가속기 개발 현황 제 3 회 한국 국제선형가속기 워크숍 (the third korean ilc...

16
가가가 가가 가가 가가가 가가 가가 3 3 가 가가 가가가가가가가 가가가 가 가가 가가가가가가가 가가가 (The Third Korean ILC Workshop) (The Third Korean ILC Workshop) 가가가가가 가가가가가 2005 2005 4 4 1 1 -4 -4 2 2 ILC-Korea Task Force Team ILC-Korea Task Force Team PAL/POSTECH PAL/POSTECH 1. ILC-Korea and International Collaboration 2. Modulator R&D

Upload: louisa-wright

Post on 30-Dec-2015

223 views

Category:

Documents


7 download

TRANSCRIPT

Page 1: 가속기 개발 현황 제 3 회 한국 국제선형가속기 워크숍 (The Third Korean ILC Workshop) 건국대학교 2005 년 4 월 1 일 -4 월 2 일 ILC-Korea Task Force Team

가속기 개발 현황가속기 개발 현황

제제 33 회 한국 국제선형가속기 워크숍회 한국 국제선형가속기 워크숍(The Third Korean ILC Workshop)(The Third Korean ILC Workshop)

건국대학교건국대학교20052005 년 년 44 월 월 11 일일 -4-4 월 월 22 일일

ILC-Korea Task Force TeamILC-Korea Task Force TeamPAL/POSTECHPAL/POSTECH

1. ILC-Korea and International Collaboration2. Modulator R&D

Page 2: 가속기 개발 현황 제 3 회 한국 국제선형가속기 워크숍 (The Third Korean ILC Workshop) 건국대학교 2005 년 4 월 1 일 -4 월 2 일 ILC-Korea Task Force Team

1. ILC-Korea and 1. ILC-Korea and International CollaborationInternational Collaboration

ILC-Korea Task Force Team, PAL/POSTECHILC-Korea Task Force Team, PAL/POSTECH

H. Matsumoto, KEKH. Matsumoto, KEK

Page 3: 가속기 개발 현황 제 3 회 한국 국제선형가속기 워크숍 (The Third Korean ILC Workshop) 건국대학교 2005 년 4 월 1 일 -4 월 2 일 ILC-Korea Task Force Team

ILC-Korea Task Force Team at PALILC-Korea Task Force Team at PAL

TFT Head: W. NamkungTFT Head: W. Namkung

WG1: J. Choi, M.H.ChoWG1: J. Choi, M.H.Cho

WG2: J.S.Oh, W.H.HwangWG2: J.S.Oh, W.H.Hwang

WG3: S.J.Park, E.S.KimWG3: S.J.Park, E.S.Kim

WG4: J.Y.Huang, H.S.LeeWG4: J.Y.Huang, H.S.Lee

WG5: S.H.Kim, Y.U.SonWG5: S.H.Kim, Y.U.Son

Page 4: 가속기 개발 현황 제 3 회 한국 국제선형가속기 워크숍 (The Third Korean ILC Workshop) 건국대학교 2005 년 4 월 1 일 -4 월 2 일 ILC-Korea Task Force Team

- Diagnostics (J. Y. Huang)

- Damping Ring (E. S. Kim)

- Injector, MBK Development (J. S. Park)

- Klystron Power Supply (J. S. Oh)

- RF Power Distribution (W. H. Hwang)

- Beam Dump (H. S. Lee)

- Superconducting Cavity (Y. U. Son)

Possible PAL ContributionsPossible PAL Contributions

Page 5: 가속기 개발 현황 제 3 회 한국 국제선형가속기 워크숍 (The Third Korean ILC Workshop) 건국대학교 2005 년 4 월 1 일 -4 월 2 일 ILC-Korea Task Force Team

Collaboration with PAL/POSTECHCollaboration with PAL/POSTECH

1989: Prof. Won Namkung (PAL) visit KEK to investigate high power klystron for 2-GeV injector linac. We started to collaborate for linac technologies.

1994: Prof. Moo-Hyun Cho (PAL) introduce us a new modulator technology, which use an inverter power supply for the PFN charging. (compact: 48cm x 35cm x 65 cm, stable: +/-0.1%)

1996~1997: Dr. Jong-Seok Oh (PAL) developed a first new klystron modulator (smart modulator No.1) using inverter power supply for the C-band 50-MW klystron. (compact: 1.5m x 2m x 1.2m, low EMI, cost reduction)

2002~2003: We (KEK/RIKEN/PAL) developed second smart modulator, which is oil filled closed metal case. (compact: 1.5m x 1m x 1m, low EMI, low cost)

2003~2004: Shanghai light source group accepted the concept of smart modulator No.1, and made it their self.

We are going to collaborate each other for the modulator and brazing technologies as a starting period.

H. Matsumoto, KEK

Page 6: 가속기 개발 현황 제 3 회 한국 국제선형가속기 워크숍 (The Third Korean ILC Workshop) 건국대학교 2005 년 4 월 1 일 -4 월 2 일 ILC-Korea Task Force Team

Collaboration with Asian Area for ILC 45 MV/m Collaboration with Asian Area for ILC 45 MV/m

Possible items are;

1) Power modulator

We have developed the first smart modulator with PAL/POSTECH in 1997 at KEK. In 2003, this modulator concept was accepted in China for the Shanghai light source. They fabricated it there themselves, and it was tested in May 2004. Also, RIKEN developed an oil-filled closed type modulator, which was evolved from first modulator.

We would like to develop the new power modulator, which realize the electric circuit simple, compact size and low cost.

2) Input coupler very urgent work

It was just started to develop the new coupler, which meet an aim of the high gradient acceleration at 45 MV/m. One of key technologies are materials and brazing.

We would like to realize structure simple, good reliability and low cost.

3) Waveguide components

It was just started only a paper work. So far, waveguide use natural air with atmosphere pressure, which seems to be not enough margin at 5-MW peak rf power and 1-msec pulse width. We would like to develop vacuum type waveguide components, especially circulator.

H. Matsumoto, KEK

Page 7: 가속기 개발 현황 제 3 회 한국 국제선형가속기 워크숍 (The Third Korean ILC Workshop) 건국대학교 2005 년 4 월 1 일 -4 월 2 일 ILC-Korea Task Force Team

2. ILC Modulator R&D2. ILC Modulator R&D

J. S. Oh, W. Namkung, PAL/POSTECHJ. S. Oh, W. Namkung, PAL/POSTECH

H. Matsumoto, KEKH. Matsumoto, KEK

Page 8: 가속기 개발 현황 제 3 회 한국 국제선형가속기 워크숍 (The Third Korean ILC Workshop) 건국대학교 2005 년 4 월 1 일 -4 월 2 일 ILC-Korea Task Force Team

TESLA 500/800 RF Requirements

Page 9: 가속기 개발 현황 제 3 회 한국 국제선형가속기 워크숍 (The Third Korean ILC Workshop) 건국대학교 2005 년 4 월 1 일 -4 월 2 일 ILC-Korea Task Force Team

TESLA Energy Upgrade

TESLA800

606 RF Unit2 Modulator/Unit2 Klystron/Unit3 Cryomodule/Unit

Total1,212 Modulators1,212 Klystrons1,818 Cryomodules

TESLA500

572 RF Unit 1 Modulator/Unit1 Klystron/Unit3 Cryomodule/Unit

Total572 Modulators572 Klystrons1,716 Cryomodules

TESLA1000

606 RF Unit3 Modulator/Unit3 Klystron/Unit3 Cryomodule/Unit

Total1,818 Modulators1,818 Klystrons1,818 Cryomodules

Page 10: 가속기 개발 현황 제 3 회 한국 국제선형가속기 워크숍 (The Third Korean ILC Workshop) 건국대학교 2005 년 4 월 1 일 -4 월 2 일 ILC-Korea Task Force Team

Power Supply for 10 MW Klystron

Klystron Gun Voltage 115 (120) kV

Klystron Gun Current 130 (140) A

HV Pulse Width (70% to 70%) < 1.7 (1.7) ms

HV Rise and Fall Time (0 to 90%) <0.2 (0.2) ms

HV Flat Top 1.37 (1.5) ms

Pulse Flatness during Flat Top < ±0.5 (±0.5)%

Pulse-to-Pulse Voltage Fluctuation < ±0.5 (±0.5)%

Maximum Energy Deposit of Gun Spark < 20 (20) J

Pulse Repetition Rate 5 (10) Hz

Transformer Turn Ration 1:12

Filament Voltage 9 (11) V

Filament Current 50 (60) A

Page 11: 가속기 개발 현황 제 3 회 한국 국제선형가속기 워크숍 (The Third Korean ILC Workshop) 건국대학교 2005 년 4 월 1 일 -4 월 2 일 ILC-Korea Task Force Team

Principle of TESLA Modulator

• Pulse cable : 4 parallel, 6.45 Ohm, max. ~2.8 kmPulse cable : 4 parallel, 6.45 Ohm, max. ~2.8 km

• Pulser unit : 2.8m(L) x 1.6m(W) x 2.0 m(H)Pulser unit : 2.8m(L) x 1.6m(W) x 2.0 m(H)

• Pulse transformer tank : 2m(L) x 1.2m(W) x 1.4m(H), Pulse transformer tank : 2m(L) x 1.2m(W) x 1.4m(H), 6.5 ton!6.5 ton!

Page 12: 가속기 개발 현황 제 3 회 한국 국제선형가속기 워크숍 (The Third Korean ILC Workshop) 건국대학교 2005 년 4 월 1 일 -4 월 2 일 ILC-Korea Task Force Team

New Magnetic Material is available!

FINEMETTM : Nano-crystalline Fe-based Soft Magnetic Material with High Saturation Flux Density and Low Core Loss

Page 13: 가속기 개발 현황 제 3 회 한국 국제선형가속기 워크숍 (The Third Korean ILC Workshop) 건국대학교 2005 년 4 월 1 일 -4 월 2 일 ILC-Korea Task Force Team

What is FINEMET?

The precursor of FINEMET is amorphous ribbon (non-crystalline) obtained by rapid quenching at one million °C/second from the molten metal consisting of Fe, Si, B and small amounts of Cu and Nb. These crystallized alloys have grains which are extremely uniform and small, “about ten nanometers in size”. Amorphous metals which contain certain alloy elements show superior soft magnetic properties through crystallization.

It was commonly known that the characteristics of soft magnetic materials are “larger crystal grains yield better soft magnetic properties”. Contrary to this common belief, soft magnetic material consisting of a small, “nano-order”, crystal grains have excellent soft magnetic properties.

Page 14: 가속기 개발 현황 제 3 회 한국 국제선형가속기 워크숍 (The Third Korean ILC Workshop) 건국대학교 2005 년 4 월 1 일 -4 월 2 일 ILC-Korea Task Force Team

Crystallization Process of FINEMET

Amorphous metal as a starting point, Amorphous Cu-rich area the nucleation of bcc Fe from Cu bcc Fe(-Si) shows the crystallization process. At the final stage of this crystallization process, the grain growth is suppressed by the stabilized remaining amorphous phase at the grain boundaries. This stabilization occurs because the crystallization temperature of the remaining amorphous phase rises and it becomes more stable through the enrichment of Nb and B.

Synergistic effects of Cu addition, “which causes the nucleation of bcc Fe” and Nb addition, “which suppresses the grain growth” creates a uniform and very fine nano-crystalline microstructure.

Page 15: 가속기 개발 현황 제 3 회 한국 국제선형가속기 워크숍 (The Third Korean ILC Workshop) 건국대학교 2005 년 4 월 1 일 -4 월 2 일 ILC-Korea Task Force Team

Features of FINEMET

1) 1) Satisfy both high saturation magnetic flux density and high permeabilitySatisfy both high saturation magnetic flux density and high permeability

High saturation magnetic flux density comparable to Fe-based amorphous metal. High pHigh saturation magnetic flux density comparable to Fe-based amorphous metal. High permeability com-parable to Co-based amorphous metal.ermeability com-parable to Co-based amorphous metal.

2) 2) Low core lossLow core loss

1/5th the core loss of Fe based amorphous metal and approximately the same core loss 1/5th the core loss of Fe based amorphous metal and approximately the same core loss as Co-based amorphous metal.as Co-based amorphous metal.

3) 3) Low magnetostrictionLow magnetostriction

Less affected by mechanical stress. Very low audio noise emission.Less affected by mechanical stress. Very low audio noise emission.

4) Excellent temperature characteristics and small aging effects4) Excellent temperature characteristics and small aging effects

Small permeability variation (less than Small permeability variation (less than 10%) at a temperature range of -50 10%) at a temperature range of -50 C~150 C~150 C. C. Unlike Co-based amorphous metals, aging effects are very small.Unlike Co-based amorphous metals, aging effects are very small.

5) Excellent high frequency characteristics5) Excellent high frequency characteristics

High permeability and low core loss over wide frequency range, which is equivalent to CHigh permeability and low core loss over wide frequency range, which is equivalent to Co-based amorphous metal.o-based amorphous metal.

6) Flexibility to control magnetic properties “B-H curve shape” during annealing6) Flexibility to control magnetic properties “B-H curve shape” during annealing

Three types of B-H curve squareness, high, middle and low remanence ratio, correspondThree types of B-H curve squareness, high, middle and low remanence ratio, corresponding to various applicationsing to various applications

Page 16: 가속기 개발 현황 제 3 회 한국 국제선형가속기 워크숍 (The Third Korean ILC Workshop) 건국대학교 2005 년 4 월 1 일 -4 월 2 일 ILC-Korea Task Force Team

1. Efficiency improvement

2. Pulse transformer with new materials

3. Cost reduction

4. New switching devices

5. New designs

6. Charging supply technology

7. Power distribution

8. Standardization

Modulator R&D items