1 chapter 5 (5.4~5.6) ◎ series solutions of odes. 微分方程式之級數解 ◎ special...

40
1 Chapter 5 (5.4~5.6) Series Solutions of ODEs. 微微微微微微微微微 Special Functions 微微微微微 Kreyszig, E. “Advanced Engineering Mathematics” (9 th e

Upload: noah-arnold

Post on 25-Dec-2015

236 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: 1 Chapter 5 (5.4~5.6) ◎ Series Solutions of ODEs. 微分方程式之級數解 ◎ Special Functions 特殊方程式 Kreyszig, E. “Advanced Engineering Mathematics” (9 th ed

1

Chapter 5(5.4~5.6)

◎Series Solutions of ODEs. 微分方程式之級數解 ◎Special Functions 特殊方程式

Kreyszig, E. “Advanced Engineering Mathematics” (9th ed. )

Page 2: 1 Chapter 5 (5.4~5.6) ◎ Series Solutions of ODEs. 微分方程式之級數解 ◎ Special Functions 特殊方程式 Kreyszig, E. “Advanced Engineering Mathematics” (9 th ed

2

5.4 Frobenius Method 5.5 Bessel’ s Equation. Bessel Funct

ions Jν(x)

5.6 Bessel Functions of the Second Kind Yν(x)

Contents

Page 3: 1 Chapter 5 (5.4~5.6) ◎ Series Solutions of ODEs. 微分方程式之級數解 ◎ Special Functions 特殊方程式 Kreyszig, E. “Advanced Engineering Mathematics” (9 th ed

3

5.4 Power Frobenius Method(1/20)

Frobenius Method ( 傅洛貝尼斯法 )

THEOREM 1

Let b(x) and c(x) be any functions that are analytic at x = 0. Then the ODE

(1)

has at least one solution that can be represented in the form

(2)

where the exponent r may be any (real or complex) number (and r is chosen so that a0 ≠ 0).

Page 4: 1 Chapter 5 (5.4~5.6) ◎ Series Solutions of ODEs. 微分方程式之級數解 ◎ Special Functions 特殊方程式 Kreyszig, E. “Advanced Engineering Mathematics” (9 th ed

4

5.4 Power Frobenius Method(2/20)

We shall now explain the Frobenius method for solving (1). Multiplication of (1) by x2 gives the more convenient form

(1') x2y" + xb(x)y' + c(x)y = 0.

We first expand b(x) and c(x) in power series,

b(x) = b0 + b1x + b2x2 + , ‥‥ c(x) = c0 + c1x + c2x2 + ‥‥or we do nothing if b(x) and c(x) are polynomials.

Page 5: 1 Chapter 5 (5.4~5.6) ◎ Series Solutions of ODEs. 微分方程式之級數解 ◎ Special Functions 特殊方程式 Kreyszig, E. “Advanced Engineering Mathematics” (9 th ed

5

5.4 Power Frobenius Method(3/20)

Then we differentiate (2) term by term, finding

By inserting all these series into (1') we readily obtain xr[r(r – 1)a0 + ] + (‥‥ b0 + b1x + )‥‥ xr(ra0 + )‥‥ + (c0 + c1x + )‥‥ xr(a0 + a1x + ) = 0‥‥

Page 6: 1 Chapter 5 (5.4~5.6) ◎ Series Solutions of ODEs. 微分方程式之級數解 ◎ Special Functions 特殊方程式 Kreyszig, E. “Advanced Engineering Mathematics” (9 th ed

6

5.4 Power Frobenius Method(4/20)

We now equate the sum of the coefficients of each power xr, xr+1, xr+2, to zero. The equatio‥‥n corresponding to the power xr is

[r(r – 1) + b0r + c0]a0 = 0

Since by assumption a0 ≠ 0, the expression in the brackets [ ] must be zero. This gives‥‥ (4) r(r – 1) + b0r + c0 = 0

This important quadratic equation is called the indicial equation ( 指示方程式 ).

Page 7: 1 Chapter 5 (5.4~5.6) ◎ Series Solutions of ODEs. 微分方程式之級數解 ◎ Special Functions 特殊方程式 Kreyszig, E. “Advanced Engineering Mathematics” (9 th ed

7

5.4 Power Frobenius Method(5/20)

Frobenius Method. Basis of Solutions. Three Cases(1)

THEOREM 2

Suppose that the ODE (1) satisfies the assumptions in Theorem 1. Let r1 and r2 be the roots of the indicial equation (4). Then we have the following three cases.Case 1. Distinct Roots Not Differing by an Integer. A basis is

(5)

and

(6)

Page 8: 1 Chapter 5 (5.4~5.6) ◎ Series Solutions of ODEs. 微分方程式之級數解 ◎ Special Functions 特殊方程式 Kreyszig, E. “Advanced Engineering Mathematics” (9 th ed

8

5.4 Power Frobenius Method(6/20)

Example (A) : Solve 4xy”+2y’ +y= 0 by Frobenius method with coefficients represented up to and including x3 ?

Since & 代入 ODE

** 取最小冪次項 xr1 ( i.e. m=0) 之係數為零 indicial eq.

4r(r1)+2r=0 r(2r1) =0 r =0 or r=1/2 (case 1.)

0

1)('m

rmm xarmy

0

2)1)(("m

rmm xarmrmy

00

1

0

2 0)(2)1)((4m

rmm

m

rmm

m

rmm xaxarmxarmrmx

00

1

0

1 0)(2)1)((4m

rmm

m

rmm

m

rmm xaxarmxarmrm

Page 9: 1 Chapter 5 (5.4~5.6) ◎ Series Solutions of ODEs. 微分方程式之級數解 ◎ Special Functions 特殊方程式 Kreyszig, E. “Advanced Engineering Mathematics” (9 th ed

9

5.4 Power Frobenius Method(7/20)

(when r=0)

級數式

註標變換 ( 第 1,2 項 m1=s, m=s+1 ;第 3 項 m=s)

[4(s+1)s+2(s+1)]as+1 + as=0 recurrence

a1= a0/2! ; a2= a1/12=a0/4! ; a3= a2/30= a0/6! …

取 a0=1 #

00

1

0

1 02)1(4m

mm

m

mm

m

mm xaxamxamm

001

01 0)1(2)1(4

s

ss

s

ss

s

ss xaxasxsas

ss ass

a)1)(24(

11

xxxxxa

xa

xa

axy cos...!6

1

!4

1

!2

11...)

!6!4!2( 3230200

00

1

Page 10: 1 Chapter 5 (5.4~5.6) ◎ Series Solutions of ODEs. 微分方程式之級數解 ◎ Special Functions 特殊方程式 Kreyszig, E. “Advanced Engineering Mathematics” (9 th ed

10

5.4 Power Frobenius Method(8/20)

(when r=1/2)

級數式

註標變換 ( 第 1,2 項 m1/2=s, m=s+1/2 ;第 3 項 m+1/2=s, m=s1/2)

[4(s+1)s+2(s+1)]as+1 + as=0 recurrence

a1= a0/3! (s=1/2); a2= a1/20=a0/5! (s=3/2); a3= a2/42=a0/7! (s=5/2); …

取 a0=1

0

2/1

0

2/1

0

2/1 0)2

1(2)

2

1)(

2

1(4

m

mm

m

mm

m

mm xaxamxamm

02/1

02/1

02/1 0)1(2)1(4

m

ss

m

ss

m

ss xaxasxsas

2/12/1 )1)(24(

1

ss ass

a

xxxxxxa

xa

xa

axy sin...!7

1

!5

1

!3

1...)

!7!5!3( 2/72/52/32/130200

02/1

2

Page 11: 1 Chapter 5 (5.4~5.6) ◎ Series Solutions of ODEs. 微分方程式之級數解 ◎ Special Functions 特殊方程式 Kreyszig, E. “Advanced Engineering Mathematics” (9 th ed

11

5.4 Power Frobenius Method(9/20)

Frobenius Method. Basis of Solutions. Three Cases(2)

THEOREM 2

Case 2. Double Root r1 = r2 = r. A basis is

(7)

(of the same general form as before) and

(8)

Page 12: 1 Chapter 5 (5.4~5.6) ◎ Series Solutions of ODEs. 微分方程式之級數解 ◎ Special Functions 特殊方程式 Kreyszig, E. “Advanced Engineering Mathematics” (9 th ed

12

5.4 Power Frobenius Method(10/20)

Example (B) : Solve (x2x)y”+(3x1)y’ +y= 0 by Frobenius method with coefficients represented up to and including x3 ?

Since & 代入 ODE

** 取最小冪次項 xr1 ( i.e. m=0) 之係數為零 indicial eq.

r(r1)r=0 r2=0 r = 0 (case 2.)

0

1)('m

rmm xarmy

0

2)1)(("m

rmm xarmrmy

00

1

0

22 0)()13()1)(()(m

rmm

m

rmm

m

rmm xaxarmxxarmrmxx

0 0

1

0

)(3)1)(()1)((m

rmm

m

rmm

m

rmm xarmxarmrmxarmrm

00

1 0)(m

rmm

m

rmm xaxarm

Page 13: 1 Chapter 5 (5.4~5.6) ◎ Series Solutions of ODEs. 微分方程式之級數解 ◎ Special Functions 特殊方程式 Kreyszig, E. “Advanced Engineering Mathematics” (9 th ed

13

5.4 Power Frobenius Method(11/20)

(when r=0)

級數式

註標變換 ( 第 2,4 項 m1=s, m=s+1 ;其它項 m=s)

(s+1)2 as+1 + (s+1)2as=0 recurrence as+1 = as

a0= a1 = a2= a3 = a4= …

取 a0=1

03)1()1(00

1

0 0

1

0

m

mm

m

mm

m

mm

m

mm

m

mm xaxmaxamxammxamm

0)1(3)1()1(00

10 0

10

s

ms

m

ss

m

ss

m

ss

m

ss xaxasxasxassxass

xxxxxaxaxaay

1

1...1...)( 323

02

0001

Page 14: 1 Chapter 5 (5.4~5.6) ◎ Series Solutions of ODEs. 微分方程式之級數解 ◎ Special Functions 特殊方程式 Kreyszig, E. “Advanced Engineering Mathematics” (9 th ed

14

5.4 Power Frobenius Method(12/20)

(second solution) By the method of reduction of order

(x2x)y”+(3x1)y’ +y= 0 y”+(3x1)/(x2x) y’ + 1/(x2x) y= 0

y2 = uy1 where u = Udx &

&

pdx

ey

U21

1

xxdxxx

xpdx ln)1ln(2

132

xe

yU

pdx 1121

xUdxu ln x

xuyy

1

ln12

Page 15: 1 Chapter 5 (5.4~5.6) ◎ Series Solutions of ODEs. 微分方程式之級數解 ◎ Special Functions 特殊方程式 Kreyszig, E. “Advanced Engineering Mathematics” (9 th ed

15

5.4 Power Frobenius Method(13/20)

*(second solution) By the method of undetermined coefficients

&

代回原式

&

整理得

其中

註標變換

1

11

12 lnln 2

m

mm

m

mm

r xAxyxAxxyy 1

1

112 ln''

m

mm xmA

x

yxyy

2

2211

12 )1('2

ln""

m

mm xAmm

x

y

x

yxyy

]ln')[13(])1(

'2ln")[( 1

1

11

2

2211

12 m

mm

m

mm xmA

x

yxyxxAmm

x

y

x

yxyxx

0]ln[1

1

m

mm xAxy 0}')13("){(ln 111

2 yyxyxxx

m

mm

m

mm

m

mm xmAxAmmxAmmyyxy

1

1

22111 3)1()1([2'2'2

0]1

1

1

m

mm

m

mm xAxmA 0

)1(

2

)1(

2

)1(

22'2'2

22111

xxx

xyyxy

0)1(3)1()1(10

111

12

s

ss

s

ss

s

ss

s

ss

s

ss xAxAsxsAxsAsxAss

Page 16: 1 Chapter 5 (5.4~5.6) ◎ Series Solutions of ODEs. 微分方程式之級數解 ◎ Special Functions 特殊方程式 Kreyszig, E. “Advanced Engineering Mathematics” (9 th ed

16

5.4 Power Frobenius Method(14/20)

S=0 –A1 =0 A1 =0

s=1 (-2A2+3A1-2A2+A1)=0 (-4A2+4A1)=0 A2 =0

s≧2 As+1=As

A1 =A2 =A3 =….= 0 &

0])1(3)1()1([ 112

sssss

s AAssAsAsAss

01

m

mm xA

x

xxyy

1

lnln12

Page 17: 1 Chapter 5 (5.4~5.6) ◎ Series Solutions of ODEs. 微分方程式之級數解 ◎ Special Functions 特殊方程式 Kreyszig, E. “Advanced Engineering Mathematics” (9 th ed

17

5.4 Power Frobenius Method(15/20)

Frobenius Method. Basis of Solutions. Three Cases(3)

THEOREM 2

Case 3. Roots Differing by an Integer. A basis is

(9)

(of the same general form as before) and

(10)

where the roots are so denoted that r1 – r2 > 0 and k may turn out to be zero.

Page 18: 1 Chapter 5 (5.4~5.6) ◎ Series Solutions of ODEs. 微分方程式之級數解 ◎ Special Functions 特殊方程式 Kreyszig, E. “Advanced Engineering Mathematics” (9 th ed

18

5.4 Power Frobenius Method(16/20)

Example (C) : Solve (x2x)y”xy’ + y = 0 by Frobenius method with coefficients represented up to and including x3 ?

Since & 代入 ODE

** 取最小冪次項 xr1 ( i.e. m=0) 之係數為零 indicial eq.

r(r1) =0 r = 1 or r = 0 (case 3.)

0

1)('m

rmm xarmy

0

2)1)(("m

rmm xarmrmy

00

1

0

22 0)()1)(()(m

rmm

m

rmm

m

rmm xaxarmxxarmrmxx

0 00

1

0

0)()1)(()1)((m

rmm

m

rmm

m

rmm

m

rmm xaxarmxarmrmxarmrm

Page 19: 1 Chapter 5 (5.4~5.6) ◎ Series Solutions of ODEs. 微分方程式之級數解 ◎ Special Functions 特殊方程式 Kreyszig, E. “Advanced Engineering Mathematics” (9 th ed

19

5.4 Power Frobenius Method(17/20)

(when r1=1)

級數式

註標變換 ( 第 1,3,4 項 m+1=s, m=s 1 ;其它項 m=s)

[s(s 1) s +1] as-1 (s+1)sas = 0 recurrence

a1 = 0‧a0 = 0 a1 = 0 & also a2 = a3 = a4 = … = 0

取 a0=1 y1 = x1a0 = x

0)1()1(1

11

110

1

s

ss

s

ss

s

ss

s

ss xaxasxassxass

0

1

0

1

00

1 0)1()1()1(m

mm

m

mm

m

mm

m

mm xaxamxammxmam

1

2

)1(

)1(

ss a

ss

sa

Page 20: 1 Chapter 5 (5.4~5.6) ◎ Series Solutions of ODEs. 微分方程式之級數解 ◎ Special Functions 特殊方程式 Kreyszig, E. “Advanced Engineering Mathematics” (9 th ed

20

5.4 Power Frobenius Method(18/20)

(second solution) By the method of reduction of order

(x2x)y” xy’ +y= 0 y” x/(x2x) y’ + 1/(x2x) y= 0

y2 = uy1 where u = Udx &

&

pdx

ey

U21

1

)1ln(2

xdx

xx

xpdx

1ln12 xxuyy

2221

111

xxx

x

y

eU

pdx

x

xUdxu1

ln

Page 21: 1 Chapter 5 (5.4~5.6) ◎ Series Solutions of ODEs. 微分方程式之級數解 ◎ Special Functions 特殊方程式 Kreyszig, E. “Advanced Engineering Mathematics” (9 th ed

21

5.4 Power Frobenius Method(19/20)

*(second solution) r2=0 By the method of undetermined coefficients

&

&

代回原式

&

整理得

其中

註標變換

0

10

012 lnln

m

mm

m

mm xAxkyxAxxkyy 1

1

112 ln''

m

mm xmA

x

kyxkyy

2

2211

12 )1('2

ln""

m

mm xAmm

x

ky

x

kyxkyy

]ln'[])1(

'2ln")[( 1

1

11

2

2211

12 m

mm

m

mm xmA

x

kyxkyxxAmm

x

ky

x

kyxkyxx

0]ln[0

1

m

mm xAxky 0}'"){(ln 111

2 yxyyxxxk

01

1

22

1111 0])1()1(['2'2

m

mm

m

mm

m

mm

m

mm xAxmAxAmmxAmm

x

kykykyxky

kx

kykykyxky 1

111 '2'2

0)1()1(011

12

s

ss

s

ss

s

ss

s

ss xAxsAxsAsxAssk

Page 22: 1 Chapter 5 (5.4~5.6) ◎ Series Solutions of ODEs. 微分方程式之級數解 ◎ Special Functions 特殊方程式 Kreyszig, E. “Advanced Engineering Mathematics” (9 th ed

22

5.4 Power Frobenius Method(20/20)

s=0 常數 -k + A0 = 0 A0 = k

s=1 –2A2 – A1 + A1 =0 A2 =0

s≧2 A3 = A2/6 = 0, A4 = A3/3 = 0 ...

A2 =A3 =A4 =….= 0 & A0 = k , A1 = unknown

取 A0=1 及 去除 y1=x 部分仍為基底 #

ss Ass

sA

)1(

)1( 2

1

11001012 ln)(ln yAAxxAxAAxkyy

1ln2 xxy

Page 23: 1 Chapter 5 (5.4~5.6) ◎ Series Solutions of ODEs. 微分方程式之級數解 ◎ Special Functions 特殊方程式 Kreyszig, E. “Advanced Engineering Mathematics” (9 th ed

23

5.5 Bessel’ s Equation. Bessel Functions J

ν (1/11)One of the most important ODEs in applied mathematics is

Bessel’s equation,

(1) x2y" + xy' + (x2 –ν2)y = 0The parameter ν in (1) is a given number. We assume that

ν is real and nonnegative.

* The solutions of Bessel’s equation are Bessel’s functions.

* By Frobenius method we can derive the indical equation as (r +ν)(r –ν) = 0 & The roots are r1 = ν (≧ 0)

and r2 = –ν

Page 24: 1 Chapter 5 (5.4~5.6) ◎ Series Solutions of ODEs. 微分方程式之級數解 ◎ Special Functions 特殊方程式 Kreyszig, E. “Advanced Engineering Mathematics” (9 th ed

24

5.5 Bessel’ s Equation. Bessel Functions J

ν (2/11)One of the most important ODEs in applied mathematics is Bessel’s equation,

(1) x2y" + xy' + (x2 –ν2)y = 0The parameter ν in (1) is a given number. We assume that ν is real and nonnegative.

* The solutions of Bessel’s equation are Bessel’s functions.

Page 25: 1 Chapter 5 (5.4~5.6) ◎ Series Solutions of ODEs. 微分方程式之級數解 ◎ Special Functions 特殊方程式 Kreyszig, E. “Advanced Engineering Mathematics” (9 th ed

25

If the integer values of ν are denoted by n, For ν= n the rela

tion (7) becomes

(8)

With particular and n!(n + 1) (‥‥ n + m) = (m + n)!

so that (8) simply becomes

(10)

5.5 Bessel’ s Equation. Bessel Functions J

ν (3/11)

Page 26: 1 Chapter 5 (5.4~5.6) ◎ Series Solutions of ODEs. 微分方程式之級數解 ◎ Special Functions 特殊方程式 Kreyszig, E. “Advanced Engineering Mathematics” (9 th ed

26

Then a particular solution of (1), denoted by Jn(x) and give

n by

(11)

Jn(x) is called the Bessel function of the first kind of orde

r n. ( n 階第一類貝索函數) The series (11) converges for all x .

5.5 Bessel’ s Equation. Bessel Functions J

ν (4/11)

Page 27: 1 Chapter 5 (5.4~5.6) ◎ Series Solutions of ODEs. 微分方程式之級數解 ◎ Special Functions 特殊方程式 Kreyszig, E. “Advanced Engineering Mathematics” (9 th ed

27

5.5 Bessel’ s Equation. Bessel Functions J

ν (5/11)For n = 0 we obtain the Bessel function of order 0

(12)

which looks similar to a cosine. For n = 1 we obtain the Bessel function of order 1

(13)

.

Page 28: 1 Chapter 5 (5.4~5.6) ◎ Series Solutions of ODEs. 微分方程式之級數解 ◎ Special Functions 特殊方程式 Kreyszig, E. “Advanced Engineering Mathematics” (9 th ed

28

5.5 Bessel’ s Equation. Bessel Functions J

ν (6/11)Bessel Functions J ν(x) for any ν≥ 0. Then

(19)

With these coefficients and r = r1 =νwe get a particular soluti

on, denoted by J ν(x) and given by

(20)

J ν(x) is called the Bessel function of the first kind of order ν . The series converges for all x

Page 29: 1 Chapter 5 (5.4~5.6) ◎ Series Solutions of ODEs. 微分方程式之級數解 ◎ Special Functions 特殊方程式 Kreyszig, E. “Advanced Engineering Mathematics” (9 th ed

29

5.5 Bessel’ s Equation. Bessel Functions J

ν (7/11)

General Solution of Bessel’s Equation

THEOREM 1

If ν is not an integer, a general solution of Bessel’s equation for all x ≠ 0 is(22) y(x) = c1Jν(x) + c2J –ν(x)

Linear Dependence of Bessel Functions Jn and J–n

THEOREM 2

For integer ν = n the Bessel functions Jn(x) and J–n(x) are linearly dependent, because(23) J–n(x) = (–1)nJn(x) (n = 1, 2, ).‥‥

Page 30: 1 Chapter 5 (5.4~5.6) ◎ Series Solutions of ODEs. 微分方程式之級數解 ◎ Special Functions 特殊方程式 Kreyszig, E. “Advanced Engineering Mathematics” (9 th ed

30

5.5 Bessel’ s Equation. Bessel Functions J

ν (8/11)Derivatives, Recursions

THEOREM 3

The derivative of Jν(x) with respect to x can be expressed by Jν-1(x) or Jν+1(x) by the formulas

(24)

Furthermore, Jν(x) and its derivative satisfy the recurrence relations

(24)

Page 31: 1 Chapter 5 (5.4~5.6) ◎ Series Solutions of ODEs. 微分方程式之級數解 ◎ Special Functions 特殊方程式 Kreyszig, E. “Advanced Engineering Mathematics” (9 th ed

31

5.5 Bessel’ s Equation. Bessel Functions J

ν (9/11)

Elementary Jν for Half-Integer Order ν

THEOREM 4

Bessel functions Jν of orders ±1/2, ±3/2, ±5/2 ‥‥are elementary; they can be expressed by finitely many cosines and sines and powers of x. In particular,

(25)

Page 32: 1 Chapter 5 (5.4~5.6) ◎ Series Solutions of ODEs. 微分方程式之級數解 ◎ Special Functions 特殊方程式 Kreyszig, E. “Advanced Engineering Mathematics” (9 th ed

32

5.5 Bessel’s Equation. Bessel Functions Jν (10/11)

From (24c) with ν= 1/2 and ν= –1/2 and (25) we obtain

respectively, and so on.

Page 33: 1 Chapter 5 (5.4~5.6) ◎ Series Solutions of ODEs. 微分方程式之級數解 ◎ Special Functions 特殊方程式 Kreyszig, E. “Advanced Engineering Mathematics” (9 th ed

33

5.5 Bessel’s Equation. Bessel Functions Jν (11/11)

利用參數變換使非標準 Bessel’s equation 轉換成標準形式

Example (A) : x2y" + xy' + (2x2 ν2)y = 0

令 x = z x = z/ & dz/dx =

So: &

代回原式

Where if is not an integer Y (z) = c1J(z) + c2 J(z)

Or y(x) = c1J(x) + c2 J(x) #

'' Ydx

dz

dz

dy

dx

dyy 2"

''" Y

dx

dz

dz

dy

dx

dyy

0)()')(()"()( 2222 YzYz

Yz

0)('" 222 YzzYYz

Page 34: 1 Chapter 5 (5.4~5.6) ◎ Series Solutions of ODEs. 微分方程式之級數解 ◎ Special Functions 特殊方程式 Kreyszig, E. “Advanced Engineering Mathematics” (9 th ed

34

5.6 Bessel Functions of the Second Kind Yν(x) (1/7)

n = 0: Bessel Function of the Second Kind Y0(x)

When n = 0, Bessel’s equation can be written

(1) xy" + y' + xy = 0

Then the indicial equation has a double root r = 0. This is Case 2.

In this case we first have only one solution, J0(x). We see that the desir

ed second solution must be of the form

Page 35: 1 Chapter 5 (5.4~5.6) ◎ Series Solutions of ODEs. 微分方程式之級數解 ◎ Special Functions 特殊方程式 Kreyszig, E. “Advanced Engineering Mathematics” (9 th ed

35

5.6 Bessel Functions of the Second Kind Yν(x) (2/7)

n = 0: Bessel Function of the Second Kind Y0(x)

By comparing the coefficient, we find A1 = A3 = = 0 ‥‥

Then, we obtain the result

Page 36: 1 Chapter 5 (5.4~5.6) ◎ Series Solutions of ODEs. 微分方程式之級數解 ◎ Special Functions 特殊方程式 Kreyszig, E. “Advanced Engineering Mathematics” (9 th ed

36

5.6 Bessel Functions of the Second Kind Yν(x) (3/7)

Since J0 and y2 are linearly independent functions, they form a ba

sis of (1) for x > 0.

Of course, another basis is obtained if we replace y2 by an indepe

ndent particular solution of the form a(y2 + bJ0), where a (≠ 0) and

b are constants. It is customary to choose a = 2π and b = γ – ln 2,

where the number γ = 0.577 215 664 90 is the so-called ‥‥ Eule

r constant.

The standard particular solution thus obtained is called the Bessel

function of the second kind of order zero is denoted by Y0(x)

Page 37: 1 Chapter 5 (5.4~5.6) ◎ Series Solutions of ODEs. 微分方程式之級數解 ◎ Special Functions 特殊方程式 Kreyszig, E. “Advanced Engineering Mathematics” (9 th ed

37

5.6 Bessel Functions of the Second Kind Yν(x) (4/7)

For this reason we introduce a standard second solution Y (x) de

fined for all ν by the formula which is called the Bessel function o

f the second kind of order ν denoted by Yν(x).

Page 38: 1 Chapter 5 (5.4~5.6) ◎ Series Solutions of ODEs. 微分方程式之級數解 ◎ Special Functions 特殊方程式 Kreyszig, E. “Advanced Engineering Mathematics” (9 th ed

38

5.6 Bessel Functions of the Second Kind Yν(x) (5/7)

General Solution of Bessel’s Equation

THEOREM 1

A general solution of Bessel’s equation for all values of ν (and x > 0) is

(9) y(x) = C1Jν(x) + C2Yν(x)

Page 39: 1 Chapter 5 (5.4~5.6) ◎ Series Solutions of ODEs. 微分方程式之級數解 ◎ Special Functions 特殊方程式 Kreyszig, E. “Advanced Engineering Mathematics” (9 th ed

39

利用參數變換使非標準 Bessel’s equation 轉換成標準形式

Example (B) : xy" y' + 4xy = 0

令 xu = y & 2x=z x = z/2 & dz/dx = 2

So: & Also, &

代回原式

Where =1 U(z) = c1J1(z) + c2Y1(z)

Or y(x) = x [c1J1(2x) + c2Y1(2x)] #

'' xuuy

0)2

(2

4)'2

()"'2)(2

( uzz

uz

uxuuz

0)1('" 222 UzzUUz

"'2" xuuy 2'' Udx

dz

dz

duu 4"

'" U

dx

dz

dz

duu

0)'22

()"42

'22)(2

( 2 UzUz

UUz

Uz

5.6 Bessel Functions of the Second Kind Yν(x) (6/7)

Page 40: 1 Chapter 5 (5.4~5.6) ◎ Series Solutions of ODEs. 微分方程式之級數解 ◎ Special Functions 特殊方程式 Kreyszig, E. “Advanced Engineering Mathematics” (9 th ed

40

5.6 Bessel Functions of the Second Kind Yν(x) (7/7)

For the modified Bessel’s equation,

x2y" + xy' –(x2 + ν 2)y = 0

* The solutions of modified Bessel’s equation are modified Bessel’s functions. i.e.

y(x) = C1Iν(x) + C2Kν(x)

Where & )]()([sin2

)( xIxIxK

02

2

)1(!2)(

mm

m

mm

xxI