構造からみたリチウム電池電極材料 · 2 gs yuasa technical report 2006年7月 第...

11
1 Review 総 説 造自体の揺動が比較的少ないため,初期構造と充放電 特性との関連はあまり議論されなかったが,次世代材 料では結晶構造を特性改善や物質探索の指針として用 いるようになってきている.後述のように,Ni や Mn を含む層状岩塩型正極の構造は変化に富み,固体化学 的にも面白く,電池特性とも密接に関連するため,そ の構造を正確に記述できる解析手法が必要である. 今後の電池特性の課題である容量の増加と入出力速 度の向上をめざした開発では,構造自体を低結晶化さ せることや,ナノ化する手法が多用されている.長距 離構造から局所構造に至る様々なレベルの構造を電池 特性と関連づけて開発指針を立てる必要に迫られてい 1 緒言 最高のエネルギー密度を達成できる電池として華々 しく登場したリチウム電池は,高エネルギー密度と 高出入力密度の達成に向けて多大な努力が払われてい る.現在のリチウム電池は,いわゆるリチウムイオン 電池の構成をもつ.すなわち,正極と負極の双方にイ ンターカレーション電極を用いる点に特徴がある.初 期の構成である LiCoO 2 とグラファイトでは,その構 構造からみたリチウム電池電極材料 Structural Aspects of Materials for Lithium Battery Electrodes 菅 野 了 次 * Ryoji Kanno Department of Electronic Chemistry, Tokyo Institute of Technology G1-1, Nagatsuta, Midori, Yokohama, 226-8502 Japan Tel/Fax : +81-45-924-5401, e-mail : [email protected] Electrode materials for lithium batteries are reviewed from the viewpoint of their structures. The materials for the next generation are expected to have high lithium storage capacity and high power density with high thermal stability beyond these limitation values so far. The materials design concepts are important subject to achieve these high characteristics and will be discussed based on the reaction mechanisms using nano-space, na- no-particles, and low crystallinity, for example. The new experimental methods by X-ray and neutron scattering techniques for determining a wide range of structures are also reviewed for these electrode materials. Further- more, the importance of the interfacial structures will be discussed together with their characterization methods. Key words : Electrode material ; Lithium battery ; Structural analysis ; X-ray scattering ; Neutron scattering Abstract * 東京工業大学大学院総合理工学研究科 物質電子化学専攻 教授 © 2006 GS Yuasa Corporation, All rights reserved.

Upload: dokien

Post on 08-Nov-2018

222 views

Category:

Documents


0 download

TRANSCRIPT

  • 1

    Review

    Ni Mn

    1

    LiCoO2

    Structural Aspects of Materials for Lithium Battery Electrodes

    *

    Ryoji Kanno

    Department of Electronic Chemistry, Tokyo Institute of Technology G1-1, Nagatsuta, Midori, Yokohama, 226-8502 Japan

    Tel/Fax : +81-45-924-5401, e-mail : [email protected]

    Electrode materials for lithium batteries are reviewed from the viewpoint of their structures. The materials for the next generation are expected to have high lithium storage capacity and high power density with high thermal stability beyond these limitation values so far. The materials design concepts are important subject to achieve these high characteristics and will be discussed based on the reaction mechanisms using nano-space, na-no-particles, and low crystallinity, for example. The new experimental methods by X-ray and neutron scattering techniques for determining a wide range of structures are also reviewed for these electrode materials. Further-more, the importance of the interfacial structures will be discussed together with their characterization methods.

    Key words : Electrode material ; Lithium battery ; Structural analysis ; X-ray scattering ; Neutron scattering

    Abstract

    *

    2006 GS Yuasa Corporation, All rights reserved.

  • 2

    GS Yuasa Technical Report 2006 7 3 1

    2

    2.1 4 V

    2Tarascon 1)Fig. 1 LiCoO2 150 mAh/g 370 mAh/g

    NiCo NiCoMn NiMn 270 mAh/g LiMn2O4 LiFePO4 150 mAh/g 12.2 2)Fig. 2 Fig. 3

    40003800

    5

    4

    3

    2

    1

    0

    Pote

    ntia

    l vs.

    Li /

    Li+

    10008006004002000Capacity / mAh g-1

    LiMn0.5M0.5O4 spinel

    LiMn2O4 spinelLiCoO2 layered rocksaltLiNiO2 layered rocksalt

    LiFePO4 olivine and related compoundsMnO2 and related compounds

    GraphiteCarbons

    SnO glasses CoO, Co3O4 nano particle

    Li2.6Co0.4N nitridesSi alloy

    Li metal

    Cr3O8

    Mo6S8 Chevrel phase

    V2O5 and related compounds

    Electronically conducting materials

    Electronically insulating materials

    Fig. 1Relationship between potential and capacity for electrode materials.

  • 3

    GS Yuasa Technical Report 2006 7 3 1

    3

    3.1XX

    Rietveld 3.2Fig. 4 Fig. 5 0.5 10 d d

    (a) (b)

    (d) (e)

    ( f )

    (h)

    (g)

    (c)

    Fig. 2Structures of intercalation electrodes. (a) NaCl, (b) -LiFeO2, (c) -NaFeO2LiCoO2, LiNiO2, Li(Ni0.5Mn0.5)O2, Li(Ni1/3Mn1/3Co1/3)O2 (d) -NaMnO2(LiMnO2), (e) Spinel(LiMn2O4), (f) Holandite(LiFeO2, MnO2), (g) Olivine(LiFePO4), and (h) Ramsdellite(MnO2).

    Fig. 3 Electrode reaction mechanism of lithium batteries. Various types of new battery reactions are proposed for the future lithium battery systems. In the IMLB 2006 meeting in Biarritz, there were many new proposals for new systems using nano-particles, meso-porous materials, and nano-wire materials.

    PresentIntercalationLiCoO2/organic solvent/carbon

    FutureNano porous (lithium cluster)Meso porous

    Nano particle(lithium intercalation and lithium adsorption)Nano wire

    Conventional mechanism(layer, spinel, olivine, alloy, etc)

  • 4

    GS Yuasa Technical Report 2006 7 3 1

    3.3TEM

    3.4XPS

    X in-situ

    4

    4.1 4.1.1

    -NaFeO2 Fig. 2 (c) LiCoO2 LiNi0.8Co0.2O2 LiCoO2 X

    Particle boundary

    Surface

    Local structure

    +R

    -R-R

    -R

    -R-R

    +R

    +R+R

    +R

    cb

    Crystal structure fluctuationStacking faults

    Crystal structure

    Crystal structurefluctuationLong-rangeordering

    Fig. 4Schematic drawing of the structures for electrode materials. Several levels of structures composed of battery materials are indicated : surface, grain-boundary, crystal structures, local structures, and long-range structures. All these structures affect the battery properties.

  • 5

    GS Yuasa Technical Report 2006 7 3 1

    LiNi1/3Co1/3Mn1/3O2

    LiNi0.5Mn0.5O2 3,4)LiNiO2 Ni

    Co, Mn, Ni LiNi0.5Mn0.5O2 LiNi1/3Mn1/3Co1/3O2 (i) LiCoOLiNiO2-NaFeO2Li

    (ii) 2.5- 4.2 V 110- 150 mAh/g LiCoO2

    (iii) Ni2+ Mn4+ XPS Ni3+/Mn3+ Ni2+/Mn4+ Ni2+ Mn4+

    LiCoO2LiNiO2 Ni2+/Ni4+

    (iv) 4.2 V Li0.5 (Ni0.5Mn0.5) O2

    (v) 4.3- 4.7 V 280 mAh/g

    5MnLiNi0.5Mn0.5O2 6)LiNi0.5Mn0.5O2 Li2MnO3 LiCoO2 3+ 4+ 2+ 4+ 4.1.2 4 V LiMn2O45 V LiMn1.5Ni0.5O4 LiMn2O4 Fd3m 8a Li16d Mn16c Fig. 2 (e)XMn Li 4.1.3 LiFePO4 3.5 V 150 mAh/g PO4 Li Fe 6 P 4 Fig. 2 (g)

    0.01

    0.1

    1

    10

    0.1 1 10 100r /

    121086420

    SANS WANS VEGA HIT

    SANS

    WANSVEGA

    HIT

    Local structure

    Crystal structure Nano

    structure

    Surface structure

    Fig. 5 Neutron scattering patterns using various diffractometers, powder diffractometer (VEGA), total scattering (HIT), small angle scattering (SANS), and wide angle scattering (WANS). Each diffractometer measures different d-ranges which provide different structure area of the materials, from local to long range structures.

  • 6

    GS Yuasa Technical Report 2006 7 3 1

    Nb 7) Fe2P 6 8)LiFePO4FePO4 9) 10) 11) 4.2 4.2.1

    12)HEV , 1200 VEGASANS HIT(i) X (Diffax) a c

    (ii) Fig. 6

    (iii) 3

    (iv) Fig. 7 Franklin Conard wave wave

    4.2.2 MnO2 -MnO2 Pannetier 13)XMnO2 14) MnO2 15)Mn

  • 7

    GS Yuasa Technical Report 2006 7 3 1

    10

    100

    1000

    Inte

    nsity

    0.01 0.1 1Q / -1

    C-LiC10.4largeLiC10.4-LiC5constant

    Debye-Buescheparametercorresponds to the size of the scatter(length correlation)

    C-LiC10.4constantLiC10.4-LiC5large

    Peak corresponding to the Bragg reflection

    C LiC10.4 LiC5

    Fig. 6Small angle scattering patterns of the hard carbon. The patterns are composed of Bragg reflections and a scattering from the nano-voids.

    24Lithium intercalationbetween graphite layer

    Lithium insertion into voids

    c = 7.192Lc = 13.8 QO = 1.747 -1

    = 3.19P = 4.00

    c = 7.480QO = 1.680 -1

    = 3.04P = 3.62

    c = 7.656QO = 1.641 -1

    = 3.26P = 3.18

    La = 23.8 First neighbor (C-C)rC-C= 1.418 CNC-C= 3.0Second neighbor (C-C)rC-C= 2.456

    First neighbor (C-C)rC-C= 1.418 CNC-C= 3.0Second neighbor (C-C)rC-C = 2.456

    First neighbor (C-C)rC-C= 1.426 CNC-C= 3.1Second neighbor (C-C)rC-C= 2.469

    First neighbor (C-C)rC-C= 1.433 CNC-C= 2.8Second neighbor (C-C)rC-C= 2.480

    Fig. 7Electrode structure and reaction mechanism of the hard carbon determined by various neutron scatter-ing techniques.

  • 8

    GS Yuasa Technical Report 2006 7 3 1

    MnO2 2 1 1 1 Mn3+ 2Mn3+ MnO2Fig. 8 MnO6 1 1 2 111Mn3+ 4.2.3

    4.3 4.3.1

    (i) 4.3.3

    (ii)

    (iii) (ii)(iii)

    (iv) 4.3.2

    4.3.2MO 16)CoO, NiO, CuO, FeO 1-5 nm 2CoO + Li Li2O + 2Co 700 mAh/g 4.3.3-Fe2O3Fe(CO)5 -Fe2O3 17)1 m-Fe2O3 50 mAh/g 7 nm 230 mAh/g -Fe2O3 Fe3O4 7 nm -Fe2O3

    Mn

    Mn Mn

    Mn Mn

    Mn Mn

    Mn Mn

    Mn

    Mn Mn

    Mn

    Mn MnH

    H H

    HMn

    Mn Mn

    Mn Mn Mn Mn

    Mn

    Mn Mn

    Mn Mn

    Mn Mn

    Mn Mn Mn Mn

    Mn

    Mn

    Mn Mn

    Mn

    Mn Mn

    Mn

    Mn Mn

    Mn

    Mn Mn

    Mn Mn

    Mn

    Mn Mn

    Mn Mn

    HHHH

    HHHH

    HHHH

    (c, d)

    (b)

    (a)

    Fig. 8 Schematic drawing of the MnO2 structure. The stacking faults composed of 11 and 12 tun-nels provide nano-scall voids where two-types of proton exist.

  • 9

    GS Yuasa Technical Report 2006 7 3 1

    4.4

    V2O5, Cr3O818

    ) V2O5 P2O5 19) 19) -MnO2

    MnO2 1.6 mol Li 440 mAh/g 20)1MO2 270 mAh/g 1 21)LiMnO2 Li1.5Na0.5MnO2.85I0.12 1.5 4.2 V Mn 1 Li 1.3 LiMnO2 260 mAh/g 22)4.5 TEM 4.5.1

    LiCoO2 LiNiO2 Li 0.5 LiCoO2 TEMLiNiO2

    LiNi0.5Mn0.5O2 TEM Li Li, Ni, Mn

    P3112 3ahex 3ahex chex 23

    )Ni2+

    Mn4+ Li+ Mn4+ LixCoO2 12 Li2MnO3 Li (Li1/9Ni1/3Mn5/9) O2TEMXISIS 24)TEM4.5.2 LiFePO4 LiFePO4 FePO4 2 Li0.5FePO4 TEMLiFePO4 FePO4 100 nm 11) bc b ac 3 ac

    5

    25)

  • 10

    GS Yuasa Technical Report 2006 7 3 1

    Fig. 9XPSTEMXFig. 105.1XPS

    SEI SEI SEI XPS

    4 nmLiNi0.8Co0.2O2 26) XPS ArEdstrom XPS LiMn2O4 LiNi0.8Co0.2O2LiFePO4 SEI 27)LiMn2O4 LiNi0.8Co0.2O2 LiFePO4 XPS SEI SEI 5.2 TEM LiNi0.8Co0.2O2 TEMLixNi1-xO 2-5 nm 28) 35 nm

    LiNiO2 Li1-x Ni3+/4+ O2 (delithiation)

    Li1-xNi3+/2+O2- (oxygen loss)

    5.3 in-situX 29)Ex-situ in-situ

    Current collector

    Li+ElectrolyteElectrode

    Electrochemicaldouble layere-

    Current

    Fig. 9Electrochemical reactions at the interface between electrode and electrolyte. The electrode re-action at the electrochemical double layer is a rate determining step for the total battery reactions.

    Electrode surface

    Electrolyte

    SEI layer

    Surface analysis methods: XPS and so on

    Surface observation methods:

    AFM,STM and so on

    Surface analysis methods:

    TEM, Surface reflection

    A few-several tens nm

    A few nm

    A few mInside of electrode:Crystal structure,Local structure analysis

    Fig. 10Schematic drawing of the electrode sur-face and its characterization methods.

  • 11

    GS Yuasa Technical Report 2006 7 3 1

    6

    Science Nature JPARC

    1) J. M-. Tarascon and M. Armand, Nature , 414, 359 (2001).

    2) S. Whittingham, Science, 192, 1226 (1976). 3) T. Ohzuku and Y. Makimura, Chem. Lett ., 744

    (2001). 4) N. Yabuuchi and T. Ohzuku, J. Power Sources ,

    119-121, 171 (2003). 5) K. Ngala, N. A. Chernova, M. Ma, M. Mamak, P. Y.

    Zavalij, and M. S Whittingham, J. Mater. Chem., 14, 214 (2004).

    6) K. Kang, Y. S. Meng, J. Breger, C. P. Grey, and G. Ceder, Science, 311, 17 (2006).

    7) S. Chung, J. T. Bloking, and Y. Chiang, Nature Mater ., 1, 123 (2002).

    8) J. Maier, IMLB 2006, Abs. 227. 9) C. Delacourt, P. Poizot, J. M. Tarascon, C. Mas-

    quelier, Nature Mater ., 4, 254 (2005).10) A. Yamada, H. Koizumi, S. Nishimura, N. Sonoya-

    ma, R. Kanno, M. Yonemura, T. Nakamura, and Y. Kobayashi, Nature Mater ., 5, 357 (2006).

    11) G. Chen, X. Song, and T. J. Richardson, Electro-chem. Solid-State Lett ., 9, A295 (2006).

    12) M. Nagao, C. Pitteloud, T. Kamiyama, T. Otomo,. K. Itoh, T. Fukunaga, K. Tatsumi, and R. Kanno, J. Electrochem.Soc ., 153, A914, (2006).

    13) J. Pannetier, et al., Prog. Solid St. Chem ., 23, 1(1995)

    14) M. M. J. Treacy, et al., Proc. Roy. Soc., Lond , A433, 499 (1991)

    15) M. Nagao, C. Pitteloud, T. Kamiyama, T. Otomo, K. Itoh, T. Fukunaga, and R. Kanno, J. Electro-chem. Soc ., 152, E230 (2005).

    16) P. Poizot, S. Laruelie, S. Grugeon, L. Dupont, and J. -M. Tarascon, Nature , 407, 496, (2000).

    17) S. Kanzaki, T. Inada, T. Matsumura, N. Sonoya-ma, A. Yamada, M. Takano, and R. Kanno, J. Power Sources , 146, 323 (2005).

    18) Y. Takeda, R. Kanno, Y. Oyabe, O. Yamamoto, K. Nobugaya, and F. Kanamaru, J. Power Sources , 14, 215-221 (1985).

    19) S. Tobishima, K. Hayashi, K. Saito, Y. Nemoto, and J. Yamaki, Denki Kagaku (presently Electro-chemistry), 64, 1000 (1996).

    20) B. B. Owens, W. H. Smyrl, and J. J. Xu, J. Power Sources , 81-82, 150 (1999).

    21) J. J. Xu, A. J. Kinser, B. B. Owens, and W. H. Smyrl, Electrochem. Solid-State Lett ., 1 (1) 1-3 (1998).

    22) J. Kim and A. Manthiram, Nature, 390, 265 (1997). 23) Y. S. Meng, G. Ceder, C. P. Grey, W. -S. Yoon,

    and Y. Shao-Horn, Electochem. Solid-State Lett ., 7, A155 (2004).

    24) J. Breger, N. Dupre, P. J. Chupas, C. S. Johnson, Th. Proffen, K. Kan, and G. Ceder, C. P. Grey, IMLB 2006, Abs.29.

    25) Z. Ogumi, GS Yuasa Technical Report , 1 (1), 5 (2004).

    26) A. M. Andersson, D. P. Abraham, R. Haasch, S. MacLaren, J. Liu, and K. Amine, J. Electrochem. Soc ., 149, A1358 (2002).

    27) K. Edstrom, T. Bustafsson, and J. O. Thomas, Electrochimica Acta , 50, 397 (2004).

    28) D. P. Abraham, R.D. Twesten, M. Balasubrama-nian, I. Petrov, J. McBreen, and K. Amine, Elec-trochemistry Communications , 4, 620 (2002).

    29) R. Kanno, et al. IMLB 2006 , Abs.354, Abs.369, Abs.26, Abs. 62.