探討結晶方向對 6,13-雙 三異丙基矽烷基乙炔基 五環素有...

70
探討結晶方向對 6,13-(三異丙基矽烷基乙炔基) 五環素有機薄膜電晶體之特性 Studies on the Electrical Characteristics of 6,13-Bis (triisopropylsilylethynyl) Pentacene Organic Thin Film Transistors by Crystal-Grown Direction 專題生:林湧智 ( Yong-Zhi Lin ) 指導教授:郭欽湊(Prof. Chin-Tsou Kuo大同大學 化學工程學系 專題報告 Department of Chemical Engineering Tatung University 中華民國一百零一年十月 Oct. 2012

Upload: vandang

Post on 31-Jan-2018

233 views

Category:

Documents


0 download

TRANSCRIPT

  • 6,13-()

    Studies on the Electrical Characteristics of 6,13-Bis

    (triisopropylsilylethynyl) Pentacene Organic Thin Film

    Transistors by Crystal-Grown Direction

    ( Yong-Zhi Lin )

    Prof. Chin-Tsou Kuo

    Department of Chemical Engineering Tatung University

    Oct. 2012

  • 1

    n-Butyllithium 6,13-bis(triisopropylsilylethynyl)

    pentacene (TIPS-PEN)

    TIPS-PEN

    TIPS-PEN

    TIPS-PEN

    TIPS-PEN

    mobility

    0.103 cm2/Vson/off current ratio() 1.85 105

    -2.8 V

    TIPSP-PEN

    TIPSP-PEN 1.5 L

    mobility 0.157 cm2/Vs on/off current ratio(

    ) 1.25 106

  • 2

    .... I

    ...... II

    . VI

    IX

    1

    1-1 1

    1-2 .................................................................... 2

    ..................................................................................... 4

    2-1 (Organic Thin Film TransistorOTFT)............ 4

    2-2 ............................................ 5

    2-3 ........................................ 7

    2-3-1 (Mobility)........................................................... 7

    2-3-2 (Threshold voltage, VT).......................................... 9

    2-3-3 (Subthreshold slope)........................................ 9

    2-3-4 (On/off current ratio)...................................... 10

    2-4 .......................................................................... 10

    2-5 (Ci)............................................................ 11

    2-6 .......................................................................... 12

  • 3

    2-7 TIPS-PEN...................................................................................... 12

    2-8 TIPS-PEN.......................................................... 13

    2-9 ...................................................................................... 16

    ............................................................................................ 17

    3-1................................................................................................ 17

    3-2 ...................................................................................... 19

    3-2-1 Synthesis of 6,13-pentacenequinone.................................. 19

    3-2-2 Synthesis of 6,13-bis(triisopropylsilylethynyl) pentacene 19

    3-2-3 OTFT :(Bottom-cotact) ......... 21

    3-2-4 ........................................................................ 25

    3-3 .................................................................. 26

    ................................................................................. 29

    4-1 6,13-bis(triisopropylsilylethynyl) pentacene... 29

    4-2 . . . . . . . .. . . . . .. . . . .. . . . .. . . . .. . . 32

    4-3 ................................. 53

    ............................................................................................. 57

    ................................................................................................... 59

  • 4

    Figure 1-1 The first transistor created by Bell Laboratories

    in 1947 [1]. ................................................................................2

    Figure 1-2 Organic thin film transistor applications on the flexible

    OLED Display 4]. ............2

    Figure 1-3 Chemical structure of soluble and insoluble organic

    semiconductor materials. ..........................................................3

    Figure 2-1 Schematic representations of field-effect transistor

    architectures, (a) top-gate bottom-contact,

    (b) top-gate top-contact, (c) bottom-gate

    bottom-contact, and (d) bottom-gate top-contact [9]. ..............6

    Figure 2-2 The operational mechanism of OTFT [8]. ................................6

    Figure 2-3 (a) Molecular structure of TIPS and TES derivatives.

    (b) Typical TIPS crystal. Molecular packing in (c) TIPS

    and (d) TES crystals [14]. ....................................................14

    Figure 2-4 The structure of OTFTs using TIPS-pentacene

    semiconductor droplet which was dried under

    Ar gas injection in a quartz tube [15]. .................................15

  • 5

    Figure 2-5 (a) Schematic diagram of the solution-shearing

    method. (b) Cross-polarized optical microscope

    images of solution-sheared TIPS-PEN thin films,

    formed with shearing speeds of TIPS-PEN [12]. ....................15

    Figure 3-1 Synthesis of 6,13-pentacenequinone. .........................................19

    Figure 3-2 Synthesis of 6,13-bis(triisopropylsilylethynyl) pentacene.....20

    Figure3-3 Architecture of TIPS-PEN OTFT: (a) sidelong glance

    and (b) overlook......24

    Figure 3-4 Fabrication process of TIPS thin film deposited on the

    substrate.....................................................................................25

    Figure 3-5 A plot of potential energy versus internuclear distance for

    the Interaction between two atoms......28

    Figure 3-6 Schematic assembly of an AFM..28

    Figure 4.1 IR Spectrum of 6,13 -bis(triisopropylsilylethynyl)

    pentacene.....30

    Figure 4.2 1H-NMR spectra of 6,13-bis(triisopropylsilylethynyl)

    pentacene30

    Figure 4-3 A drying process of TIPS-PEN solution on deposition..33

  • 6

    Figure 4-4 Optical microscopic images of TIPS-PEN deposited with

    (a) the nucleus in channel and the crystal grew

    (b) parallel, (c) perpendicular, (d) diagonal,

    (e) bevel-60 ,and (f) bevel-30 to the current flow

    between source and drain electrodes...........33

    Figure 4-5 (a) Transfer and (b) output characteristics of the

    TIPS-PEN OTFT with the nucleation in the channel.35.

    Figure 4-6 (a) 2D and (b) 3D atomic force micrograph images of the

    TIPS-PEN thin film with the nucleation in the channel..36

    Figure 4-7 (a) Transfer and (b) output characteristics of the

    TIPS-PEN OTFT with the crystal grew perpendicular

    to the current flow between source and drain electrodes....37

    Figure 4-8 (a) 2D and (b) 3D atomic force micrographs of the

    TIPS-PEN thin film with the crystal grew perpendicular

    to the current flow between source and drain electrodes........38

    Figure 4-9 (a) Transfer and (b) output characteristics of the

    TIPS-PEN OTFT with the crystal grew parallel

    to the current flow between source and drain electrodes......40

  • 7

    Figure 4-10 (a) 2D and (b) 3D atomic force micrographs of the

    TIPS-PEN thin film with the crystal grew parallel to

    the current flow between source and drain electrodes..41

    Figure 4-11 (a) Transfer and (b) output characteristics of the

    TIPS-PEN OTFT with the crystal grew diagonal

    to the current flow between source and drain electrodes.42.

    Figure 4-12 (a) 2D and (b) 3D atomic force micrographs of the

    TIPS-PEN thin film with the crystal grew diagonal

    to the current flow between source and drain electrodes.43

    Figure 4-13 (a) Transfer and (b) output characteristics of the

    TIPS-PEN OTFT with the crystal grew bevel (60)

    to the current flow between source and drain electrodes..45

    Figure 4-14 (a) 2D and (b) 3D atomic force micrographs of the

    TIPS-PEN thin film with the crystal grew bevel (60)

    to the current flow between source and drain electrodes46

    Figure 4-15 (a) Transfer and (b) output characteristics of the

    TIPS-PEN OTFT with the crystal grew bevel (30)

    to the current flow between source and drain electrodes47

  • 8

    Figure 4-16 (a) 2D and (b) 3D atomic force micrographs of the

    TIPS-PEN thin film with the crystal grew bevel (30)

    to the current flow between source and drain electrodes......48

    Figure 4-17 Histograms of saturation mobility of TIPS-PEN OTFT for

    nucleation in channel (5 devices), perpendicular (10 devices),

    parallel (10 devices), diagonal (5 devices), bevel 30 (5 devices)

    and bevel 60 (5 devices)..52

    Figure 4-18 Histograms of on/off current ratio of TIPS-PEN OTFT for

    nucleation in channel (5 devices),perpendicular (10 devices),

    parallel (10 devices), diagonal (5 devices), bevel 30(5 devices)

    and bevel 60(5 devices)...52

  • 9

    Table 4.1 Elemental analysis of

    6,13-bis(triisopropylsilylethynyl) pentacene...31

    Table 4-2 Electrical parameters of TIPS-PEN OTFT....51

    Table 4-3 Electrical parameters of TIPS-PEN OTFT55

    Table 4-4 Electrical parameters of TIPS-PEN OTFT56

  • 10

    1-1

    BellBardeenBrattain [1]1947

    (transistor)(Figure 1-1)silicon

    gallium arsenide()

    (Organic Materials)

    1970 [2]

    (organic thin film transistorOTFT)

    [3]

    (Figure 1-2)[4]

  • 11

    Figure 1-1The first transistor created by Bell Laboratories in 1947 [1].

    Figure 1-2 Organic thin film transistor applications on the flexible OLED

    Display [4].

    1-2

    (organic field effect transistor OFET)

    (OTFT)

  • 12

    (MOSFETmetal oxide semiconductor field effect transistor)

    1986 Tsumura

    (polythiophene)[3] Garnier

    [5] sexithiophene

    (a-Si:H) thiophene

    (Figure 1-3)

    (spin

    coating)(inkjet printing)

    Figure 1-3 Chemical structure of soluble and insoluble organic

    semiconductor materials.

  • 13

    2-1 (Organic Thin Film TransistorOTFT)

    (FETs)1930Lilienfeld [6]

    1947[1]

    1986(polythiophene)

    [4](Organic Field-effect transistors,

    OFETs) Koezuka [7]

    (Organic thin-film

    transistors, OTFTs)

    Si-

    -(MOSFET)MOSFET

    MOSFET (Active

    Area)

    (spin-coating)(vacuum deposition)

    (electronic paper) (sensor)RFID

    (radio frequency identification card)LCD

  • 14

    (mobility)(on/off current ratio)

    2-2

    OTFT Figure 2-1 [8]

    (top-gate)(bottom-gate)

    (top-contact)

    (bottom contact) Figure 2-1 (a) -

    (top-gate bottom contact) bipolar junction transistor (BJT)

    OTFT (on)(off)

    (gate electrode) Figure 2-2n-OTFT

    p-OTFT

    [9]

  • 15

    Figure 2-1 Schematic representations of field-effect transistor architectures,

    (a) top-gate bottom-contact, (b) top-gate top-contact, (c) bottom-gate

    bottom-contact, and (d) bottom-gate top-contact [8].

    Figure 2-2 The operational mechanism of OTFT [9].

  • 16

    2-3

    (mobilitycm2/Vs)/(on/off current ratio)

    /(W/L)

    /

    W/L10

    /

    2-3-1 (Mobility)

    ()(mobility)p

    (1) VD () ID VD

    (2-1)

    2

    2D

    DTGi

    DVVVV

    LWCI .(2-1)

    ID WL

  • 17

    Ci VG VT VD

    ID VG gm (transconductance)(2-2)

    Di

    constVG

    Dm VL

    WCVIg

    D

    .(2-2)

    ID-VG

    (2)VG ID-VG (

    constVD

    D

    GVI

    )VG(

    constV

    G

    constVD

    D

    D

    G

    V

    VI

    )(WCi/L)

    (3)VD(ID):

    22 TG

    iD VVL

    WCI

    .(2-3)

  • 18

    TGiD VVLWCI

    2/12/1

    2

    ..(2-4)

    (ID)1/2VG

    2-3-2 (Threshold voltage, VT)

    (VG)(

    )

    (1)ID-VGgm

    ID-VGgmVGy = 0

    VG = VT + VD/2

    (2)(2-3)

    (2-4)VG

    2-3-3 (Subthreshold slope)

    VGVT

  • 19

    SS

    1

    log

    D

    G

    IVSS ..(2-5)

    2-3-4 (On/off current ratio)

    Ion/Ioff ratio

    On current

    off current Ion/Ioff

    0.1

    cm2/Vs 106 Ion/Ioff

    2-4

    OTFT Figure 2-2 gate

    TFT -

    (drain) (source-drain) (i.e. ID vs. -VDS)

    (2-1) ~

    (2-3) (gate)

    ID

  • 20

    (field-effect mobility)

    2-5 (Ci)

    capacitance Cfarad

    F(F/cm2)

    dCi

    (2-6)

    iC d

    (2-7)

    Farad/meter

    F/m

  • 21

    8.854 10-14 F/cm

    = 3.9 300 nm:

    28514

    2 1015.1103

    9.310854.8,

    cmF

    cmcmF

    CSiO i

    2-6

    (polymer)

    2001Anthony [11]

    pentacene613

    -* stacking

    2-7 TIPS-PEN

    TIPS-PEN6,13-bis(triisopropylsilylethynyl) pentacene

    TIPS-PEN

    2011

  • 22

    Bao [12]4.59

    cm2/VsNature2003Kelley [10]

    pentacene5 cm2/Vs

    (amorphous silicon)

    2-8 TIPS-PEN

    2001 Anthony [11] TIPS-PEN

    TIPS-PEN

    (1) 2006Ostroverkhova[13]TIPS-PENTES-PEN

    (6,13-bis(triethylsilylethynyl) pentacene)

    (Figure 2-3)TIPS-PEN

    TES-PENa-b(XY)

    (2) 2007Cho[14](flow casting)

    TIPS-PEN

    mobility 0.3 cm2/Vs

    (3) 2011Song[15]

    TIPS-PENFigure 2-4

    TIPS-PEN

  • 23

    mobility 0.53 cm2/Vs

    (4) 2011Bao

    [12]solution-shearingTIPS-PEN

    TIPS-PENFigure 2-5

    mobility4.59 cm2/Vs

    mobility

    Figure 2-3 (a) Molecular structure of TIPS and TES derivatives. (b) Typical

    TIPS crystal. Molecular packing in (c) TIPS and (d) TES crystals [14].

  • 24

    Figure 2-4 The structure of OTFTs using TIPS-pentacene semiconductor

    droplet which was dried under Ar gas injection in a quartz tube [15].

    Figure 2-5 (a) Schematic diagram of the solution-shearing method. (b)

    Cross-polarized optical microscope images of solution-sheared TIPS-PEN

    thin films [12].

  • 25

    2-9

    TIPS-PENP

    TIPS-PEN

    (pipette)

    TIPS-PEN

    TIPS-PEN

    AFM

  • 26

    3-1

    A.

    11,4-CyclohexanedioneC6H8O2, 98%, Acros.

    2ortho-PhthalaldehydeC8H6O2, 95%, Acros.

    3Triisopropylsilyl acetyleneC11H22Si, 98%, Aldrich.

    4n-ButyllithiumC4H9Li, in 2.5 M tetrahydrofuran, Aldrich.

    5Tin(II) chloride anhydrousSnCl2, 98%, Showa.

    6Magnesium Sulfate MgSO4, Anhyd,98%,YAKURI.

    B.

    1EthanolC2H6O , anhydrous, 99.5%, Aldrich.

    2Sodium hydroxide NaOH,99% ,Shmakyu.

    3TertrahydrofuranC4H8O, anhydrous, 99.5%, Acros.

    4Hydrochloric acid HCl, 32% , Shmakyu.

    5DichloromethaneCH2Cl2, HPLC Grade, Echo.

    6Acetic acidC2H4O2, HPLC Grade, Echo.

    7AcetoneC3H6O, HPLC Grade, Echo.

    8n-HexanesC6H14, HPLC Grade, Echo.

  • 27

    9AnisoleC7H8O, 99 %, ACROS.

    10Isopropyl alcohol C3H8O, 99.9%, Shmakyu.

    C.

    n-type silicon wafer (0.01-0.02 -cm, -axis, 570 m

    thick), ELight Co.

    D.

    1Hydrofluoric acidHF, Acros.

    2Photoresist () , s1813 , Rohm & Haas.

    3Developer () ,MF-319, Rohm & Haas.

  • 28

    3-2

    3-2-1 Synthesis of 6,13-pentacenequinone

    Figure 3-1 500 mL4.24g

    (0.031mol) o-phthaldehyde 1.76g (0.016mol) 1,4-cyclohexanedione

    150 mL ethanol 5 mL 5 % NaOH12

    DI-water Ethanol

    4.60 g (92%)

    Figure 3-1 Synthesis of 6,13-pentacenequinone.

    3-2-2 Synthesis of 6,13-bis(triisopropylsilylethynyl) pentacene

    Figure 3-2

    30 mL Tertrahydrofuran

    Acetone -78 2.097

    mL ( 9.347 mmol ) triisopropylsilyl acetylene 3.739 mL

    ( 9.347 mmol ) n-butyllithiu -78

    1.31 g ( 4.249 mmol)

  • 29

    6,13-pentacenequinone 20 mL tetrahydrofuran

    -78 18

    10% 15 mL HCl 2 CH2Cl2

    DI-H2O

    50 mL Acetone

    1.772 g (9.347 mmol) tin(II) chloride dehydrate 50% acetic acid (15

    mL)

    24

    HexaneHexanesilica gel

    0.78 g (28.7%)

    Si 1. n-ButylLithium

    2.THF , -78 , 2 hr +O

    O

    RT,18 h

    rSi

    Si

    Si

    Si

    HO

    HO

    + SnCl2RT,24 hr

    Figure 3-2 Synthesis of 6,13-bis(triisopropylsilylethynyl) pentacene

  • 30

    3-2-3 OTFT :(Bottom-cotact)

    A.

    (1) 4 n-type 570 m 0.01-0.02

    -cm

    (2) 1050 (wet oxidation)

    3000 SiO2 Ellipsometer

    (Rudolph Roseach/Auto EI)

    B.

    (1) Acetone Isopropyl alcohol

    Hot-plate

    (2) 2000 30

    (3) 2/3

    (4) HF DI-water HF

    Acetone

    Hot-plate

  • 31

    C.

    (1) Hot plate

    (2)

    (3) uniformity 6

    (4)

    (5)

    (6) DI-water

    (7)

    D.

    (1)

    (2)

    (3) target holder

    chamber

    (4) 2 10-5 torr

    (5) 100 mA 120

    (6) 150 mA 120

  • 32

    (7)

    (8) 100 mA 70

    (9) 150 mA 70

    (10)

    E.

    (1) Acetone

    (2)

    channel

    (4) channel

    (5) Acetone

    (6)

    (7)

    (8)

    F.

    (drop-coating) 6,13-bis(triisopropylsilylethynyl)

    pentacene (channel)

  • 33

    Figure 3-3

    Figure 3-3 Architecture of TIPS-PEN OTFT: (a) sidelong glance and (b)

    overlook.

  • 34

    3-2-4

    Anisole (bp = 154 )1 wt%TIPS-PEN

    (drop-coating)

    1(nucleation)

    (Pipette) 0.5 LTIPS-PEN

    (1) (channel)

    (2) channel(channel)

    channel channel

    Figure 3-4

    channel

    pipette

    Figure 3-4 Fabrication process of TIPS thin film deposited on the substrate.

  • 35

    2(drop-coating)

    (Pipette)(0.5 L, 1.0 L, 1.5L

    2.0 L)TIPS-PEN

    100Hot plate 20 min

    3-3

    1(Infrared spectrometerFT-IR)

    Jasco FT-300E

    KBr

    2(Nuclear Meganetic Resonance spectrometer

    NMR)

    Bruker AV-500 MHz d-chloroform

    5mm NMR tube 3cm

  • 36

    3

    Hewlett Packard 4155ATIPS-PEN

    OTFT-(I-V curve)

    0 V-40

    V10 V(VDS)0 V-50 V2.5 V

    IDVDS

    10 V-50 V1 VID

    ID1/2Log(-ID);VG ID1/2

    VG Log(-ID)

    4

    Digital instruments Multimode Nanoscope III instrument

    2D3D

    (Figure 3-5)

    (vander Waals force)

    AFM(Figure 3-6)AFM

  • 37

    Figure 3-5 A plot of potential energy versus internuclear distance for the

    Interaction between two atoms.

    Figure 3-6 Schematic assembly of an AFM.

  • 38

    4-1 6,13-bis(triisopropylsilylethynyl) pentacene

    6,13-bis(triisopropylsilylethynyl) pentacene pentacnene

    IR (Figure 4.1) 2150 cm-1

    CC peak 1530~1740 cm-1 C=C peak 1020~1070cm-1

    Si-C peak TIPS-pentacene 6,13-pentacenequinone CO

    C triisopropylsilyl acetylene 1700 cm-1

    CO peak 2150 cm-1 CC peak

    (1H-NMR)

    6,13-bis(triisopropylsilylethynyl) pentacene 1H-NMR (Figure 4.2)

    = 7.2 ppm CDCl3 = 7.4 ppm 9.3 ppm

    H

    = 1.4 ppm H = 7.4

    ppm = 7.7 ppm 9.3 ppm 1 = 1.4 ppm

    1.5 9 1111.59 4 444

    636

  • 39

    Figure 4.1 IR Spectrum of 6,13 -bis(triisopropylsilylethynyl)pentacene.

    Figure 4.2 1H-NMR spectra of 6,13-bis(triisopropylsilylethynyl) pentacene.

  • 40

    EA (Table 4.1) C

    H EA C H

    CH 1%

    (4-1)

    Table 4.1 Elemental analysis of 6,13-bis(triisopropylsilylethynyl) pentacene.

    Theoretical Experimental Error

    C% H% C% H% C% H%

    TIPS-PEN 82.74 8.45 82.68 8.534 0.07% 0.99%

  • 41

    4-2

    (drop-casting)

    Figure 4-3

    (nucleation)

    pipette

    TIPS-PEN (perpendicular)

    (parallel) (45, diagonal) (60, bevel) (30,

    bevel) (source electrode) (drain

    electrode)

    Figure 4-4 (a)(f) channel

    60 30 (a) channel

    TIPS-PEN

    channel channel

    (b) channel channel

    (c) channel chanmel

    (d)(f) channel channel

    4560 30

  • 42

    Figure 4-3 A drying process of TIPS-PEN solution on deposition.

    Figure 4-4 Optical microscopic images of TIPS-PEN deposited with (a) the

    nucleus in channel and the crystal grew (b) parallel, (c) perpendicular, (d)

    diagonal, (e) bevel-60, and (f) bevel-30 to the current flow between source

    and drain electrodes.

    (a) (d)

    (b) (e)

    (c) (f)

  • 43

    Figure 4-4 (a) channel

    mobility 5.57

    10-2 ~ 1.79 10-2 cm2/Vson/off current ratio 1.15 105 ~ 3.13 103

    VT 3.1 ~ -9.4 V Figure 4-5

    mobility 5.70 10-2 cm2/Vson/off current ratio 1.15 105VT

    3.1V AFM 2D 3D (Figure 4-6) TIPS-PEN

    100 nm

    channel Figure 4-4

    (b) channel TIPS-PEN

    mobility 6.22 10-2 ~ 1.49 10-3 cm2/Vson/off current

    ratio 5.42 105 ~ 8.39 103VT 9.0 ~ -6.7 V

    Figure 4-7 mobility 5.70 10-2

    cm2/Vson/off current ratio 9.23 104VT-3.6 V AFM 2D

    3D (Figure 4-8) TIPS-PEN

  • 44

    Figure 4-5 (a) Transfer and (b) output characteristics of the TIPS-PEN OTFT

    with the nucleation in the channel.

  • 45

    Figure 4-6 (a) 2D and (b) 3D atomic force micrograph images of the

    TIPS-PEN thin film with the nucleation in the channel.

  • 46

    Figure 4-7 (a) Transfer and (b) output characteristics of the TIPS-PEN OTFT

    with the crystal grew perpendicular to the current flow between source and

    drain electrodes.

  • 47

    Figure 4-8 (a) 2D and (b) 3D atomic force micrographs of the TIPS-PEN

    thin film with the crystal grew perpendicular to the current flow between

    source and drain electrodes.

  • 48

    channel Figure 4-4(c)

    TIPS-PEN channel

    mobility 1.03 10-1 ~ 5.11 10-3 cm2/Vson/off current ratio 1.96

    107 ~ 6.27 103VT-2.6 ~ -9.8 V mobility Figure

    4-9 mobility 1.03 10-1 cm2/Vson/off current ratio 1. 85

    105VT-2.8 VAFM 2D 3D(Figure 4-10)TIPS-PEN

    (45) Figure

    4-4(d) TIPS-PEN

    mobility 1.16 10-2 ~ 2.69 10-3

    cm2/Vson/off current ratio 1.89 103 ~ 6.60 102VT-3.0 ~ -12.1

    V Figure 4-11 mobility

    3.29 10-2 cm2/Vson/off current ratio 1.00 105VT-3.0 V

    AFM 2D 3D (Figure 4-12) channel TIPS-PEN

  • 49

    Figure 4-9 (a) Transfer and (b) output characteristics of the TIPS-PEN OTFT

    with the crystal grew parallel to the current flow between source and drain

    electrodes.

  • 50

    Figure 4-10 (a) 2D and (b) 3D atomic force micrographs of the TIPS-PEN

    thin film with the crystal grew parallel to the current flow between source

    and drain electrodes.

  • 51

    Figure 4-11 (a) Transfer and (b) output characteristics of the TIPS-PEN

    OTFT with the crystal grew diagonal to the current flow between source and

    drain electrodes.

  • 52

    Figure 4-12 (a) 2D and (b) 3D atomic force micrographs of the TIPS-PEN

    thin film with the crystal grew diagonal to the current flow between source

    and drain electrodes.

  • 53

    channel (30)

    60 Figure 4-4(e) TIPS-PEN

    60

    mobility 5.45 10-2 ~ 3.68 10-2 cm2/Vson/off current

    ratio 8.68 104 ~ 1.83 104VT-10.8 ~ -19.0 V mobility

    Figure 4-13 mobility 5.45 10-2 cm2/Vson/off

    current ratio 6.63 104VT-19.0 V AFM 2D 3D (Figure

    4-14) TIPS-PEN

    channel

    (60) 30 Figure 4-4(f)

    TIPS-PEN

    30 mobility 9.84 10-3 ~ 1.18 10-3 cm2/Vs

    on/off current ratio 9.31 104 ~ 8.32 103VT-10.5 ~ -14.5 V

    mobility Figure 4-15 mobility 9.84 10-3

    cm2/Vson/off current ratio 9. 31 104VT-14.5 V AFM

    2D 3D (Figure 4-16) TIPS-PEN

  • 54

    Figure 4-13 (a) Transfer and (b) output characteristics of the TIPS-PEN

    OTFT with the crystal grew bevel (60) to the current flow between source

    and drain electrodes.

  • 55

    Figure 4-14 (a) 2D and (b) 3D atomic force micrographs of the TIPS-PEN

    thin film with the crystal grew bevel (60) to the current flow between

    source and drain electrodes.

  • 56

    Figure 4-15 (a) Transfer and (b) output characteristics of the TIPS-PEN

    OTFT with the crystal grew bevel (30) to the current flow between source

    and drain electrodes.

  • 57

    Figure 4-16 (a) 2D and (b) 3D atomic force micrographs of the TIPS-PEN

    thin film with the crystal grew bevel (30) to the current flow between

    source and drain electrodes.

  • 58

    Table 4-2

    mobility on/off current

    ratio

    on/off current ratio

    channel

    TIPS-PEN

    60 mobility

    channel

    mobility

    Figure 4-17

    mobility

    mobility

    channel mobility

    mobility channel

    Figure 4-18

    on/off current ratio

  • 59

    106 5 102 on/off current

    ratio 1.96 107 on/off current ratio 106

    on/off current ratio

    channel

    mobility on/off current ratio

    channel

    channel TIPS-PEN

    channel

    channel

    channel

    mobility on/off current ratio

  • 60

  • 61

    Figure 4-17 Histograms of saturation mobility of TIPS-PEN OTFT for nucleation

    in channel (5 devices), perpendicular (10 devices), parallel (10 devices), diagonal

    (5 devices), bevel of 30 (5 devices) and bevel of 60 (5 devices).

    Figure 4-18 Histograms of on/off current ratio of TIPS-PEN OTFT for nucleation

    in channel (5 devices),perpendicular (10 devices), parallel (10 devices), diagonal

    (5 devices), bevel of 30(5 devices), and bevel of 60(5 devices).

  • 62

    4-3

    TIPS-PEN1.0L1.5 L 2.0L

    Table 4-3

    Table 4-4

    1.5 L

    mobility Vt0.5 1.5 L mobility

    on/off current ratio Vt

    mobility channel TIPS-PEN

    channel

    hot-place

    on/off current ratio off

    current

    1.0 L

    mobility 1.5 L on/off current ratio

  • 63

    1.01.5 L

    mobilitychannelTIPS-PEN

  • 64

  • 65

  • 66

    1 n-Butyllithium 6,13-bis(triisopropylsilylethynyl) pentacene

    28.7%

    2 TIPS-PEN

    3

    0.5 L

    mobility on/off current ratio

    1.03 10-1 cm2/Vs1. 85 105 5.70 10-2

    cm2/Vs9.23 104

    4

    channel

    channel

    mobility on/off current ratio

    5

    channel

    mobility on/off current ratio

  • 67

    channel

    channelTIPS-PEN

    channel

    6

    1.5 L

    mobility 1.57 10-1 cm2/Vs

    1.5 L on/off current ratio 1.25 106

    7 TIPS-PEN

    1.0 1.5 L mobility on/off current ratio

    channel

    hot-place

    8 1.0 1.5 L mobility on/off current

    ratio Vt

  • 68

    [1] J. Bardeen and W. H. Brattain, Phys. Rev., 74, 230 (1948).

    [2]D. Gamota, J. Zhang, P. Brazis, and K. Kalyanasundaram, Printed

    orgamic and molecular electronics, Kluwer Acadenmic Publisher,

    P.720 (2004).

    [3] A. Tsumura, H. Koezuka, and T. Ando, Appl. Phys. Lett., 49, 1210

    (1986).

    [4] F. Garnier, R. Hajlaoui, A. Yassar, and P. Srivastava, Science, 265, 1684

    (1994).

    [5] G. Horowitz, D. Fichou, X. Z. Peng, Z. G. Xu, F. Garnier, Solid State

    Commun., 72, 381 (1989).

    [6] J. E. Lilienfeld, U.S. Patent No.1, 745, 175 (1930).

    [7] H. Koezuka, A. Tsumura, and T. Ando, Synth. Met., 18, 699 (1987).

    [8] J. Smith, R. Hamilton, I. McCulloch, N. S. Stutzmann, M. Heeney, D. D.

    C. Bradley, and T. D. Anthopoulos, J. Mater. Chem., 20, 2562 (2010).

    [9] C. R. Newman, C. D. Frisbie, D. A. da Silva Filho, J. L. Bredas, P. C.

    Ewbank, and K. R. Mann, Chem. Mater., 16, 4436 (2004).

    [10] T. W. Kelley, D. V. Muyres, P. F. Baude, T. P. Smith, and T. D. Jones, Mater. Res.

    Soc. Symp. Proc., 771, 169 (2003).

  • 69

    [11] J. E. Anthony, J. S. Brooks, D. L. Eaton, and S. R. Parkin, J. Am. Chem.

    Soc., 123, 9482 (2001).

    [12] G. Giri, E. Verploegen, S. C. B. Mannsfeld, S. A. Evrenk, D. H. Kim, S.

    Y. Lee, H. A. Becerril, A. A. Guzik, M. F. Toney, and Z. Bao, Nature,

    480, 504 (2011).

    [13] O. Ostroverkhova, D. G. Cooke, F. A. Hegmann, R. R. Tykwinski, S. R.

    Parkin, and J. E. Anthony, Appl. Phys. Lett., 89, 192113 (2006).

    [14] Y. H. Kim, J. I. Han, and K. Cho, Appl. Phys. Lett., 90, 132106 (2007).

    [15 M. J. Kim, H. W. Heo, Y. K. Suh, and C. K. Song, Organ. Elect., 12,

    1170 (2011).