探討餐飲業外送服務績效之改善 -...

16
1227 探討餐飲業外送服務績效之改善 余銘忠 國立高雄應用科技大學企業管理系助理教授 [email protected] 李芳怡 國立高雄應用科技大學企業管理系研究生 [email protected] 摘要 近年來因生活型態的改變,使得餐飲業的競爭愈來愈激烈,尤其在尖峰時段外送的頻率很高,但大多數的 外送服務並沒有一定的原則,使得服務品質參差不齊,因而降低業者的效率。本研究主要在探討餐飲業在外送 服務方面績效的改善,以系統模擬的方法,探討其在不同外送政策下對外送服務績效的影響,並提供較佳之方 案以改善其服務品質並提升其營運績效。同時在不同的績效指標下,評估各變數之影響。外送政策可分為高、 中、低三種水準之待送數量,以及先訂先送、量少先送、量多先送、最短距離及最長距離之五種遞送規則,所 採用的績效指標包括:系統時間、遞送總量與資源使用率。研究結果顯示採用低水準待送數量或最短距離遞送 規則其對系統時間及遞送總量之績效表現最好,採用高水準待送數量或最短距離遞送規則其對資源使用率之績 效表現最好。業者可參考研究結果來訂定外送政策,以改善其外送之服務品質,並可依照其營運目標來訂定外 送政策,進而提升其營運績效。 關鍵詞:外送、系統模擬、最後一哩 KeywordsTake-Delivery; Simulation; Last Mile 壹、緒論 一、背景與動機 隨著台灣進入工商業發達的階段,國民的消費型態從基本的飲食費移轉至文教、育樂方面之支出,進入 80 年代後,國民的飲食行為也由單純對食物溫飽的功能,轉為兼顧各種育樂、教育活動為主,顯示對於生活品質 之要求已提升,其中飲食習慣及型態也同時改變,隨著消費者對生活品質要求日益提升,其外食消費意識也逐 漸抬頭(李佳芳,2009) 。由於外食人口的劇增,餐飲業之競爭更趨激烈,因此業者應該隨時注意消費者的需求變 化以提升外食品質,這是目前重要的課題之一。品質的提升除了餐食、衛生之外,另一個影響顧客滿意度的重 要因素就是服務(陳美伶,2007)現今國人生活步調日趨快速,尤其是在上班族及學生族群俱增的今日,時間就是金錢的觀念更顯得重要。 在尖峰時段不管是交通、飲食甚至是網路,對於各行各業都有一定程度的影響,相對的也造成人們生活上的不 便,進而影響消費者意願及行為。以餐飲業來說,除了現場點餐服務會有排隊等候的問題之外,在外送服務方 面也會有相同的問題,尤其是在尖峰時間,人潮多,交通又擁擠,很容易讓顧客等太久,降低服務效率與品質。 隨著經濟成長和交通日趨便利,個性化和快速的遞送服務也日益增加,但是服務的品質卻不是穩定的(Wang, 2008)。以餐飲業來說,在尖峰時段很多公司、學校為了節省時間及達到便利性,都會團體訂購,而現今雙薪家 庭不開伙的比例愈來愈高,因此家庭叫外送的比例也有增高的趨勢。在實際訪談過幾間便當店之後發現,大多 數的外送服務並沒有一定的原則,通常都是隨員工喜好遞送,毫無章法可言,常常有顧客抱怨等太久,服務品 質參差不齊,因而降低業者的效率。Wang(2008)透過分析點對點和輻輳式兩種快遞網絡來探討機車快遞在市區 小包裝運送是否適合,研究指出雖然它沒有困難的路徑問題,但卻又會影響到服務的品質。餐飲業的外送服務

Upload: doanquynh

Post on 01-Nov-2018

236 views

Category:

Documents


0 download

TRANSCRIPT

  • 1227

    [email protected]

    [email protected]

    KeywordsTake-Delivery; Simulation; Last Mile

    80

    (2009)

    (2007)

    (Wang,

    2008)

    Wang(2008)

  • 1228

    ()

    ()

    ()

    ()

    ()

    ()

    (Last Mile)

    (2008)

    Yrjl(2001)Campbell and

    Savelsbergh(2005, 2006)

    Punakivi and Saranen(2001)Punakivi et al.(2001)

    RoutePro

    POS

    Punakivi and Saranen(2001) Punakivi et

    al.(2001)Punakivi

    and Saranen(2001)Punakivi et al. (2001)

  • 1229

    Birattari et al. (2002)

    Pizza Pizza 30

    Pizza Pizza

    Pizza

    Pizza

    ( 30 )

    Pizza

    1959 Dantzig and Ramser

    (Toth and Vigo, 2002)

    (NP-hard)

    (2004)

    (Wen, 2010)

    ((2004)

    (2005)Laporte(2009) Wen(2010))Psaraftis(1983)Desrocher et al.(1992)

    (2005)(2006)(2006)Azi et al.(2007)

    (Greedy Search) Solomon(1987)Pearnti et al.(1995)

    (2005)Nuortio(2006)(2006)(2001)(2005)(2006)

    (2004) Kruskal (Local Search)Dijkstra`s

    (2001)

    (heuristic)

    Azi et al.(2007)(

    )(VRP with Time Windows, VRPTW)

    Azi et al.(2007)

    3

  • 1230

    Shannon(1975)

    Harrell and

    Tumay(1995)

    (2001)(Monte Carlo Simulation)(Continuous

    Simulation)(Discrete Simulation)

    FORTRANC PASCAL

    Saltzman and Mehrotra(2001)Alexopoulos et al.(2001)Komashie and Mousavi(2005) Duguay and

    Chetouane(2007)Son et

    al.(1999)Son and Wysk(2001)(2002)(2008)

    Aran and Kang(1987) Kharwat et al.(1991)

    Shannon et al.(1980)

    ( 3-1 )

    3-1

  • 1231

    3~5

    5~6 15~20

    9 10 () 5~6

    40

    11:30 11:30

    1 ~5 30

    ()

    1. (Quantity Waiting for Delivery)

    (1) 5 5

    (2) 25 25

    (3) 45 45

    2. (Dispatching Rule)

    (1)

    (2)

    (3)

    (4)

    (5)

    ()

    1. (System Time)

    2. (Total Delivery Quantity)

    ()

    3. (Resources Utilization)

  • 1232

    ()

    3-1

    (5 25 45 )(

    ) 15 (3*5) 3-2

    3-1

    ()

    5 (Level Low , L)

    25 (Level Moderate, M)

    45 (Level High, H)

    (Early Order, EO)

    (Small Quantity, SQ)

    (Large Quantity, LQ)

    (Short Distance, SD)

    (Long Distance, LD)

    3-2

    () ()

    M1 5 (L) (OE)

    M2 5 (L) (SQ)

    M3 5 (L) (LQ)

    M4 5 (L) (SD)

    M5 5 (L) (LD)

    M6 25 (M) (OE)

    M7 25 (M) (SQ)

    M8 25 (M) (LQ)

    M9 25 (M) (SD)

    M10 25 (M) (LD)

    M11 45 (H) (OE)

    M12 45 (H) (SQ)

    M13 45 (H) (LQ)

    M14 45 (H) (SD)

    M15 45 (H) (LD)

    ()

    (Gordon, 1978; Law and Kelton, 2000;

  • 1233

    Yes

    No

    Sadoun, 2000) 3-2

    3-2

    Gordon(1978), Law and Kelton(2000), Sadoun(2000)

    ()

    ARENASLAMSYSTEMPROMODEL ARENA

    (template)

    ARENA10.0

    ()

    1.

    2.

    3.

    3-3

  • 1234

    3-3

    (1) 11:00-13:00 120

    (2) (Euclidean Distance)

    (3)

    (4) ()

    (5)

    4.

    ARENA (Animation)(Check

    Model)

    ( 30 300 )

    5.

    ( 3-1 3-2)

    6.

    Kelton et al. (2002)

    (steady state system)(termination system)

    (simulation length)(warm-up period)(stopping event)

    (initial condition)

    120 3-4

    3-4

    10 20 30 40 50 60 70 80 90 100

    110

    120

    130

    140

    150

    160

    170

    180

    190

    200

    0.00

    20.00

    40.00

    60.00

    80.00

    100.00

  • 1235

    Law and Kelton(2000)

    n d (d=1)z 5%

    ( 84.322

    Z )(2 =3.8) 95% 15

    240 120

    15 15 15

    SPSS 12.0

    (ANOVA) 3-1

    3-2 4-1 4-2 4-3 4-1

    15 1 5

    29.966()

    4-215

    625302()

    4-315

    11450.697

    4-1 ()

    L M H

    EO 29.966 (8.5916) 33.116

    (8.1872) 36.361

    (7.5784)

    SQ 30.632 (8.3366) 33.545

    (8.5133) 37.022

    (7.9025)

    LQ 33.858 (7.1257) 36.848

    (8.3833) 40.154

    (7.1378)

    SD 20.868 (3.9056) 24.384

    (4.1158) 27.342

    (4.1927)

    LD 44.652 (7.6131) 47.259

    (7.6512) 48.845

    (7.8809)

    ( )

    2

    22

    2

    dn

    (1)

  • 1236

    4-2 ()

    L M H

    EO 309 (13.834) 302

    (19.111) 289

    (23.400)

    SQ 307 (14.865) 296

    (20.233) 289

    (26.123)

    LQ 308 (13.210) 303

    (15.791) 290

    (23.491)

    SD 309 (13.834) 306

    (16.567) 291

    (24.695)

    LD 292 (17.510) 280

    (22.495) 272

    (24.647)

    ( )

    4-3 ()

    L M H

    EO 0.742 (0.1089) 0.735

    (0.1057) 0.697

    (0.1232)

    SQ 0.761 (0.1168) 0.746

    (0.1139) 0.713

    (0.1145)

    LQ 0.806 (0.1120) 0.793

    (0.1135) 0.754

    (0.1172)

    SD 0.58 (0.0879) 0.571

    (0.0897) 0.536

    (0.0904)

    LD 0.922 (0.0762) 0.891

    (0.0743) 0.8573

    (0.0802)

    ( )

    (Full Factorial Experiment)1515

    F5%

    Scheffe

    ()

    ANOVA4-4

    Scheffe(4-54-6)

    4-4 ANOVA -

    F P value Significance

    14 17.894 0.00 *

    2 12.399 0.00 *

    4 56.272 0.00 *

    * 8 0.078 1.00

    *.0.05

  • 1237

    4-5 -

    5(1) 25(2) 45(3) F P value Scheffe

    31.995 35.036 37.945 12.399 0.00* {1}

  • 1238

    4-9 -

    OE(1) SQ(2) LQ(3) SD(4) LD(5) F Scheffe

    300.1 297.1 300.2 302.2 281.6 8.035* {5}

  • 1239

    ARENA 10.0

    (Full Factorial Experiment)

    (5 25 45 )()

    15 (3*5)

    ARENA (Animation)(Check Model)

    15 15

    240 120 (ANOVA)

    Scheffe

    ()

    ()

    ()

    ()

    ()

    ()

  • 1240

    ()

    ()

    ()

    [1] Harrell and Tumay(1998)(1995 )

    [2] (2004)(VRPBTW)

    [3] (2009)

    [4] (2006)

    [5] (2001)()

    [6] (2002)

    [7] (2005)-

    [8] (2004)-

    [9] (2001)

    [10] (2007)

    [11] (2001)

    [12] (2006)

    [13] (2005)

    [14] (2008)

    [1] Alexopoulos, C., Goldsman, D., Fontanesi, J., Sawyer, M., Guire, M.D., Kopald, D. and Holcomb, K. (2001).

    A discrete-event simulation application for clinics serving the poor. Winter Simulation Conference, 2, pp.

    1386-1391.

    [2] Aran, M. M. and Kang, K. (1987). Design of a Fast Food Restaurant Simulation Model. International

    Industrial Engineering Conference. pp. 496-499.

    [3] Azi, N., Gendreau, M. and Potvin, J. Y. (2007). An exact algorithm for a single-vehicle routing problem with

  • 1241

    time windows and multiple routes. European Journal of Operational Research, 178(3), pp. 755-766.

    [4] Birattari, M., Stutzle, T., Paquete, L. and Varrentrapp, K. (2002). A Racing Algorithm for Configuring

    Metaheuristics. GECCO, pp. 11-18.

    [5] Campbell, A. M. and Martin Savelsbergh, W. P. (2005). Decision Support for Consumer Direct Grocery

    Initiatives. Transportation Science, 39(3), pp. 313-327.

    [6] Campbell, A. M. and Savelsbergh, M. (2006). Incentive Schemes for Attended Home Delivery Services.

    Transportation Science, 40(3), pp. 327-341.

    [7] Desrochers, M., Desrosiers, J. and Solomon, M. (1992). A new optimization algorithm for the vehicle routing

    problem with time windows. Operations Research, 40(2), pp. 342-354.

    [8] Duguay, C. and Chetouane, F. (2007). Modeling and Improving Emergency Department Systems using

    Discrete Event Simulation. Transactions of The Society for Modeling and Simulation International, 83(4), pp.

    311-320.

    [9] Gordon, G. (1978). System Simulation.(2nd ed). Englewood Cliffs, NJ: Prentice-Hall.

    [10] Kelton, W. D., Sadowski, R. P., and Sadowski, D. A. (2002). Simulation with Arena. McGraw-Hill Inc., New

    York, United States.

    [11] Kharwot, A.K. (1991). Computer Simulation: An important tool in the fast-food industry. Winter Simulation

    Conference, pp. 811-815.

    [12] Komashie, A. and Mousavi, A. (2005). Modeling emergency departments using discrete event

    simulation techniques, Winter Simulation Conference, pp. 2681-2685.

    [13] Laporte, G. (2009). Fifty Years of Vehicle Routing. Transportation Science , 43(4), pp. 408-416.

    [14] Law, A. M. and Kelton, W. D. (2000). Simulation Modeling and Analysis(3nd ed)., McGraw-Hill Higher

    Education, New York, United States.

    [15] Nuortio, T., joki, J. K., Niska, H. and Braysy, O. (2006). Improved route planning and scheduling of waste

    collection and transport. Expert Systems with Applications 30(2), pp. 223232.

    [16] Pearnti, W. L. and Liu, C. M. (1995). Algorithms for the chinese postman problem on mixed networks,

    Computers and Operations Research, 22(5), pp. 479-489.

    [17] Psaraftis, H. N. (1983). An Exact Algorithm for the Single Vehicle Many-to-Many Dial-A-Ride Problem

    with Time Windows, Transportation Science, 17(3), pp. 351-358.

    [18] Punakivi, M., Yrjl, H. and Holmstrm, J. (2001). Solving the last mile issue:reception box or delivery box?

    International Journal of Physical Distribution and Logistics Management, 31(6), pp. 427-439.

    [19] Punakivi, M. and Saranen, F. (2001). Identifying the success factors in e-grocery home delivery.

    International Journal of Retail and Distribution Management, 29(4), pp. 156-163.

    [20] Sadoun, B. (2000). Applied system simulation: a review study. Information Sciences 124(1-4), pp. 173-192.

    [21] Saltzman, R. M. and Mehrotra, V. (2001). A Call Center Uses Simulation to Drive Strategic Change, Institute

    for Operations Research and the Management Sciences, 31(3), pp. 87-101.

    [22] Shannon, R. E. (1975), System Simulation the Art and Science, Prentice-Hall, Englewood Chiff, New Jersey,

    United States.

    [23] Shannon, R. E., Long, S. S. and Buckles, B. P. (1980). Operation research methodologies in industrial

    engineering: A Survey. IIE Transactions, 12(4), pp. 364-367.

  • 1242

    [24] Solomon, M. M. (1987). Algorithms for the vehicle routing and scheduling p roblems with time window

    constraints. Operations Research, 35(2), pp. 254-265.

    [25] Son, Y. J. and Wysk, R. A. (2001). Automatic simulation model generation for simulation-based, real-time

    shop floor control, Computers in Industry, 45(3), pp. 291-308.

    [26] Son, Y. J., Rodrguez, R. H. and Wysk, R. A. (1999). A multi-pass simulation-based, real-time scheduling

    and shop floor control system, Transactions of the Society for Computer Simulation International, 16(4), pp.

    159 -172.

    [27] Toth, P. and Vigo, D. (2002). The vehicle routing problem. Society for Industrial and Applied Mathematics

    Philadelphia, Universita degli Studi di Bologna, Italy.

    [28] Wang, I. L. (2008). Distribution of small packages in metropolitan area by motorcycle courier services.

    International Journal of Integrated Supply Management, 4(1), pp. 88-101.

    [29] Wen, M. (2010). Rich Vehicle Routing Problems and Applications, PhD thesis, DTU Management

    Engineering, Department of Management Engineering.