Всеукраинская конференция с международным участием...

168
POLYMERIC MATERIALS WITH CONTROLLABLE STRUCTURE BASED ON POLYSTYRENE AND MULTIWALLED CARBON NANOTUBES POLYMERIC MATERIALS WITH CONTROLLABLE STRUCTURE BASED ON POLYSTYRENE AND MULTIWALLED CARBON NANOTUBES ACTUAL PROBLEMS OF CHEMISTRY AND PHYSICS OF SURFACE May 11–13 2011 Kyiv Ukraine Bolbukh Y. 1 , Gunko G. 1 , Prikhod’ko G. 1 , Tertykh V. 1 , Maciejewska M. 2 , Gawdzik B. 2 , Skubiszewska-Zieba J. 2 Bolbukh Y. 1 , Gunko G. 1 , Prikhod’ko G. 1 , Tertykh V. 1 , Maciejewska M. 2 , Gawdzik B. 2 , Skubiszewska-Zieba J. 2 1 Chuiko Institute of Surface Chemistry of NAS Ukraine, 17 General Naumov Str., Kyiv 03164; e-mail: [email protected] 2 Maria Curie-Sklodowska University, Lublin, Poland Composites with nanofibers oriented in the proper way are of a great interest. In our opinion, it is possible to form such oriented structures inside of polymer using CNTs as filler. For solving of this task different approaches could be applied, in particular with using of the magnetostatic field. But the inherent insolubility in the most organic and aqueous solvents, poor chemical compatibility and tendency to aggregation that leads to nonuniform spatial distribution of CNTs in the organic matrix are the major limitation to the processability of these structures, greatly hindering the wide application of carbon nanotubes in the polymeric composites. Dispersability of nanotubes in the polymer is enhanced significantly after covalent or noncovalent functionalization that can improve their compatibility. This presentation is directed to investigation of the structures features of the filled with MWCNTs polymeric composites which were obtained without and under influence of the magnetostatic field by DSC methods and hardness measurements. Hardness of the polystyrene films was measured at the applied load of 28.55 kPa. Objects: 1. Purified MWCNTs The MWCNTs used in this study were synthesized by pyrolysis of propylene on ferric catalyst and purified by mix of HCl and HF for removing the residual catalyst and amorphous carbon with following washing from acids by water. 2. Oxidised MWCNTs MWCNTs were dispersed in water. and then the hydrogen peroxide was added to suspension. Mixture was heating at 80 °C under stirring for 47 h. The concentration of H2O2 was 30%. The solid was filtered under vacuum and dried at 150 °C obtaining the oxidized nanotubes 3. Polymer composites The composites were obtained by mixing of purified or oxidized MWCNTs with toluene solution of polystyrene. The surface treating of MWCNTs was performed with hydrochloric acid, liquid ammonia, and vinyltrialkoxysilane (a noncovalent and a covalent attaching) as additives. The introducing of the filler into the polymer was performed via ultrasonic dispersion of MWCNTs in polystyrene solution in toluene during 10 minutes. Then the mixtures were formed in films on glass plates orientated parallel or normal to the magnetic line of constant magnet with average induction 0.039 Tesla. The filling degree of composites obtained was 0.1 wt%. Objects: 1. Purified MWCNTs The MWCNTs used in this study were synthesized by pyrolysis of propylene on ferric catalyst and purified by mix of HCl and HF for removing the residual catalyst and amorphous carbon with following washing from acids by water. 2. Oxidised MWCNTs MWCNTs were dispersed in water. and then the hydrogen peroxide was added to suspension. Mixture was heating at 80 °C under stirring for 47 h. The concentration of H2O2 was 30%. The solid was filtered under vacuum and dried at 150 °C obtaining the oxidized nanotubes 3. Polymer composites The composites were obtained by mixing of purified or oxidized MWCNTs with toluene solution of polystyrene. The surface treating of MWCNTs was performed with hydrochloric acid, liquid ammonia, and vinyltrialkoxysilane (a noncovalent and a covalent attaching) as additives. The introducing of the filler into the polymer was performed via ultrasonic dispersion of MWCNTs in polystyrene solution in toluene during 10 minutes. Then the mixtures were formed in films on glass plates orientated parallel or normal to the magnetic line of constant magnet with average induction 0.039 Tesla. The filling degree of composites obtained was 0.1 wt%. Sample description 1 Polystyrene (polySt) 2 polySt / purified MWCNTs 3 polySt /MWCNTs, magnetostatic field directed in parallel to the film plane. 5 polySt /purified MWCNTs magnetostatic field directed vertically to the film plane. 6 polySt/oxidized MWCNTs 7 polySt/oxidized MWCNTs, magnetostatic field directed in parallel to the film plane. 8 polySt filled with oxidized MWCNTs. Composite obtained under influence of the magnetostatic field directed vertically to the film plane. 9 polySt filled with purified MWCNTs treated with HCl 10 polySt filled with purified MWCNTs and treated with HCl. magnetostatic field directed in parallel to the film plane. 11 polySt filled with purified MWCNTs and treated with HCl. magnetostatic field directed vertically to the film plane. 13 polySt filled with oxidized MWCNTs and treated with HCl. 14 polySt filled with oxidized MWCNTs and treated with HCl. magnetostatic field directed in parallel to the film plane. 15 polySt filled with oxidized MWCNTs and treated with HCl. magnetostatic field directed vertically to the film plane. 16 polySt filled with purified MWCNTs and treated with NH 4 OH. 17 polySt filled with purified MWCNTs and treated with NH 4 OH. magnetostatic field directed in parallel to the film plane. 18 polySt filled with purified MWCNTs and treated with NH 4 OH. magnetostatic field directed vertically to the film plane. 19 polySt filled with oxidized MWCNTs and treated with NH 4 OH 20 polySt filled with oxidized MWCNTs and treated with NH 4 OH. magnetostatic field directed in parallel to the film plane. 21 polySt filled with oxidized MWCNTs and treated with NH 4 OH. magnetostatic field directed vertically to the film plane. 22 polySt filled with purified MWCNTs and treated with vinylalkoxysilane. 23 polySt filled with purified MWCNTs and treated with vinylalkoxysilane. magnetostatic field directed in parallel to the film plane. 24 polySt filled with purified MWCNTs and treated with vinylalkoxysilane. magnetostatic field directed vertically to the film plane. 25 polySt filled with oxidized MWCNTs and treated with vinylalkoxysilane. 26 polySt filled with oxidized MWCNTs and treated with vinylalkoxysilane. magnetostatic field directed in parallel to the film plane. 27 polySt filled with oxidized MWCNTs and treated with vinylalkoxysilane. magnetostatic field directed vertically to the film plane. 28 polySt filled with oxidized MWCNTs and covalently modified with vinylalkoxysilane. 29 polySt filled with oxidized MWCNTs and covalently modified with vinylalkoxysilane. magnetostatic field directed in parallel to the film plane. 30 polySt filled with oxidized MWCNTs and covalently modified with vinylalkoxysilane. magnetostatic field directed vertically to the film plane. -0,35 -0,33 -0,31 -0,29 -0,27 -0,25 -0,23 -0,21 -0,19 -0,17 -0,15 30 70 110 150 190 230 270 Temperature ( o C) DSC/(mW/mg) 1 2 3 5 55 75 185 170 -0,35 -0,3 -0,25 -0,2 -0,15 -0,1 30 70 110 150 190 230 270 Temperature ( o C) DSC/(mW/mg) 6 7 8 71 170 160 50 -0,4 -0,35 -0,3 -0,25 -0,2 -0,15 -0,1 30 70 110 150 190 230 270 Temperature ( o C) DSC/(mW/mg) 9 10 11 71 157 39 100 206 193 -0,34 -0,3 -0,26 -0,22 -0,18 30 70 110 150 190 230 270 Temperature ( o C) DSC/(mW/mg) 19 20 21 76 165 104 189 218 45 129 90 -0,4 -0,36 -0,32 -0,28 -0,24 -0,2 30 70 110 150 190 230 270 Temperature ( o C) DSC/(mW/mg) 13 14 15 70 159 85 94 210 -0,4 -0,36 -0,32 -0,28 -0,24 -0,2 -0,16 30 70 110 150 190 230 270 Temperature ( o C) DSC/(mW/mg) 16 17 18 77 154 96 172 217 89 70 80 90 100 110 120 130 140 150 MWCNTs purified MWCNTs oxidised MWCNTs purified (HCl) MWCNTs oxidised (HCl) MWCNTs purified (NH4OH) MWCNTs oxidised (NH4OH) 1 2 3 Hardness (MPa) polySt 60 70 80 90 100 110 120 130 140 Hardness (MPa) CNTpure(vinyl.Phys ) CNToxi(vinyl.Phys) CNToxi(vinyl.Chem) 1 2 3 polySt -0,42 -0,32 -0,22 -0,12 -0,02 0,08 35 85 135 185 235 285 Temperature ( o C) DSC (mW/mg) 22 23 24 61 243 190 170 227 260 274 -2,2 -1,8 -1,4 -1 -0,6 -0,2 0,2 0,6 1 300 350 400 450 Temperature ( o C) DSC (mW/mg) 22 23 24 396 420 401 428 -0,4 -0,35 -0,3 -0,25 -0,2 -0,15 -0,1 -0,05 35 85 135 185 235 285 Temperature ( o C) DSC (mW/mg) 25 26 27 59 172 170 239 190 274 65 180 174 218 -0,85 -0,65 -0,45 -0,25 -0,05 0,15 0,35 0,55 300 350 400 450 Temperature ( o C) DSC (mW/mg) 25 26 27 326 415 448 400 392 -0,42 -0,37 -0,32 -0,27 -0,22 -0,17 -0,12 30 80 130 180 230 280 Temperature ( o C) DSC (mW/mg) 1 28 29 30 75 96 181 166 -4,5 -3,5 -2,5 -1,5 -0,5 0,5 300 350 400 450 500 Temperature ( o C) DSC (mW/mg) 1 28 29 30 424 Hardness values of the filled with MWCNTs polystyrene composites which were obtained without (1) and under influence (2, 3) of the magnetostatic field directed in parallel (2) or vertically (3) to the film plane Hardness values of the filled with MWCNTs polystyrene composites which were obtained without (1) and under influence (2, 3) of the magnetostatic field directed in parallel (2) or vertically (3) to the film plane DSC analysis DSC analysis Carbon nanotubes pre-treatment with NH4OH was found to result in an increase of the composite hardness. Treatment of MWCNTs with HCl provides the material flexibility with sensitivity to influence of the magnetostatic field. Introducing nanotubes modified with vinyltriethoxysilane leads to increase both the hardness and the thermal resistance of the filled polymeric composite. The degradation enthalpy of this composite is 757 J/g that exceeds enthalpy of another samples studied. Carbon nanotubes pre-treatment with NH4OH was found to result in an increase of the composite hardness. Treatment of MWCNTs with HCl provides the material flexibility with sensitivity to influence of the magnetostatic field. Introducing nanotubes modified with vinyltriethoxysilane leads to increase both the hardness and the thermal resistance of the filled polymeric composite. The degradation enthalpy of this composite is 757 J/g that exceeds enthalpy of another samples studied. This work was partly supported by FP7 Marie Curie Actions People Project “Hybrid nanocomposites and their applications - Compositum”, Grant Agreement Number PIRSES-GA- 2008-230790. This work was partly supported by FP7 Marie Curie Actions People Project “Hybrid nanocomposites and their applications - Compositum”, Grant Agreement Number PIRSES-GA- 2008-230790.

Upload: olfb

Post on 16-Dec-2015

68 views

Category:

Documents


14 download

DESCRIPTION

Всеукраинская конференцияс международным участием,посвященная 25-летиюИнститута химии поверхностиим. А.А. Чуйко НАН Украины "АКТУАЛЬНЫЕ ПРОБЛЕМЫХИМИИ И ФИЗИКИПОВЕРХНОСТИ"2011 год стендовые доклады

TRANSCRIPT

  • POLYMERIC MATERIALS WITH CONTROLLABLE STRUCTURE BASED ON POLYSTYRENE AND

    MULTIWALLED CARBON NANOTUBES

    POLYMERIC MATERIALS WITH CONTROLLABLE STRUCTURE BASED ON POLYSTYRENE AND

    MULTIWALLED CARBON NANOTUBES

    ACTUAL PROBLEMS OF CHEMISTRY AND PHYSICS OF SURFACE May 1113 2011 Kyiv Ukraine

    Bolbukh Y.1, Gunko G.1, Prikhodko G.1, Tertykh V.1, Maciejewska M.2, Gawdzik B.2, Skubiszewska-Zieba J.2

    Bolbukh Y.1, Gunko G.1, Prikhodko G.1, Tertykh V.1, Maciejewska M.2, Gawdzik B.2, Skubiszewska-Zieba J.2

    1Chuiko Institute of Surface Chemistry of NAS Ukraine, 17 General Naumov Str., Kyiv 03164; e-mail: [email protected]

    2 Maria Curie-Sklodowska University, Lublin, PolandComposites with nanofibers oriented in the proper way are of a great interest. In our opinion, it is possible to form such oriented structures inside of polymer using CNTs as filler. For solving of this task different approaches could be applied, in particular with using of the magnetostatic field. But the inherent insolubility in the most organic and aqueous solvents, poor chemical compatibility and tendency to aggregation that leads to nonuniform spatial distribution of CNTs in the organic matrix are the major limitation to the processability of these structures, greatly hindering the wide application of carbon nanotubes in the polymeric composites. Dispersability of nanotubes in the polymer is enhanced significantly after covalent or noncovalent functionalization that can improve their compatibility.

    This presentation is directed to investigation of the structures features of the filled with MWCNTs polymeric composites which were obtained without and under influence of the magnetostatic field by DSC methods and hardness measurements. Hardness of the polystyrene films was measured at the applied load of 28.55 kPa.

    Objects: 1. Purified MWCNTsThe MWCNTs used in this study were synthesized by pyrolysis of propylene on ferric catalyst and purified by mix of HCl and HF for removing the residual catalyst and amorphous carbon with following washing from acids by water. 2. Oxidised MWCNTsMWCNTs were dispersed in water. and then the hydrogen peroxide was added to suspension. Mixture was heating at 80 C under stirring for 47 h. The concentration of H2O2 was 30%. The solid was filtered under vacuum and dried at 150 C obtaining the oxidized nanotubes 3. Polymer compositesThe composites were obtained by mixing of purified or oxidized MWCNTs with toluene solution of polystyrene. The surface treating of MWCNTs was performed with hydrochloric acid, liquid ammonia, and vinyltrialkoxysilane (a noncovalent and a covalent attaching) as additives. The introducing of the filler into the polymer was performed via ultrasonic dispersion of MWCNTs in polystyrene solution in toluene during 10 minutes. Then the mixtures were formed in films on glass plates orientated parallel or normal to the magnetic line of constant magnet with average induction 0.039 Tesla. The filling degree of composites obtained was 0.1 wt%.

    Objects: 1. Purified MWCNTsThe MWCNTs used in this study were synthesized by pyrolysis of propylene on ferric catalyst and purified by mix of HCl and HF for removing the residual catalyst and amorphous carbon with following washing from acids by water. 2. Oxidised MWCNTsMWCNTs were dispersed in water. and then the hydrogen peroxide was added to suspension. Mixture was heating at 80 C under stirring for 47 h. The concentration of H2O2 was 30%. The solid was filtered under vacuum and dried at 150 C obtaining the oxidized nanotubes3. Polymer compositesThe composites were obtained by mixing of purified or oxidized MWCNTs with toluene solution of polystyrene. The surface treating of MWCNTs was performed with hydrochloric acid, liquid ammonia, and vinyltrialkoxysilane (a noncovalent and a covalent attaching) as additives. The introducing of the filler into the polymer was performed via ultrasonic dispersion of MWCNTs in polystyrene solution in toluene during 10 minutes. Then the mixtures were formed in films on glass plates orientated parallel or normal to the magnetic line of constant magnet with average induction 0.039 Tesla. The filling degree of composites obtained was 0.1 wt%.

    Sample description1 Polystyrene (polySt)

    2 polySt / purified MWCNTs

    3 polySt /MWCNTs, magnetostatic field directed in parallel to the film plane.

    5 polySt /purified MWCNTs magnetostatic field directed vertically to the film plane.

    6 polySt/oxidized MWCNTs

    7 polySt/oxidized MWCNTs, magnetostatic field directed in parallel to the film plane.

    8 polySt filled with oxidized MWCNTs. Composite obtained under influence of the magnetostatic field directed vertically to the film plane.

    9 polySt filled with purified MWCNTs treated with HCl

    10 polySt filled with purified MWCNTs and treated with HCl. magnetostatic field directed in parallel to the film plane.

    11 polySt filled with purified MWCNTs and treated with HCl. magnetostatic field directed vertically to the film plane.

    13 polySt filled with oxidized MWCNTs and treated with HCl.

    14 polySt filled with oxidized MWCNTs and treated with HCl. magnetostatic field directed in parallel to the film plane.

    15 polySt filled with oxidized MWCNTs and treated with HCl. magnetostatic field directed vertically to the film plane.

    16 polySt filled with purified MWCNTs and treated with NH4 OH.

    17 polySt filled with purified MWCNTs and treated with NH4 OH. magnetostatic field directed in parallel to the film plane.

    18 polySt filled with purified MWCNTs and treated with NH4 OH. magnetostatic field directed vertically to the film plane.

    19 polySt filled with oxidized MWCNTs and treated with NH4 OH

    20 polySt filled with oxidized MWCNTs and treated with NH4 OH. magnetostatic field directed in parallel to the film plane.

    21 polySt filled with oxidized MWCNTs and treated with NH4 OH. magnetostatic field directed vertically to the film plane.

    22 polySt filled with purified MWCNTs and treated with vinylalkoxysilane.

    23 polySt filled with purified MWCNTs and treated with vinylalkoxysilane. magnetostatic field directed in parallel to the film plane.

    24 polySt filled with purified MWCNTs and treated with vinylalkoxysilane. magnetostatic field directed vertically to the film plane.

    25 polySt filled with oxidized MWCNTs and treated with vinylalkoxysilane.

    26 polySt filled with oxidized MWCNTs and treated with vinylalkoxysilane. magnetostatic field directed in parallel to the film plane.

    27 polySt filled with oxidized MWCNTs and treated with vinylalkoxysilane. magnetostatic field directed vertically to the film plane.

    28 polySt filled with oxidized MWCNTs and covalently modified with vinylalkoxysilane.

    29 polySt filled with oxidized MWCNTs and covalently modified with vinylalkoxysilane. magnetostatic field directed in parallel to the film plane.

    30 polySt filled with oxidized MWCNTs and covalently modified with vinylalkoxysilane. magnetostatic field directed vertically to the film plane.

    -0,35

    -0,33

    -0,31

    -0,29

    -0,27

    -0,25

    -0,23

    -0,21

    -0,19

    -0,17

    -0,1530 70 110 150 190 230 270

    Temperature (oC)

    DSC

    /(mW

    /mg)

    1 2

    3 555

    75

    185

    170

    -0,35

    -0,3

    -0,25

    -0,2

    -0,15

    -0,130 70 110 150 190 230 270

    Temperature (oC)

    DSC

    /(mW

    /mg)

    6

    7

    871

    170

    160

    50

    -0,4

    -0,35

    -0,3

    -0,25

    -0,2

    -0,15

    -0,130 70 110 150 190 230 270

    Temperature (oC)

    DSC

    /(mW

    /mg)

    9

    10

    1171

    157

    39

    100

    206

    193

    -0,34

    -0,3

    -0,26

    -0,22

    -0,1830 70 110 150 190 230 270

    Temperature (oC)

    DSC

    /(mW

    /mg)

    19

    20

    21

    76

    165

    104189

    218

    45129

    90

    -0,4

    -0,36

    -0,32

    -0,28

    -0,24

    -0,230 70 110 150 190 230 270

    Temperature (oC)

    DSC

    /(mW

    /mg)

    13

    14

    1570

    159

    85

    94 210

    -0,4

    -0,36

    -0,32

    -0,28

    -0,24

    -0,2

    -0,16

    30 70 110 150 190 230 270

    Temperature (oC)

    DSC

    /(mW

    /mg)

    16

    17

    1877

    154

    96172

    217

    89

    70

    80

    90

    100

    110

    120

    130

    140

    150

    MW

    CN

    Ts p

    urifi

    ed

    MW

    CN

    Ts o

    xidi

    sed

    MW

    CN

    Ts p

    urifi

    ed (H

    Cl)

    MW

    CN

    Ts o

    xidi

    sed

    (HC

    l)M

    WC

    NTs

    pur

    ified

    (NH

    4OH

    )M

    WC

    NTs

    oxi

    dise

    d(N

    H4O

    H)

    1 2 3

    Har

    dnes

    s (M

    Pa)

    polySt

    60

    70

    80

    90

    100

    110

    120

    130

    140

    Har

    dnes

    s (M

    Pa)

    CN

    Tpur

    e(vi

    nyl.P

    hys

    )

    CN

    Toxi

    (vin

    yl.P

    hys)

    CN

    Toxi

    (vin

    yl.C

    hem

    )

    1 2 3polySt

    -0,42

    -0,32

    -0,22

    -0,12

    -0,02

    0,08

    35 85 135 185 235 285

    Temperature (oC)

    DSC

    (mW

    /mg)

    222324

    61

    243

    190

    170

    227 260

    274

    -2,2

    -1,8

    -1,4

    -1

    -0,6

    -0,2

    0,2

    0,6

    1

    300 350 400 450

    Temperature (oC)

    DSC

    (mW

    /mg)

    222324

    396

    420

    401

    428 -0,4

    -0,35

    -0,3

    -0,25

    -0,2

    -0,15

    -0,1

    -0,05 35 85 135 185 235 285

    Temperature (oC)

    DSC

    (mW

    /mg)

    252627

    59

    172

    170

    239

    190

    274

    65

    180

    174218

    -0,85

    -0,65

    -0,45

    -0,25

    -0,05

    0,15

    0,35

    0,55

    300 350 400 450

    Temperature (oC)

    DSC

    (mW

    /mg)

    252627

    326

    415

    448

    400

    392

    -0,42

    -0,37

    -0,32

    -0,27

    -0,22

    -0,17

    -0,12 30 80 130 180 230 280

    Temperature (oC)

    DSC

    (mW

    /mg)

    1282930

    75

    96

    181

    166

    -4,5

    -3,5

    -2,5

    -1,5

    -0,5

    0,5

    300 350 400 450 500

    Temperature (oC)

    DSC

    (mW

    /mg)

    1282930

    424

    Hardness values of the filled with MWCNTs polystyrene composites which were obtained without (1) and under influence (2, 3) of the magnetostatic field directed in parallel (2) or vertically (3) to the film plane

    Hardness values of the filled with MWCNTs polystyrene composites which were obtained without (1) and under influence (2, 3) of the magnetostatic field directed in parallel (2) or vertically (3) to the film plane

    DSC analysisDSC analysis

    Carbon nanotubes pre-treatment with NH4OH was found to result in an increase of the composite hardness. Treatment of MWCNTs with HCl provides the material flexibility with sensitivity to influence of the magnetostatic field. Introducing nanotubes modified with vinyltriethoxysilane leads to increase both the hardness and the thermal resistance of the filled polymeric composite. The degradation enthalpy of this composite is 757 J/g that exceeds enthalpy of another samples studied.

    Carbon nanotubes pre-treatment with NH4OH was found to result in an increase of the composite hardness. Treatment of MWCNTs with HCl provides the material flexibility with sensitivity to influence of the magnetostatic field. Introducing nanotubes modified with vinyltriethoxysilane leads to increase both the hardness and the thermal resistance of the filled polymeric composite. The degradation enthalpy of this composite is 757 J/g that exceeds enthalpy of another samples studied.

    This work was partly supported by FP7 Marie Curie Actions People Project Hybrid nanocomposites and their applications - Compositum, Grant Agreement Number PIRSES-GA- 2008-230790.

    This work was partly supported by FP7 Marie Curie Actions People Project Hybrid nanocomposites and their applications - Compositum, Grant Agreement Number PIRSES-GA- 2008-230790.

  • U .., U ..

    0B . .. . 17, 03164 , , e-mail: [email protected] U

    -

    . , .

    , , [1], .

    , , , , .

    3 GAMESS [2] , (. 1), - , . .

    . 1. . 2.

    , ,

    ( -0,3335 . .); , ( 0,3251 . .); , ( 0,3123 . .), , ( 0,27947 . .).

    , (. 2) ( 8 /); OH 120 -1. - . . (. 3 4) .

    . 3.

    Si2O7H6 . 4.

    Si4O13H10

    1. .., .., .. // , . - 2004. - . 10. - .170-174.

    2. Schmidt M.W., Baldridge K.K., Boatz J.A. et al. General atomic and molecular electronic-structure system: a review // J. Comput. Chem. 1993. V. 14, N 11. P.1347-1363.

  • ,

    25-

    . ..

    11

    13

    2011

    1

    .., 2

    ..1

    . ..,

    , .

    2, .

    65082 ; e-mail: [email protected]

    2

    . ..

    , .

    17,.

    03164

    ().

    ,

    .

    .

    ,

    ,

    ,

    .

    (1) , : :

    () f (R)

    :

    (1)-

    ;

    ;n

    ; -

    ; -

    ;

    3D

    - 0,42 .

    f(R)

    :

    : i=2, 3, 4

    .1.

    -

    Davisil-, - .2.

    .

    (5) : n1=0,48; m1=1,92; n2=3,2; m2=0,14; n3=4,68; m3=0,096; n4=4,44; m4=0,14.

    Davisil (.1).

    .2

    ,

    .

    11

    dpdRpV

    dpd

    nRf c

    1

    R

    dRRf

    RfR R

    kVdRRf 32

    4

    Vk

    4321

    lnlnlnlnln4

    4

    43

    3

    32

    2

    21

    1

    1

    n

    a

    n

    a

    n

    a

    n

    aa

    ma

    a xm

    mn

    xm

    mn

    xm

    mn

    xm

    mn

    xxa

    xVdxd

    11

    aa

    a

    c

    dxdRxV

    dxd

    nRf

    5

    aa

    xVdxd

    ,

    (3), (5), (6), (7)

    .

    ,

    :

    (6)

    .,

    .

    (6) :

    ii

    aia xbbaR

    lnln188,01104,8

    1

    10 6

    0,0 0,2 0,4 0,6 0,8 1,00

    100

    200

    300

    400

    500

    600

    700

    800

    p/ps

    V,3/

    60 80 100 120 140 160 180 200

    0,02

    0,04

    0,06

    0,08

    0,10

    0,12

    0,14

    (R)

    R 10-10

    ii

    ii

    iia

    ii

    ia

    l

    a xbb

    xbbxxRTV

    dxdR

    11

    11

    1 ln1

    lnln1

    710102,3;084,098,095,0)4

    2,3;55,095,09,0)345,1;74,09,077,0)2

    bxbxbx

    R

  • ()

    ()

    .

    ,

    ,

    , ,

    ..

    ,

    ,

    ,

    HNO3

    H2

    O2

    .

    ..,

    ..

    . , .

    64, 01601,

    [email protected]

    -

    .

    45

    .

    :

    250 0,32

    Ma;

    190

    20

    %

    .

    2,42

    Ma.

    180

    .

    :

    ();

    2

    IR Specord

    400;

    ;

    N2

    Quantachrome

    NovaWin2.

    S

    , 2

    Wmicro

    ,

    3Wmeso

    ,

    3W

    , 3

    ,/ 2

    / 950 0,33 0,18 0,51 0,67 0,95-H2

    O2 855 0,29 0,17 0,46 0,85 0,67-HNO3 600 0,17 0,18 0,35 2,84 1,08-- 830 0,25 0,20 0,45 1,12 4,02-- 630 0,14 0,17 0,31 1,05 4,35

    m

    , c, /

    (%) m

    , c, /

    (%) m

    , c, /

    (%) m

    , c, /

    (%)

    290 0,2127,6 4050,0810,6 545

    0,1519,7 735

    0,3242,1

    -H2

    O2 2800,4434,4 400

    0,097,0 530

    0,3728,9 735

    0,3829,7

    -HNO3 270 1,3532,2 4001,5035,7 525

    0,7818,5 680

    0,5713,6

    -- - - 400 1,2160,2 5400,5024,9 725

    0,3014,9

    -- - - 405 1,0359,2 5350,3821,8 725

    0,3319,0

    * -

    60 %

    ,

    330 -

    470

    .

    .

    ,

    .

    0 200 400 600 800 1000

    -0.08

    -0.06

    -0.04

    -0.02

    0.00

    m,

    T, oC

    r 104, /.

    3

    2

    1

    0.0

    0.1

    0.2

    0.3

    0.4

    0 200 400 600 800 1000-0,15

    -0,10

    -0,05

    0,00 1

    0,0

    0,1

    0,2

    0,3

    0,4

    0,5

    0,6

    T,oC

    2

    r 104, /.m,

    (1),

    2

    (2) (3)

    () --

    ().

    O OO

    OO

    O

    +

    (m

    )

    ()*

  • DETAMoO3

    . . , . . , . . ,. . , . .

    . .. . 17, 03164, , e-mail: [email protected]

    H2N-CH2-CH2-NH-CH2-CH2-NH2MoO3 (DETAMoO3) SiO2 - ( ) . DETAMoO3 MoCl5, MoOCl4, 2(acac)2, Mo(3-C3H5), Mo2(3-C3H5) Mo(CO)6, MoO3 SiO2.

    DETAMoO3 SiO2 . , II-V, (50-100 ) (. 5). , - DETAMoO3 SiO2 20-100 .

    . 1. - DETA

    MoO3 DETA, MoN II-V ( 1) 100-240 . DETA II-V - N, ([NH3]+m/z=17) ([NH2=CH2]+ m/z=30) (. 4).

    O

    O

    Mo

    O

    NH2NH

    NH2

    O

    O

    Mo

    O

    NH2NH

    NH2

    O

    O

    Mo

    O

    OH2NH

    NH2

    +NH3

    O

    O

    Mo

    O

    OH2NH

    NH2

    +NH3

    NH

    H2O

    O

    OMo

    +NH3

    O

    OH2

    +NH3

    NH

    H2O

    O

    OMo

    +NH3

    O

    OH2

    +NH3

    H2O

    O

    O

    Mo

    O

    OH2H2O

    +NH2

    +NH3

    +NH3H2O

    O

    O

    Mo

    O

    OH2H2O

    +NH2

    +NH3

    +NH3

    +NH2

    +NH3

    +NH3

    I II III IV 1. DETAMoO3 () (- V).

    . 5. [NH3]+ m/z=17, [NHCH]+ (m/z=28) [NH2=CH2]+ m/z=30 DETAMoO3/SiO2

    . 4. [NH3]+ m/z=17, [NHCH]+(m/z=28) [NH2=CH 2]+ m/z=30 DETAMoO3

    . 2. DETA, MoO3, DETAMoO3 DETA SiO2

    DETA SiO2 60-130 0C .

    DETAMoO3

    DETAMoO3 SiO2

    CH2=CH-NH+=CH256NH2-CH2-CH2-NH+=CH273

    NH3+-CH=CH244NH2+=CH230NH=CH+ / CH2=CH2+ 28NH4+ / H2O+ 18

    m/z

    4000 3500 3000 2500 2000 1500 1000 5000

    20

    40

    60

    80

    100

    120

    cm -1

    DETA DETAMoO3 MoO3

    100 200 300

    ,

    .

    .

    , 0

    28 30 44 56 73

    . 3. DET/SiO2 m/z 28, 30, 44, 56, 73

    0 100 200 300 400 500

    m/z 17 28 30

    ,

    .

    .

    , 0

    0 100 200 300 400 500

    ,

    .

    .

    ,0C

    m/z 17 28 30

    SiO2 (Silica Gel Davisil, 300 2/), DETAMoO3 (DETAMoO3/SiO2) 2.4 /2, 0.12 DETAMoO3.

    c DETA DETAMoO3

    NH2HNH2N

    DETAMoO3 DETA. DETA DETAMoO3 250-390 NH=CH2([NHCH]+ m/z=28) CH3NHCH3 ([CH3NHCH3 ]+

    m/z=45, [CH2 = NH CH3 ]+ m/z=44) (. 4).

  • .. ,

    ..

    . .

    ,,. .

    1717, , 03164 03164

    164, 164,

    Complex antioxidant on the basis f hydrophilic-hydrophobic silica.

    .

    -

    2980 -1,

    -.

    . 2

    ,

    .

    -300 (, )

    (Aldrich)

    98%.

    8

    24

    16-18 .

    . -

    SPECORD M-80

    CaF2

    4000-1200 -1.

    (

    5-8 .).

    .

    10 -15 .

    -

    .

    1

    -300

    2 .

    400 1.

    600

    ; 2

    1 .; 3

    1 .

    200 ; 4

    1 .

    200 .

    ,

    .

    ,

    .

    .

    .

    -,

    V, Cr, Ti, Fe, Al, B . .

    .

    ,

    .

    .

    , ,

    , ,

    ..

    , ,

    , ,

    , ,

    . .

    SiSi--OO--TiTi

    ..

    . .

    .1 .1

    600 600 00. .

    , ,

    ..

    Ti(OR)3OH2 (RO)3Ti-O-Ti(OR)3

    Ti+ SiOHSiOH-

    Ti(OiPr)4 SiO-Ti(OiPr)3

    OiPriPrO

    OiPriPrO

    ssiPrOH

    1500 2000 2500 3000 3500 40000

    20

    40

    60

    80

    100

    ,-1

    , %

    1

    2

    3

    4

    2400 2600 2800 3000 3200 3400 3600 3800 40000

    20

    40

    60

    804

    3

    2

    1

    c-1

    , %

    1

    600

    1,5 .; 2

    20-260 ; 3

    400 ; 4

    150 .

    .

    0 100 200 300 400

    0,0

    0,2

    0,4

    0,6

    0,8

    1,0

    ,

    -

    -

    . 3.

    260 .

    ,

    .

    Si-O-Ti

    .

  • ..,

    .,

    ..

    ..

    (

    )119991 , -1,

    , 31/

    (495) 335-92-88, [email protected]

    ,

    .

    ,

    (Purolite

    Rohm

    and

    Haas).

    ..

    PFA 600/4740

    PFA 460/4783A 500U/4994

    -

    Ambersep

    920UCl

    Amberlite

    910UCl

    S-950

    S-957

    A100/2412

    A 140

    S 984

    104

    107/150

    (=1,5-2,0),

    0,8-0,9 /.

    -

    0,01-0,32 -/.

    ,

    -

    S-957.

    ()

    400 /.

    4-5

    .

    -

    -

    . 1

    2.

    (.3)

    ,

    , ,

    S-957

    340 /

    (88 /),

    2-3,5

    ,

    .

    . 1.

    -

    .

    050

    100150200250300350400450

    0,00 0,10 0,20 0,30 0,40

    CCl, .

    Em, /

    PFA-600/4740S-957Ambersep 920UClS984

    0

    50

    100

    150

    200

    250

    300

    350

    400

    0,00 0,05 0,10 0,15 0,20 0,25 0,30 0,35CSO4,

    , /

    PFA-600/4740Amberlite 910UClS-950S-957A100/2412

    . 2.

    - .

    0,0

    0,1

    0,2

    0,3

    0,4

    0,5

    0,6

    0,7

    0,8

    0,9

    1,0

    0 100 200 300 400 500 600 700 800 900

    V, ..

    /0

    PFA 600/4740

    S-957

    . 3.

    PFA600/4740 ,

    S-957.

    -

    ,

    S-957

    -

    .

    S-957

    -

    ,

    , ,

    -

    .

  • ,

    (II) : ,

    .., .., .. ..

    , 65026, , . , 2. , (, , )

    , , , , (C, PH3, SO2) (O3, NO) .

    1

    , .%

    SiO2 Al2O3 Fe2O3 TiO2 CaO MgO K2O-Na2O (-) - 71,5 13,1 0,9 0,5 3,44 0,68 3,03 (-) 80,0 4,0 3,0

    5,00 2,00

    (-(1)) 63,6 19,6 10,5 1,8 (.1) SiO2/Al2O3; -(20)>-(5,5)>-

    (1)*(3,2). , . , (80-85%), -, . - -, - ; ( = 49) , , (.1).

    , , .

    (. 2) ( ) -(100)>- (120)>-(1)* (140) .

    2

    , , % , (mH2O

    , /) 110

    25-110 25-500 25-110 m1 25-500 m2 / /-(1)* 140 3,2 2,5 6,4 0,025 0,064 0,039 2,16- 120 2,0 1,6 7,6 0,016 0,076 0,060 3,30- 100 1,6 1,8 4,0 0,018 0,040 0,022 0,012

    - , - . 0,93 1,89 / . (II) , .. /s. . , , (.2).

    . (%) MnCl2/- (73) > MnCl2/-(1)* (44) > MnCl2/- (28). , MnO2. , , , , Mn2O3 MnO2.

    0

    25

    50

    75

    100

    5 10 15 20 25 30 35 40 45

    .1 ) -; ) MnCl2/- ( ); ) MnCl2/- ( ) -; SiO2; MOR; MnCl2xH2O; MnxOy.

    )I/I

    1

    2

    3

    4

    0

    20

    40

    60

    80

    100

    0 100 200 300 400 500 600

    .2 ( 3C ) () MnCl2/: 1 - (CMnCl2 = 1,210-6 /); 2 -; 3 -(1)*; 4 - (CMnCl2 = 1,210-4 /) (

    3C =

    100 /3; = 20 )

    0

    25

    50

    75

    100

    5 10 15 20 25 30 35 40 45

    )

    0

    25

    50

    75

    100

    5 10 15 20 25 30 35 40 452

    )

    3 , /3

  • :

    ... . 11, , ... . 11, , ... . 22, , ... . 2211

    . . ... . , , . . ;;22

    . . ....

    , , ..

    ,

    .,

    ,

    ,

    ,

    5-10

    (~1,5

    ),

    .

    ,

    ,

    ,

    .

    ,

    1-10

    ~98

    %

    ,

    ,

    .

    ,

    Ag8

    ,

    5

    (. 1).

    ,

    ,

    .

    Ag8 Ag8

    OH Ag8

    (OH)2 Ag8

    (OH)3 Ag8

    (OH)4

    ,

    ()

    ().

    6-7.

    ()

    -

    B3LYP

    SBKJC ,

    Ag8

    ,

    (. 2).

    -

    ,

    --

    .

    . 2.

    Ag8

    .

    15 /.

    Ag8

    []

    Ag8

    Ag8

    (OH)2

    24

    /,

    .

    Ag8

    (OH), Ag8

    (OH)3

    Ag8

    (OH)4

    .

    .

    (. 3).

    Ag8

    ,

    -

    .

    Ag8

    Ag8

    (OH)4

    . 4

    5.

    . 3.

    Ag8

    ()

    Ag8

    ()2

    ()

    [].

    ,

    ,

    Ag8

    , Ag8

    (OH), Ag8

    (OH)3

    , Ag8

    (OH)4

    .

    ,

    0,35.

    ,

    ,

    .

    . 4.

    Ag8

    .

    22 /.

    . 5.

    Ag8

    ()4

    .

    6 /.

    15

    15

    22

    --

    -

    8

    6

    24

    - -

    -

    . 1.

    Ag8

    .

  • Evgenii Sergeyevich Brikov

    - docent of the department of the micro- and nano-technologies

    Tyumen state universityE_mail: [email protected]

    544

    .UDC 544

    Influence of a magnetostatic field with middle value on the formation of the magnetite nanoparticles in the aqueous ion-exchange precipitation reaction

    with the surplus of the alkali.

    . : . : . , , ( D 70 H 5940= ), . , : , .

    Abstract

    In report is presented results of experiments about influence of magnetostatic field with middle value on the aqueous ion-exchange reaction of magnetite precipitation in alkaline environment. Shape and size nanoparticles is investigated by methods of probe atomic and magnetic microscopy. Diffraction and diffusion X-rays on synthesized powders are investigated. It is revealed that when field is being increased, then deflection of sizes from average is being decreased and shapes are being approached to forms of disks ( nmD 70 when OeH 5940= ), on curves of diffraction at small angles a diffusion background is being increased and structural peaks is being disappear. Some preliminary explanations of physical mechanisms of possible influence of a magnetic field on forming of nanoparticles are represented; in particular: influence of a magnetostatic field on ions recombination in reaction and characteristic properties of condensation stages are analyzed.

    :

    , , , , , , , , ,

    1

  • , .

    Keywords:magnetostatic field with middle value, aqueous ion-exchange reaction, magnetite precipitation, alkaline environment, probe atomic investigation, probe magnetic investigation, diffraction and diffusion X-rays on nanopowders of magnetite, sizes and shapes of magnetite nanoparticles, mechanisms of nanoparticle forming, ions recombination in a magnetostatic fields, condensation stages.

    , , [1,2,4].

    2- 43OFe ( ) [3]:

    ( ) ( ) OHSONHNONHOFeOHNHFeSONOFe 24434434433 4682 +++=++ (1),

    : 0,444070,495940 PH8-9, C 9080 . , : CuK (-7); (, ) CoCr : NSG01/Co/15 (NTEGRA AURA), ( P 160= ) , ().

    43OFe () , , ,

  • - , , ( ).

    , , 1- (1) , 2- (1).

    , .

    [3,5,6] :

    ( ) 2OHFe ( ) 3OHFe [7,9]; - - [7,8,9]; - ( - ) [10, 11]; [12] ( ). , , .

    : . 1- ()

    . .

    2- . , . , . , , [7, 8, 9]. ( ).

    ( ). , , . (), , , . [10, 11]. ( OH-) .

    , OH- [12].

    , , , . 2- (1), ,

    3

  • . .

    , , , PH : (.. ); ( OH-), (, , ).

    [5,6]. , ( ) : g - : H 3103 . ()

    , : H 50 .

    , ( 0H , ):

    ( ) ( )BABbkkk

    bAajj

    j

    aBBAA SSrJSIASIAHSgHSgH 2 2100 +++= , (2)

    Ag Bg - g - () A B , cme e2= - , kj AA , - j- A k- B , S - , )(rJ - .

    (2): A B 0H , . A B . - , AS , BS . 0H 0Hg , , . ( , ) [6].

    , ( g). , ( ). 2- (1) : [7,8]. OH-, ( ), ( ). , , , . , .

    [10, 11] Ph , , , () . :

    4

  • ( ) , , ( , ), , , .

    [12] Ph ( [2]), ( , : ): Ph , , .. , , (. . 12 [4]). : : .. ( , ). H 495940 = - : [4], . , , .. [3, 4].

    , , : .

    (1) , [2,3]. , .

    , [5, 5-2], , , ; ; , , .

    : .. , .. , .. , .. , .. .. .

    1. .., , (1971);2. F. Vereda F., J. de Vicente, R. Hidalgo-Alvarez, Langmuir, 23, 3581 (2007);3. .. , .. , .. , .. , .. , : - , . .. . : , 67 (2010);4. .. , .. , .. , .. , , 74(6), 539 (2005);5. .. , .. , .. , , (1978); 6. .., .. , .. , , 155 (1), 1988;7. .. , , (2003);

    5

  • 8. .. , .. , , 113 (6), 2193 (1998);9. .. , , 12 (11-12), 525 (1942);10. .. , .. , , 35, 479 (1958);11. .. , .. , , (1970), . 509;12. .. , . . . ., 3, 355 (1937);

    1. , Fe3O4 (FeOFe2O3). (I) 2: 20o - 33o (7) [3]. V/V1 %, V1 .

    H,

    I, /

    2, o|I, /

    V/V1, %

    1. 0 130 32.9|175;32.2|172;30.75|178;30.2|173;28|217;27.1|184;

    26.9|186

    100

    2. 407044 160 30.1|206;30.75|210;28.75|227;28.1|240; 21.5|181

    755

    3. 594049 168 30.25|177;30.75|170 505

    2. Fe3O4 (FeOFe2O3), (Ntegra Aura).

    -

    H, 2- ; ; ( , N).

    3- , d1xd2xd3,

    1. 0 ( ) ; 1.700.45; (25)

    60x50x20

    2. 407044 ( ) ; 1.720.28; (14)

    50x40x2

    3. 594049 ( ) ; 1.360.28; (30)

    100x100x5,5

    6

  • 1. 2 () I (/) CuK- Fe3O4 (FeOFe2O3), (1) : ). H=0A/ (0) ). H=324000/ (4070); ). H=473000/ (5940). 7 [3].

    2. d () Fe3O4 (FeOFe2O3) ( 2- ), (1) [3].

    7

  • 3. 2- , () , H=473000/ (5940) [3].

    4. , () , H=473000/ (5940) [3].

    8

  • 5. 3- , () , H=473000/ (5940) [3].

    6. 2- , () , H=324000/ (4070) [3].

    9

  • 7. , () , H=324000/ (4070) [3].

    8. 3- , () , H=324000/ (4070) [3].

    10

  • 9. 2- , () , [3].

    10. , () , [3].

    11

  • 11. 3- , () , [3].

    12. Hc ( ) [4]: 1 , 2- , 3 , 4 . 5 ( ) [4].

    12

  • ,

    2

    ,

    NaCl(100)... , ..

    . ..

    .

    17, 03164, -164, e-mail: [email protected]

    ,

    . -

    ,

    ,

    -

    (. 1-2) [1].

    ,

    2

    NaCl

    (100).

    ,

    -

    ( .. ,

    ) [2] ,

    CO

    ,

    (. 5).

    -

    ,

    ,

    ,

    (. 5) [3].

    .

    CO2

    /NaCl

    (100)

    .

    2

    ,

    , ,

    (. 6). ,

    ,

    Heidberg

    Ewing

    (.

    [4]).

    [5],

    /NaCl

    (100),

    s-

    ,

    -

    (. 3).

    ,

    CO

    (. 1). ..

    .

    (. 5).

    CO2

    /NaCl

    (100)

    (. 2), ..

    CO2

    ,

    (

    -

    . 4).

    12

    (. 5, . c

    5).

    .

    [6]

    -

    ,

    .

    2x1

    /NaCl

    (100)

    [7]. ,

    ,

    ,

    , s-

    -

    ,

    .

    . 4. C

    CO2

    /NaCl

    (100)

    (p -

    s ).

    [1] V. M. Rozenbaum and S. H. Lin, Spectroscopy and Dynamics of Orientationally Structured Adsorbates (World Scientific Publishing Co. Pte. Ltd., Singapore, 2002).

    [2] A.V. Snigur, M.L. Dekhtyar, V.M. Rozenbaum. Orientational surface structures of simple molecular quadrupoles. // International symposium devoted to the 80th anniversary of academician O.O. Chuiko Modern problems of surface chemistry and physics. Book of Abstracts. Kyiv, Ukraine, 18-21 May 2010, p. 245-246.

    [3] A.V. Snigur. Spectroscopic manifestation of peculiarities of

    orientational ordering in adsorbate monolayer under low temperature.

    Orientational phase transition in CO/NaCl(100) monolayer. // X International Conference on Nanostructured Materials NANO 2010. Book of Abstracts. Rome, Italy, 13-17 September, 2010, p. 169.

    [4] A.V. Snigur, V.M. Rozenbaum. Spectroscopic

    manifestations

    of orientational

    phase

    transition

    in

    adsorbate

    monolayer

    // Mol. Phys.

    2009.

    107, No

    22.

    P. 2367-2372.

    [5]. .. , .. .

    //

    .

    2003.

    95, 5.

    . 734-738.[6] .. , .. .

    //

    ,

    .

    . , 20-22 , 2009, . 91-92.

    [7] J. Heidberg

    et

    al. Fourier-transform infrared

    spectra

    of CO adsorbed

    on

    NaCl(100): structural

    changes

    at

    low

    temperatures

    // Surf. Sci.

    1992.

    269/270.

    P. 128134.

    . 5.

    AM1

    NaCl(100)

    CO ()

    CO () (

    ).

    () ()

    () ()

    . 6.

    AM1

    NaCl(100)

    CO2

    ()

    CO2

    () (

    ).

    . 3. C

    CO/NaCl

    (100)

    (p -

    s ).

    . 2. (2x1)-

    CO2

    NaCl(100).. 1. (2x1)-

    CO/

    NaCl(100)

    .

  • -

    .., ..

    - . ..

    , - :

    , , ..

    (S(100-200) ):

    - ;

    - ;

    - ;

    - ..

    ( 10 )

    , .%

    /3

    ( ),

    ( ),

    CeO2 0,60 4,0 2 -

    ZrO2 6,00 1,5 1 -

    CeO2-ZrO2 (Ce/Zr-4/1) 6,00 2,1 2 -

    CeO2-ZrO2 (Ce/Zr-1/4) 3,60 1,2 1 -

    YOOH 3,00 3,9 35 -

    ZnO 0,35 2,1 40 -

    AlOOH 3,00 2,2 6 -

    LaOOH (100 oC) 0,50 2,6 5 20

    LaOOH (20 oC) 0,85 1,9 4 30

    CuO 0,18 2,3 4 21

    Ag-SiO2 0,051/0,19 4,2 10 -

    Ag 0,025 15,0 2 -

    SiO2 35,00 1,3 7 -

    -

    ,

    (1),

    (

    ,

    ,

    )

    (2),

    (

    ,

    )

    (3),

    , ,

    (, )

    (4),

    ( ,

    .)

    CuO

    - . CuO ( )

    , .

    CuO

    Al2O3

    /

    (d < 100 ).

    hs

    hw,

    .

    .

    [email protected]

  • RAMAN SPECTRA OF NANODISPERSED CARBONRAMAN SPECTRA OF NANODISPERSED CARBON IIN CERAMICS OFN CERAMICS OF SYSTEMSSYSTEMS TIB2TIB2--CCKazo I. F., Naumenko A. P., Mavlanova O. D.

    Taras Shevchenko National University of Kyiv, Faculty of Physics,60, Volodymyrs'ka Str., 01601 Kyiv, Ukraine

    [email protected], [email protected], [email protected]

    1. IntroductionFormation carbon clusters and fullerenes can occur in many processes at which fixed carbon is allocated in a separate solid phase [1]. Carbon atomspossess unique ability to form bond of various types (sp1, sp2 and sp3) under constraints which the carbon atom can be connected to two, three andfour neighbor carbon atoms accordingly. Owing to this existence of various spatial carbon structures graphite, diamond, nanotubes, etc. is possible.The different structures are probable in a material, because of all types of carbon bonds and a ratio of their quantity, atomic arrangement. The presentclasses of compounds of products of reaction is important ording to the physical characteristics along with high hardness, wear resistance, arecharacterized corrosive and chemical stability [2-4]. From this point of view, the consideration of phases of carbon which are allocated in ceramics atsolid synthesis titanium boride from the titanium carbide and boron carbide is interesting. The purpose of the given work is research and the analysis ofRaman spectra of ceramics of system TiB2-C; in particular, establishing the presence of predetermined carbon clusters.

    2.ExperimentalManufacturing of initial samples of ceramics, which containing carbon, carried out similarly to a way described in work [8, 9]. Manufacturing of sampleswas made by methods of sintering and hot pressing (HP) on installation with resistive heating, without a protective atmosphere with temperature modesfrom 1100 to 1800, external pressure from 0 to 30 MPa and soaking time with from 60 to 2400 s in graphite crucible. The mechanical treatment ofcooled samples on a abrasive paper was provided for deleting 0.5 mm of a superficial layer, then they were crushed up to medium-sized grains 1 micron.Then liquid extraction carbon clusters of a powder were carried out in toluene during 7-14 days at a room temperature. A solution precipitated on asubstrate of monocrystal silicon of orientation (100). Toluene drove away under vacuum at pressure 13.3 Pa, consequently the film samples were formed.The received film and powder samples were investigated by a Raman spectroscopy method (RS). The spectra were detected by an automated doublespectrometer DFS-24 (LOMO, Russia), equipped with a cooled photo multiplier and registration system working in a photon counting mode. Particularlyseveral lines ofAr+ laser with the wavelength of 514.5, 488 and 476.5 nm and power of ~50mW were selected with a pricm located outside of laser resonator and acylindrical lens was used to focus light in a 100.1 mm2 spot.

    3.Results and discussion

    The total spectrum, received from several samples, is shown on fig.1.

    5 0 0 1 0 0 0 1 5 0 0

    1 0 0 0

    *

    Inte

    nsity

    , st.

    um.

    F r e q u e n c y sh i f t , s m -1

    4 6 24 9 4

    7 4 5 7 9 2

    9 4 8

    1 3 7 0

    1 6 0 1

    1 4 6 51 5 3 3

    1 1 1 7

    4 0 0 8 0 0 1 2 0 0 1 6 0 0

    C 2 0 ( C H 3 ) 2

    C 2 0 H 2 0

    C 2 0 H 1 0 b

    C 2 0 H 1 0 a

    C 2 0

    Inte

    nsity

    , st.

    um.

    F r e q u e n c y s h i f t , s m - 1

    a b c

    20206386368.

    2010124212477.

    2010117411766.

    2010706.46708.315.

    20135813444.

    20775773.563.

    20464459.92.

    209479481.

    A clusterspectrum

    Raman peakscalculatedtheoretically (cm-1)

    Raman peaksreceived fromexperiment (cm-1)

    Figure 1. Total, received from several samples a Raman spectrum of ceramics systemsT2- at room temperature is shown. The cut line (*) corresponds to the laser compellingradiation, and by virtue of high intensity cannot be submitted in figure.

    Figure 2. Theoretically calculated Raman spectra for carbon clusters areshown

    Fig. 3. Modeling representations of clusters geometry 2010(), 2010(b) and 20(3)2 are shown,dark spheres - atoms of carbon, light - atoms of hydrogen.

    Table 1. Theoretical and experimental frequencies of Raman spectra.

    The earlier mass-spectroscopy researches [6,8] have shown evidence in similar samples presumably hydrogen-carbon clusters 20n, where n=10, 20.For this reason, from our point of view, it is expedient to carry out theoretical modeling of cmall carbon polyhedrons (like 20) spectra and carbonpolyhedrons spectra possessing a hydrogen atmosphere (like 2010, 2020) and retrace influence of this atmosphere on shift of frequencies of the basicclusters vibrations.For geometrical construction of clusters and calculation of their oscillatory spectra software package Gaussian 03 (by method RB3LYP/6-31G) has beenused for calculation of vibration clusters spectra. Raman spectra of some possible carbon clusters n, where n amount of atoms in clusters, have beencomputer simulated in work. Raman spectra of clusters 20, 2010, 2020 which represent only carbon cluster, and also cluster in a hydrogen cloud and ararefied hydrogen cloud, accordingly; they have the following features. We got such results using technique described in [18-19].a) All three spectra contain two frequency bends: up to 900 cm-1 and from 1100 up to 1600 cm-1, except that clusters, which have a hydrogen cloud, theyhave high-frequency area in a range about 3000 cm-1, that corresponds hydrogen cloud oscillation, at which carbon core almost immovable (Fig.2);b) The breathing mode is observed in all three spectra - 789, 716, 643 cm-1 with shift in low-frequency area with growth of amount of atoms.

    The cluster 2010 modeling was carried out by two geometrical representations: 2010 (a) and 2010 (b) (see fig. 3); in the first case hydrogen cloud isconcentrated by a radial part of dodecahedron, and in the second - in polar positions. In theoretical spectra of the given models the following divergenceswere observed:) in b-cluster occurs one of tangential mode degeneration (~200 cm-1), that associated with increase of rigidity bonds in radial area;) shift of a breathing mode in a-cluster case to cluster 20 come to 73 cm-1, and for b- cluster - 371 cm-1; that following from a picture, it is possible toexplain formation tube-like cluster in which the breathing mode is considerably simplified, and oscillation hydrogen cloud is forced concerning carbon to acore, in the second case the hydrogen cloud fixes a radial part bonds interfering with oscillation. Despite of these features spectra contain all basic groupsof tangential oscillation, with insignificant shift of frequencies and activities, oscillation hydrogen clouds almost identical.

    Thus, from the submitted results we can assume, that those observable Raman bends quite can be explained by heterogeneous hydrogen-carbon clusterspresence in samples, which based on chemically active 20.

    The cluster kind as 20(3)2 was also considered (see fig. 2), that production by connection of two methyl groups to cluster 20. The spectrum of thiscluster has similar character to a spectrum of cluster 20, the breathing mode come to 405 cm-1, i.e. at the expense of polar methyl groups connection incluster two opposite atoms are rigidly fixed, that leads to similar shift of frequency of vibrations. Tangential modes are deformed, and for them shift offrequencies about 200 cm-1 in relation to 20 is observed.

    Thereby, given Raman spectroscopic researches results not only have confirmed presence in synthesized ceramics fullerenes 60, but also gave strongreasons to assume existence in ceramics hydrogen-carbonic clusters such as 20n, where n = 10, 20.

    References . . , . , . . - . : , (2001) 180 .: . / . . , . . . .: , (2005). 688 . . . -// , 2002, .71, 6, - . 507-532. .., .., .., .. // . 2, (1998),- .5-14.Kazo I.F., Popov A.Yu., Mechanical properties of TiB2 TiC C* ceramic materials // Functional Materials, 3. (2002) p.503 506. .., . ., . ., . . TiB2-. -, (2007) .219.Kazo I. F., Makara V. A., Mavlanova O. D. The Structural status of carbon in solid-state synthesis ceramics.// 2009, 21-23 , (2009), , , .2, . 275 -279.

    Some facts follow from our more detailed analysis of spectrum:

    researched spectra of samples contain bends which correspondto a graphite phase which intensity insignificantly grows from film upto powder samples;

    in film samples, as well as in powder, peaks of low intensity areregistered in area which corresponded tofullerene 60 that isevidence of clusters synthesis during topochemical reaction;

    in the average frequencies area of a spectrum bends of highintensity (462, 494, 745, 792, 948 cm-1) are found out, theirunequivocal interpretation is complicated. For an establishment ofthe nature of bends of high intensity it is necessary to carry outadditional researches.

  • ,

    25- . ..

    11-13 2011

    -

    1.

    * , -

    S. , 2/ V,

    3/ d,

    886

    443*

    1,28

    0,84*

    4,6

    7,8

    -

    465

    443*

    0,94

    0,88*

    4,6

    7,6

    - , ,

    . ,

    . , ,

    , (. 3. , ).

    , -. ,

    -, .

    - . ,

    , .

    (. 4. , ) ,

    .

    0,0 0,2 0,4 0,6 0,8 1,0

    0,0

    0,2

    0,4

    0,6

    0,8

    1,0

    1,2

    1,4

    -

    V [cc/g

    ]

    p/p0

    . 2.. -

    0,0 0,2 0,4 0,6 0,8 1,0

    0,0

    0,2

    0,4

    0,6

    0,8

    1,0

    -

    V [

    cc/g

    ]

    p/po

    . 2.. -

    -

    .

    ,

    .

    . 1.

    1. .. .: , 1985. 32 ..

    2. A.Bordoloi, F.Lefebvre, S.B.Halligudi Selective oxidation of anthracene using inorganicorganic hybrid materials based on

    molybdovanadophosphoric acids // Journal of Catalysis - 247 2007 - . 166175.

    3. Y.Xuemin, L.Jiaheng, L.Dan, G.Liping, W.Yangchun Oxidation Reactivities of Organic Sulfur Compounds in Fuel Oil Using

    Immobilized Heteropoly Acid as Catalyst // China Academic Journal - Vol. 22 No.2 . 320-324.

    4. N.K. Kala Raj, S.S. Deshpande, Rohit H. Ingle, T. Raja and P. Manikandan Heterogenized molybdovanadophosphoric acid on amine-

    functionalized SBA-15 for selective oxidation of alkenes // Catalysis Letters - Vol. 98, No. 4 2004 . 241-246

    5. Sujandi, S.Park, D.Han, S.Han, M.Jin, T.Ohsuna Amino-functionalized SBA-15 type mesoporous silica having nanostructured

    hexagonal platelet morphology // Chem.Comm. - 2006 - . 4131-4133.

    6. .., .., .. //

    , ,

    20-22 2009, , , . 100-101.

    . 1,

    .

    ,

    : .

    .

    () ,

    , , [1].

    .1.

    [2-4].

    - 3-

    ().

    ( 123) [5], [6],

    SBA-15 .

    (

    870 -1) [6].

    - . .2., , ,

    , . 1.

    .., .., .., .., ..

    , 03164, . , 17

    e-mail: [email protected]

    .3.

    () () -

    100 200 300 400 500 600 700 800 900 1000

    -0,6

    -0,4

    -0,2

    0,0

    0,2

    ,

    . 4..

    . 4.. -

    100 200 300 400 500 600 700 800 900 1000

    -0,4

    -0,2

    0,0

    0,2

    ,

  • -

    ..,

    ..,

    ..,

    ..,

    ..

    . ..

    119991 . ,

    , . 31, . 4

    -

    mail: [email protected]

    952-00-65

    -

    ()

    -.

    ,

    .

    ,

    .

    .

    -

    ()

    /

    ().

    -

    ,

    1,2 .

    0,05

    1 H2

    SO4

    50 /.

    :

    ,

    ,

    ,

    : ITO (

    SnO2

    In2

    O3

    ,

    ), Au, Pt.

    ,

    11

    510-3

    .

    24 .

    ,

    ,

    .

    -

    -

    /

    (). -

    RP Pep Mix

    Ultraflex

    Bruker,

    330

    110 . -

    .

    . -

    80 -

    95 %

    .

    --4-

    .

    ,

    .

    -.

    .1

    -

    ,

    Au .

    m/z = 213, 320, 421

    529

    , ,

    .

    . 2

    -

    ,

    ITO

    .

    (m/z = 213),

    (m/z = 320)

    (m/z = 421) .

    (m/z = 612).

    Pt

    (m/z = 212),

    (m/z = 320)

    (. 3).

    (m/z = 529).

    ,

    , ,

    ,

    .

    .

    ,

    ,

    . ,

    ,

    ,

    .

    ,

    -

    .

    -

    m/z

    = 213.

    . 4

    -

    ,

    ,

    .

    ,

    , ,

    ,

    (m/z

    = 213),

    (m/z

    = 318)

    (m/z = 422).

    ,

    .,

    ,

    ,

    ,

    ,

    ,

    ,

    . ,

    Pt

    Au ,

    , ITO

    .

    ,

    ,

    ,

    ,

    .

    172.466

    120.139

    212.677

    320.074421.361

    288.678380.22292.992 264.908

    444.375528.677

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    4x10

    I

    n

    t

    e

    n

    s

    .

    [

    a

    .

    u

    .

    ]

    100 150 200 250 300 350 400 450 500 550m/z

    .1

    119.939

    212.635

    147.989

    320.020

    577.302

    421.287

    252.745611.679

    94.820

    0

    2000

    4000

    6000

    8000

    I

    n

    t

    e

    n

    s

    .

    [

    a

    .

    u

    .

    ]

    100 200 300 400 500 600 700m/z

    .2

    211.791

    320.179

    421.509

    146.498528.781

    172.545120.092

    299.090

    292.043 449.614 507.735393.416

    342.267

    244.87994.906

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    4x10

    I

    n

    t

    e

    n

    s

    .

    [

    a

    .

    u

    .

    ]

    50 100 150 200 250 300 350 400 450 500 550m/z

    3

    .4

  • --

    --, ,

    1

    .., 1

    .., 1

    ..,2

    .., 2

    ..1

    . ..

    , , 2

    .. , , -mail: [email protected]

    ,

    25-

    . ..

    11

    13

    2011

    , , , , , .

    - , . , CeO2 CuO SiO2 - . Ce-, Cu- , . - Ce-, Cu- . 1. 450 - 650 2/ = 800 , (. 2). CeO2 CuO 1:1.

    0 200 400 600 800 10000

    100200300400500600700

    CuO/SiO2 CuO/CeO2/SiO2 CeO2/SiO2

    S , 2 /

    T, C

    CeO2

    /SiO2

    , CuO/SiO2

    . 2.

    . . 1.

    -

    Ce-, Cu-

    . . 3 Ce-, Cu- , . , CeO2 (2 .%), CuO (2 .%). (. 1), -, , CeO2/SiO2 CuO/SiO2 1:0; 1:0,1; 1:0,5; 1:1 0:1. , 60 , 900 () = 1150 (. 3).

    .

    3. Ce-, Cu-

    ,

    (1-5)

    (6).

    -

    20, 40 ,

    - 2 .

    CeO2

    /SiO2

    CuO/SiO2

    1:0 (1); 1:0,1 (2); 1:0,5 (3); 1:1 (4); 0:1 (5, 6).

    - 3600 -1, O-H (. 4). - . (1-5) (6).

    4000 3500 3000 2500 20000

    20406080

    100

    65432

    , %

    , 1

    1

    a

    200 300 400 500 600 700 800 9000,00,51,01,52,02,53,03,54,0

    6

    53 421

    D

    ,

    . 4. -

    () -

    () Ce-, Cu

    2 .

    250 (. 4, 1-5). . Cu-, (2-5), - , (6) - . Cu-, , =575 .

    , ,

    (

    46/11-).

    1 2 3 4 5 6

  • Surface Chemical Oxygen and Nitrogen Functional Groups Modification of CNTO. Stasiukb, N.Kovala, O.Bakalinskaa, N.Kartela

    a National University of Kyiv-Mohyla Academy, 2 Skovoroda st., Kyiv, 04070, Ukraine b Chuiko Institute of Surface Chemistry of NAS of Ukraine,

    17 General Naumov st., Kyiv, 03164, Ukrainee-mail: [email protected]

    INTRODUCTIONThe potential of carbon nanotubes (CNTs) in mechanical, electrical, electronic, thermo-mechanical, optical and sensoring applications is nowadays undisputable. One of the key factors needed to convert such a potential into a reality is the achievement of adequate CNT dispersion. For polymer composites applications, CNT functionalization is needed to improve dispersion as well as to promote interfacial bonding and thus CNT-copolymer property transfer. Wet chemical oxidation and doping of nitrogen is recognized as an efficient method for CNT purification, promoting dispersion and surface activation at the same time. Oxygen containing functional groups can be introduced on single and multi-walled carbon nanotubes by liquid-phase modification procedures. Acid treatment is one of the most commonly employed methods for CNT oxidation, given its versatility, efficiency and potential to scale-up. The most common reagents used for liquid-phase oxidation treatment are HNO3, H2SO4, and KMnO4. The doping of nitrogen has received focused attention because significant changes in hardness, electrical conductivity, and chemical reactivity have been theoretically predicted and experimentally observed. The CNT can be treated by plasma gaseous NH3 or N2 ranging from 400 0C to 800 0C for 2 h or by (NH2)2CO heating to 800 0C for 1 hour [1,6].

    MATERIALS AND METHODSFor doping of oxygen atoms to the CNTs, they were oxidized by solution of HNO3. For the preparation of CNT oxidization form (O-CNT) 1,5 g of CNTs were boiled during 1, 2, 3, 4 and 5 hours in the HNO3 solution ( = 34 %, V = 200 ml). After cooling of mixture to the room temperature CNTs were washed by the distilled water to the neutral pH value. As result, oxygen groups bonded to aromatic rings on CNTs (Fig.1) [2,3].For doping of nitrogen atoms to the surface layer of carbon nanotubes (N_CNT), preliminary oxidized CNTs were saturated with solution of urea, dried out, placed in a quartz reactor through which skip an argon and heated at the temperature of 800 0 during 1 hour. As result, nitrogen groups bonded to aromatic rings on CNTs (Fig.2) [4].

    Fig.1. Simplified schematic of some acidic surface groups bonded to aromatic rings on CNTs

    Fig.2. The nitrogen functional forms possibly present in carbonaceous materials

    ANALYSIS OF SURFACE FUNCTIONAL GROUPS

    The chemical titration method, proposed by Boehm, was used for analysis of surface functional groups. The amount of oxygen-containing groups (carboxyl, lactonic, and phenol) on the CNTs was determined by adsorption neutralization with NaHCO3, Na2CO3, and NaOH solutions, respectively. The basic group content of the CNTs was determined with 0.05 M HCl. To 0.05 g of CNTs was added 50 ml of 0.05 M reagent solution, dispergated in an ultrasonic bath-house during 15 min. The suspension was shaken off during 24 hours, filtered solution of reagent from a suspension, for what used hydrophobic filters ("MF-Millipore", MCE Membrane 0.20 m). The alkaline reagents were determined by titration of 0.05 M HCl solution, HCl acid - by 0,05 M NaOH solution [5].

    RESULTS It was shown that the total amount of oxygen-containing groups is proportional to time of oxidation (Fig. 3). Amount of phenolic groups increases with time oxidation duration. The amount of lactone and carboxyl groups does not change substantially. After nitriding of CNTs alkaline groups appear on their surface. The general tendency of increase of amount of oxygen-containing groups does not change with time of oxidation, however, in comparing to the O-CNTs, the amount of phenolic groups diminishes from 2th to 10 times and, accordingly, the total amount of oxygen-containing groups diminishes (Fig.4). More credible than all, alkaline groups appear not only at interaction of urea with a surface, and also due to chemical transformations of phenolic groups on the groups of alkaline character.

    Fig.3. Distribution of oxygen-containing functional groups on the surface of O-CNTs.

    Fig.4. Distribution of oxygen-containing and alkaline functional groups on the surface of N-CNTs.

    CONCLUSIONThe selected methods of CNTs surface modification allow to carry out their effective functionalization, correlation is founded between time of CNTs modification and amount of functional groups.

    LIST OF LITERATURE1. Chemical oxidation of multiwalled carbon nanotubes / V. Datsyuk, M. Kalyva, K. Papagelis [etc.] // Carbon. 2008. Vol. 46. P. 833-840.2. Controlled oxidative cutting of single-walled carbon nanotubes / K.J. Ziegler, Z. Gu, H. Peng [etc.] // JACS. 2005. Vol. 127. P. 1541-1547.3.Oxidation of multiwalled carbon nanotubes by nitric acid / I.D. Rosca, F. Watari, M. Uo [etc.] // Carbon. 2005. Vol. 43. P. 3124-3131.4. Maldonado S. Structure, composition, and chemical reactivity of carbon nanotubes by selective nitrogen doping / S. Maldonado, S. Morin, K.J. Stevenson // Carbon. 2006. Vol.44. P. 1429-1437.5. Boehm H.P. Surface oxides on carbon and their analysis: a critical assessment / H.P. Boehm / Carbon. 2002. Vol. 40. . 145-149.6. Kim H., Sigmund W.M. Modification of carbon nanotubes // American Science Publishers. 2004. P. 619631.

    ACKNOWLEDGMENTPh.D. Sementcov Yu.I. and Zhuravsky S.V. for CNT.FP7-PEOPLE-IRSES-230790 COMPOSITUM, Project Hybrid nanocomposites and their applications for supporting.

  • .. , .. , ..

    .. ( ) 119991 , -1, , 31 / (495) 335-92-88, [email protected]

    .

    PFA 600/4740 PFA 460/4783 A 500U/4994

    -

    Ambersep 920UCl

    Amberlite 910UCl S-950 S-957

    A100/2412 A 140 -

    S 984 - 104

    107/150

    0

    50

    100

    150

    200

    250

    300

    350

    400

    0,00 0,05 0,10 0,15 0,20 0,25 0,30 0,35

    CSO4, -/

    Em, /PFA-600/4740PFA-460/4783-A500U/4994A100/2412S-957S-950Ambersep 920UClAmberlite 910UClS984A140 0

    50100150200250300350400450

    0,00 0,10 0,20 0,30 0,40

    CCl, -/

    Em, /

    PFA-600/4740PFA-460/4783S-957Ambersep 920UCl140S984

    . 2. -

    0,0

    0,1

    0,2

    0,3

    0,4

    0,5

    0,6

    0,7

    0,8

    0,9

    1,0

    0 200 400 600 800 1000

    V, ..

    /0

    PFA 600/4740S-957

    . 4. PFA600/4740 S-957 UO22+ - 0,2 /; H2SO4 5 /; NaCl 1 /; =1,4

    . 1. -

    . 3. S-957

  • ..,

    ..,

    , 690022, . , 22, . 100

    , 159, E-mail: [email protected]

    , ,

    -

    ,

    .

    .

    ,

    ,

    .

    .

    ,

    ()

    .

    ()-

    (%)) .

    .

    ,

    .

    -

    .

    400-500

    ,

    ()

    --

    (),

    .

    ,

    .

    ,

    ,

    .

    ,

    (b-

    , .1)

    ,

    .

    , .2,

    .

    (.)

    .

    (, %),

    . -

    (

    > R2)

    (

    > 30%, R1 > R3: . = [ R1() + (1/ R32 + 2 C32)-1]-1.

    (Al, Zr, Ti, Nb),

    ,

    H2SO4, Ca(H2PO2)2 .

    .

    . ,

    ZrO2

    ,

    900

    ,

    , .3, , 1. ,

    ,

    , .

    ZrO2

    .

    ,

    ,

    -,

    , . 4,

    2,

    ,

    . ,

    .

    () ,

    , .5.

    .

    ZrO2 , .5,

    ,

    .

    .

    ,

    (

    ), .5, ,

    (=60%),

    ,

    .

    -

    ZrO2

    400-750

    ()

    ().

    ,

    .

    Zr, Al, Ti, Nb.

    . ,

    400-480 480-600

    (

    ),

    ZrO2, TiO2,

    Nb2O5, .6.

    .

    (.7.)

    (

    ), (.7, ,

    3)

    (

    ) (.7,, , 3)

    ZrO2 .

    .7.

    () ()

    ZrO2

    (

    = 99%)

    0,5 (1), 3 (2), 10 (3) .1.

    ,

    NH4F HF.

    : 1.6

    1.6

    , ,

    ZrO2

    ,

    . ,

    ,

    , .8.

    .3.

    (1),

    (2),

    (3,4)

    (5,6).4.

    (1-

    , 2-

    )

    (3-

    , 4-

    )

    . 1.

    : 1-Pt

    , 2-

    , 3-

    , 4-, -

    , d-

    .2.

    : R1-

    , R2, C2-

    , R3, 3-

    .5.

    ZrO2

    .

    =60%

    .6.

    , ,

  • 0 200 400 600 800

    -0,10

    -0,08

    -0,06

    -0,04

    -0,02

    0,00

    -3

    -2

    -1

    0 4

    3

    2

    1

    T, oC

    r 104, /.dm/dT 104, /oCm,

    0,0

    0,1

    0,2

    0,3

    0,4

    0,5

    a

    ,

    .

    ,

    ,

    ,

    N-, S-, O-

    .

    ,

    Br2

    ,

    ,

    CBr,

    .

    ():

    (SBET

    =1100 2/, VS

    =0,41 3/)

    (SBET

    =1300 2/, VS

    =0,45 3/).

    :

    Br2

    KBr

    (@KBr3 @KBr3

    );

    (@Br2 @KBr3

    );

    Br2

    Ar

    (@Br2

    -Ar-T),

    T=200, 300, 400, 500.

    ..,

    ..,

    ..

    , 01601, , . , 64; e-mail: [email protected]

    0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6 1,80,0

    0,1

    0,2

    0,3

    0,4

    0,5

    0,6

    cBr(XA), /

    cCO, /

    R=0,86

    .

    . ,

    .

    Br H Br Nu NuBHNu

    N u = -S H, -S C H2C O O H, -N R 2, -N H R

    ,

    (

    ,

    ,

    )

    0,5 /

    N-

    S-

    .

    cBr

    , /() t, t

    , cBr

    , /()

    @KBr3 0,62 170-435 290 0,31@Br2 0,52 195-440 280 0,34@KBr3 0,25 175-440 285 0,15@Br2 0,31 180-405 270 0,21

    m(Br),

    / m(Br1), / kef1102, -1 m(Br2),

    / kef2102, -1@Br2

    -Ar-200 0,191 0,030 3,86 0,161 3,28@Br2

    -Ar-300 0,179 0,045 3,37 0,134 2,20@Br2

    -Ar-400 0,175 0,037 3,35 0,138 2,27@Br2

    -Ar-500 0,171 0,024 3,28 0,147 2,89@Br2

    -Ar-200 0,256 0,117 4,12 0,139 2,44@Br2

    -Ar-300 0,196 0,093 4,58 0,103 2,49@Br2

    -Ar-400 0,196 0,058 4,26 0,138 3,20@Br2

    -Ar-500 0,184 0,050 3,67 0,134 3,27

    0 50 100 150 200 250 300 350

    -0.05

    0.00

    0.05

    0.10

    0.15

    ,

    m, /

    IIIIII

    .

    (

    )

    (

    )

    :

    (

    15

    %).

    0 200 400 600 8000.00

    0.05

    0.10

    0.15

    0.20

    0.25

    10oC/

    5oC/

    3oC/

    t, oC

    m, /

    0 20 40 60 80 100 120 140 1600.00

    0.05

    0.10

    0.15

    0.20

    0.25

    400oC

    500oC300oC

    200oC

    ,

    mBr, /

    0 20 40 60 80 100 120 140 160

    -6

    -5

    -4

    -3

    -2

    -1

    -tg = k2ef

    -tg = k1ef

    ln(mmax-mBr)

    ,

    0 40 80 120 160 200-0.12

    -0.10

    -0.08

    -0.06

    -0.04

    -0.02

    0.00

    500oC

    400oC

    300oC

    200oC

    ,

    mBr, / . . (

  • - /

    .*, ., ., . . .. * [email protected]

    ()

    : , ;

    .

    - / ()

    -

    - - SiO2

    -

    (AgSiO2) - - . 3 10% (v:v). =400C 380 nm (.1.) 380430 nm [1]. , =450C, 400 nm. , 400C 2 5 nm, >400C 6 11 nm [2].

    350 400 450 500 5500,02

    0,04

    0,06

    0,08

    0,10

    Abs.

    nm

    SiO2 + Ag 4500C

    350 400 450 500 5500,02

    0,04

    0,06

    0,08

    0,10

    Abs.

    , nm

    SiO2 +Ag 4000C

    - .

    , 3 % 10 % (.3.). =450C 3 , =400C (.3.). , >400C, , - =337 nm.

    - , , , , , - (). / - / ().

    .2. SiO2-Ag.

    .1. AgSiO2, .

    .3. - / (3-10% ), 400 450 , .

    , AgSiO2, , - /. . 25 nm , / , .

    [1] Optical absorption of Ag oligomers dispersed within pores of mesoporous silica. Huijuan Bi, Weiping Cai, Huazhong Shi, Xiong Liu./ Chem. Phys. Lett. 57 (2002) 249254[2] Ag nanoparticles deposited onto silica, titania, and zirconia mesoporous films synthesized by solgel template method. G. V. Krylova Yu. I. Gnatyuk N. P. Smirnova A. M. Eremenko V. M. Gunko / JSol-Gel Sci Technol (Special edition)

    , , (). 284 ...

  • Fe3O4/AgI

    .., .., .., ..

    . .. ,

    . , 17, , 03164, ;

    20 40 60 80

    ,

    .

    .

    2

    . ,

    .

    , ,

    -

    AgI

    Fe3O4 .

    Fe3O4 AgI

    (.) 2 = 30.1, 35.6,

    44, 53.3, 57.4, 62.8 2.96, 2.52, 2.05, 1.71,

    1.60, 1.47, Fe3O4 (JCPDS

    19-629) 2 = 22,4; 23,8; 25,3; 39,3; 42,7; 45,3; 46,5,

    3,96; 3,73; 3,5; 2,29; 2,12; 2,0; 1,95 ,

    AgI (JCPDS 9-374). :

    Fe3O4 , Fe3O4/AgI (1:1),

    - Fe3O4/AgI (1:5).

    AgI ()

    Fe3O4/AgI ().

    JEOL JSM-

    6490LV ().

    -5,0 -2,5 0,0 2,5 5,0

    -60

    -30

    0

    30

    60

    emu/g

    , kOe

    Fe3O4

    -5,0 -2,5 0,0 2,5 5,0

    -3

    0

    3

    emu/g

    , kOe

    Fe3O4/AgI

    , AgI (1:5).

    Ag 3d

    - .

    Ag 3d 5/2 1,17 e Ag 3d 3/2 1,26

    .

    Ag 3d = 368,6

    Ag-O-Si, =368,2

    Ag.

    364 368 372 376 380

    0

    1000

    2000

    3000

    4000

    5000

    6000

    5/2

    3/2

    Ag3d

    Int

    E,eV

    60 80 100 120 140 160 180 200

    10

    20

    30

    40

    1-1

    1-2,5

    1-5

    1-7,5

    T, 0C

    AgI Fe3O4/AgI

    , Fe3O4/AgI

    .

    -

    . , AgI

    -

    .

    Fe3O4/AgI

  • .., .., ..,

    .., .. , . . 17, , ;

    (044)424-35-67, e-mail: [email protected]

    . , , , , , . , - /. , .

    .2. () () TSX, TiO2 SiO2.

    ., 1-10% .

    60-70 150-170, . . 3% 5% 800, . -, TS3 TS5 . TS1, SiO2 - TS1 TS3.

    SET, 2/

    500C

    SET, 2/

    350C

    SiO2 220 430

    TS1 490 680

    TS3 390 560

    TS5 440 460

    TS7 480 360

    TS10 430 490

    TiO2 120 120

    FT-IR TiO2/SiO2 , 1640 cm-1 , , 3600-3300cm-1, TiO2 SiO2 . , Ti Si-O , , , .

    , - , - (100-6002-1) . TiO2/SiO2 TS1, TS3, TS5, TS7, TS10 (1, 3, 5, 7, 10%TiO2) () - 123. 5000. (.1).

    1. .

    40 800. () - -7304, 0.16-1, -101, - . - 10-8. 10/, 10-8 .., 2 .

    , TS3 TS5. [1]. . -, .

    TiO2/SiO2 - .

    1. M.A.Henderson The interaction of water with solid surfaces: fundamental aspects revisited/Surface Science Reports 46 (2002) 1-308

    .1. .

    Ti4+ . TiO2, , 1 10 % (.1), TiO2 . , 270 220 , .

    . TiO2 , SiO2 .

  • TiB2 - C

    ..

    , ,c , 2/1, , 03680, [email protected].

    : , , .

    [1,2] - , , , , . :

    2Ti + 4 = 2TiB2 + 3C .

    , .

    . , ,

    TiB2 Ti. TiC ( NaCl) TiB2( AlB2) . , . - . - , .

    , . , . .

    - TiB2.

    ( , , , n (n = 20 70)) .

    1. .., . ., . ., . . TiB2-. -, (2007) .219.

    2. .., .. Ti2-C*. . .11, 2, (2010), . 453-458.

  • TiO2

    2/Au

    -

    ,

    .

    ..1,

    ..1,

    ..1,

    ..2,

    ..2,

    ..11-

    . .., .

    , 17, ,

    e-mail: [email protected]

    . . .

    6, 22013, ,

    ,

    .

    ,

    ,

    ,

    .

    ,

    ,

    ,

    .

    ,

    .

    ,

    ,

    .

    kd

    105

    -1

    Al 2,0TiO2

    Al 4,7

    TiO2 Al/Al2

    O3 3

    () 8,5

    TiO2 Al 6,7

    Au/TiO2 Al

    7,6

    Au/TiO2 Al 6,9

    Au/TiO2 Al/Al2

    O3 1,5

    () 7,0

    Au/TiO2 Al/Al2

    O3 3

    () 7,7

    Au/TiO2

    Al 5,7

    .

    C

    : ()

    () -

    .

    TiO2

    ,

    (),

    ()

    ().

    ,

    (),

    .

    ,

    TiO2

    -

    100

    80-100 .

    TiO2

    5

    50 .

    (

    10 )

    TiO2

    100

    60-80 ,

    130 .

    .

    TiO2

    ,

    ,

    240-700 .

    TiO2

    -

    250 300 350 400 450 5000,00

    0,02

    0,04

    0,06

    0,08

    0,10

    0,12

    0,14

    0,16

    , .

    .

    , 250 300 350 400 450 5000,00

    0,05

    0,10

    0,15

    , .

    .

    , 300 400 500

    0,00

    0,02

    0,04

    0,06

    0,08

    0,10

    0,12

    0,14

    0,16

    , .

    .

    ,

    TiO2 (), Au/TiO2 (),

    (3)

    Au/TiO2(),

    (1,5 ).

    250 300 350 400 450 5000,00

    0,05

    0,10

    0,15

    , .

    .

    , 250 300 350 400 450 500

    0,00

    0,05

    0,10

    0,15

    0,20

    , ..

    , 300 400 500

    0,00

    0,05

    0,10

    0,15

    0,20

    , ..

    ,

    TiO2

    (), Au/TiO2

    (),

    Al

    Au/TiO2

    (),

    Al

    .

    ,

    357

    2

    /Au

    Al .

    380

    420

    , .

    ,

    , ,

    ,

    [1-2].

    ,

    . 1.De Ruyck, H.; De Ridder, H.: Van Renterghem, R.; Van Wambeke, F.

    Food Addit. Contam. 1999, 16(2), 47-56.2. Zurhelle, G.; Muller-Seitz, E.; Petz, M. J. Chromatogr. B: Biomed. Sci. Appl. 2000, 739(1), 191-203.

  • SnO 2

    .. , .., ..

    ... . , 17, , 03164,

    E-mail: pexim @ukr.net

    () . . SnO /SiO SnCl ( 2 2 4

    2100 ) 120 300 / ( 120 300). SnO /SiO 5, 15 30 .% SnO 120 300. , 2 2 2 , . , SnCl . (IV) H O 4 2 (1) (2) SnO , 300 2 5, 15 30 %., 120 15 30 %.

    [?SiOH] + Sn(Cl) [?SiO] Sn(Cl) + nHCl (1)n 4 n 4-n

    [?SiO] Sn(Cl) + (4-n)H O [?SiO] Sn(OH) + (4-n)HCl (2)n 4-n 2 n 4-n n=1, 2 , 40 ,

    450 3-4 . 1 . 1,5 , 100 1,5 . (~ 0,5 ) HCl. .

    2 100-105 . 2 600 .

    , - .

    SiO 2( SiO ). (S ) 2 SnO /SiO .1, . 2 2

    .5. - (-120) () (-300) ().SnO /SiO SnO /SiO2 2 2 2

    , SnO /SiO (300), =15 30 .%, 2 2 SnO2 (10-15 ) SnO . , 2 (), SnO /SiO (120) SnO /SiO (300) - 2 2 2 2 , (D ) SiO . SnO2 2 D , ,

    600 .

    Acknowledgment: This work was supported by the European Community under a Marie Curie International Research Staff Exchange Scheme (IRSES), Project No 230790.

    600 SnO /SiO (120) ( =15 30 .%) 2 2 SnO2SnO /SiO (300), =5 .%, 2 2 SnO2 SnO (.2) , SnO /SiO (300), 2 2 2 =15 30 .%, (10-15 ) SnO2SnO (.2).2

    , (), SnO /SiO (120) SnO /SiO (300) - 2 2 2 2 , (D ) SiO . D SnO2 2

    , , 600 . SnO 120 300 2 - SnO /SiO (120) SnO /SiO (300). 2 2 2 2

    .4. , , SnO /SiO (300) : A - 5% SnO , B- 15% SnO , C - 30% 2 2 2 2SnO2

    SiO pH 2 (pH()) SnO /SiO 2 2 pH() =2,2 pH() =5. SiO2 SnO2 (.3), SnO SiO ( 2 2 =15 .% ), SnO2 D SnO /SiO (A300) (.4).2 2

    10 20 30 40 50 60 70

    2

    15 w t.% S nO 2 on 3001 Initia l

    2 600 oC

    1

    2

    1 0 2 0 3 0 4 0 5 0 6 0 7 0

    2

    1 5 w t .% S n O 2 o n 1 2 01 In i t ia l

    2 6 0 0 0 C

    1

    2

    .2. SnO /SiO (120) () 2 2SnO /SiO (300) () =152 2 SnO2. .%

    a

    0 5 10 15 20 25 30

    110

    120

    130

    S,m

    2 /g

    C (SnO2), wt. %

    SnO2/SiO2 (A120)

    Initial

    600 0C

    0 5 10 15 20 25 30

    260

    280

    300

    SnO2/SiO2 (A300) Initial

    600 0C

    S,m

    2 /g

    C (SnO2), wt. %

    .1. SnO2/SiO2(120) () SnO2/SiO2(300) () SnO2.

    a

    * S n O 2 , % .

    S n O 2

    ,

    2/

    3 0 0 1 S n S il 5 -3 0 0 5 2 5 9 ,5 2 S n S il 5 -6 0 0 5 2 9 6

    6 0 0 2 3 S n S il 15 -3 0 0 1 5 2 6 1 4 S n S il 15 -6 0 0 1 5

    1 0 -1 5 2 7 7

    6 0 0 2 5 S n S il 30 -3 0 0 3 0 2 5 5 6 S n S il 30 -6 0 0 3 0

    1 0 -1 5 2 7 9

    6 0 0 2 1 2 0

    7 S n S il 15 1 5 1 1 0 8 S n S il 15 (6 0 0) 1 5 1 2 2

    6 0 0 2 9 S n S il 30 3 0 1 0 6 1 0 S n S il 30 (6 0 0) 3 0 1 2 9

    6 0 0 2 * -

    2 4 6 8 10 12-50

    -40

    -30

    -20

    -10

    0

    10

    20

    Zeta

    Pote

    ntia

    l,m

    V

    pH

    300 5% SnO2 on SiO215% SnO2 on SiO230% SnO2 on SiO2

    pH(PZC)

    2 4 6 8 10 12-50

    -40

    -30

    -20

    -10

    0

    10

    20

    Zet

    aPo

    tent

    ial,

    mV

    pH

    300

    5% SnO2 on 300, 600oC

    15% SnO2 on 300, 600oC

    30% SnO2 on 300, 600oC

    .3. - SnO /SiO (300) 2 2 () 600 ().

    a

    0 100 200 300 400 500 600 700 800 900 10000

    2

    4

    6

    8

    10

    12

    14

    16

    V,

    %

    D, nm

    SnSil 15-600, 15 % SnO2; 0,2 % susp. H2O

    D ef =192,1 nm

    0 100 200 300 400 500 600 700 800 9000

    2

    4

    6

    8

    V,

    %

    D, nm

    SnSil5-600, 5 % SnO2; 0,2 % susp. H2O

    D ef =173,4 nm

    0 100 200 300 400 500 600 700 800 900 10000

    2

    4

    6

    8

    10

    12

    14

    16

    D ef = 194,2 nm

    V,

    %

    D, nm

    SnSil 30-600, 30 % SnO2; 0,2 % susp. H2OA B C

    1600 2000 2400 2800 3200 3600 40000,0

    0,2

    0,4

    0,6

    0,8

    32

    Abso

    rban

    ce

    cm -1

    1 120 2 15 w t.% SnO

    2 on A120

    3 15 w t.% SnO2 on A120

    after 600 0 C

    1

    Si-O H

    Si-O -SiH 2O

    1600 2000 2400 2800 3200 3600 40000,0

    0,5

    1,0

    1,5

    2,0

    32

    Abso

    rban

    ce

    cm-1

    1 300 initial2 15 wt.% SnO23 15 wt.% SnO2

    after 600 0 C

    Si-OH

    Si-O-Si

    H2O

    1

    -1 (3750 ) 300, Si-OH , Si-O-Sn (.5). , 15 30 %. SnO , 120, 2 ( I V ) ( . 5 ) .

  • .. , .. , .. , ..

    .

    .

    .

  • -

    ..,

    ..,

    ..

    ,

    . ,[email protected].

    ,

    ()

    ,

    ,

    ,

    ,

    -

    () , -

    -

    .

    ,

    -

    .

    ((33

    ))33

    SS--[[OO--SS((33

    ))22

    --]]nn--SiSi((33

    ))33

    + + HH22

    SOSO44

    ((33

    ))33

    SS

    --[[OO--SS((33

    ))22

    --]]mOHmOH

    + + ++HOSOHOSO22

    OO[[--((33

    ))22

    SS--]]mSimSi((33

    ))33

    ((mm

  • 1,2-

    .., .., .., ..

    03164 . , . , 13, : 452-54-17, [email protected]

    : 1,2-

    : ; -

    - ( 3 : 1, ); 2 100-300 /

    -

    , %

    1,2-, %

    1,2-

    , %

    Pt/Al2O3 34 26 78

    Ni/SiO2 37 30 81

    Ni/Cr2O3-Al2O3 39 32 84

    Cu-Pt/Al2O3 46 36 78

    Cu/Al2O3 76 66 87

    Cu/Al2O3-Cr2O3 86 84 97

    : - - 100%;

    - - (< 8 ) ; -

    (> 50 );- - Cu/Al2O3 ( 1- ) Cu/Al2O3-Cr2O3 ( 2- );

    - 1,2-

    3,5-11,6 / /;

    - 11 / ;

    - : .

    HO-CH2-CH(OH)-CH2OH CH3-CO-CH2OH+H2O

    CH3-CO-CH2OH + H2 CH3-CH(OH)-CH2OH

    . 1,2- ( 18,5 383 / /, 2 100 /).

    2 4 6 8 1 0 1 2

    7 0

    8 0

    9 0

    1 0 0

    , , %

    , C 3 H 8 O 3 / /

    a

    40 50 60 70 80 90 100

    70

    80

    90

    100

    , , %

    2 : C3H8O3, /

    . Cu/Cr2O3-Al2O3 () :

    : () (

    (), (), 1,2-

    ())

    220

    165

  • .., .., .., .., .., .. .., ..

    - . ..

    ZnO

    , ZnO

    Zn(NO3)2

    (NH32O)

    (Zn(OH)2)

    (Zn(NO3)2)

    , ,

    1000

    ZnO

    .

    t .,

    , .%

    ,

    1 30 0,360 0,15 -2 50 0,545 0,18 993 70 0 400 0 18 63

    r 30 120

    3 70 0,400 0,18 634 100 0,530 0,26 39

    .

    , .%

    ,

    1 4,0 0,360 0,27 952 4 5 0 381 0 29 41

    2009 -2011 ( 2.1.1/9317)

    2 4,5 0,381 0,29 413 5,0 0,530 0,26 394 5,5 0,510 0,28 535 6,0 0,610 0,25 646 6,3 0,855 0,27 79

  • CuOCuO

    CuSOCuSO44

    ..

    , 03164, , .

    , 17, [email protected]

    ..,

    ..,

    .,

    ..

    CuSOCuSO44

    --300300

    (S

    = 300 2/, Si

    =0,8

    /).

    ()

    -

    (

    CuSO4

    0,8

    1

    SiO2

    )

    ,

    .

    10 20 30 40 50 60

    3

    4

    12

    2400 3200 4000

    , -1

    123456

    . 3.

    ,

    (

    5 ).

    2400 3200 4000

    , -11

    2

    3

    4

    10 20 30 40 50 60

    123

    4

    CuOCuO..

    [1].

    ,

    .

    . 3

    ,

    300

    .

    . ,

    800

    3

    -

    ,

    (. 5, . 4)

    ,

    CuO

    (JCPDS

    #

    80-76).

    CuO,

    ,

    40 ,

    -300.

    ,,

    , ,

    , ,

    CuSOCuSO

    44

    800800

    CuOCuO..

    . 5.

    80 (1),

    300 (2), 550 (3)

    800

    (4).

    . 2.

    -

    CuSO4

    -

    1

    (2), 2 (3), 3 (4), 4 (5)

    5 (6) .

    . 1.

    CuSO4

    -

    1

    (1), 2 (2), 3 (3)

    5 (4)

    .4.

    -

    t=80 (1), 300 (2), 550 (3), 800 oC (4).

    6.22.7.21

    -

    "

    "

    -

    3750 -1

    (.4).

    ,

    550

    (. 5, .

    1-3).

    -

    -.

    [2],

    :2CuSO2CuSO4 4 2CuO + 2SO2CuO + 2SO22

    + O+ O22

    ,

    650

    C.

    ,

    650-

    850

    (. 3).

    ,

    : )

    )

    .

    1.

    .

    .,

    .

    .,

    .

    .,

    .

    .,

    .

    .

    CuSO4

    .

    ", 2010, 10, .109-113.2.

    .

    .

    .

    .: , 1973.

    .

    1.

    656 .

    [[11] ]

    CuSOCuSO44

    5522

    ..

    ..

    (. 1)

    -

    (. 2),

    300

    (. 3)

    -

    -

    (. 1

    2) ,

    3

    .200 400 600 800 1000

    ,

    mH2O = 24%

  • -

    C/MX

    OY

    /SiO2

    -

    .. 1, .. 1, .. 1, . 2,

    .

    -2

    PIRSES-GA-2008-230790.

    -

    C/Mx

    Oy

    /SiO2

    ,

    -

    ()

    Mx

    Oy

    /SiO2

    ,

    Cu,

    Mg, Mn, Ni

    Zn.

    in situ

    ,

    1:2:1.

    3 /

    SiO2

    .

    800 2 .

    .

    1-

    . . .

    .

    17, 03164 -164 [email protected] of Chemistry, Maria Curie-Skodowska

    University, 20031 Lublin, Poland

    ,

    ,

    .

    36-48 % .,

    .

    -

    .

    -

    Mx

    Oy

    /SiO2

    -

    C/Mx

    Oy

    /SiO2

    Mx

    Oy

    /SiO2

    -

    C/Mx

    Oy

    /SiO2

    /Mx

    Oy

    /SiO2

    ()

    -

    /Mx

    Oy

    /SiO2

    (, )

    -

    /Mx

    Oy

    /SiO2

    50-200

    .

    250-350 ,

    ,

    .

  • ,

    ,

    .

    (10B, 157Gd).

    ,

    -

    ,

    .

    ,

    -.

    .

    1000

    .

    -1

    Gd-

    .. , .. , .. , .. , .. , ..

    *[email protected]

    . ..

    *

    . ..

    . 1

    . 4.

    ,

    Gd3+: 1 -

    = 20

    , 2 -

    ,

    1000

    .

    .

    ()

    -2402

    PHOIBOS-

    100_SPECS (

    ga =1253,6 ;

    = 200 ;

    = 210-7 ).

    0 10 20 30 40 50 60 70 80 900

    5000

    10000

    I, c

    - 1

    1

    2

    -4 -2 0 2 4

    -50

    0

    50

    *3/

    Fe3O

    4

    Hc=-55

    M r/M s=0,20

    ()

    H , -3 0 3

    -30

    0

    30

    *3 /

    H,

    Fe3O 4/Gd

    Hc=106,5

    M r/M s=0,47

    ()

    130 135 140 145 150 155 160

    130 135 140 145 150 155 160

    130 135 140 145 150 155 160

    3

    XPSGd4d

    E,

    2

    Gd-OH

    Gd-O-Fe

    Gd3+

    T=20 0C

    T=1000 0C

    T=20 0

    INT

    1

    Gd3+

    3/2

    5/2

    704 706 708 710 712 714 716 718 720

    704 706 708 710 712 714 716 718 720

    704 706 708 710 712 714 716 718 720

    3

    INT

    XPSFe2p3/2

    E,

    2

    T=1000 0C

    1

    T=20 0C

    T=20 0 FeOOH,sat.

    subox.

    Fe2+Fe3+

    sat 2+sat 3+

    . 5.

    :() , () -

    , ()

    -

    ,

    () -

    ~ 1000

    .

    . 2.

    Gd4d-

    Fe3

    O4

    /Gd,

    (

    1, 2)

    Gd3+

    (

    4,

    3).

    . 3.

    Fe2p-

    Fe3

    O4

    /Gd,

    (

    1, 2)

    Gd3+

    (

    4,

    3).

    .

    11,9 .

    Gd(OH)3

    Fe3

    O4

    ~ 1,9 ,

    ~ 5,0 .

    .

    , ,

    ~ 1000

    ~ 4-

    5%,

    .

    -

    .

    -4 -2 0 2 4-5

    0

    5

    Hc=-144

    Mr/Ms=0,44

    H,

    * -1

    *3

    T=294 K

    Fe3O4/GdFeO3()

    -3 0 3

    -10

    0

    10

    *3 /

    H,

    Fe3O4/ 2Gd

    2Hc=-227,9

    Mr/Ms=0,26

    ()

    ,

    (. 4,

    1).

    = 900

    1000

    (. 4,

    2)

    ,

    GdFeO3

  • ? ? ?

    ???????????????????????????????????????????????????????????????????????????????????????????

    ??????????????????????

    ????????????., ???????????????., ?????????., ????????????.

    ???????????????????????????????????????????????????????????????????, 246746, ?.??????, ????????????, 48, ????????, [email protected]

    ???????????? ???????????????????? ???????? ??????? ?? ???????????? ?????????? ???????????????????????????? ??????????????????????????????????????????, ??????????????????????????? ??????? ????????????. ???????????????????????????????????????-?????????????????????????????????????????????????????? T = 1100 ?, t = 1 ????????????-???? (???.2).

    0

    50

    100

    150

    200

    250

    300

    350

    475 500 525 550 575 600 625 650 675 700 725 750

    ???????????, ??

    ???????????????????????????

    , ???

    .

    2

    34

    1

    ???. 1. ????????????????? ?????? ?????-????? ?????????? ??????? ??????????? ???????????????????:? ??????????, ? ??????, ? ?????.

    ???. 2. ???????? ??????????-??? (?????. = 450 ??):1 YAG: Ce, La;2 YAG: Ce, La < 2 ????;3 YAG: Ce, Gd < 2 ????;4 YAG: Ce, Gd, ???. ???. ???????, T = 1100 ?, t = 1 ???.

    ???. 3. ??????????????????????????-???????????????????????????????:1 ????????????????????????????;2 ????????????????????.

    ????????? ?????????? ??????????????????????????????????????????????? ??????-??? ???????????????????? ????????? ?? ????? ???-??????????????? Y3Al5O12: Ce3+????????????-???????????????????-08, ?????????????????-??????? ???????????? ??????????????? ???????-???? ????????? ?????? ???????? 20-50 ???? ??????? ???? ??????????? 40-60 ?. ?? ????????????????????????????????????????????????,?????????? ??? ???????????? ??????????? ????-??????? ?? ????????? ????????????. ?????????????????????????????????????????????????????????? ?????????????? ?? ?????? ????? ?????-?????, ???????????????????????????????????,????????????????????????????????? (???. 3.).

  • THE ELECTROSTATIC POTENTIAL IN THE SEMICONDUCTOR - VACUUM - METAL

    CONTACT.

    L.G. ILCHENKO, V.V. LOBANOV

    Chuiko Institute of Surface Chemistry of National Academy of Science of Ukraine, General Naumov Str. 17, 03164, Kiev-164

    V.V. ILCHENKO

    Radiophysical Department, Kiev Taras Shevchenko University, Volodimirska Str. 64, 02033, Kiev-33

    e-mail: [email protected] , . (044) 424 94 72 The theoretical arguments presented in this article have

    shown how the distribution of the electrostatic potential

    in semiconductor - vacuum - metal contact changes in

    an applied voltage

    )U,x(V j

    U . The finiteness and continuity of )U,x(V j at the surfaces is saved through the formation of the

    double electric layer due to the change of the charge densities

    on the interfaces according to the contact potential and U . The obtained distribution of )U,x(V1 in a semiconductor are

  • 2

    compared to the known quadratic law of the Schottky barrier

    formation.

    In [1,2] in the framework of the dielectric formalism method

    for the system of three environments with the spatial dispersion

    [1], the semiconductor - vacuum - metal (SVM) system is

    considered. The electrostatic potential is calculated in the

    SVM system before contact. It was shown that the presence of a

    metal in the distance ( is thickness of the space

    charge region (SCR) in a semiconductor) leads to the change of

    the charge potential

    )x(V j

    SCRLL

    )x(V j

    SCRL

    x

    , which is related to the presence of

    charge with the density and on the surfaces of

    semiconductor and metal. At the subsequent diminishing of the

    vacuum interval a potential barrier determined by the

    image potential V between a semiconductor and metal [1-3].

    01

    nm10

    )

    02

    L

    (j0

  • 3

    Theory

    Continuity and total potential )x(V j0 )x(V j

    )k(

    on the interfaces

    is caused by the correct account of the spatial dispersion effects in

    the dielectric functions of semiconductor

    1 and metal )k(

    3 (TFA) [3]. Adduction of the SVM system to the contact

    (establishment of the general Fermi level) leads to the finite jump

    of the potential )x(V j , which equals to the contact potential

    13 , where 1 and 3 is work function of the semiconductor and metal, accordingly.

    In [3] it is shown that the continuity of before contact

    can be saved after its adduction in the contact due to the change of

    charge potential

    )x(V j

    )x(V j through the double electric layer (DEL)

    formation. The DEL arises up as result of the redistribution of the

    total densities of charges on the interfaces in contact in accordance

    to , which change afterwards in an applied voltage U on the

    semiconductor and metal surfaces. )U(101 )U02 (2

  • 4

    On the basis of theory of the formation of a rectifying

    contact [3] we defined the analytical equations which determine

    the distribution of the total electrostatic potential in all

    SVM system after the contact and its change in forward

    )U,x(V j

    U and

    reverse U voltage. Results of calculations

    In the present work the distribution of )U,x(V j is analysed

    on an example n -SivacuumAu system with the well-known

    parameters.

    The potential )x(V j for -SivacuumAu structure before

    contact (d