林永昌. outline band structure of graphene chemical doping electrical transport theoretical...

14
林林林

Upload: audra-ball

Post on 13-Dec-2015

234 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 林永昌. Outline Band structure of graphene Chemical doping Electrical transport Theoretical explanation Conclusion

林永昌

Page 2: 林永昌. Outline Band structure of graphene Chemical doping Electrical transport Theoretical explanation Conclusion

Outline

• Band structure of graphene• Chemical doping• Electrical transport• Theoretical explanation• Conclusion

Page 3: 林永昌. Outline Band structure of graphene Chemical doping Electrical transport Theoretical explanation Conclusion

Band structure of graphene

(near k point, linear relation)

M. I. Katsnelson, Mater. today 10, 20 (2007)J. B. Oostinga et al., Nature mater. 7, 151 (2008)

The unit cell consisting of two atoms.

Page 4: 林永昌. Outline Band structure of graphene Chemical doping Electrical transport Theoretical explanation Conclusion

Chemical doping

M. S. Strano, Science 301, 1519 (2003)

Diazonium: p-type doping

Page 5: 林永昌. Outline Band structure of graphene Chemical doping Electrical transport Theoretical explanation Conclusion

Electrical transport (p-type)

pristine

doped

annealing

Suppression of electron conduction.hole

electron

Page 6: 林永昌. Outline Band structure of graphene Chemical doping Electrical transport Theoretical explanation Conclusion

Electrical transport (n-type)

Suppression of hole conduction.

electronhole

Page 7: 林永昌. Outline Band structure of graphene Chemical doping Electrical transport Theoretical explanation Conclusion

Density of state in graphene

Page 8: 林永昌. Outline Band structure of graphene Chemical doping Electrical transport Theoretical explanation Conclusion

Theoretical explanation nonequilibrium Green’s function formalism (NEGF)

Dopant-induced potential barrier in the grpahene channel:

Fluctuating potential (Short-range scattering)

Homogeneous barrier

Coulombic potential barrier(long-range scattering)

N-type doping hole electron

Multiple reflections

Page 9: 林永昌. Outline Band structure of graphene Chemical doping Electrical transport Theoretical explanation Conclusion

Effect of electrode properties

E=0 E=UB Gds (min)

hole electron

Page 10: 林永昌. Outline Band structure of graphene Chemical doping Electrical transport Theoretical explanation Conclusion

NH3 plasma experiment

1200 1400 1600 2600 2700

Intensity (a. u.)

Raman shift (cm-1)Vg (V)

G (μ

S)1583

1587

1588

-10 0 10 20 30 40

160

200

240

280

-20 -10 0 10 20

60

80

100

120

-40 -20 0 20 400

20

40

60

(a)

(b)

(c)

(d)Pristine (p-type doping)

NH3 plasma 120sec(n-type doping)

prinstine

60sec

120sec

Page 11: 林永昌. Outline Band structure of graphene Chemical doping Electrical transport Theoretical explanation Conclusion

Some transport data

-2 -1 0 1 2

-4

-2

0

2

4

Ids

(nA

)

Vds (mV)

-90 -60 -30 0 30 60 90

4

8

12

16

20

Ids

(nA

)

Vg (V)

T=2.5KVds = 5mV

T=2.5KR=400Kohm

-20

0

20

40

60

80

100

120

140

160

180

200

220

240

260

280

300

320

340

360

380

400

420

Inte

nsity

(a.

u.)

1 200 1 400 1 600 1 800 2 000 2 200 2 400 2 600 2 800 3 000Raman shift (cm-1)

264

2.8

158

7.6

E valuation Copy

1587.6 / W=10.38

2642.8 / W= 27.9

DE A7 (D17-S19)

Page 12: 林永昌. Outline Band structure of graphene Chemical doping Electrical transport Theoretical explanation Conclusion

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

-40

-20

0

20

40

Ids

(nA

)

Vds (mV)

-90 -60 -30 0 30 60 90

0

10

20

30

40

50

60

Ids

(nA

)

Vg (V)

T=2.5KVds = 0.5mV

T=2.5KR=14Kohm

0

50

100

150

200

250

300

350

400

450

Inte

nsity

(a.

u.)

1 200 1 400 1 600 1 800 2 000 2 200 2 400 2 600 2 800 3 000Raman shift (cm-1)

264

3.8

159

0.1

E valuation Copy

1590.07 / W= 13.4 2643.8 / W= 29.83

DE A7 (D17-S16)

Page 13: 林永昌. Outline Band structure of graphene Chemical doping Electrical transport Theoretical explanation Conclusion

Conclusion• The doping–induced conductance asymmetry is

caused by a combination of the neutrality point misalignment at the electrode/cannel interface and the nonconstant DOS of the graphene electrodes.

• Homogeneous potential cause conductance suppression of only one carrier type, while inhomogeneous potential cause both type.

• If metal-induced doping of graphene electrodes occurs, the conductance exhibits asymmetry even the channel is intrinsic.

Page 14: 林永昌. Outline Band structure of graphene Chemical doping Electrical transport Theoretical explanation Conclusion

Thank you