1 4.7 alternate optimal solutions if an lp has more than one optimal solution, it has multiple...

70
1 4.7 Alternate Optimal Solutions If an LP has more than one optimal solution, it has multiple optimal solutions ( 多多多多多 ) or alternative optimal solutions( 多 多 多多多). If there is no NBV with a zero coefficient in row 0 of the optimal tableau, the LP has a unique optimal solution. Even if there is a NBV with a zero coefficient in row 0 of the optimal tableau, it is possible that the LP may not have alternative optimal solutions. p.152

Upload: dustin-kennedy

Post on 18-Jan-2018

223 views

Category:

Documents


0 download

DESCRIPTION

3 Table 13 BVzx1x1 x2x2 x3x3 s1s1 s2s2 s3s3 s4s4 RHSRatio z s1s s2s s3s s4s max z = 60x x x 3 s.t. 8x 1 + 6x 2 + x 3 ≤ 48 4x 1 + 2x x 3 ≤ 20 2x x x 3 ≤ 8 x 2 ≤ 5 x 1, x 2, x 3 ≥ 0 z - 60x x x 3 = 0 8x 1 + 6x 2 + x 3 + s 1 = 48 4x 1 + 2x x 3 + s 2 = 20 2x x x 3 + s 3 = 8 x 2 + s 4 = 5 x 1, x 2, x 3, s 1, s 2, s 3, s 4 ≥ 0

TRANSCRIPT

Page 1: 1 4.7 Alternate Optimal Solutions If an LP has more than one optimal solution, it has multiple optimal solutions ( 多重最佳解 ) or alternative optimal solutions(

1

4.7 Alternate Optimal Solutions If an LP has more than one optimal solution, it has

multiple optimal solutions ( 多重最佳解 ) or alternative optimal solutions( 擇一最佳解 ).

If there is no NBV with a zero coefficient in row 0 of the optimal tableau, the LP has a unique optimal solution.

Even if there is a NBV with a zero coefficient in row 0 of the optimal tableau, it is possible that the LP may not have alternative optimal solutions.

p.152

Page 2: 1 4.7 Alternate Optimal Solutions If an LP has more than one optimal solution, it has multiple optimal solutions ( 多重最佳解 ) or alternative optimal solutions(

2

Example: Dakota Furniture Company (p.140)

max z = 60x1 + 35x2 + 20x3

s.t. 8x1+ 6x2 + x3 ≤ 48 (lumber constraint) 4x1+ 2x2 + 1.5x3 ≤ 20 (finishing constraint) 2x1+1.5x2 + 0.5x3 ≤ 8 (carpentry constraint)

x2 ≤ 5 (table demand constraint) x1, x2, x3 ≥ 0

p.152

Page 3: 1 4.7 Alternate Optimal Solutions If an LP has more than one optimal solution, it has multiple optimal solutions ( 多重最佳解 ) or alternative optimal solutions(

3

Table 13

BV z x1 x2 x3 s1 s2 s3 s4 RHS Ratio

z 1 -60 -35 -20 0 0 0 0 0s1 0 8 6 1 1 0 0 0 48s2 0 4 2 1.5 0 1 0 0 20s3 0 2 1.5 0.5 0 0 1 0 8s4 0 0 1 0 0 0 0 1 5

max z = 60x1 + 35x2 + 20x3

s.t. 8x1+ 6x2 + x3 ≤ 48 4x1+ 2x2 + 1.5x3 ≤ 20 2x1+1.5x2 + 0.5x3 ≤ 8

x2 ≤ 5 x1, x2, x3 ≥ 0

z - 60x1 - 35x2 - 20x3 = 0 8x1+ 6x2 + x3 + s1 = 48 4x1+ 2x2 + 1.5x3 + s2 = 20 2x1+1.5x2 + 0.5x3 + s3 = 8

x2 + s4 = 5 x1, x2, x3, s1, s2, s3, s4 ≥ 0

Page 4: 1 4.7 Alternate Optimal Solutions If an LP has more than one optimal solution, it has multiple optimal solutions ( 多重最佳解 ) or alternative optimal solutions(

4

Table 13

BV z x1 x2 x3 s1 s2 s3 s4 RHS Ratio

Z 1 -60 -35 -20 0 0 0 0 0s1 0 8 6 1 1 0 0 0 48 8s2 0 4 2 1.5 0 1 0 0 20 5s3 0 2 1.5 0.5 0 0 1 0 8 4 LVs4 0 0 1 0 0 0 0 1 5

EVTable 14

BV z x1 x2 x3 s1 s2 s3 s4 RHS Ratio

Z 1 0 10 -5 0 0 30 0 240s1 0 0 0 -1 1 0 -4 0 16 Nones2 0 0 -1 0.5 0 1 -2 0 4 8 LVx1 0 1 0.75 0.25 0 0 0.5 0 4 16s4 0 0 1 0 0 0 0 1 5 None

EV

Page 5: 1 4.7 Alternate Optimal Solutions If an LP has more than one optimal solution, it has multiple optimal solutions ( 多重最佳解 ) or alternative optimal solutions(

5

Table 15

BV z x1 x2 x3 s1 s2 s3 s4 RHS BV

Z 1 0 0 0 0 10 10 0 280 z=280s1 0 0 -2 0 1 2 -8 0 24 s1=24x3 0 0 -2 1 0 2 -4 0 8 x3=8x1 0 1 1.25 0 0 -0.5 1.5 0 2 x1=2s4 0 0 1 0 0 0 0 1 5 s4=5

Table 16

BV z x1 x2 x3 s1 s2 s3 s4 RHS BV

Z 1 0 0 0 0 10 10 0 280 z=280s1 0 1.6 0 0 1 1.2 -5.6 0 27.2 s1=27.2x3 0 1.6 0 1 0 1.2 -1.6 0 11.2 x3=11.2x2 0 0.8 1 0 0 -0.4 1.2 0 1.6 x1=1.6s4 0 -0.8 0 0 0 0.4 -1.2 1 3.4 s4=3.4

Page 6: 1 4.7 Alternate Optimal Solutions If an LP has more than one optimal solution, it has multiple optimal solutions ( 多重最佳解 ) or alternative optimal solutions(

6

Any point on the line segment joining two optimal extreme points will also be optimal.

1 0 23211

61612

21161

0 1

802

21161

02

802

1

3

2

1

3

2

1

3

2

1

cforc..c..

c

..)c(c

xxx

..

xxx

intpoextremeOptimal

xxx

intpoextremeOptimal

Page 7: 1 4.7 Alternate Optimal Solutions If an LP has more than one optimal solution, it has multiple optimal solutions ( 多重最佳解 ) or alternative optimal solutions(

7

Exercise, p.154, 5 min

Exercise 1 Exercise 2 Exercise 3 Exercise 4 Exercise 5

Page 8: 1 4.7 Alternate Optimal Solutions If an LP has more than one optimal solution, it has multiple optimal solutions ( 多重最佳解 ) or alternative optimal solutions(

8

4.8 Unbounded LPs For some LPs, there exist points in the feasible

region for which z assumes arbitrarily large (in max problems) or arbitrarily small (in min problems) values. The LP is unbounded solution( 無限解 ).

An unbounded LP occurs in a max problem if there is a NBV with a negative coefficient in row 0 and there is no constraint that limits how large we can make this NBV.

Specifically, an unbounded LP for a max problem occurs when a variable with a negative coefficient in row 0 has a non positive coefficient in each constraint.

p.154

Page 9: 1 4.7 Alternate Optimal Solutions If an LP has more than one optimal solution, it has multiple optimal solutions ( 多重最佳解 ) or alternative optimal solutions(

9

Example 3. Breadco Bakeries x1=number of loaves of French bread baked

x2=number of loaves of sourdough bread baked x3=number of yeast packets purchased x4=number of ounces of flour purchased

Objective function : Revenue = 36x1+30x2, Costs = 3x3 + 4x4

z = Revenue – Costs = 36x1 + 30x2 - 3x3 - 4x4 Constraints : x1 +x2 ≤ 5 + x3 x1 +x2 - x3 ≤ 5 6x1 + 5x2 ≤ 10 + x4 6x1 + 5x2 - x4 ≤ 10 Max z = 36x1 + 30x2 - 3x3 - 4x4

s.t. x1 + x2 - x3 ≤ 5 6x1 + 5x2 - x4 ≤ 10

x1, x2 , x3 , x4 ≥0

p.154

Page 10: 1 4.7 Alternate Optimal Solutions If an LP has more than one optimal solution, it has multiple optimal solutions ( 多重最佳解 ) or alternative optimal solutions(

10

max z = 36x1 + 30x2 – 3x3 – 4x4

s.t. x1 + x2 – x3 ≤ 5 6x1 + 5x2 –x4 ≤ 10

x1, x2, x3, x4 ≥ 0

max z = 36x1 + 30x2 – 3x3 – 4x4

s.t. x1 + x2 – x3 + s1 =5 6x1 + 5x2 –x4 + s2 =10

x1, x2, x3, x4, s1, s2 ≥ 0

Table 19BV z x1 x2 x3 x4 s1 s2 RHS BV Ratioz 1 -36 -30 3 4 0 0 0 z=0s1 0 1 1 -1 0 1 0 5 s1=5 5s2 0 6 5 0 -1 0 1 10 s2=10 5/3

Page 11: 1 4.7 Alternate Optimal Solutions If an LP has more than one optimal solution, it has multiple optimal solutions ( 多重最佳解 ) or alternative optimal solutions(

11

Table 20

BV z x1 x2 x3 x4 s1 s2 RHS Ratio

Z 1 0 0 3 -2 0 6 60s1 0 0 1/6 -1 1/6 1 -1/6 10/3 20 LVx1 0 1 5/6 0 -1/6 0 1/6 5/3 none

EV

Table 19

BV z x1 x2 x3 x4 s1 s2 RHS Ratio

Z 1 -36 -30 3 4 0 0 0s1 0 1 1 -1 0 1 0 5 5s2 0 6 5 0 -1 0 1 10 10/6 LV

EV

Table 21

BV z x1 x2 x3 x4 s1 s2 RHS Ratio

Z 1 0 2 -9 0 12 4 100x4 0 0 1 -6 1 6 -1 20 nonex1 0 1 1 -3 0 1 0 5 none

Page 12: 1 4.7 Alternate Optimal Solutions If an LP has more than one optimal solution, it has multiple optimal solutions ( 多重最佳解 ) or alternative optimal solutions(

12

Exercise, p.158 , 5 min

Exercise 1 Exercise 2 Exercise 3 Exercise 4 Exercise 5 Exercise 6

Page 13: 1 4.7 Alternate Optimal Solutions If an LP has more than one optimal solution, it has multiple optimal solutions ( 多重最佳解 ) or alternative optimal solutions(

13

4.11 Degeneracy and Convergence of the Simplex AlgorithmTheoretically, the simplex algorithm can fail to find an

optimal solution to an LP.The following are facts:

If (value of entering variable in new bfs) > 0, then (z-value for new bfs) > (z-value for current bfs)

If (value of entering variable in new bfs) = 0, then (z-value for new bfs) = (z-value for current bfs)

p.168

Page 14: 1 4.7 Alternate Optimal Solutions If an LP has more than one optimal solution, it has multiple optimal solutions ( 多重最佳解 ) or alternative optimal solutions(

14

Assume that in each of the LP’s bfs all BV are

positive. An LP is a nondegenerate (非退化 ) LP. An LP is degenerate(退化 ) if it has at least one bfs

where a BV is equal 0. Any bfs that has at least one BV equal to zero is a

degenerate bfs( 退化基本可行解 ). When the same bfs is encountered twice it is called

cycling( 循環 ). If cycling occurs, then we will loop, or cycle,

forever among a set of basic feasible solutions and never get to an optimal solution.

p.169

Page 15: 1 4.7 Alternate Optimal Solutions If an LP has more than one optimal solution, it has multiple optimal solutions ( 多重最佳解 ) or alternative optimal solutions(

15

Example : Degenerate LP

max z = 5x1 + 2x2 s.t. x1 + x2 ≤ 6 x1 – x2 ≤ 0

x1, x2 ≥ 0

max z = 5x1 + 2x2 s.t. x1 + x2 + s1 = 6 x1 – x2 + s2 = 0

x1, x2, s1, s2 ≥ 0

Table 29

BV z x1 x2 s1 s2 RHS

Z 1 -5 -2 0 0 0s1 0 1 1 1 0 6s2 0 1 -1 0 1 0

p.169

Page 16: 1 4.7 Alternate Optimal Solutions If an LP has more than one optimal solution, it has multiple optimal solutions ( 多重最佳解 ) or alternative optimal solutions(

16

Table 29

BV z x1 x2 s1 s2 RHS Ratio

z 1 -5 -2 0 0 0s1 0 1 1 1 0 6 6s2 0 1 -1 0 1 0 0 LV

EVTable 30

BV z x1 x2 s1 s2 RHS Ratio

z 1 0 -7 0 5 0s1 0 0 2 1 -1 6 6/2 LVx1 0 1 -1 0 1 0 None

EVTable 31

BV z x1 x2 s1 s2 RHS Ratio

z 1 0 0 3.5 1.5 21x2 0 0 1 0.5 -0.5 3x1 0 1 0 0.5 0.5 3

Page 17: 1 4.7 Alternate Optimal Solutions If an LP has more than one optimal solution, it has multiple optimal solutions ( 多重最佳解 ) or alternative optimal solutions(

17

Figure 12 (p.171)

There are 3 sets of BVs that correspond to 1 extrem point.

Table 32BV BFS Extreme pointx1 , x2 x1 = 3, x2 = 3, s1 = s2 = 0 Dx1 , s1 x1 = 0, s1 = 6, x2 = s2 = 0 Cx1 , s2 x1 = 6, s2 =-6, x2 = s1 = 0 Infeasiblex2 , s1 x2 = 0, s1 = 6, x1 = s2 = 0 Cx2 , s2 x2 = 6, s2 = 6, x1 = s1 = 0 Bs1 , s2 s1 = 6, s2 = 0, x1 = x2 = 0 C

Page 18: 1 4.7 Alternate Optimal Solutions If an LP has more than one optimal solution, it has multiple optimal solutions ( 多重最佳解 ) or alternative optimal solutions(

18

If an LP has many degenerate BFS (or many BV equal zero), then the simplex algorithm is often inefficient.

Some degenerate LPs have a special structure that enables us to solve them by methods other than the simplex. (chapter 7)

Page 19: 1 4.7 Alternate Optimal Solutions If an LP has more than one optimal solution, it has multiple optimal solutions ( 多重最佳解 ) or alternative optimal solutions(

19

Exercise : Degenerate LP

max z = 7x1 + 8x2 s.t. x1 + 2x2 ≤ 10 3x1 + 2 x2 ≤ 18 x2 ≤ 5

x1, x2 ≥ 0

max z = 7x1 + 8x2 s.t. x1 + 2x2 + s1 = 10 3x1 + 2x2 + s2 = 18 2x2 + s3 = 5

x1, x2 , s1, s2 ≥ 0

BV z x1 x2 s1 s2 s3 RHS Ratio

z 1 -7 -8 0 0 0 0s1 0 1 2 1 0 0 10 5s2 0 3 2 0 1 0 18 9s3 0 0 1 0 0 1 5 5

Page 20: 1 4.7 Alternate Optimal Solutions If an LP has more than one optimal solution, it has multiple optimal solutions ( 多重最佳解 ) or alternative optimal solutions(

20

BV z x1 x2 s1 s2 s3 RHS Ratio

z 1 -7 0 0 0 8 40s1 0 1 0 1 0 -2 0 0s2 0 3 0 0 1 -2 8 8/3x2 0 0 1 0 0 1 5 -

BV z x1 x2 s1 s2 s3 RHS Ratio

z 1 -7 -8 0 0 0 0s1 0 1 2 1 0 0 10 5s2 0 3 2 0 1 0 18 9s3 0 0 1 0 0 1 5 5

BV z x1 x2 s1 s2 s3 RHS Ratio

z 1 0 0 7 0 -6 40x1 0 1 0 1 0 -2 0 0s2 0 0 0 -3 1 4 8 2x2 0 0 1 0 0 1 5 5

Page 21: 1 4.7 Alternate Optimal Solutions If an LP has more than one optimal solution, it has multiple optimal solutions ( 多重最佳解 ) or alternative optimal solutions(

21

BV z x1 x2 s1 s2 s3 RHS Ratio

z 1 0 0 7 0 -6 40x1 0 1 0 1 0 -2 0 -

s2 0 0 0 -3 1 4 8 2

x2 0 0 1 0 0 1 5 5

BV z x1 x2 s1 s2 s3 RHS Ratio

z 1 0 0 5/2 3/2 0 52x1 0 1 0 -1/2 1/2 0 4s3 0 0 0 -3/4 1/4 1 8x2 0 0 1 3/4 -1/4 0 3

Page 22: 1 4.7 Alternate Optimal Solutions If an LP has more than one optimal solution, it has multiple optimal solutions ( 多重最佳解 ) or alternative optimal solutions(

22

Exercise, p.170, 5 min

Exercise 1 Exercise 2

Page 23: 1 4.7 Alternate Optimal Solutions If an LP has more than one optimal solution, it has multiple optimal solutions ( 多重最佳解 ) or alternative optimal solutions(

23

Summery (1)

1. 進入變數平手指 2 個 NBV 具有相同且最負的z 列係數。任意選一個為進入變數( 無有效方法 ) 。

2. 離開變數平手 --- 退化解有 2 個以上相同之最小比率。未被選擇離開之 BV,其值為 0 ,該 BV 即degenerate BV ,含 degenerate BV 之 bfs 即是degenerate bfs。

理論上,退化 bfs 易產生 cycle,使得 z值不變,即 bfs1bfs2bfs3 bfs1而無法求得最佳解。 (有書專門討論此類問題 )

Page 24: 1 4.7 Alternate Optimal Solutions If an LP has more than one optimal solution, it has multiple optimal solutions ( 多重最佳解 ) or alternative optimal solutions(

24

3. 無離開變數 --- 無窮解 進入變數之欄無正值,使得無離開變數。 實務上,遇到此情況,代表該 LP 之模式有誤。( 若 z 代表利潤,則 z 不可能∞ )

4. 最佳單形表含 z 列係數為 0 之 NBV --- 多重最佳解 有任何 NBV 之 z列係數為 0 若讓為 0 之 NBV 為進入變數,則下一個 z值不會改變,但 BFS 將由不同之 BV 組成。亦即不同之解,卻有相同之目標函數值。

Page 25: 1 4.7 Alternate Optimal Solutions If an LP has more than one optimal solution, it has multiple optimal solutions ( 多重最佳解 ) or alternative optimal solutions(

25

LP 的各種變形與解法 Standard Form

0..

ixBAXts

CXZMax

Min:(1)Method 1 (Z=-Z) (2)Method 2

變形 2: “≧”

Unrestricted-in-sign (urs) variable:Let "'

iii xxx

變形 1: Min

變形 3: “urs”

(1)Big-M Method(2)Two-Phase Method

Page 26: 1 4.7 Alternate Optimal Solutions If an LP has more than one optimal solution, it has multiple optimal solutions ( 多重最佳解 ) or alternative optimal solutions(

26

Artificial Variables ( 人工變數 )

為使 simplex method 得以繼續沿用,以人工變數對「≥」之「 = 」之限制式進行轉換。

處裡人工變數之方法有二: Big M method (大M法 ) Two-phase Simplex method (雙階法 )

目的在盡量使人工變數為 0, 使得到之人工問題最佳解即為原問題之最佳解。

Page 27: 1 4.7 Alternate Optimal Solutions If an LP has more than one optimal solution, it has multiple optimal solutions ( 多重最佳解 ) or alternative optimal solutions(

27

4.12 The Big M Method( 大 M 法 ) The simplex method requires a starting bfs. Previous problems have found starting bfs by

using the slack variables as BV. If an LP have ≥ or = constraints, however,

a starting bfs may not be readily apparent. In such a case, the Big M method may be used to

solve the problem.

p.172

Page 28: 1 4.7 Alternate Optimal Solutions If an LP has more than one optimal solution, it has multiple optimal solutions ( 多重最佳解 ) or alternative optimal solutions(

28

Description of the Big M Method1.Modify the constraints so that the rhs of each constraint

is nonnegative. Identify each constraint that is now an = or ≥ constraint.

2.Convert each inequality constraint to standard form (add a slack variable for ≤ constraints, add an excess variable for ≥ constraints).

3.For each ≥ or = constraint, add artificial variables. Add sign restriction ai ≥ 0.

4.Let M denote a very large positive number. Add (for each artificial variable) Mai to min problem objective functions or -Mai to max problem objective functions

5.Since each artificial variable will be in the starting basis, all artificial variables must be eliminated from row 0 before beginning the simplex. Remembering M represents a very large number, solve the transformed problem by the simplex.

Page 29: 1 4.7 Alternate Optimal Solutions If an LP has more than one optimal solution, it has multiple optimal solutions ( 多重最佳解 ) or alternative optimal solutions(

29

Example 4: BevcoBevco manufactures an orange-flavored soft drink

called Oranj by combining orange soda and orange juice. Each orange soda contains 0.5 oz of sugar and 1 mg of vitamin C.

Each ounce of orange juice contains 0.25 oz of sugar and 3 mg of vitamin C.

It costs Bevco 2¢ to produce an ounce of orange soda and 3¢ to produce an ounce of orange juice.

Bevco’s marketing department has decided that each 10-oz bottle of Oranj must contain at least 20 mg of vitamin C and at most 4 oz of sugar.

Use LP to determine how Bevco can meet the marketing department’s requirements at min cost.

p.172

Page 30: 1 4.7 Alternate Optimal Solutions If an LP has more than one optimal solution, it has multiple optimal solutions ( 多重最佳解 ) or alternative optimal solutions(

30

Example 4: Solution

x1 = number of ounces of orange soda in a bottle of Oranj

x2 = number of ounces of orange juice in a bottle of Oranj

The LP is:min z = 2x1 + 3x2

s.t. 0.5x1 + 0.25x2 ≤ 4 (sugar constraint)

x1 + 3x2 ≥ 20 (Vitamin C constraint)

x1 + x2 = 10 (10 oz in 1 bottle of Oranj)

x1, x2 ≥ 0

Step 1

Page 31: 1 4.7 Alternate Optimal Solutions If an LP has more than one optimal solution, it has multiple optimal solutions ( 多重最佳解 ) or alternative optimal solutions(

31

The LP in standard form has z and s1 which could be used for BVs but row 2 would violate sign restrictions and row 3 no readily apparent BV.

In order to use the simplex method, a bfs is needed. Artificial variables ( 人工變數 ) are created.

Row 0: z - 2x1 - 3x2 = 0Row 1: 0.5x1 + 0.25x2 + s1 = 4Row 2: x1 + 3x2 - e2 = 20Row 3: x1 + x2 = 10

Step 2

Page 32: 1 4.7 Alternate Optimal Solutions If an LP has more than one optimal solution, it has multiple optimal solutions ( 多重最佳解 ) or alternative optimal solutions(

32

In the optimal solution, all artificial variables must be set equal to zero. For a min LP, a term Mai is added to the objective

function for each artificial variable ai.For a max LP, the term –Mai is added to the objective

function for each ai. M represents some very large number.

Row 0: z - 2x1 - 3x2 = 0

Row 1: 0.5x1 + 0.25x2 + s1 = 4

Row 2: x1 + 3x2 - e2 + a2 = 20

Row 3: x1 + x2 + a3 = 10

Step 3

Page 33: 1 4.7 Alternate Optimal Solutions If an LP has more than one optimal solution, it has multiple optimal solutions ( 多重最佳解 ) or alternative optimal solutions(

33

The modified Bevco LP in standard form then becomes:

Modifying the objective function this way makes it extremely costly for an artificial variable to be positive. The optimal solution should force a2 = a3 =0.

Row 0: z - 2x1 - 3x2 -Ma2 - Ma3 = 0

Row 1: 0.5x1 + 0.25x2 + s1 = 4

Row 2: x1 + 3x2 - e2 + a2 = 20

Row 3: x1 + x2 + a3 = 10

Step 4

Page 34: 1 4.7 Alternate Optimal Solutions If an LP has more than one optimal solution, it has multiple optimal solutions ( 多重最佳解 ) or alternative optimal solutions(

34

Because a2 and a3 are in starting BFS, they must be eliminated from row 0.

Replace row0 by row0 +M(row2)+M(row3)

Row 0: z - 2x1 - 3x2 -Ma2 - Ma3 = 0

Row 1: 0.5x1 + 0.25x2 + s1 = 4

Row 2: x1 + 3x2 - e2 + a2 = 20

Row 3: x1 + x2 + a3 = 10

Row 0’: z + (2M - 2)x1 + (4M - 3)x2 - Me2 = 30M

Step 5

Page 35: 1 4.7 Alternate Optimal Solutions If an LP has more than one optimal solution, it has multiple optimal solutions ( 多重最佳解 ) or alternative optimal solutions(

35

Table 33BV z x1 x2 s1 e2 a2 a3 RHS RatioZ 1 2M-2 4M-3 0 -M 0 0 30Ms1 0 1/2 1/4 1 0 0 0 4 16a2 0 1 3 0 -1 1 0 20 20/3 LVa3 0 1 1 0 0 0 1 10 10

EVTable 34BV z x1 x2 s1 e2 a2 a3 RHS RatioZ 1 0 0 0s1 0 5/12

0 1 1/12 -1/12 0 7/3 28/5

x2 0 1/3 1 0 -1/3 1/3 0 20/3 20a3 0 2/3 0 0 1/3 -1/3 1 10/3 5 LV

EV

332 M

33M

645 M

31060 M

Page 36: 1 4.7 Alternate Optimal Solutions If an LP has more than one optimal solution, it has multiple optimal solutions ( 多重最佳解 ) or alternative optimal solutions(

36

Table 35BV z x1 x2 s1 e2 a2 a3 RHS Ratioz 1 0 0 0 -1/2 25s1 0 0 0 1 -1/8 1/8 -5/8 1/4x2 0 0 1 0 -1/2 1/2 -1/2 5x1 0 1 0 0 1/2 -1/2 3/2 5

221 M

223 M

The optimal solution for Bevco is z=25, x1 = x2 = 5, s1 = 1/4, e2 = 0.

This means that Bevco can hold the cost of producing a 10-oz. bottle of Oranj to $.25 by mixing 5 oz of orange soda and 5 oz of orange juice.

Page 37: 1 4.7 Alternate Optimal Solutions If an LP has more than one optimal solution, it has multiple optimal solutions ( 多重最佳解 ) or alternative optimal solutions(

37

Example 4’:

min z = 2x1 + 3x2

s.t. 0.5x1 + 0.25x2 ≤ 4 (sugar constraint) x1 + 3x2 ≥ 36 (Vitamin C constraint) x1 + x2 = 10 (10 oz in 1 bottle of Oranj) x1, x2 ≥ 0

Row 0: z - 2x1 - 3x2 -Ma2 - Ma3 = 0Row 1: 0.5x1 + 0.25x2 + s1 = 4Row 2: x1 + 3x2 - e2 + a2 = 36Row 3: x1 + x2 + a3 = 10

Row 0’: z + (2M - 2)x1 + (4M - 3)x2 - Me2 = 46M

p.177

Page 38: 1 4.7 Alternate Optimal Solutions If an LP has more than one optimal solution, it has multiple optimal solutions ( 多重最佳解 ) or alternative optimal solutions(

38

Table 36BV z x1 x2 s1 e2 a2 a3 RHS Ratioz 1 2M-2 4M-3 0 -M 0 0 46Ms1 0 1/2 1/4 1 0 0 0 4 16a2 0 1 3 0 -1 1 0 36 12a3 0 1 1 0 0 0 1 10 10 LV

EV

Table 37BV z x1 x2 s1 e2 a2 a3 RHSz 1 1-2M 0 0 -M 0 3-4M 30+6Ms1 0 1/4 0 1 0 0 -1/4 3/2a2 0 -2 0 0 -1 1 -3 6x2 0 1 1 0 0 -0 1 10

Page 39: 1 4.7 Alternate Optimal Solutions If an LP has more than one optimal solution, it has multiple optimal solutions ( 多重最佳解 ) or alternative optimal solutions(

39

If all artificial variables equal zero in the optimal

solution, the solution is optimal. (exercise 4) If any artificial variables are positive in the optimal

solution, the solution is infeasible. Then the original LP has no feasible solution.

(exercise 5) 由於M為一相當大的值,對電腦而言,易產生數值上的問

題 ( 極大數與極小數相加,後果? ) ,因此商業軟體少用此法,而多使用 Two-Phase method.

Page 40: 1 4.7 Alternate Optimal Solutions If an LP has more than one optimal solution, it has multiple optimal solutions ( 多重最佳解 ) or alternative optimal solutions(

40

Exercise : p.178 #1~#6

min z = 4x1 + 4x2 + x3

s.t. x1 + x2 + x3 ≤ 2 2x1 + x2 ≤ 3 2x1 + x2 + 3x3 ≥ 3 x1 , x2 , x3 ≥ 0

min z = 4x1 + 4x2 + x3 + Ma3

s.t. x1 + x2 + x3 + s1 = 2 2x1 + x2 + s2 = 3 2x1 + x2 + 3x3 ‑ e3 + a3 = 3

x1 , x2 , x3 , s1 , s2 , e3 , a3 ≥ 0

Page 41: 1 4.7 Alternate Optimal Solutions If an LP has more than one optimal solution, it has multiple optimal solutions ( 多重最佳解 ) or alternative optimal solutions(

41

Eliminating the BV a3 from z ‑ 4x1 ‑ 4x2 ‑ x3 ‑ Ma3 = 0 z + (2M ‑ 4)x1 + (M ‑ 4)x2 + (3M ‑ 1)x3 ‑ Me3 = 3M.

z x1 x2 x3 s1 s2 e3 a3 rhs1 2M‑4 M‑4 3M‑ 1 0 0 ‑M 0 3M0 1 1 1 1 0 0 0 20 2 1 0 0 1 0 0 30 2 1 3 0 0 -1 1 3

min z = 4x1 + 4x2 + x3 + Ma3

s.t. x1 + x2 + x3 + s1 = 2 2x1 + x2 + s2 = 3 2x1 + x2 + 3x3 ‑ e3 + a3 = 3 ×(-M)

x1 , x2 , x3 , s1 , s2 , e3 , a3 ≥ 0

Page 42: 1 4.7 Alternate Optimal Solutions If an LP has more than one optimal solution, it has multiple optimal solutions ( 多重最佳解 ) or alternative optimal solutions(

42

z x1 x2 x3 s1 s2 e3 a3 rhs r1 2M‑4 M‑4 3M‑ 1 0 0 ‑M 0 3M0 1 1 1 1 0 0 0 2 20 2 1 0 0 1 0 0 3 none0 2 1 3 0 0 -1 1 3 1z x1 x2 x3 s1 s2 e3 a3 rhs1 -10/3 -11/3 0 0 0 ‑1/3 1/3-M 10 1/3 2/3 0 1 0 1/3 ‑1/3 10 2 1 0 0 1 0 0 30 2/3 1/3 1 0 0 -1/3 1/3 1The optimal solution is z = 1, s1 = 1, s2 = 3, x3 = 1, x2 = x1 = e3 = 0.

Page 43: 1 4.7 Alternate Optimal Solutions If an LP has more than one optimal solution, it has multiple optimal solutions ( 多重最佳解 ) or alternative optimal solutions(

43

Exercise, p.178, 15min

Exercise 1 (Z=1, x1=0, x2=0, x3=1) Exercise 2 Exercise 3 (Z=5, x1=1, x2=2,s1=0) Exercise 4 (Infeasible LP) Exercise 5 (Z=2, x1=2, x2=0, x3=0) Exercise 6 (Z=2, x1=2, x2=0)

Page 44: 1 4.7 Alternate Optimal Solutions If an LP has more than one optimal solution, it has multiple optimal solutions ( 多重最佳解 ) or alternative optimal solutions(

44

4.13 Two-Phase Simplex MethodPhase I 之目標函數僅考慮人工變數。 (p.178)

無論 Min or Max 問題,最好之 z值為 0 ,故不可能為無窮解讓所有原始變數為 0 即為一可行解,故不可能為無可行解所以必有最佳解。

當得到最佳解時,若所有人工變數均為 0 ,則至 phase II ;若有任何人工變數不為 0 ,則原問題無可行解。Phase II 中:

刪除全部人工變數,若人工變數仍為 BV ,則保留。以 phase I 之最佳解做為 phase II 之起始 bfs ,並回復原問題之目標函數係數

p.178

Page 45: 1 4.7 Alternate Optimal Solutions If an LP has more than one optimal solution, it has multiple optimal solutions ( 多重最佳解 ) or alternative optimal solutions(

45

Phase I LP In this method, artificial variables are added to the

same constraints, then a bfs to the original LP is found by solving Phase I LP.

The objective function is to minimize the sum of all artificial variables.

At completion, reintroduce the original LP’s objective function and determine the optimal solution to the original LP.

Page 46: 1 4.7 Alternate Optimal Solutions If an LP has more than one optimal solution, it has multiple optimal solutions ( 多重最佳解 ) or alternative optimal solutions(

46

Phase II LPBecause each ai ≥ 0, solving the Phase I LP will result in

one of the following three cases:Case 1.

The optimal value of w’ is greater than zero.The original LP has no feasible solution.

Case 2.The optimal value of w’ is equal to zero, and no AVs are in the optimal Phase I basis.

Drop all columns in the optimal Phase I tableau that correspond to the artificial variables.

Now combine the original objective function with the constraints from the optimal Phase I tableau.

Case 3. The optimal value of w’ is equal to zero and at least one AV is in the optimal Phase I basis.

Page 47: 1 4.7 Alternate Optimal Solutions If an LP has more than one optimal solution, it has multiple optimal solutions ( 多重最佳解 ) or alternative optimal solutions(

47

Example 5 : case 2min z = 2x1 + 3x2

s.t. 0.5x1 + 0.25x2 ≤ 4 x1 + 3x2 ≥ 20 x1 + x2 = 10 x1, x2 > 0

min w’ = a2 + a3 (w’ - a2- a3=0) ---- (1) s.t. 0.5x1 + 0.25x2 + s1 = 4

x1 + 3x2 – e2 + a2 = 20 ---- (2) x1 + x2 + a3 = 10 ---- (3) x1, x2, s1, e2, a2, a3 > 0

(1) + (2) + (3) min w’ + 2x1 + 4x2 - e2 = 30

p.179

Page 48: 1 4.7 Alternate Optimal Solutions If an LP has more than one optimal solution, it has multiple optimal solutions ( 多重最佳解 ) or alternative optimal solutions(

48

Table 38BV w’ x1 x2 s1 e2 a2 a3 RHS Ratiow’ 1 2 4 0 -1 0 0 30s1 0 1/2 1/4 1 0 0 0 4 16a2 0 1 3 0 -1 1 0 20 20/3 LVa3 0 1 1 0 0 0 1 10 10

EV

Table 39BV w’ x1 x2 s1 e2 a2 a3 RHS Ratiow’ 1 2/3 0 0 1/3 -4/3 0 3/10s1 0 5/12

0 1 1/12 - /12 0 7/3 28/5

x2 0 1/3 1 0 -1/3 1/3 0 20/3 20a3 0 2/3 0 0 1/3 -1/3 1 10/3 5 LV

EV

Page 49: 1 4.7 Alternate Optimal Solutions If an LP has more than one optimal solution, it has multiple optimal solutions ( 多重最佳解 ) or alternative optimal solutions(

49

Table 40BV w’ x1 x2 s1 e2 a2 a3 RHSw’ 1 0 0 0 0 -1 -1 0s1 0 0 0 1 -1/8 1/8 -5/8 1/4x2 0 0 1 0 -1/2 1/2 -1/2 5x1 0 1 0 0 1/2 -1/2 3/2 5

Drop all AVs.

Phase II: reintroduce Z, reduce the BV’s of Row 0,The optimal solution is z=25, x1=5, x2=5, s1=1/4, e2=0

Page 50: 1 4.7 Alternate Optimal Solutions If an LP has more than one optimal solution, it has multiple optimal solutions ( 多重最佳解 ) or alternative optimal solutions(

50

Example 6 : case 1

min z = 2x1 + 3x2

s.t. 0.5x1 + 0.25x2 ≤ 4 x1 + 3x2 ≥ 36 x1 + x2 = 10 x1, x2 > 0

min w’ = a2 + a3 (w’ - a2- a3=0) ---- (1) s.t. 0.5x1 + 0.25x2 + s1 = 4

x1 + 3x2 – e2 + a2 = 36 ---- (2) x1 + x2 + a3 = 10 ---- (3) x1, x2, s1, e2, a2, a3 > 0

(1) + (2) + (3) min w’ + 2x1 + 4x2 - e2 = 46

p.181

Page 51: 1 4.7 Alternate Optimal Solutions If an LP has more than one optimal solution, it has multiple optimal solutions ( 多重最佳解 ) or alternative optimal solutions(

51

Table 41BV w’ x1 x2 s1 e2 a2 a3 RHS Ratiow’ 1 2 4 0 -1 0 0 46s1 0 1/2 1/4 1 0 0 0 4 16a2 0 1 3 0 -1 1 0 36 12a3 0 1 1 0 0 0 1 10 10 LV

EVTable 42BV w’ x1 x2 s1 e2 a2 a3 RHS Ratiow’ 1 -2 0 0 -1 0 -4 6s1 0 1/4 0 1 0 0 -1/4 3/2x2 0 -2 0 0 -1 1 -3 6a3 0 1 1 0 0 -0 1 10

w’ =6 > 0, so the original LP has no feasible solution.

Page 52: 1 4.7 Alternate Optimal Solutions If an LP has more than one optimal solution, it has multiple optimal solutions ( 多重最佳解 ) or alternative optimal solutions(

52

Example 7 : case 3max z = 40x1 + 10x2 + 7x5 + 14x6s.t. x1 - x2 +2x5 = 0 -2x1 + x2 - 2x5 = 0

x1 + x3 + x5 - x6 = 3 2x2 + x3 + x4 + 2x5 + x6 = 4

x1, x2, x3, x4, x5, x6 > 0

(1) + (2) + (3) + (4) min w’ –x3 – x5 + x6 = 0

min w’-a1-a2-a3 = 0 ----(1)s.t. x1 - x2 + 2x5 + a1 = 0 ----(2) -2x1 + x2 - 2x5 + a2 = 0 ----(3)

x1 + x3 + x5 - x6 + a3 = 3 ----(4) 2x2 + x3 + x4 + 2x5 + x6 = 4

x1, x2, x3, x4, x5, x6, a1, a2, a3 > 0

p.183

Page 53: 1 4.7 Alternate Optimal Solutions If an LP has more than one optimal solution, it has multiple optimal solutions ( 多重最佳解 ) or alternative optimal solutions(

53

Table 43BV w’ x1 x2 x3 x4 x5 x6 a1 a2 a3 RHS Rw’ 1 0 0 1 0 1 -1 0 0 0 3a1 0 1 -1 0 0 2 0 1 0 0 0a2 0 -2 1 0 0 -2 0 0 1 0 0a3 0 1 0 1 0 1 -1 0 0 1 3 3 LVx4 0 0 2 1 1 2 1 0 0 0 4 4

EVTable 44BV w’ x1 x2 x3 x4 x5 x6 a1 a2 a3 RHS Rw’ 1 -1 0 0 0 0 0 0 0 -1 0a1 0 1 -1 0 0 2 0 1 0 0 0a2 0 -2 1 0 0 -2 0 0 1 0 0x3 0 1 0 1 0 1 -1 0 0 1 3x4 0 -1 2 0 1 1 2 0 0 -1 1

Page 54: 1 4.7 Alternate Optimal Solutions If an LP has more than one optimal solution, it has multiple optimal solutions ( 多重最佳解 ) or alternative optimal solutions(

54

Table 44BV w’ x1 x2 x3 x4 x5 x6 a1 a2 a3 RHS Ratio

w’ 1 -1 0 0 0 0 0 0 0 -1 0a1 0 1 -1 0 0 2 0 1 0 0 0a2 0 -2 1 0 0 -2 0 0 1 0 0x3 0 1 0 1 0 1 -1 0 0 1 3x4 0 -1 2 0 1 1 2 0 0 -1 1

Table 44’ ---- drop x1 and a3

BV w’ x1 x2 x3 x4 x5 x6 a1 a2 a3 RHS Ratio

w’ 1 0 0 0 0 0 0 0 0a1 0 -1 0 0 2 0 1 0 0a2 0 1 0 0 -2 0 0 1 0x3 0 0 1 0 1 -1 0 0 3x4 0 2 0 1 1 2 0 0 1

Page 55: 1 4.7 Alternate Optimal Solutions If an LP has more than one optimal solution, it has multiple optimal solutions ( 多重最佳解 ) or alternative optimal solutions(

55

Table 45BV z x2 x3 x4 x5 x6 a1 a2 RHS Ratio

z 1 -10 0 0 -7 -14 0 0 0a1 0 -1 0 0 2 0 1 0 0a2 0 1 0 0 -2 0 0 1 0x3 0 0 1 0 1 -1 0 0 3x4 0 2 0 1 1 2 0 0 1

Table 44’BV w’ x2 x3 x4 x5 x6 a1 a2 RHSw’ 1 0 0 0 0 0 0 0 0a1 0 -1 0 0 2 0 1 0 0a2 0 1 0 0 -2 0 0 1 0x3 0 0 1 0 1 -1 0 0 3x4 0 2 0 1 1 2 0 0 1

Page 56: 1 4.7 Alternate Optimal Solutions If an LP has more than one optimal solution, it has multiple optimal solutions ( 多重最佳解 ) or alternative optimal solutions(

56

Table 45BV z x2 x3 x4 x5 x6 a1 a2 RHS Ratio

z 1 -10 0 0 -7 -14 0 0 0a1 0 -1 0 0 2 0 1 0 0a2 0 1 0 0 -2 0 0 1 0x3 0 0 1 0 1 -1 0 0 3x4 0 2 0 1 1 2 0 0 1 1/2 LV

EVTable 46BV z x2 x3 x4 x5 x6 a1 a2 RHS Ratio

z 1 4 0 7 0 0 0 0 7a1 0 0 0 0 2 0 1 0 0a2 0 1 0 0 0 0 0 1 0x3 0 1 1 1/2 3/2 0 0 0 7/2x6 0 0 0 1/2 1/2 1 0 0 1/2

The optimal solution is z=7, x3 =7/2, x6 =1/2, x2 = x4 = x5 =0

Page 57: 1 4.7 Alternate Optimal Solutions If an LP has more than one optimal solution, it has multiple optimal solutions ( 多重最佳解 ) or alternative optimal solutions(

57

Exercise, p.184(p.178), 15min

Exercise 1 Exercise 2 Exercise 3 Exercise 4 Exercise 5 Exercise 6

Page 58: 1 4.7 Alternate Optimal Solutions If an LP has more than one optimal solution, it has multiple optimal solutions ( 多重最佳解 ) or alternative optimal solutions(

58

LP 的各種變形與解法 Standard Form

0..

ixBAXts

CXZMax

Min:(1)Method 1 (Z=-Z) (2)Method 2

變形 2: “≧”

Unrestricted-in-sign (urs) variable:Let "'

iii xxx

變形 1: Min

變形 3: “urs”

(1)Big-M Method(2)Two-Phase Method

Page 59: 1 4.7 Alternate Optimal Solutions If an LP has more than one optimal solution, it has multiple optimal solutions ( 多重最佳解 ) or alternative optimal solutions(

59

4.14 Unrestricted-in-Sign VariablesAn LP with an unrestricted-in-sign (urs) variable

can be transformed to non-negative.For each urs variable, define two new variables

x’i and xn

i.Then substitute x’

i - xni for xi in each constraint

and in the objective function. Also add the sign restrictions.

The effect of this substitution is to express xi as the difference of the two nonnegative variables x’

i and xni.

No basic feasible solution can have both x’i ≥ 0

and xni ≥ 0.

p.184

Page 60: 1 4.7 Alternate Optimal Solutions If an LP has more than one optimal solution, it has multiple optimal solutions ( 多重最佳解 ) or alternative optimal solutions(

60

For any basic feasible solution, each URS variable

xi must fall into one of the following three cases.1. x’

i > 0 and xni = 0

2. x’i = 0 and xn

i > 03. x’

i = xni = 0

Page 61: 1 4.7 Alternate Optimal Solutions If an LP has more than one optimal solution, it has multiple optimal solutions ( 多重最佳解 ) or alternative optimal solutions(

61

Example 8 : Using urs vars x1 = number of loaves of bread baked

x2 = number of ounces by which flour supply is increased by

Let x2 = x’2 – x”2

Max z = 30x1 - 4 x’2 – 4x”2

s.t. 5x1 ≤ 30 + x’2 – x”2 (Flour constraint) x1 ≤ 5 (Yeast constraint)

x1 ≥ 0 , x’2 , x”2 ≥ 0

Max z = 30x1 - 4x2

s.t. 5x1 ≤ 30 + x2 (Flour constraint) x1 ≤ 5 (Yeast constraint)

x1 ≥ 0 , x2 urs

p.185

Page 62: 1 4.7 Alternate Optimal Solutions If an LP has more than one optimal solution, it has multiple optimal solutions ( 多重最佳解 ) or alternative optimal solutions(

62

Table 47BV z x1 x ’2 x”2 s1 s2 RHS Ratioz 1 -30 4 -4 0 0 0s1 0 5 -1 1 1 0 30 6s2 0 1 0 0 0 1 5 5 LV

EV

Max z = 30x1 - 4 x’2 – 4x”2s.t. 5x1 –x’2 + x”2 + s1 = 30 x1 + s1 = 5

x1 ≥ 0 , x’2 , x”2 ≥ 0 ,s1, s2 ≥ 0

Table 48BV z x1 x ’2 x”2 s1 s2 RHS Ratioz 1 0 4 -4 0 30 150s1 0 0 -1 1 1 -5 5 5 LVx1 0 1 0 0 0 1 5 none

EV

Page 63: 1 4.7 Alternate Optimal Solutions If an LP has more than one optimal solution, it has multiple optimal solutions ( 多重最佳解 ) or alternative optimal solutions(

63

Table 49BV z x1 x ’2 x”2 s1 s2 RHS Ratioz 1 0 0 0 4 10 170

x”2 0 0 -1 1 1 -5 5x1 0 1 0 0 0 0 5

The optimal solution is z= 170, x1= 5, x”2= 5, x2’= 0, s1= s2= 0.

x2= x’- x”2 = -5 Because x2 = -5, the baker should sell 5 oz of flour.

Page 64: 1 4.7 Alternate Optimal Solutions If an LP has more than one optimal solution, it has multiple optimal solutions ( 多重最佳解 ) or alternative optimal solutions(

64

Exercise : p.189 #4

Note that in any BFS, z’and z” cannot both be positive.If 2x1-3x2>0,then z”=0 and the objective function will equal z=z’+z”=z’=2x1-3x2=|2x1-3x2|.If 2x1-3x2<0,z’=0 and z”=|2x1-3x2| so the objective function will equal z=z’+z”=z”=|2x1-3x2|.

max z = |2x1-3x2|s.t. 4x1+x2 ≤ 4 2x1–x2 ≤ 0.5 x1, x2 ≥ 0

max z = z’ + z''s.t. 4x1+x2 ≤ 4 2x1-x2 ≤ 0.5 2x1-3x2 = z’–z” x1, x2 , z’ , z” ≥ 0

Page 65: 1 4.7 Alternate Optimal Solutions If an LP has more than one optimal solution, it has multiple optimal solutions ( 多重最佳解 ) or alternative optimal solutions(

65

其它形式x’ = x – 3

x’ = x – 2

x ≧ 3

2 ≦ x ≦ 5

x’ ≧0

x’, x” ≧0x” = 5 – x

x’ = 6 – xx ≦ 6 x’ ≧0

Page 66: 1 4.7 Alternate Optimal Solutions If an LP has more than one optimal solution, it has multiple optimal solutions ( 多重最佳解 ) or alternative optimal solutions(

66

Using the simplex algorithm to solve different type of problems

Page 67: 1 4.7 Alternate Optimal Solutions If an LP has more than one optimal solution, it has multiple optimal solutions ( 多重最佳解 ) or alternative optimal solutions(

67

(1) Max. z = c1x1+ c2x2 +···+ cnxn

s.t. a11x1 + a12x2 +···+ a1nxn ≤ b1

a21x1 + a22x2 +···+ a2nxn ≤ b2

: : am1x1+ am2x2 +···+ amnxn ≤ bm

xi ≥ 0 (i=1,2, ···,n)

Max. z = c1x1+ c2x2 +···+ cnxn

s.t. a11x1 + a12x2 +···+ a1nxn + s1 = b1

a21x1 + a22x2 +···+ a2nxn + s2 = b2

: : am1x1+ am2x2 +···+ amnxn + sn = bm

xi , si ≥ 0 (i=1,2, ···,n)

Page 68: 1 4.7 Alternate Optimal Solutions If an LP has more than one optimal solution, it has multiple optimal solutions ( 多重最佳解 ) or alternative optimal solutions(

68

(2) Min. z = c1x1+ c2x2 +···+ cnxn

s.t. a11x1 + a12x2 +···+ a1nxn ≤ b1

a21x1 + a22x2 +···+ a2nxn ≤ b2

: : am1x1+ am2x2 +···+ amnxn ≤ bm

xi ≥ 0 (i=1,2, ···,n)

Max. -z = c1x1+ c2x2 +···+ cnxn

s.t. a11x1 + a12x2 +···+ a1nxn ≤ b1

a21x1 + a22x2 +···+ a2nxn ≤ b2

: : am1x1+ am2x2 +···+ amnxn ≤ bm

xi ai ≥ 0 (i=1,2, ···,n)

Page 69: 1 4.7 Alternate Optimal Solutions If an LP has more than one optimal solution, it has multiple optimal solutions ( 多重最佳解 ) or alternative optimal solutions(

69

(3) Max. z = c1x1+ c2x2 +···+ cnxn

s.t. a11x1 + a12x2 +···+ a1nxn ≤ b1 a21x1 + a22x2 +···+ a2nxn ≤ b2

: : aj1x1 + aj2x2 +···+ ajnxn ≥ bj : : ak1x1 + ak2x2 +···+ aknxn = bk : : am1x1+ am2x2 +···+ amnxn ≤ bm xi ≥ 0 (i =1, 2, ···, n), 1 ≤ j, k ≤ m

Max. z = c1x1+ c2x2 +···+ cnxn

s.t. a11x1 + a12x2 +···+ a1nxn + s1 = b1 a21x1 + a22x2 +···+ a2nxn + s2 = b2

: : aj1x1 + aj2x2 +···+ ajnxn - ej + aj = bj : : ak1x1 + ak2x2 +···+ aknxn + ak = bk : : am1x1+ am2x2 +···+ amnxn + sm = bm

xi , si , ai ≥ 0 (i= 1, 2, ···, n), 1 ≤ j, k ≤ m

Page 70: 1 4.7 Alternate Optimal Solutions If an LP has more than one optimal solution, it has multiple optimal solutions ( 多重最佳解 ) or alternative optimal solutions(

70

(4) Max. z = c1x1+ c2x2 +···+ cnxn

s.t. a11x1 + a12x2 +···+ a1nxn ≤ b1

a21x1 + a22x2 +···+ a2nxn ≤ b2

: : am1x1+ am2x2 +···+ amnxn ≤ bm

xi ≥ 0, xj urs (0 ≤ i , j ≤ n, i ≠ j)

Max. z = c1x1+ c2x2 +···+ cj (x’j - x”j )+···+ cnxn

s.t. a11x1 + a12x2 +···+ cj (x’j - x”j )+···+ a1nxn ≤ b1 a21x1 + a22x2 +···+ cj (x’j - x”j )+···+ a2nxn ≤ b2

: : am1x1+ am2x2 +···+cj (x’j - x”j )+···+ amnxn ≤ bm

xi ≥ 0, x’j ,x”j ≥ 0 (0 ≤ i , j ≤ n, i ≠ j)

xj = x’j - x”j