연 속 확 률 분 포

76
연 연 연 연 연 연 5 1 2 3 지지지지 지지지지 지지지지 4 지지지지

Upload: jonah-bentley

Post on 01-Jan-2016

58 views

Category:

Documents


9 download

DESCRIPTION

5. 연 속 확 률 분 포. 1. 균등분포. 2. 지수분포. 3. 감마분포. 4. 정규분포. 1. 균등분포 ( uniform distribution ). 균등분포의 확률밀도함수와 분포함수 및 평균 , 분산 그리고 균등분포에 대한 백분위수와 사분위수 등에 대하여 알아본다. 1. b - a. f(x) = , a ≤ x ≤ b. x. b - a. b. 1. x 2. a+b. b. b. . . =. =. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: 연 속 확 률 분 포

연 속 확 률 분 포연 속 확 률 분 포55

11

22

33

지지지지지지지지

지지지지지지지지

지지지지지지지지

44 지지지지지지지지

Page 2: 연 속 확 률 분 포

11 지지지지 (uniform distribution)지지지지 (uniform distribution)

균등분포의 확률밀도함수와 분포함수 및 평균 , 분산 그리고 균등분포에 대한 백분위수와 사분위수 등에 대하여 알아본다 .

균등분포의 확률밀도함수와 분포함수 및 평균 , 분산 그리고 균등분포에 대한 백분위수와 사분위수 등에 대하여 알아본다 .

Page 3: 연 속 확 률 분 포

1) 확률밀도함수1) 확률밀도함수☞

2) 평균 2) 평균 ☞

X ~ U(a, b)

f(x) = , a ≤ x ≤ b

1b - a

a+b2

1

b - ax2

2a

b

==

E(X) = x f(x)dx = dx

x

b - aa

b

ab

Page 4: 연 속 확 률 분 포

3) 분산 3) 분산 ☞

2 = Var(X) = E(X2) – E(X)2

-a2 +ab + b2 3

=a+b2

2 (b – a)2

12=

4) 분포함수 4) 분포함수

x < a 인 경우 :

x

E(X2) x2 f(x)dx = dx

a2 +ab + b2 3

1

b - ax3

3a

b

==

x2

b - aa

b

a

b

P(X ≤ x) = f(x)dx = 0 du = 0 -∞

x

-∞

x

Page 5: 연 속 확 률 분 포

a ≤ x < b 인 경우 :

x ≥ b 인 경우 :

x - ab - aF(x) = P(X ≤ x)

=

0 , x < a

, a ≤ x < b

1 , x ≥ b

지지지지 :

x

x

P(X ≤ x) = f(x)dx

= 0 dx + du

1b - a

x - ab - a=

-∞

x

-∞

a

a

x

P(X ≤ x) = f(x)dx

= 0 dx + du + 0 du

1b - a

= 1

-∞

x

-∞

a

a

b

b

x

Page 6: 연 속 확 률 분 포

5) 백분위수와 사분위수 5) 백분위수와 사분위수 ☞

0 < p < 1 에 대하여

100p- 백분위수 xp : [a, b] 를 p : 1-p 로 내분하는 점 xp=(1-p)a

+ pb

제 1 사분위수 Q1 = x0.25 = 0.75a + 0.25b

제 2 사분위수 Q2 = Me = x0.5 = 0.5a + 0.5b

제 3 사분위수 Q3= x0.75 = 0.25a + 0.75b

사분위수범위 I.Q.R = Q3 - Q1 = x0.75 - x0.25 = 0.5b – 0.5a

Page 7: 연 속 확 률 분 포

X ~ U(0, 10) 에 대하여

(1) X 의 확률밀도함수와 분포함수

(2) X 의 평균와 분산 2

(3) P < X < + )

(4) 사분위수 Q1 , Q2 , Q3

(5) X 의 최빈값 Mo = ?

f(x) = , 0 < x < 10

110

(1) X 의 확률밀도함수 : X ~ U(0, 10)이므로

X 의 분포함수 :

F(x) = P(X ≤ x) =

0 , x < 0

, 0 ≤ x < 10

1 , x ≥ 10

0 , x < 0

, 0 ≤ x < 10

1 , x ≥ 10

x10=1

10du

0

x

Page 8: 연 속 확 률 분 포

2 = 8.3333 이므로 = = 2.89

E(X) = = 5,

0+102

2 = Var(X) = = 8.3333

(10 - 0)212(2)

(3)

( , + ) = (5 – 2.89, 5 + 2. 89) = (2.11, 7.89)

P < X < +) = = 0.578

5.78

10

(4) 제 1 사분위수 Q1 = (0.75)•0 + (0.25) •(10) = 2.5

제 2 사분위수 Q2 = (0.5)•0 + (0.5) •(10) = 5.0

제 3 사분위수 Q3= (0.25)•0 + (0.75) •(10) = 7.5

(5) [0, 10] 에서 f(x) = 이므로 f(x) 의 최대값이 존재하지 않음 . 110

X 의 최빈값이 없다 .

8.3333

Page 9: 연 속 확 률 분 포

X ~ U(0, 1) 에 대하여 Y = a + (b – a)X (a < b) 라 할 때 ,

(1) Y 의 분포함수

(2) Y 의 확률밀도함수

(3) Y 의 평균와 분산 2

(4) Y 의 중앙값 Me = ?

(1) X ~ U(0, 1)이므로

X 의 분포함수 :

FX(x) = P(X ≤ x) =

0 , x < 0

, 0 ≤ x < 1

1 , x ≥ 1

0 , x < 0x , 0 ≤ x < 11 , x ≥ 1

1 du =

한편 , y = a + (b – a)x 이고 0 ≤ x ≤ 1 이므로 a ≤ y ≤ b

0

x

Page 10: 연 속 확 률 분 포

a ≤ y < b 에 대하여

P(Y ≤ y) = P[a + (b – a)X ≤ y]

y - ab - a=

y - ab - a= P X ≤ = F

=

y - ab - a

y - ab - a

y - ab - aFY(x) =

0 , y < a

, a ≤ y < b

1 , y ≥ b

Y 의 분포함수 :

(2) Y 의 확률밀도함수 :

fY(y) = FY(y) = =

dxd

dxd

b - ay - a

b - a1

, a ≤ y ≤ b

Page 11: 연 속 확 률 분 포

(3) Y ~ U(a, b)이므로

E(Y) =

a+b2

2 = Var(Y) =

(b – a)2

12

(4) Y ~ U(a, b)이므로

F(y0) = 0.5 =

y0 - ab - a

a+b2

Me = y0 =

Page 12: 연 속 확 률 분 포

지수분포의 확률밀도함수와 평균 , 분산을 비롯한 비기억성 성질 그리고 포아송과정과의 관계에 대하여 알아본다 .

지수분포의 확률밀도함수와 평균 , 분산을 비롯한 비기억성 성질 그리고 포아송과정과의 관계에 대하여 알아본다 .

22 지지지지 (exponential distribution)지지지지 (exponential distribution)

Page 13: 연 속 확 률 분 포

지 비율로 사고가 발생할 때까지 걸리는 시간 또는 비율 인 포아송과정에 따라 발생하는 사건 사이의 대기시간 등에 응용되는 확률분포를 모수 인 지수분포라 한다 .

1) 확률밀도함수1) 확률밀도함수☞ X ~ Exp()

f(x) = ex , x > 0 , > 0

Page 14: 연 속 확 률 분 포

2) 평균 2) 평균 ☞E(X) = x f(x)dx = x ex dx

0

u

= lim - e-x

=

x + 1

1u→∞

3) 분산 3) 분산 ☞ E(X2) = x2 f(x)dx = x2 ex dx

0

= lim - e-x

=

2x2 + 2x + 22 2

2x→∞

u

2 = Var(X) = E(X2) – E(X)2

-=2

22

1

21

=

0

0

0

0

Page 15: 연 속 확 률 분 포

교차로에서 나타나는 교통사고 발생시간의 간격 X( 단위 : 개월 )

(1) 사고가 관측된 이후로 한 달이 지난 후에 다음 사고가 발생할 확률(2) 두 달 안에 사고가 발생할 확률(3) 한 달을 30 일이라 할 때 , 평균 몇 일만에 사고가 나는가 ?

f(x) = 3ex , x > 0

1

(1) P(X > 1) = 3ex dx = (-1)ex = e = 0.0498

0

2

(2) P(X ≤ 2) = 3ex dx = (-1)ex = 1 - e = 0.9975

(3) 사고일 수는 모수 = 3 인 기하분포이므로

월평균 사고발생 간격일 수는 = 1/3, 즉 10 일이다 .

1

0

2

Page 16: 연 속 확 률 분 포

4) 분포함수 4) 분포함수

x < 0 인 경우 :

x ≥ 0 인 경우 :

x

x

P(X ≤ x) = f(x)dx = 0 dx = 0 -∞

x

-∞

x

xP(X ≤ x) = f(x)dx

= 0 dx + eu du

= - eu = 1- ex

0

x

-∞

-∞

0

0

x

Page 17: 연 속 확 률 분 포

F(x) = P(X ≤ x) =

0 , x < 01- ex , x ≥ 0

지지지지 :

5) 생존함수 (survival function) 5) 생존함수 (survival function)

☞S(x) = P(X > x) = 1 – F(x) = ex , x > 0

6) 위험률 (hazard rate function), 실패율 (failure rate function)6) 위험률 (hazard rate function), 실패율 (failure rate function)

h(x) = = S(x)

f(x)

Page 18: 연 속 확 률 분 포

X ~ Exp(1/600) 에 대하여 (1) X 의 확률밀도함수와 분포함수를 구하여라 .(2) X 의 생존함수를 구하여라 .(3) X 의 위험률을 구하여라 .(4) X 의 기대값과 분산

X ~ Exp(1/600) 이므로

X 의 확률밀도함수 X 의 분포함수

f(x) = ex/600 , x > 0 600

1F(x) = 1- ex /600 , x ≥ 0

X 의 생존함수 X 의 위험률

S(x) = ex/600 , x > 0

h(x) = = , x ≥ 0600

1

X 의 평균 X 의 분산

= 1/ = 600 2 = 1/ = 360000

Page 19: 연 속 확 률 분 포

환자의 생존시간 : X ~ Exp(1/100)

(1) 이 환자가 150 일 이내에 사망할 확률

(2) 이 환자가 200 일 이상 생존할 확률

f(x) = ex/100 , x > 0 100

1

F(x) = 1- ex/100 , x ≥ 0

X 의 생존함수

S(x) = ex/100 , x > 0

X 의 분포함수

(1) 이 환자가 150 일 이내에 사망할 확률 :

P(X < 150) = F(150) = 1- e/100 = 1 – 0.2231 = 0.7769

(2) 이 환자가 200 일 이상 생존할 확률 :

P(X ≥ 200) = S(200) = e/100 = e= 0.1353

Page 20: 연 속 확 률 분 포

X ~ Exp() 에 대하여 다음이 성립한다 . P(X > a+b | X > a) = P(X > b) , a, b > 0

지지 1 비기억성 성질 (memorylessness property)지지 1 비기억성 성질 (memorylessness property)

증명증명

증명 끝증명 끝

P(X > a+b | X > a) =P(X > a)

P(X > a+b)

P(X > a)

P(X > a+b, X > a)=

P(X > a+b | X > a) =P(X > a)

P(X > a+b)= e(a+b)

ea= eb = P(X > b)

P(X > a+b) = ex dx = (-1) ex = e(a+b)

a+b

P(X > a) = ex dx = (-1) ex = ea ∞

a

P(X > b) = ex dx = (-1) ex = eb ∞

b

a+b

a

b

Page 21: 연 속 확 률 분 포

어떤 기계의 일부 부품이 고장 날 때까지 걸리는 시간은 평균 1,000 시간인

지수분포에 따른다고 한다 .

(1) 이 기계를 500 시간 이상 아무런 문제없이 사용한 후 , 그 후로 다시 100 시간

이상 사용할 확률을 구하여라 .

(2) (1) 의 조건에 대하여 , 앞으로 x 시간 이상 사용할 확률이 0.3 이라면 x = ?

(1) 부품이 고장 날 때까지 걸리는 시간 X 는 평균 = 1000 인 지수분포에 따르므로 X ~ Exp(1/1000)

f(x) = ex/1000 , x > 0

1000

1X 의 확률밀도함수 :

100

P(X ≥ 600 | X ≥ 500) = P(X ≥ 100) = ex/1000 dx 1000

1

= (-1)ex/1000 = e0.1 = 0.9048

100

Page 22: 연 속 확 률 분 포

(2) (1) 의 조건 아래서 , 이 기계를 고장 없이 사용한 전체 시간 : 500 + x

P(X ≥ 500 + x|X ≥ 500) = P(X ≥ x) = S(x) = ex/1000 = 0.3

1000

x= ln (0.3) ; x = (-1000)ln (0.3) = 1203.97

-

Page 23: 연 속 확 률 분 포

감마분포의 확률밀도함수와 평균 , 분산 그리고 카이제곱분포에 대하여 알아본다 .감마분포의 확률밀도함수와 평균 , 분산 그리고 카이제곱분포에 대하여 알아본다 .

33 지지지지 (gamma distribution)지지지지 (gamma distribution)

Page 24: 연 속 확 률 분 포

지지지 비율로 발생하는 사고가 n 건 발생할 때까지 걸리는 전체 시간에 관한 확률분포

) = t-1 et dt , > 0

지지지지 :

t = x/

e-x/ dx = 1

)

1 x

-1 1

또는p.d.f. 조건을 만족

t-1 et dt = 1)

1

x-1 e-x/dx = 1 )

0

0

0

0

Page 25: 연 속 확 률 분 포

감마함수의 성질감마함수의 성질☞

1) = > 0

n1) = nn= n! n 은 자연수

1) = 1

1/2) =

1) 확률밀도함수1) 확률밀도함수☞ X ~

x-1 e-x/x > 0, , > 0

f(x) =

: 지지지지 (shape

parameter)

지: 지지지지 (scale

parameter)

Page 26: 연 속 확 률 분 포

X ~ 1)

e-x/,x > 0, > 0

f(x) =

X ~ Exp(1/)

지지

2) 평균 2) 평균 ☞= E(X) = x f(x)dx = x-1 e-

x/ dx

x

1= x(+1)-1 e-x/ dx

=

1

x(+1)-1 e-x/ dx

=

= =

0

0

0

0

Page 27: 연 속 확 률 분 포

3) 분산 3) 분산 ☞ E(X2) = x2 f(x)dx = x-1 e-x/ dx

x2

(+2)2

+2)

1= x(+2)-1 e-x/ dx

=

1

x(+2)-1 e-x/ dx

()

(a+2)2

=

= =

2

2 = Var(X) = E(X2) – E(X)2

= 222

0

0

0

0

Page 28: 연 속 확 률 분 포

감마분포와 지수분포 그리고 포아송과정감마분포와 지수분포 그리고 포아송과정

(1)X1, X2, …, Xn ~ i.i.d. Exp지지지지지지지지지지지지지지지지지지지지지지지지지지지지지지지

S =X1 + X2 + …+ Xn ~ n(2) S : 비율 인 포아송과정에 따라 n 번째 사건이 발생할 때까지 걸리는 시간

비기억성 성질에 의하여

S ~ (n

Page 29: 연 속 확 률 분 포

시스템의 응답시간 T 는 평균 =2 인 지수분포

신호에 대한 응답이 끝나면 곧 바로 다음 신호를 접수

X : 오전 9:00 부터 2 건의 신호가 들어올 때까지 걸리는 시간

(1) X 의 확률밀도함수

(2) 2 건의 신호가 들어올 때까지 걸리는 평균 시간

(3) 2 건의 검색요구가 3 초 안에 이루어질 확률

(1) 시스템의 응답시간 T 는 평균 =2 인 지수분포에 따르므로 T ~ Exp(1/2)

T1 : 오전 9:00 부터 처음 신호가 들어올 때까지 걸리는 시간T2 : 처음 신호 이후에 두 번째 신호가 들어올 때까지 걸리는 시간

T1 ~ Exp(1/2) , T2 ~ Exp(1/2)

X = T1 + T2 ~ (2, 2) x2-1 e-x/2지지지= xe-x/2 , x > 0

1f(x) =

1

4

Page 30: 연 속 확 률 분 포

(2)

(3)

= = 2•2 = 4

1

4P(X < 3) = xe-x/2 dx = - e-x/2 = 1 - e-3/2 = 0.4421

x + 22 0

3 520

3

Page 31: 연 속 확 률 분 포

카이제곱 () 분포 (chi-squared

distribution)카이제곱 () 분포 (chi-squared

distribution)모수 = r/2, = 2 인 감마분포를 자유도 (degree of freedom; d.f.) r 인

카이제곱분포라 하고 , X2(r) 로 나타낸다 .

1) 확률밀도함수1) 확률밀도함수

☞ X ~ 2(r)

x(r/2)-1 e-x/2 , x > 0, r > 0rr

1f(x) =

2) 평균2) 평균☞ = = • 2 = r

r2

3) 분산3) 분산☞2 = 2 = • 4 = 2rr

2

Page 32: 연 속 확 률 분 포

카이제곱분포의 백분위수 카이제곱분포의 백분위수 ☞

카이제곱분포의 100(1-)% 백분위수 (r)

2

P(X ≤ x0 ) = 1 – 인 x0 을 100(1-)% 백분위수라 하고 , (r) 로 나타낸다 .

2

Page 33: 연 속 확 률 분 포

X ~(7)2 에 대하여 P(X > 0.05 ) = 0.05 를 만족하는 0.052 2

d.f. = 7 인 행과 = 0.05 인 열이 만나는 위치의 수 14.07

0.05 = 14.07

2

Page 34: 연 속 확 률 분 포

X ~ 2(5) 에 대하여

P(X < x0) = 0.95 x0 = ?

P(X < x0) = 0.95 이므로 P(X > x0) = 0.05 이고 , 따라서 카이제곱표에서

d.f. = 5 와 = 0.05 인 백분위수 x0 = 0.05 (5) = 11.07

2

☞ 카이제곱분포의 성질카이제곱분포의 성질

X ~ 2(r1), Y ~ 2(r2) 이고 독립이면 , X + Y ~ 2(r1 + r2) 이다 .

X ~ 2(2), Y ~ 2(4) 이고 독립일 때 ,

P(X + Y > x0) = 0.01 x0 = ?

X ~ 2(2), Y ~2(4) 이고 독립이므로 X + Y ~ 2(6) 이다 . 그러므로

x0 = 0.01 (6) = 16.81

2

Page 35: 연 속 확 률 분 포

정규분포 , 표준정규분포의 확률밀도함수와 평균 , 분산을 비롯한 특성과 중심극한정리 , 이항분포의 정규근사 등에 대하여 알아본다 .

정규분포 , 표준정규분포의 확률밀도함수와 평균 , 분산을 비롯한 특성과 중심극한정리 , 이항분포의 정규근사 등에 대하여 알아본다 .

44 지지지지 (normal distribution)지지지지 (normal distribution)

Page 36: 연 속 확 률 분 포

1) 확률밀도함수1) 확률밀도함수

☞부록 A-4.2 로부터

피적분함수가 우함수이므로

e-z /2 dz =2

e-z /2 dz = 1

2

p.d.f. 조건을 만족-∞ < < ∞, > 0

x - z =

exp - dx = 1

( x - )222

12

12

0

2

e-z /2 dz =

2

-∞

2

-∞

-∞

Page 37: 연 속 확 률 분 포

2) 평균 :2) 평균 :

☞ = m

3) 분산 :3) 분산 :

☞ 2 = s2

※ 평균 이고 , 분산 2 임을 보이는

것은 생략한다 .

지지지지지지지지지지지지 : Z ~ N(0, 1)

= 0 과 2 = 1 인 경우

모수 m 과 s2 인 지지지지

f(x) = ,지-∞ < x< ∞, -∞ < < ∞, > 0

exp -1

( x - m )22s2

지지지지지지 : X ~ N(, 2)

2

(z) = e –z /2 , -∞ < z< ∞

212

Page 38: 연 속 확 률 분 포

☞ 정규확률함수의 성질정규확률함수의 성질

(1) f(x) 는 x= 에 관하여 좌우대칭이고 , 따라서 X 의 중앙값은 Me =

이다 .

(2) f(x) 는 x= 에서 최대값을 가지고 , 따라서 X 의 최빈값은 Mo =

이다 .(3) x= -, + 에서 f(x) 는 변곡점을 가지며 , x= -3, +3 에서 x- 축에 거의 접하는 모양을 가지고 x→ -∞, x→ +∞ 이면 f(x)→ 0 이다 .

☞ 표준정규확률함수의 성질표준정규확률함수의 성질

(1) (z) 는 z=0 에 관하여 좌우대칭이고 , 따라서 Z 의 중앙값은 Me =

0 이다 .

(2) (z) 는 z=0 에서 최대값을 가지고 , 따라서 Z 의 최빈값은 Mo = 0

이다 .(3) z=-1, 1 에서 (z) 는 변곡점을 가지며 , z=-3, 3 에서 z- 축에 거의 접하는 모양을 가지고 z→ -∞, z→ +∞ 이면 (z)→ 0 이다 .

Page 39: 연 속 확 률 분 포

모수 는 분포의 중심을 나타내며 , 는 흩어진 정도를 나타낸다 .모수 는 분포의 중심을 나타내며 , 는 흩어진 정도를 나타낸다 .

NoteNote

지1≠ 지2

지1 = 지2

지1= 지2

지1≠ 지2

Page 40: 연 속 확 률 분 포

☞ 표준정규분포의 성질표준정규분포의 성질

(1) P(Z ≤ 0 ) = P(Z ≥ 0 ) = 0.5

(2) P(Z ≤ -z0 ) = P(Z ≥ z0 ) = 1- P(Z < z0), z0 > 0

(3) P(Z ≤ z0 ) = 0.5 + P(0 < Z < z0 ),

P(Z ≥ z0) = 0.5 - P(0 < Z < z0), z0 > 0

(4) P(|Z|≤ z0 ) = P(-z0 < Z < z0 ) = 2P(0 < Z < z0), z0 > 0

P(Z < z0), z0 > 0

Page 41: 연 속 확 률 분 포

(5) P(|Z|≤ 1.645 ) = 0.9, P(|Z|≤ 1.96 ) = 0.95, P(|Z|≤ 2.58 ) = 0.99

(6) P(|Z|≤ 1 ) = 0.683, P(|Z|≤ 2 ) = 0.954, P(|Z|≤ 3 ) = 0.998

0.05

0.025 0.005

Page 42: 연 속 확 률 분 포

☞ 표준정규분포의 분포함수표준정규분포의 분포함수

(z) = (u)du

(7) 1 - (z0 ) = P(Z ≥ z0 ) = P(Z ≤ -z0 ) = (-z0 )

, z0 > 0

X - Z

=(8) X ~ N(, 2) ~ N(0, 1)

x0 - z0 =(9) P(X < x0) = P(Z < z0) = (z0) ,

-∞

z

Page 43: 연 속 확 률 분 포

(10) P(a < X < b) = 지지지지- b -

a - (

)( )

; P(a < X < b) = P지지a -

b - (

)

X - <

<

= P < Z <지지

a -

b - (

)= 지- 지지지

b -

a - (

)( )

(11) P( + a < X < + b) = P(a < Z < b) = (b) – (a)

(12) P( - < X < + ) = P(-1 < Z < 1) = 0.683

P( - 2 < X < + 2) = P(-2 < Z < 2) = 0.954

P( - 3 < X < + 3) = P(-3 < Z < 3) = 0.998

Page 44: 연 속 확 률 분 포

표준정규분포의 백분위수 표준정규분포의 백분위수 ☞

표준정규분포의 100(1-)% 백분위수 : z

P(Z ≤ z0 ) = 1 – 인 z0 을 100(1-)% 백분위수라 하고 , z 로 나타낸다 .

Page 45: 연 속 확 률 분 포

표준정규확률표 사용방법표준정규확률표 사용방법☞P(Z ≤ 1.36) = ?

Z < 1.36 의 소숫점 이하 첫째 자리인 1.3 을 z 열에서 선택하고 , 소숫점 이하 둘째 자리인 .06 을 z 행에서 선택하여 만나는 값 0.9131 을 선택한다 .

Page 46: 연 속 확 률 분 포

예 X ~ N(3, 4)

(1) P(X ≤ 4.5) = = (0.75) = 0.7734

( )

4.5 - 3 2

P(1.5 ≤ X ≤ 5.5) = - 지지지지지지지지지지지지지지지지지지지지지지= 지(1.25) - (-0.75)

(-0.75) = 1 - (0.75) = 1 – 0.7734 = 0.2266

P(1.5 ≤ X ≤ 5.5) = (1.25) - (-0.75)

= 0.8944 – 0.2266 = 0.6678

5.5 - 3 2

1.5 - 3 2(

)( )

(2)

Page 47: 연 속 확 률 분 포

표준정규확률표를 이용하여

(1) P(0 < Z < 1.54) (2) P(-1.10 < Z < 1.10)

(3) P(Z < -1.78) (4) P(Z > -1.23)

(1) P(0 < Z < 1.54) = P(Z < 1.54) – 0.5 = 0.9382 – 0.5 = 0.4382

(2) P(-1.10 < Z < 1.10) = 2P(0 < Z < 1.10) = 2[P(Z < 1.10) – 0.5)]

= 2(0.8643 - 0.5) = 0.7286

(3) P(Z < -1.78) = P(Z > 1.78) = 1 - P(Z < 1.78) = 1 – 0.9625 = 0.0375

(4) P(Z > -1.23) = P(Z < 1.23) = 0.8907

Page 48: 연 속 확 률 분 포

X ~ N(5, 4) 에 대하여

(1) P(X < 6.4) (2) P(X < x0) = 0.9750 인 x0 = ?

(3) P(3 < X < x0) = 0.756 인 x0 =?

(1) = 5, = 2 이므로 X 를 표준화 하면

P(X ≤ 6.4) = P Z < = (0.70) = 0.7580

( )

6.4 - 5 2

(2) X 를 표준화 하면

P(Z < 1.96) = 0.9750

P(X < x0) = P Z <

x0 - 52(

)표준정규확률표로부터

x0 - 52

= 1.96 ;

x0 = 5 + 2•(1.96) = 8.92

Page 49: 연 속 확 률 분 포

표준정규확률표로부터 P(Z < z0 ) = 0.9147 에 대하여 약 z0 = 1.37

(3) P(3 < X < x0) = P < <

( )

3 - 52

X - 52

x0 - 52

= P -1 < Z <x0 - 5

2( )

= P Z < - P(Z < -1)

x0 - 52(

)한편 , P(Z < -1) = P(Z > 1) = 1 – P( Z < 1) = 1 – 0.8413 = 0.1587

P(3 < X < x0) = P Z < - 0.1587 = 0.756

x0 - 52(

)x0 - 52(

)P Z < = 0.756 + 0.1587 = 0.9147

x0 - 52= 1.37 ; x0 = 5 + 2•(1.37) = 7.74

Page 50: 연 속 확 률 분 포

성인의 혈압은 평균 128.4, 표준편차 19.6 인 정규분포

(1) 임의로 선정된 사람의 혈압이 100 이하일 확률

(2) 임의로 선정된 사람의 혈압이 134 이상일 확률

(3) 임의로 선정된 사람의 혈압이 110 에서 130 사이일 확률

= P(Z ≤ -1.45) = 1 – P(Z ≤ 1.45)

= 1 – 0.9265 = 0.0735

(1) X ~ N(128.4, 19.62)이므로

P(X ≤ 100) = P ≤

( )

X – 128.419.6

100 – 128.419.6

(2) P(X ≥ 134) = P ≥( )

X – 128.419.6

134 – 128.419.6

= P(Z ≥ 0.29) = 1 – P(Z < 0.29)

= 1 – 0.6141 = 0.3859

Page 51: 연 속 확 률 분 포

(3) X ~ N(128.4, 19.62)이므로

= P(-0.94 ≤ Z ≤ 0.08) = P(Z ≤ 0.08) – P(Z < -0.94)

= P(Z ≤ 0.08) – [1-P(Z < 0.94)]

= 0.5319 – (1 - 0.8264) = 0.3583

P(110 ≤ X ≤ 130) = P ≤ ≤

( )

X – 128.419.6

130 – 128.419.6

110 – 128.419.6

Page 52: 연 속 확 률 분 포

☞ 정규분포의 성질정규분포의 성질

X ~ N(1, 2) , Y ~ N(2,

2) : 독립이면

1 2

(aX + b) - (a1 + b) |a|1

~ N(0, 1)

1aX + b ~ N(a1 + b, a2 2 )

X + Y ~ N(1 + 2 , 2 + 2 )1 2

1 2X - Y ~ N(1 - 2 , 2 + 2 )

(X + Y) –( 1 + 2 )

+ 2 1 2

~ N(0, 1)

- -

(1)

(2)

(3)

(4)

(5)

Page 53: 연 속 확 률 분 포

전자공학개론 교재의 무게 : X ~N(1.59, 0.582),

일반물리학 교재의 무게 : Y ~ N(2.18, 0.812)

(1) 구입한 전자공학 개론 교재의 무게가 2.35(kg) 이하일 확률

(2) 구입한 두 교재의 전체 무게가 5.04(kg) 이상일 확률

(3) 일반물리학 교재와 전자공학개론 교재의 무게 차이가 0.35(kg) 이하일 확률

= P(Z ≤ 1.31) = 0.9049

(1) X ~ N(1.59, 0.582)이므로

P(X ≤ 2.35) = P ≤

( )

X – 1.590.58

2.35 – 1.590.58

P(S ≥ 5.04) = P ≥( )

S – 3.770.996

2

5.04 – 3.77

= P(Z ≥ 1.27) = 1 – P(Z < 1.27)

= 1 – 0.8980 = 0.102

(2) S = X + Y ~ N(3.77, 0.99622) 이므로

0.9962

Page 54: 연 속 확 률 분 포

P(D ≤ 0.35) = P ≤( )

D – 0.590.996

2

0.35 – 0.59

= P(Z ≤ -0.24) = 1 – P(Z < 0.24)

= 1 – 0.5948 = 0.4052

(3) D = Y - X ~ N(0.59, 0.99622) 이므로

0.9962

Page 55: 연 속 확 률 분 포

☞ 표본평균 (sample mean)표본평균 (sample mean)

X1 , X2 , …, Xn : 독립 확률변수

Xi ~ N(i , i ), i = 1, 2, …, n2

Y = a1X1 + a2X2 + … + anXn ~ N( , 2 )

, = a1 1 + a2 2 + … + an n

, 2 = a1 1 + a2 2 + … + an n

2 2 2

ai = , i = 1, 2, …, n

1n

Y = (X1 + X2 + … + Xn ) ~ N( , 2 )

, = ( 1 + 2 + … + n )

, 2 = (1 + 2 + … + n )

1n 1

n1n2

2 2 2

Page 56: 연 속 확 률 분 포

Xi ~ i.i.d. N( , ), i = 1, 2,

…, n

Y = (X1 + X2 + … + Xn ) ~ N ,

1n n

2( )

표본평균 (sample mean) :

평균 , 분산 2 인 i.i.d. 확률변수들 Xi , i = 1, 2, …, n 에 대하여X = (X1 + X2 + … + Xn )

1n

을 표본평균이라 한다 .

Xi ~ i.i.d. N( , ), i = 1, 2,

…, n

X = (X1 + X2 + … + Xn ) ~ N

,

1n n

2( )

Page 57: 연 속 확 률 분 포

지지 2 지지지지지지 (central limit theorm)지지 2 지지지지지지 (central limit theorm)평균 , 분산 2 인 임의의 i.i.d. 확률변수들 Xi , i = 1, 2, …, n 에 대하여

n 이 충분히 크다면 , 표본평균 X 는 평균 , 분산 2/n 인 정규분포에 가까워진다 .

즉 , 다음이 성립한다 .

X = (X1 + X2 + … + Xn ) N ,

1n n

2( )

~~

X1 + X2 + … + Xn N( n , n2 )

~~

평균 , 분산 2 인 임의의 i.i.d. 확률변수들 Xi , i = 1, 2, …, n 에 대하여 n 이 충분히 크다면 ,

중심극한정리로부터

Page 58: 연 속 확 률 분 포

예 X1 , X2 ~ i.i.d. f(x)= 1/6, x=1, 2, 3, 4, 5, 6

X1 , X2 의 결합분포

의 확률분포 ?X = (X1 + X2 )

12

Page 59: 연 속 확 률 분 포

의 확률분포 ?X = (X1 + X2 + X3 )13

의 확률분포 ?X = (X1 + X2 + X3 + X4 )

14

Page 60: 연 속 확 률 분 포
Page 61: 연 속 확 률 분 포

각 증권 당 연간 보험금 지급액이 평균 19,400( 만원 ), 표준편차 5,000( 만원 )

보험회사는 올해 1,000 개의 자동차보험증권을 판매

(1) 전체 보험 지급액에 대한 근사확률분포

(2) 전체 보험 지급액이 19,800,000( 만원 ) 을 초과할 근사확률

(3) 가입한 증권에 대한 평균 보험 지급액에 대한 근사확률분포

(4) 평균이 19,600( 만원 ) 을 초과할 확률

(1) Xi , i = 1, 2, …, 1000 : 각 증권 당 연간 지급액

각 증권 당 연간 보험금 지급액이 평균 19,400 이고 표준편차 5,000이므로

중심극한정리에 의하여X = Xi ~ N[(19.4)•106, (2.5)•1010 ]

i=1

1000~

(2)P[X ≥ (19.8)•106 ] = P ≥( )

X – (19.4)•106

(2.5)•1010

(19.8)•106 – (19.4)•106

(2.5)•1010

= P(Z ≥ 2.53) = 1 – F(2.53) = 1 – 0.9943 = 0.0057 ..

Page 62: 연 속 확 률 분 포

(3) 각 증권 당 연간 보험금 지급액이 평균 19,400 이고 표준편차 5,000 이므로

표본평균은 평균 19,400 이고 분산 (5000)2/1000 = 25000 인 정규분포에 근사함 .

X P(19400, 25000)

~~

P(X ≥ 19600) = P ≥

X – 19400

2.5

100

19600 – 19400

2.5

100

( )= P Z ≥ = P(Z ≥

1.266)

19600 – 19400

2.5

100

( )

.

.

= 1 - P(Z < 1.266) = 1- 0.89728 = 0.10272

(4)

P(Z≤ 1.26) = 0.8962, P(Z ≤ 1.27) = 0.8980

편차 : P(Z ≤ 1.27) - P(Z≤ 1.26) = 0.0018

편차를 10 등분하여 6 번째 값 0.00108을 이용

P(Z < 1.266) = 0.8962 + 0.00108

= 0.89728

Page 63: 연 속 확 률 분 포

시행횟수 n 이 커질수록 이항분포는 평균 = np, 분산 2 = np(1-p) 인 정규분포에 가까워지며 , 일반적으로 np ≥ 5, n(1-p) ≥ 5 일 때 이항분포 B(n, p) 와 정규분포 N(np, np(1-p)) 가 거의 일치한다 .

☞ 이항분포의 정규근사 (normal approximation)이항분포의 정규근사 (normal approximation)

X N(np, np(1-p))

~~X - np

npq

N(0, 1)

~~또는

Page 64: 연 속 확 률 분 포

X ~ B(15, 0.4) 에 대하여

(1) 이항확률표에 의한 P(7 ≤ X ≤ 9) = ?

(2) 정규근사에 의한 P(7 ≤ X ≤ 9) = ?

(3) 정규근사에 의한 P(6.5 ≤ X ≤ 9.5) = ?

(1) P(7 ≤ X ≤ 9) = P(X ≤ 9) – P(X ≤ 6) = 0.9662 -0.6098 = 0.3564

(2) np = 6, npq = 3.6 X N(6, 3.6)

~~

P(6.5 ≤ X ≤ 9.5) = P ≤ ≤X - 63.6

9.5 - 63.6

6.5 - 63.6( )

= P(0.263 ≤ Z ≤ 1.845) = P(Z ≤ 1.845) - P(Z ≤ 0.263)

= 0.9675 – 0.6040 = 0.3635

(3)

( )P(7 ≤ X ≤ 9) = P ≤ ≤X - 63.6

9 - 63.6

7 - 63.6

= P(0.527 ≤ Z ≤ 1.581) = P(Z ≤ 1.581) - P(Z ≤ 0.527)

= 0.9429 – 0.7019 = 0.241

.

.

.

.

Page 65: 연 속 확 률 분 포
Page 66: 연 속 확 률 분 포

X ~ B(n, p), Z ~ N(0, 1) 에 대하여 np ≥ 5, n(1-p) ≥ 5 이면

.

.P(a≤ X ≤ b) =

-b -np

npq

a -np

npq

( ) ( ) - ( )

b + 0.5 -np np

q

a - 0.5 -np np

q

( )

; 정규근사

; 연속성 수정 정규근사

지지

Page 67: 연 속 확 률 분 포

X ~ B(30, 0.2) 에 대하여

(1) 확률질량함수를 이용한 P(X = 4) = ?

(2) 연속성을 수정한 정규근사에 의한 P(X = 4) = ?

(1) X 의 확률질량함수 :

f(x) = (0.2)x (0.8)30-x , x = 0, 1, 2, …, 30

30x(

)P(X = 4) = f(4) = (0.2)4 (0.8)26 = 0.1325

30x(

)

P(X = 4) = P(3.5 ≤ X ≤ 4.5)

( )= P ≤ ≤X - 64.8

4.5 - 64.8

3.5 - 64.8

= (-0.68) – (-1.14)

= 0.8729 – 0.7517 = 0.1212

.

.

(2) np = 6, npq = 4.8 X N(6, 4.8)

~~

Page 68: 연 속 확 률 분 포

☞ 포아송분포의 정규근사포아송분포의 정규근사

포아송분포의 평균 가 충분히 커지면 , 정규분포 N, ) 에 가까워진다 .

X N, )~~ 또는X –

N(0, 1)

~~

X ~ P(), Z ~ N(0, 1) 에 대하여 가 충분히 커지면

.

.P(a≤ X ≤ b) =

-b - a - ( ) ( )

- ( )

b + 0.5 -

a - 0.5 - (

)

; 정규근사

; 연속성 수정 정규근사

Page 69: 연 속 확 률 분 포

X ~ P(20) 지 X ~ N(20, 20) 지지지

9,500 명의 각 보험 종류별로 가입자 수와 가입 기간에 따른 보험금 청구 횟수 표

1 년 동안 이들 보험에 가입한 2,000 명 중에서 보험금을 청구한 가입자가 228 명

이하일 근사확률 ? 단 , 보험의 종류는 독립적이고 , 보험금 청구 횟수 ~ 포아송 분포

Page 70: 연 속 확 률 분 포

이변량정규분포 (bivariate normal distribution)

이변량정규분포 (bivariate normal distribution)

상수 X > 0, Y > 0, -∞ < X , Y < ∞, -1 < < 1 에 대하여

Q = 1 –2

1 ( )

x - X

X( )

2 x - X

X

y - YY

( )

-2y - Y

Y( )

2+[

]1) 결합확률밀도함수1) 결합확률밀도함수☞

f(x, y) = 1 - 22 X Y

1e-Q/2 , -∞ < x, y < ∞

(X, Y ) ~ N(X, Y, X, Y, )

여기서 , = Corr(X, Y )

2 2

Page 71: 연 속 확 률 분 포

X 와 Y 가 독립인 경우 :

X 와 Y 가 독립인 경우 :

X =0, Y = 0, X =1, Y =1, =0

f(x, y) = 2 X Y

1 , -∞ < x, y < ∞

exp(x – X )

22X

(y – Y )

22Y

2 -[ ]

2-

Page 72: 연 속 확 률 분 포

이변량정규분포의 성질이변량정규분포의 성질☞(1) > 0 이면 , X 와 Y 가 양의 상관관계에 있으므로 X 와 Y 의

결합밀도함수는 직선 y = x 에 근접하는 영역에 집중된다 .

(2) < 0 이면 , X 와 Y 가 음의 상관관계에 있으므로 X 와 Y 의 결합밀도함수는 직선 y = -x 에 근접하는 영역에 집중된다 .

X =0, Y = 0, X =1, Y =1, =0.8X =0, Y = 0, X =1, Y =1, = -0.8

Page 73: 연 속 확 률 분 포

2) 주변확률밀도함수2) 주변확률밀도함수☞

3) 조건부 확률밀도함수 3) 조건부 확률밀도함수 ☞

fX(x) = 1 , -∞ < x < ∞

expX2

(x – X )

22X

2( )

- ~ N(X, X )2

fY(y) = 1 , -∞ < y < ∞

expY2

(y – Y )2

2Y2(

)- ~ N(Y, Y )

2

, -∞ < x < ∞

expf(x|y) = = fY(y)

f(x, y)

1 - 2X2

1( )

(x – bX )

22X (1 – 2)2

-

, -∞ < y < ∞

expf(y|x) = = fX(x)

f(x, y)

1 -2Y2

1 ( )

(y – bY )

22Y (1 – 2)2

-

bX = X + (y – Y)

X

YbY =Y + (x – X)

Y

X

Page 74: 연 속 확 률 분 포

4) 조건부 평균4) 조건부 평균

☞E(X|Y=y) = X + (y – Y)

X

Y

E(Y|X=x) = Y + (x – X)Y

X

5) 조건부 분산5) 조건부 분산

☞Var(X|Y=y) = X (1 – 2)

2

Var(Y|X=x) = Y (1 – 2)2

Page 75: 연 속 확 률 분 포

신혼부부를 대상으로 한 모집단에서 남편의 키 (X) 와 아내의 키 (Y)

(X, Y ) ~ N(176, 160, 1.0, 1.52, 0.6지

(1) 남편의 키가 173cm 일 때 , Y 의 조건부 확률분포

(2) P(154 < Y < 158|X = 173) = ?

(1) (X, Y ) ~ N(176, 160, 1.0, 1.52, 0.6) 이므로

E(Y|X=173) = Y + (x – X)

Y

X

= 160 + (0.6)•(1.5)•(173 – 176) = 157.3

Var(Y|X=173) = Y (1 – 2) = (2.25)•(0.64) = 1.44

2

Y 의 조건부 평균 :

Y 의 조건부 분산 :

Y 의 조건부 확률분포 : Y|X=173 ~ N(157.3, 1.44)

= P(-2.75 < Z< 0.58) = (0.58) – (-2.75)

= 0.7190 + 0.9970 -1 = 0.7160

(2) P(154 < Y < 158|X = 173) = P < Z <

154 – 157.31.2

158 – 157.31.2

( )

Page 76: 연 속 확 률 분 포

제 5 장