок 2. Привласнити а = - а -------------, 2n (2n + 1) S = S + а, n = n +1.Крок 3. Перевірити умову n 15. Якщо умова виконується,

повернутися до кроку 2, інакше вважати обчислення sin() завершеним, тобто sin()= S.

Варіанти блок-схеми представлені на малюнках 1.а, 1.б.

Приклад 3

Обчислити cos(), використовуючи його представлення кінцевою сумою ряду

із заданою

точністю ε

Рекомендація : обчислення cos() організувати таким чином.

Крок 1. Привласнити S = , а = , n = 1.

()2Крок 2. Привласнити а = - а -------------, S = S + а, n = n +1. 2n (2n - 1)

10

Page 11: Численные методы(часть1)

Крок 3. Перевірити умову | а | > ε. Якщо воно виконується, повернутися до кроку 2, інакше вважати обчислення cos() завершеним, тобто cos()= S.

Варіанти блок-схем представлені на малюнках 2.а, 2.б.

Приклад 4.

Обчислення S=1+1/1!+1/2!+1/3!+1/4!+...1/n! , за допомогою пакету MathCAD.

n=10 ε

Summa(2)=2.718

11

Page 12: Численные методы(часть1)

Рис.1

12

Page 13: Численные методы(часть1)

Рис.2

ІНДИВІДУАЛЬНЕ ЗАВДАННЯ 2

ЧИСЕЛЬНІ МЕТОДИ РІШЕННЯ НЕЛІНІЙНИХ РІВНЯНЬ

Мета завдання – закріплення теоретичного матеріалу, складання алгоритмів і програм для вирішення нелінійних рівнянь F(x)= 0 з використанням чисельних методів.

13

Page 14: Численные методы(часть1)

Порядок виконання завдання

1. Уважно прочитати відповідні відомості з теорії.2. Згідно умови варіанта індивідуального завдання (табл..2.1.)

провести аналіз функції і зробити висновок про можливість використовування запропонованого вам методу.

3. Представити геометричну інтерпретацію методу.4. Скласти алгоритм вибору початкового наближення для х [ а,

b ] (якщо це необхідне для даного методу).5. Скласти алгоритм обчислення кореня рівняння F(x)= 0 з вибором

початкового наближення і заданою точністю, використовуючи запропонований вам метод чисельного рішення.

6. Скласти програму рішення цієї задачі на алгоритмічній мові або в пакеті MathCAD, одержати результат.

7. Оформити звіт і представити до захисту.Т а б л и ц я 2 . 1 .

Варіанти індивідуального завдання 2

№ пп Рівняння Відрізок

Метод чисельного

рішення

Очікуване значення кореня

1 2 3 4 51 2; 3 Ітерацій 2.29852 0; 2 Ньютона 1.0001

3 0.4; 1 Дихотомії 0.7376

4 -1; 0 Хорд -0.2877

5 1; 2 Ньютона 1.1183

6 0; 1 Ітерацій 0.5629

7 2; 4 Ньютона 3.23008 1; 2 Дихотомії 1.87569 0; 1 Хорд 0.1010

10 0; 1 Ітерацій 0.7672

11 0; 1 Ньютона 0.8814

12 1.2; 2 Ітерацій 1.307713 3; 4 Хорд 3.5625

Продовження табл..2.11 2 3 4 5

14

Page 15: Численные методы(часть1)

14 0; 1.5 Ітерацій 1.147415 1; 3 Ньютона 2.0692

16 0;1 Дихотомії 0.5768

17 1; 3 Хорд 1.8832

18 0; 1 Дихотомії 0.1010

19 2; 3 Ітерацій 2.0267

20 0,4; 1 Ньютона 0.653321 -1; 0 Дихотомії -0.2877

22 2; 3 Ітерацій 2.845923 0.2; 1 Хорд 0.5472

24 1; 2 Дихотомії 1.0769

25 0; 1 Ньютона 0.7672

26 1; 2 Хорд 1.8756

27 1; 2 Ітерацій 1.2388

28 0; 1 Ньютона 0.453829 0; 0.85 Хорд 0.262430 0; 1 Дихотомії 0.8814

Короткі відомості з теорії та приклади розв’язання задач

Визначення нелінійного рівняння

F(x)=0, де F(x) –функція, нелінійна щодо невідомого.

Приклади :

а) ex +2-ln(x)+5=0 ;

б) sin(x+5) -tg2(x) -7=0 ;

в) x5-4x4+3x2-10=0.

Вирішити нелінійне рівняння – знайти значення х для якого F(x)=0.

2.1. Метод простих ітерацій (знаходження кореня рівняння x = f(x))

15

Page 16: Численные методы(часть1)

Дано : F(x)=0, x0 а ; bМетод простих ітерацій заснований на представленні рівняння F(x)=0

у вигляді :x=f(x) та багатократному вживанні формули xn+1= f(xn) до тих пір, поки дотримується умова | xn+1- xn| ≤ε , де ε – задана погрішність обчислення кореня x. Блок-схема алгоритму представлена на Рис. 5.

Геометрична інтерпретація методу ітерацій

При 0 < │f(x )│< 1 {xn} сходиться до x* з тієї сторони, з якою розташовано початкове наближення малюнок 3, а та б.

При -1 < │f(x )│< 1 послідовні наближення {xn} по черзі розташовані з різних сторін від рішення x*, малюнок 4, а та б.

При │f(x )│> 1 {xn} не сходиться до x*, тому треба скористатися іншим чисельним методом рішення нелінійного рівняння F(x)=0.

x* – рішення нелінійного рівняння ;х0 – початкове наближення.

Рис. 3.

16

Page 17: Численные методы(часть1)

Рис. 4.Вибір початкового наближення : значення X = А або X = B, або

X= ( A+B) /2 може бути вибрано як початкове наближення.

Рис. 5.

17

Page 18: Численные методы(часть1)

Приклад 1 : x2-ln(x) -2=0 ; F(x)= x2 - ln(x) -2 x = ;

f(x) =

2.2. Метод Ньютона (метод дотичних)

Теорема. Хай функція F(x) при а ≤x ≤ b визначена і безперервна. Хай є два числа x1 і x2 : а ≤ x1 < x2 ≤ b. Якщо F(x1) і F(x2) мають протилежні знаки, то між x1 і x2 існує хоча б один корінь рівняння F(x)=0. (рис. 6.)

Рис.6

Ї18

Page 19: Численные методы(часть1)

Рівняння дотичної, проведеної до кривої у = F(x) в крапці x0 :

у = F(x0)+ (x-x0) F’(x0); , де x1 – точка перетину

дотичної з віссю абсцис. Елементи послідовності {xn} обчислюються по

наступному рекурентному співвідношенню до тих

пір, поки виконується умова | xn+1- xn| ε де ε – задана погрішність обчислення кореня x.

Як х0 вибирається той кінець відрізка [ а ; b ], на якому знаки F(x0) і F"(x0) співпадають. Блок-схема алгоритму представлена на рис.7.

Рис. 7

19

N=N+1

Page 20: Численные методы(часть1)

2.3. Метод дихотомії

Дано : F(x)=0, x0 а ; bЗнайти : корінь нелінійного рівняння з точністю ε. Елементи

послідовності {xn} обчислюються по формулі x = ( А + B )/2, а черговий інтервал вибирається з умови :

якщо F(x)* F(А)< 0, то В = х, інакше А = х, рис. 8, а, б. Елементи послідовності {xn} обчислюються до тих пір, поки виконується умова | B -A | > εде ε точність знаходження кореня рівняння F(x)=0.

Рис. 8

Рис. 9

20

X=(A+B)/2

N=N-1 A=X

HI

B=X

N=N+1

||B-A|<E

Page 21: Численные методы(часть1)

2.4. Метод хордВ цьому методі кожне значення xn+1 знаходиться як точка перетину осі

абсцис з хордою, проведеною через крапки з координатами (F(А),A) і (F(B),B), причому з цих крапок фіксується та, для якої знаки F(x) і F"(x) однакові. Якщо нерухомий кінець хорди x = А, то

,

початкове наближення x0 = В . Якщо нерухомий кінець хорди х = В, то

,

початкове наближення x0=А, малюнок 10, а - г. Обчислення проводяться до тих пір, поки | xn+1 - xn | ≥ ε , де ε – точність обчислення кореня рівняння F(x)= 0.

0B

y

xx 1

x2x3x4x =A0

y=F (x)

à. â.

0A

y

xx 1x2 x =B0

y=F (x)

x*

á.

0 B

y

xx1

x 3

x 2x =A0

y=F (x)

x*

ã.

0 A

y

xx1x 2x3

x 4

x =B0

y=F (x)

x* x*

21

Page 22: Численные методы(часть1)

Рис.. 10.Блок-схема алгоритму представлена на рис 11.

22

N=N+1

Рис. 11

Page 23: Численные методы(часть1)

Приклад 2Обчислення кореня рівняння на

відрізку [0,1] за допомогою пакету MathCAD.

Метод дихотомії Метод хорд

23

Page 24: Численные методы(часть1)

ІНДИВІДУАЛЬНЕ ЗАВДАННЯ 3

ІНТЕРПОЛЯЦІЯ ФУНКЦІЙ

Мета завдання – закріплення теоретичного матеріалу та придбання практичних навиків, складання алгоритмів наближеного відновлення функції (апроксимація) в довільній крапці за експериментальними даними із застосуванням алгебраїчних багаточленів першої, другої та

(N-1) -ої степені.

Порядок виконання завдання

1. Варіанти індивідуальних завдань приведені в табл. 3.1Перший пункт завдання потребує:

a) відновлення функціональної залежності по двом експериментальним крапкам, з застосуванням інтерполяційного багаточлена, представленого в одній з своїх форм, без допомоги ЕОМ;

b) обчислення значення функції у заданій крапці; c) представлення результату графічно.

Другий пункт завдання потребує:a) відновлення функціональної залежності по трьом

експериментальним крапкам, на основі інтерполяційного багаточлена, що має форму, вказану в завданні, без допомоги ЕОМ;

b) обчислення значення функції у заданій крапці; c) представлення результату графічно.

Скласти алгоритм і написати програму на алгоритмічній мові або в системі MathCad для обчислення значення функції в заданій крапці Результат представити графічно і у вигляді чисельного значення.

Оформити звіт і представити до захисту.

24

Page 25: Численные методы(часть1)

25

Page 26: Численные методы(часть1)

Т а б л и ц я 3 . 1 .

Варіанти індивідуального завдання 3

№ п/п

№завдання Функція y(x) Значення

функціїФорма

багато-члена1 2 3 4 5

1 1

1 -6

y(4) Ньютона

7 -2

2 -5 1 7 y(5.5) Лагранжа0 -3 10

3 1.5 2 2.5 3 3.5 4.0 4.5 y(3.55) Ньютона-3.56 -4.3 -5.8 -4.95 -5.75 -6.15 -8.45

Продовження табл.. 3.11 2 3 4 5

25

Page 27: Численные методы(часть1)

2 1 -1 6 y(3) Лагранжа7 -2

2 -3 1 5 y(4) Ньютона6 -2 2

3 4.5 5 5.5 6 6.5 7 7.5 y(6.55)

Кубічний сплайн-1.56 -2.48 -3.75 -4.81 -5.16 -6.35 -7.16

3 1 -1 2 y(1) Лагранжа3 10

2 -2 1 4 y(3) Кубічний сплайн-1 2 -2

Продовження табл.. 3.1

1 2 3 4 5

33 10 11 12 13 14 15 16 17 y(11.55) Ньютона

3.7 4.5 5.9 6.1 7.8 8.5 9.4 10.5

4 1 -3 2 y(0) Ньютона-1 5

26

Page 28: Численные методы(часть1)

2 1 3 6 y(4) Кубічний сплайн2 -3 -2

3 1.2 2.6 9.8 4.5 5.1 7.0 8.9 y(6.2) Лагранжа15.86 11.56 9.31 8.57 6.41 9.98 10.37

Продовження табл.. 3.1

1 2 3 4 5

5 1 -1 5 y(3) Ньютона5 -1

2 1 -2 -5 y(-3.5) Лагранжа5 -1 3

3 2.6 3.7 4.8 5.9 5.9 6.0 7.1 8.2 y(6.5) Лагранжа1.36 2.78 3.46 4.58 4.58 5.37 6.91 7.87

6 1 0 5 y(3) Лагранжа3 -1

27

Page 29: Численные методы(часть1)

2 2 4 6 y(5) Ньютона4 -2 3

Продовження табл.. 3.1

1 2 3 4 5

6 31 10 19 28 37 46 y(20) Кубічний сплайн9 6.5 4.1 2.7 1.5 0.9

7 1 0 1 y(0.5) Лагранжа-10 2

2 1 3 5 y(2) Кубічний сплайн-5 1 0

3 10 15 17 20 25 29 32 y(22) Лагранжа12.1 19.8 25.3 29.7 32.4 36.5 40.1

Продовження табл.. 3.11 2 3 4 5

28

Page 30: Численные методы(часть1)

8 1 -1 2 y(1) Ньютона-5 7

2 -2 0 2 y(1.5) Лагранжа-5 1 -6

3 1.35 1.4 1.45 1.5 1.55 16 1.65 y(1.53) Кубічний сплайн4.162 4.256 4.353 4.455 4.562 4.673 4.754

9 1 0 -3 y(-2) Лагранжа5 -10

2 -1 1 3 y(2) Лагранжа5 0 10

Продовження табл.. 3.11 2 3 4 5

93 1 5 9 13 17 21 y(11.5) Ньютона

5.67 6.48 7.31 8.29 9.56 10.47

101 1 5 y(4) Ньютона

-6 10

29

Page 31: Численные методы(часть1)

2 0 3 5 y(5) Лагранжа5 0 10

3 3 5 7 9 11 13 y(1.775) Кубічний сплайн21.7 28.3 38.7 41.4 55.9 61.8

11 1 -5 7 y(4) Ньютона-3 1

Продовження табл.. 3.11 2 3 4 5

11 2 0 3 7 y(5.5) Ньютона

4 -1 1

3 1.55 1.66 1.77 1.88 1.99 2.10 y(1.775) Лагранжа5.48 6.59 7.36 8.45 9.17 10.49

12 1 -1 3 y(2) Лагранжа7 -2

2 -2 1 4 y(3) Лагранжа-1 4 -1

30

Page 32: Численные методы(часть1)

3 1 2 3 4 5.98 6 y(4.5) Ньютона5.7 6.9 7.4 8.1 9.8 10.5

Продовження табл.. 3.11 2 3 4 5

13 1 5 7 y(6) Лагранжа-1 10

2 -3 0 3 y(2.5) Лагранжа-10 2 -15

3 1.35 1.46 1.57 1.68 1.79 1.8 1.94 y(1.85) Кубічний сплайн3.96 4.58 6.77 8.96 7.56 9.48 8.54

14 1 -1 3 y(2) Ньютона0 5

2 -1 2 5 y(3) Лагранжа0 -1 1

Продовження табл.. 3.11 2 3 4 5

143 1.37 2.72 7.41 9.85 11.72 15.48 19.74 y(8.5) Кубічний

31

Page 33: Численные методы(часть1)

сплайн18.327 21.472 29.781 32.674 34.283 40.172 43.298

15 1 -2 3 y(1) Лагранжа-1 5

2 1 3 7 y(5) Ньютона-1 3 5

3 2.5 3.6 4.7 5.8 6.9 8 y(6.5) Ньютона11.6 12.45 13.57 4.61 15.32 16.21

16 1 4 8 y(6) Лагранжа-2 6

Продовження табл.. 3.11 2 3 4 5

162 -2 2 6 y(0) Ньютона

7 -6 9

3 2 2.5 3 3.5 4 4.5 5 5.5 y(2.36) Лагранжа1.38 2.35 3.48 4.57 5.86 6.47 7.98 8.36

17 1 2 7 y(5) Лагранжа10 -5

32

Page 34: Численные методы(часть1)

2 -2 0 2 y(-1) Лагранжа6 4 12

3 0 0.1 0.2 0.3 0.4 0.5 0.6 y(3.55) Ньютона0 10 4 2 1.5 2 5

Продовження табл.. 3.11 2 3 4 5

18 1 -3 5 y(2) Ньютона4 8

2 0 4 8 y(5) Ньютона-2 8 -3

3 -1 8 0 0.5 1 1.5 2 y(0.25) Лагранжа0 -0.5 4.7 5.4 6.3 7.1 8.3

19 1 -5 1 y(-3) Ньютона-3 5

2 3 6 9 y(7.5) Лагранжа-2 2 -5

33

Page 35: Численные методы(часть1)

Продовження табл.. 3.11 2 3 4 5

193 3.5 4.6 5.7 6.8 7.9 9 10.1 y(6.5) Лагранжа

3.45 -4.48 -5.96 -6.71 -7.35 -8.26 -9.31

20 1 5 -2 y(3) Ньютона8 -10

2 0 3 6 y(4) Лагранжа2 -3 6

3 1 10 18 29 40 51 60 73 y(15) Ньютона19 16.5 14.1 12.7 11.5 5.1 -4.6 -15.8

211 2 6 y(4.5) Лагранж

а1 -1

Продовження табл.. 3.11 2 3 4 5

212 1 3 7 y(5) Ньютона

-1 3 -2

34

Page 36: Численные методы(часть1)

3 1.335

1.340 1.345 1.350 1.355 1.360 y(1.353) Кубічний сплайн

4.162

4.256 4.353 4.455 4.562 4.673

22 1 -1 4 y(2) Лагранжа3 6

2 -2 1 6 y(4) Лагранжа4 -1 7

3 1 10 18 29 40 51 60 y(21) Кубічний сплайн9 6.5 4.1 2.7 1.5 0.9 -1.3

Продовження табл.. 3.11 2 3 4 5

23 1 1 5 y(4) Ньютона2 -1

2 -1 3 7 y(5) Кубічний сплайн1 2 2

3 10 15 20 25 30 35 40 y(27) Ньютона

35

Page 37: Численные методы(часть1)

12.1 19.8 25.3 29.7 32.4 36.9 40.1

24 1 2 -5 y(-4) Лагранжа1 -1

2 -7 -5 -1 y(-3) Кубічний сплайн1 -3 4

Продовження табл.. 3.11 2 3 4 5

3 0.5 0.61 0.72 0.83 0.94 1.05 1.16 y(0.85) Лагранжа3.75 4.96 5.99 6.78 7.56 8.31 9.47

25 1 -5 5 y(2) Ньютона-1 2

2 -1 3 7 y(5) Кубічний сплайн-1 10 1

3 2 1.340 1.345 1.350 1.355 1.360 y(1.352) Лагранжа1.335

5.368 6.732 7.514 8.962 9.751

26 1 4.25 5 y(3.5) Лагранжа

36

Page 38: Численные методы(часть1)

62 -1

Продовження табл.. 3.11 2 3 4 5

262 4 3 5 y(4) Ньютона

1 5 -1

3 1.56 2.77 3.98 5.10 6.31 7.52 y(4.5) Кубічний сплайн5.78 7.95 9.54 11.41 13.12 15.65

27 1 -1 6 y(3) Ньютона5 -3

2-3 0 3

y(1) Ньютона

5 -2 10

Продовження табл.. 3.11 2 3 4 5

37

Page 39: Численные методы(часть1)

3 1 2 3 4 5 6 7 8 y(4.55) Кубічний сплайн49.9 59.1 78.5 90.7 99.6 108.3 117.6 130.2

38

Page 40: Численные методы(часть1)

Короткі відомості з теорії

На практиці часто доводиться мати справу з функціями, заданими таблично, коли для значень аргументу x1, x2, …, xn відомі значення функції y1=f(x1), y2=f(x2),…., yn=f(xn). Сукупність крапок називається експериментом:

x1, x2, …, xn

y1, y2, …, yn де n – число експериментальних крапок.

Для того, щоб визначити значення функції f в якій-небудь точці х, відмінній від заданих x1, x2, …, xn, поступають таким чином: будують функцію F, яка в заданих точках x1, x2, …, xn співпадає із заданими y1, y2, …, yn, тобто F(xi)= yi, i = 1, 2, 3 ., n, а при інших х приблизно представляє функцію f. При цьому функція F називається інтерполяційною, а крапки x1, x2, …, xn – вузлами інтерполяції.

Частіше за все функцію F(x) задають у вигляді багаточлена. Існує тільки один інтерполяційний багаточлен, який може бути представлений в різних формах.

3.1. Форма Лагранжа

Інтерполяційний багаточлен Лагранжа, побудований по таблиці (x1, y1); (x2, y2); (x3, y3);…, (xn, yn), має вигляд

. (1)

3.1.1 Лінійна інтерполяція

Хай задана таблиця x1, x2, …, xn y1, y2, …, yn , xi – різні.

Необхідно обчислити у в крапці x:

xi1, xi2 – найближчі до х вузли з набору x1, x2, …, xn. Лінійна інтерполяція здійснюється по двох найближчих крапках.

43

Page 41: Численные методы(часть1)

Приклад 1

a). х [ x1, x2 ].Тоді xi1 = x1 ; yi1 = y1,

xi2 = x2 ; yi2 = y2,

b). х [ x4, x5 ] xi1 = x4 ; yi1 = y4,

xi2 = x5 ; yi2 = y5 , (рис.

12).

0x

y

x 1 x 2 x 3 x 4 x 5

y 1

y 2

y 3

y 5

y 4

y

x

F 1'(x)F 2'(x) F 3'(x)

F 4'(x)

Рис. 12На рис.13 представлена блок-схема алгоритму розрахунку

інтерполяційного значення функції в крапці x по двох найближчих вузлових крапках, координати яких є початковими даними.

Основні позначення : x0 – значення х, при якому обчислюється інтерполяційне значення у ;у0 – інтерполяційне значення в крапці х0 ;L – код помилки ; x(1), x(2) – табличні значення аргументів ;

44

Page 42: Численные методы(часть1)

у(1), у(2) – табличні значення функції.

Рис. 13

На малюнку 14 представлена блок-схема алгоритму розрахунку інтерполяційного значення функції в будь-якій точці х з вибором найближчих вузлових крапок, по яким буде проводитися інтерполяція. Початковими даними є координати всіх експериментальних крапок і значення х, для якого потрібно обчислити інтерполяційне значення функції.

3.1.2. Квадратична інтерполяція

де xi1, xi2, xi3 – найближчі до х вузлові крапки (рис. 15 ).Квадратична інтерполяція здійснюється по трьох найближчих

крапках.

Приклад 2

а). х [ x1, x3 ]

Лiнейна iнтерполяцiя

Лінійна iнтерполяцiя

45

Page 43: Численные методы(часть1)

б). х [ x3, x5 ]

Лiнійна iнтерполяцiя

Лiнійна iнтерполяцiя

Лiнійна iнтерполяцiя

46

Page 44: Численные методы(часть1)

Рис.14.

Рис.15.

3.1.3. Інтерполяція багаточленом степені N-1

Інтерполяцію багаточленом степені (n-1) виконують по n експериментальних крапках (малюнок 16). Інтерполяція здійснюватиметься по формулі (1). Блок-схема алгоритму представлена на малюнку 17.

Основні позначення:Х і У – масиви розмірністю N;N – число вузлових крапок; x0 – значення х, при якому необхідно знайти інтерпольоване

значення функції;у0 – значення функції, обчислене в крапці x0.

47

Page 45: Численные методы(часть1)

0

x

y

y 1

y 2y 3

y 4

y 5

y 6

y 7y 8

F (x)7

x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8

Рис. 16

3. 2. Форма Ньютона

Визначення. Хай x1, x2, …, xn – довільні крапки (вузли), причому xi

xj при i j. Значення y1, y2 ..., yn функції у в вузлах називаються розділеними різницями нульового порядку і позначаються як [xi], де i=1,….N.

48

Page 46: Численные методы(часть1)

Рис.17[ x1] = y1 [ x2] = y2 . . . [ xn] = yn [ xi] = yi i = 1,… n .

Число у( x1; x2)= у( x2; x1)=

Return

Iнтерполяцiя

Iнтерполяцiя

49

Page 47: Численные методы(часть1)

називається розподіленою різницею першого порядку функції у і позначається [x1;x2] = [x2;x1].

В загальному вигляді

у( xi-1; xi)= у( xi; xi-1)= де i =1,… n

Число

називаються розділеною різницею другого порядку функції у і позначаються [ x1 ; x2 ; x3 ] .

В загальному вигляді

де i =1,… n

Розділена різниця k-го порядку визначається через розділені різниці ( k-1) -го порядку по рекурентній формулі

, k =1,

… n-1; aбо .

Наприклад, k= 1

Лема. Хай x1, x2 ., xn довільні попарно неспівпадаючі вузли, в яких відомі значення функції y1, y2, yn. Алгебраїчний багаточлен ( n - 1) степені

Ln-1(x)= у(x1)+(x-x1) у(x1,x2)+ (x-x1)(x-x2)у(x1,x2,x3)+ (x-x1)(x-x2)…(x-xn-1) у(x1,x2,x3,…xn) (2)

є інтерполяційним, тобто Ln-1(xi)= у(xi), i = 1, n.Оскільки розділені різниці у(x1), у(x1; x2), …, у( x1; x2; …xn) це цілком

певні числа то функція (2) є багаточленом (n-1)-й степені. Багаточлен (2) називається інтерполяційним багаточленом Ньютона для нерівних проміжків. Згідно твердженню, існує тільки один інтерполяційний багаточлен. Інтерполяційний багаточлен Лагранжа тотожно співпадає з інтерполяційним багаточленом Ньютона, тобто Ln-1(x)= Fn-1(x)

50

Page 48: Численные методы(часть1)

У інтерполяційного багаточлена Лагранжа бачимо наочну його залежність від кожного значення функції yi, де i = 1, n. Це у багатьох випадках корисно. Проте при зміні n інтерполяційний багаточлен Лагранжа треба будувати наново. В цьому полягає його недолік.

Інтерполяційний багаточлен Ньютона (2) виражається не через значення функції у, а через її розділені різниці. При зміні степеня n у інтерполяційного багаточлена Ньютона потрібно додати або відкинути відповідне число стандартних доданків, Це зручно на практиці і прискорює процес обчислень. Інтерполяційний багаточлен Ньютона можна записати у вигляді

де i=2,…n

i=2,…n

При обчисленнях розділені різниці записуються у вигляді таблиці 4

Таблиця 4.1xi [xi] [xi xi+1] [xi;xi+1;xi+2] [xi;xi+1;xi+2;xi+3] [xi;xi+1;xi+2;xi+3;xi+4]

x1 у(x1)у(x1;x2)

x2 у(x2) у(x1;x2;x3)у(x2;x3) у(x1;x2;x3;x4)

x3 у(x3) у(x2;x3;x4) у(x1;x2;x3;x4;x5)у(x3;x4) у(x2;x3;x4;x5)

x4 у(x4) у(x3;x4;x5)у(x4;x5)

x5 у(x5)Програма використовує наступні змінні :Х0 – аргумент, при якому необхідно обчислити значення функції ;(N-1) – ступінь багаточлена ;N – число експериментальних даних ;X(N),Y(N) – масиви, i = 1,N:I,K – параметри циклів ; L – значення багаточленів в крапці Х0 ; P і I1 – робочі змінні.

Зауваження: розділені різниці заносяться в масив У. Блок-схема алгоритму представлена на рис. 18

51

Page 49: Численные методы(часть1)

NX0,

N1,I

Y(1)X(1),

Y(1)L

1P

1,1,-1-NI

1-NI1

I1,K

X(K))-I1)Y(K))/(X(K--1)Y(KY(K)

X(I1))(X0PP

PY(I)LL

52

Page 50: Численные методы(часть1)

Рис.18

3.3. Хибність інтерполяції

Якщо функція f(x), яка підлягає інтерполяції, достатнє число разів диференцюєма, то можна вивести формулу для визначення хибності інтерполяції. Оцінка максимальної хибності інтерполяції на всьому відрізку [ а ; b ] :

Mnmax | (x) - Fn-1(x)| max | Wn-1(x)| ;

[а,b] n!

Mn = max | (n)(x) | < ; [а,b]

Wn-1(x)= (x-x1)(x-x2)...(x-xn-1).

3.4. Багатоінтервальна інтерполяція

Багатоінтервальна інтерполяція полягає в інтерполяції у(x) у ряді часткових інтервалів (які обмежені двома вузлами або групою вузлів) окремими поліномами невисокого ступеня. Така інтерполяція може застосовуватися при широкому загальному відрізку [а ; b], коли звичайна інтерполяція поліномом високого ступеня дає велику погрішність і веде до більшого часу обчислень. Помітимо також, що по вигляду полінома і значенням його коєфіціентів важко судити про вид залежності у(x).

Сплайн - інтерполяця

Сплайн-інтерполяція – є спеціальний вид багатоінтервальної інтерполяції.

Визначення. Хай відрізок [ а ; b ] розбитий на ( N-1 ) рівних часткових відрізків [ xi, xi+1 ], де xi = а + ( i-1 ) h, i = 1, 2,..., N-1, xN = b ; x1 = а ;

h = ( b - а ) / ( N-1 ).

Сплайном назвається функція, яка разом з декількома похідними безперервна на всьому заданому відрізку [ xi ; xi+1 ] окремо є деяким многочленом алгебри.

53

Page 51: Численные методы(часть1)

Максимальний по всіх часткових відрізках ступінь многочленів називається ступенем сплайна, а різниця між ступенем сплайна і порядком щонайвищої безперервної на [ а, b ] похідній – дефектом сплайна

Наприклад, безперервна шматково – лінійна функція ( рис. 19 ) ( ламана ) є сплайном першому ступеню з дефектом, рівному одиниці, оскільки безперервна тільки сама функція ( нульова похідна ), а перша похідна вже розривна.

На практиці найширше вживання одержали сплайны третьому ступеню, мають на [ а, b ] безперервну, принаймні, першу похідну.

Ці сплайны називаються кубічними і позначаються через S3(x). Величина mi = S′3(xi) називається нахилом сплайна в точці ( вузлі ) xi. В загальному випадку сплайн задається глобальним способом, тобто з використанням всіх вузлів при будь-якому їх розташуванні. Розглянемо кубічний сплайн, заданий локальним способом. Це завдання реалізується порівняно просто і потрибує істотно меншого об'єму пам'яті ЕОМ, ніж при глобальному способі завдання.

Кубічний сплайн, заданий локально – це інтерполююча функція у вигляді полінома третього ступеня, обчислювана по формулах :

i = int (( b-a ) / h ) ;h = ( b-a ) / ( N-1) ;

(xi+1-x)2(2(x-xi)+h) (x-xi) 2(2(xi+1-x)+h)S3(x)= ----------------------- yi + ----------------------- yi+1 +

h3 h3

(xi+1-x)2(x-xi) (x-xi) 2(x-xi+1)+ ----------------- mi - ---------------- mi+1

h2 h2

де mi, mi+1 – перші похідні S3(x).

Похідні локального сплайна можуть задаватися двома способами.

Спосіб 1. Похідні mi і mi+1 обчислюються за допомогою формул чисельного диференціювання по трьох крапках:

54

Page 52: Численные методы(часть1)

mi=(yi+1-yi-1)/2h , i=2, ..., n-1 ;mi=(4y2-y3-3y1)/2h , i=1 ;mn=(3yn+yn-2-4yn-1)/2h , i=n .

Спосіб зручний тим, що для завдання сплайна вимагається вводити лише ординати yi (значення mi обчислюються програмою). Для зменшення часу багатократних обчислень у(x) бажано заздалегідь обчислити масив mi і берегти його в пам'яті ЕОМ.

Спосіб 2. Значення mi (обчислені окремо або одержані з графіка як нахили його у вузлах) задаються безпосередньо у вигляді масиву mi.

Блок-схема алгоритму представлена на рис. 20.Примітка. Видачу результату здійснити з відповідними коментарями.

Рис. 19

55

Page 53: Численные методы(часть1)

Рис. 20

Y(1))/2/H3Y(3)Y(2)(4M(1)

1))/2/HY(N42)Y(NY(N)(3M(N)

1))/2/H-Y(I)1((YM(I) I

BA,N,X0,

N1,I

Y(1)X(1),

1)-A)/(N-B(H

Обчисленняпохiдних

A)/H)-INT((X0I

Обчислення YO“кубiчний сплайн”

56

Page 54: Численные методы(часть1)

Форма Лагранжа Форма Лагранжа

57

Page 55: Численные методы(часть1)

ЛІТЕРАТУРА

1. Бронштейн И.Н., Семендяев К.А. Довідник по математиці. – М.: Наука, 1986. – 544 с.

2. Волков Е.А. Чисельні методи: Навчальний посібник для вузів. –.: Наука, 1987. – 248 с.

3. Дьяконов В.П., І.В. Абраменкова MathCad 8 PRO в математиці, фізиці та Internet. – М.: „Нолидж”, 1999., 512 с., іл..

4. Дьяконов В.П. Довідник по алгоритмах і програмах на мові Бейсік для ПЕОМ. – М.: „Наука”, 1987. – 240 с.

5. Кир’янов Д.В. MathCad 12. – СПб.: БХВ-Петербург, 2005. – 576 с.: іл..6. Сергованцев В.Т., Смирнов С.М. Збірка задач по обчислювальній техніці в

інженерних і економічних розрахунках. – М.: ”Фінанси і статистика”, 1985. – 160 с.

7. Черняк А.А., Новиков В.А., Мельников О.І., Кузнєцов А.В. Математика для економістів на базі MathCad. – СПб.: БХВ–Петербург, 2003. – 496 с.: іл..

58

Page 56: Численные методы(часть1)

Навчальне видання

МЕТОДИЧНІ ВКАЗІВКИдо виконання індивідуальних завдань

по дисципліні «ЧИСЕЛЬНI МЕТОДИ»(для студентів усіх спеціальностей напрямку „Економічна кібернетика”)

електронне видання

Укладачі: Hаталья Алексеевна.КАЛІНЕНКО

Світлана Михайлівна ТАНЧЕНКО

Авторське редагуванняТехн. Редактор Т.М. ДроговозОригінал - макет І.В. Ширманова

Підписано до друку 4.10.07Формат 60х84 1/16. Папір типогр. Гарнітура Times.

Друк офсетний. Умов. друк. 0,9 арк. Обл.- вид. 1,5 арк .Тираж екз. Вид. № . Замов. № Ціна договірна.

Видавництво Східноукраїнського національного університету імені Володимира Даля

Свідоцтво про реєстрацію.Серія ДК №1620 від 18.12.2003.

Адреса видавництва: 91034, м. Луганськ, кв. Молодіжний, 20аТелефон: 8(0642)41-34-12. Факс: 8(0642)41-31-60

59

Page 57: Численные методы(часть1)

E-mail: uni @ snu.edu.uahttp:// www. snu.edu.ua

60