фракталы в природе

15
Фракталы в природе Что общего у дерева, берега моря, облака или кровеносных сосудов у нас в руке? Существует одно свойство структуры, присущее всем перечисленным предметам: они самоподобны. От ветки, как и от ствола дерева, отходят отростки поменьше, от них — еще меньшие, и т. д., то есть ветка подобна всему дереву. Похожим образом устроена и кровеносная система: от артерий отходят артериолы, а от них — мельчайшие капилляры, по которым кислород поступает в органы и ткани. Посмотрим на космические снимки морского побережья: мы увидим заливы и полуострова; взглянем на него же, но с высоты птичьего полета: нам будут видны бухты и мысы; теперь представим себе, что мы стоим на пляже и смотрим себе под ноги: всегда найдутся камешки, которые дальше выдаются в воду, чем остальные. То есть береговая линия при увеличении масштаба остается похожей на саму себя. Это свойство объектов американский (правда, выросший во Франции) математик Бенуа Мандельброт назвал фрактальностью, а сами такие объекты — фракталами (от латинского fractus — изломанный).

Upload: geralte6

Post on 20-Jul-2015

847 views

Category:

Documents


2 download

TRANSCRIPT

Фракталы в природе

• Что общего у дерева, берега моря, облака или кровеносных сосудов у нас в руке? Существует одно свойство структуры, присущее всем перечисленным предметам: они самоподобны. От ветки, как и от ствола дерева, отходят отростки поменьше, от них — еще меньшие, и т. д., то есть ветка подобна всему дереву. Похожим образом устроена и кровеносная система: от артерий отходят артериолы, а от них —мельчайшие капилляры, по которым кислород поступает в органы и ткани. Посмотрим на космические снимки морского побережья: мы увидим заливы и полуострова; взглянем на него же, но с высоты птичьего полета: нам будут видны бухты и мысы; теперь представим себе, что мы стоим на пляже и смотрим себе под ноги: всегда найдутся камешки, которые дальше выдаются в воду, чем остальные. То есть береговая линия при увеличении масштаба остается похожей на саму себя. Это свойство объектов американский (правда, выросший во Франции) математик Бенуа Мандельброт назвал фрактальностью, а сами такие объекты — фракталами (от латинского fractus — изломанный).

• С береговой линией, а точнее, с попыткой измерить ее длину, связана одна интересная история, которая легла в основу научной статьи Мандельброта, а также описана в его книге «Фрактальная геометрия природы». Речь идет об эксперименте, который поставил Льюис Ричардсон (Lewis Fry Richardson) — весьма талантливый и эксцентричный математик, физик и метеоролог. Одним из направлений его исследований была попытка найти математическое описание причин и вероятности возникновения вооруженного конфликта между двумя странами. В числе параметров, которые он учитывал, была протяженность общей границы двух враждующих стран. Когда он собирал данные для численных экспериментов, то обнаружил, что в разных источниках данные об общей границе Испании и Португалии сильно отличаются. Это натолкнуло его на следующее открытие: длина границ страны зависит от линейки, которой мы их измеряем. Чем меньше масштаб, тем длиннее получается граница. Это происходит из-за того, что при большем увеличении становится возможным учитывать всё новые и новые изгибы берега, которые раньше игнорировались из-за грубости измерений. И если при каждом увеличении масштаба будут открываться ранее не учтенные изгибы линий, то получится, что длина границ бесконечна! Правда, на самом деле этого не происходит — у точности наших измерений есть конечный предел. Этот парадокс называется эффектом Ричардсона (Richardson effect).

• В наши дни теория фракталов находит широкое применение в различных областях человеческой деятельности. Помимо фрактальной живописи фракталы используются в теории информации для сжатия графических данных (здесь в основном применяется свойство самоподобия фракталов — ведь чтобы запомнить небольшой фрагмент рисунка и преобразования, с помощью которых можно получить остальные части, требуется гораздо меньше памяти, чем для хранения всего файла). Добавляя в формулы, задающие фрактал, случайные возмущения, можно получить стохастические фракталы, которые весьма правдоподобно передают некоторые реальные объекты —элементы рельефа, поверхность водоемов, некоторые растения, что с успехом применяется в физике, географии и компьютерной графике для достижения большего сходства моделируемых предметов с настоящими. В радиоэлектронике в последнее десятилетие начали выпускать антенны, имеющие фрактальную форму. Занимая мало места, они обеспечивают вполне качественный прием сигнала. А экономисты используют фракталы для описания кривых колебания курсов валют (это свойство было открыто Мандельбротом более 30 лет назад).

• Фракталы в экономике

• Теория фракталов, как наиболее естественный подход к исследованию рыночной динамики

• Современная экономическая теория давно доказала несостоятельность и неадекватность традиционных линейных моделей поведения рынков. Практика показывает, что динамика экономических процессов и явлений носит нелинейный и, зачастую, хаотичный (непредсказуемый) характер. Это обуславливает необходимость поиска альтернативных методов моделирования с применением нестандартных математических аппаратов. На сегодняшний день существует достаточно много направлений в данной сфере экономико-математической науки. При анализе социально-экономических процессов все чаще применяются такие математические средства, как нечеткие методы, нейронные сети, генетические алгоритмы и т.п. Однако при анализе рыночной динамики ни один из этих методов не может учесть такое свойство рынка, как самоорганизация. Данную проблему, в определенной мере, позволяет решить теория фракталов.

• Само понятие фрактал, предложенное Б. Мандельбротом, в наиболее общем смысле обозначает нерегулярную, самоподобную структуру *2,61+. Другими словами – это множество, подмножества и элементы которого подобны самому множеству, но в другом масштабе, что определяет свойство масштабной инвариантности фракталов. Классическим примером фрактала является дерево, в котором от каждой предыдущей ветки (начиная со ствола) отходят две аналогичные, но меньшего размера. При этом если размер каждой новой ветки определять не детерминированными, а стохастическими законами, то полученное изображение будет максимально похоже на настоящее дерево.

• Использование математического аппарата теории фракталов открывает новые возможности в моделировании рыночных процессов. Ключевым моментом, способствующим этому, является саморазвитие фрактала. Данное свойство характеризует фрактал, как математический объект, наиболее соответствующий системной природе социальных и экономических процессов, протекающих в условиях нелинейной динамики множества факторов внешней и внутренней сред *3+.

Очередной фрактал.

• В реальном мире чистых, упорядоченных фракталов, как правило, не существует, и можно говорить лишь о фрактальных явлениях. Их следует рассматривать только как модели, которые приближенно являются фракталами в статистическом смысле. Однако грамотно построенная статистическая фрактальная модель позволяет получить достаточно точные и адекватные прогнозы

• Фракталы в медицине

• Поверхности нормальных и раковых клеток — фракталы разной размерности

• Рис. 1. (a), (b) Топография поверхности раковых (cancerous) и нормальных (normal) клеток, полученная при помощи атомно-силового микроскопа. Цвет участка поверхности задает высоту его расположения над нулевым уровнем.