1. introduction to telephony & voip

61
12/15/11 1 Introduction to Telephony & VoIP Henning Schulzrinne Columbia University 1 * The Public Switched Telephone System (PSTN) * VoIP as black phone replacement interactive communications enabler * Presence as a service enabler * Peertopeer VoIP 2 Overview

Upload: isa-mahfudi

Post on 22-Jul-2016

30 views

Category:

Documents


1 download

DESCRIPTION

introduction Telephony

TRANSCRIPT

Page 1: 1. Introduction to Telephony & VoIP

12/15/11  

1  

Introduction  to  Telephony  &  VoIP  

Henning  Schulzrinne  Columbia  University  

1  

*  The  Public  Switched  Telephone  System  (PSTN)  *  VoIP  as  black  phone  replacement  à  interactive  communications  enabler  *  Presence  as  a  service  enabler  *  Peer-­‐to-­‐peer  VoIP  

2  

Overview  

Page 2: 1. Introduction to Telephony & VoIP

12/15/11  

2  

*  Commonly  used  interchangeably:  *  Voice-­‐over-­‐IP  (VoIP)  –  but  includes  video  *  Internet  telephony  –  but  may  not  run  over  Internet  *  IP  telephony  (IPtel)  

*  Also:  VoP  (any  of  ATM,  IP,  MPLS)  *  Some  reserve  Internet  telephony  for  transmission  across  the  

(public)  Internet  *  Transmission  of  telephone  services  over  IP-­‐based  packet  

switched  networks  *  Also  includes  video  and  other  media,  not  just  voice  

3  

Name  confusion  

*  1876  invention  of  telephone  *  1915  first  transcontinental  telephone  (NY–SF)  *  1920’s  first  automatic  switches  *  1956  TAT-­‐1  transatlantic  cable  (35  lines)  *  1962  digital  transmission  (T1)  *  1965  1ESS  analog  switch  *  1974  Internet  packet  voice  (2.4  kb/s  LPC)  *  1977  4ESS  digital  switch  *  1980s  Signaling  System  #7  (out-­‐of-­‐band)  *  1990s  Advanced  Intelligent  Network  (AIN)  *  1992  Mbone  packet  audio  (RTP)  *  1996  early  commercial  VoIP  implementations  (Vocaltec);  PC-­‐to-­‐PC  calling  

4  

A  bit  of  history  

Page 3: 1. Introduction to Telephony & VoIP

12/15/11  

3  

*  analog  narrowband  circuits  to  “central  office”  *  48  Volts  DC  supply  

*  64  kb/s  continuous  transmission,  with  compression  across  ocean  *  µ-­‐law:  12-­‐bit  linear  range  à  8-­‐bit  bytes  *  everything  clocked  at  a  multiple  of  125  µs  *  clock  synchronization  à  framing  errors  *  old  AT&T:  136  “toll”switches  in  U.S.  *  interconnected  by  T1  and  T3  digital  circuits  à  SONET  rings  (AT&T:  

50)  *  call  establishment  “out-­‐of-­‐band”  using  packet-­‐switched  signaling  

system  (SS7)  

5  

Phone  system  

Circuit  diagram  

6  ringing:  25  Hz,  50  V  AC  

Page 4: 1. Introduction to Telephony & VoIP

12/15/11  

4  

WE  2500  diagram  

7  

System   Year  (use)  

technology   cost  ($M)   circuits   $/circuit   $/minute  

TAT-­‐1   1956-­‐78   Coax  +  tubes   $49.6   40   213,996   2.443  

TAT-­‐2   1569   Coax   $42.7   44   167,308   1.910  

TAT-­‐3   1963   Coax   $50.6   79   111,027   1.267  

TAT-­‐4   1965   Coax   $50.4   62   140,238   1.601  

TAT-­‐5   1970   Coax   $70.4   648   18,773   0.214  

TAT-­‐6   1976-­‐94   Coax   $197   3,200   10,638   0.121  

TAT-­‐7   1978-­‐94   Coax   $180   3,821   8,139   0.093  

TAT-­‐8   1988-­‐02   Fiber  (20  Mb/s)   $360   6,048   10,285   0.117  

TAT-­‐9   1992-­‐04   Fiber   $406   10,584   6,628   0.076  

TAT-­‐10   1992-­‐03   Fiber  (2x565  Mb/s)   $300   18,144   2,857   0.033  

TAT-­‐11   1993-­‐04   Fiber  (2x565  Mb/s)   $280   18,144   2,667   0.030  

TAT-­‐12   1996-­‐08   Fiber  ring  (5  Gb/s)   $378   60,480   1,080   0.012  

TAT-­‐13   1996-­‐08   Fiber  (2x5  Gb/s)   $378   60,480   1,080   0.012  8  

Transatlantic  cable  systems  

Page 5: 1. Introduction to Telephony & VoIP

12/15/11  

5  

9  

Transatlantic  cable  systems  System   Year   technology   cost  ($M)   circuits   $/circuit   $/minute  

TAT-­‐13   1996   Fiber   $378   60,480   1,080   0.012  

Gemini   1998   Fiber   $520   214,920   371   0.004  

AC-­‐1   1998   120  Gb/s   $850   483,840   304   0.003  

TAT-­‐14   2001   WDM  16xOC-­‐192   $1,500   4x2.5M   <75   0.001  

Call  load  over  the  week  

10  

Page 6: 1. Introduction to Telephony & VoIP

12/15/11  

6  

Signaling  System  #7  

11  

SS7  network  

12  

Page 7: 1. Introduction to Telephony & VoIP

12/15/11  

7  

Typical  signaling  network  

 

13  

AIN SCP

LNP SCP

LTF/800 SCP

Low Speed Link (56 kb/s)

High Speed Link (1.544 Mb/s)

Local STP

Gateway STP

SSP (CO)

A

A-­‐Links  

A-­‐Links  

D-­‐Link  

B-­‐Link  

B-­‐Link  

A-­‐Link  

A-­‐Link  B-­‐L

ink  

‘A’  

D-­‐Link  

NOTE:    ‘C’  Links  exist  between  each  mated  STP  pair  

Tandem

A-­‐Link  

D  

D.  Finn  (BellSouth  2006)  

*  Class  5  End  Office  (or  C.  O.)  *  Connects  subscribers’  telephone  lines  to  the  telecommunications  network  *  Provides  BORSCHT  functionality  (Battery,  Overvoltage  protection,  Ringing,  

Supervision,  Codec,  Hybrid  and  Testing)  *  Provides  line  and  trunk  concentration  *  Serves  as  a  “Host”  for  Remote  Offices  *  Serves  as  an  ‘SSP’  -­‐  Connects  to  SS7  for  signaling  and  AIN  functions  

*  Tandem  Central  Office  *  Serves  as  a  ‘hub’  for  connecting  voice  trunks  from  numerous  Class  5  end  offices  *  Provides  voice  trunk  connections  to  Long  Distance  carriers  and  Wireless  providers  *  Provides  E9-­‐1-­‐1  Routing  to  PSAPs  *  Types  include  LATA/Access  Tandem,  Toll  Tandem,  E911  Tandem,  TOPS  Tandem  

14  

Types  of  switching  entities  

D.  Finn  (BellSouth  2006)  

Page 8: 1. Introduction to Telephony & VoIP

12/15/11  

8  

*  Signaling  Transfer  Points  (STPs)  *  Provide  efficient,  fast  call  setup  and  teardown  of  telephone  

calls  *  Provide  routing  for  database  lookups  (AIN,  LNP,  800,  etc.)  *  Are  the  primary  switches  used  in  a  “packet-­‐based”  network  

as  opposed  to  the  circuit  based  network  *  Provide  Gateway  Screening  for  Customer  Access  (IXCs,  ITCs,  

CLECs,  Wireless)  *  Serve  as  the  PSTN  entry  point  into  the  VoIP  Network  

 15  

Types  of  switching  entities:  STP  

D.  Finn  (BellSouth  2006)  

*  32  Analog  1AESS  COs  (SSPs)  *  856  Lucent  5ESS  COs  *  355  5ESS  “Hosts’  and  501  Remotes    

*  581  Nortel  DMS  COs  *  285  DMS  “Hosts”  and  283  Remotes  and  10  DMS-­‐10  

*  138  Siemens  COs  (includes  85  Remotes)  *  1607  Total  COs  with  approx.  20.3  million  NALs  *  hosts  ~  24,000  lines  *  remotes  ~  3,500  lines  

*  109  tandems  

16  

Example:  BellSouth  

D.  Finn  (BellSouth  2006)  

Page 9: 1. Introduction to Telephony & VoIP

12/15/11  

9  

CO  picture  

17  

copper  wires:  home  à  cable  vault  à  distribution  frame  

D.  Finn  (BellSouth  2006)  

CO  picture  

18  

distribution  frame  

Page 10: 1. Introduction to Telephony & VoIP

12/15/11  

10  

CO  pictures  

19  

fiber  cross  connect  point:  fiber  leaves  CO  

D.  Finn  (BellSouth  2006)  

*  SSP:  service  switching  point  =  voice  switch  +  adjunct  *  STP:  signal  transfer  point  router  *  SCP:  service  control  point  =  interface  to  databases  *  call  management  service  database  *  line  information  database  *  home  location  register  (cellular)  *  visitor  location  register  (cellular)  

*  traditionally,  connected  by  64  kb/s  &  T1  leased  lines  *  future:  IP  (à  IETF  Sigtran  WG)  

20  

SS7  

Page 11: 1. Introduction to Telephony & VoIP

12/15/11  

11  

SS7  protocol  stack  

21  

*  Level  1  (physical)  *  DS0A  =  56/64  kb/s  in  DS1  facility  

*  Level  2  (data  link)  *  error  detection/correction,  link-­‐by-­‐link  

*  Level  3  (network)  *  routing  message  discrimination  ➠  “point  codes”  distribution  

*  Level  4  (user  parts)  *  basic  signaling  (ISUP)  *  Transaction  Capabilities  Application  (TCAP)  *  Operations,  Maintenance,  Administration  (OMAP)  *  Mobile  Application  Part  (MAP)  

22  

SS7  protocol  stack  

Page 12: 1. Introduction to Telephony & VoIP

12/15/11  

12  

SS7  call  

23  

Reliability  

24  

#9’s   reliability   outage/year   example  

1   90%   36.5  days  

2   99%   3.65  days  

3   99.9%   8.8  hours   good  ISP  

4   99.99%   53  minutes  

5   99.999%   5  minutes   phone  system  

6   99.9999%   32  seconds  

Page 13: 1. Introduction to Telephony & VoIP

12/15/11  

13  

*  FCC  incidents:  ≥  90,000  customers,  >  30  minutes  (972  between  1992  and  1997)  *  FCC  ARMIS  (Automated  Reporting  Management  Information  System)  *  ANSI  T1A1:  logarithmic  outage  index  =  f(duration,  #  affected,  time,  functions,  ...)  *  call  defects  per  million  (e.g.,  AT&T  173  ppm)  

25  

Reliability  

http://vallfoss.fcc.gov/eafs7/PresetMenu.cfm  

*  median  outage  lasts  2.9  hours  *  (natural  disasters:  13.4  hours)  *  causes:  *  facilities  (45%)  *  local  switches  (18%),  CCS  (13%),  CO  power  (7.3%)  

*  facility  failures:  *  dig-­‐ups  (“back-­‐hoe  fade”,  58%)  *  cable  electronics  (8%)  

*  ARMIS  example:  *  Bell  Atlantic  1998:  180  switches,  combined  downtime  of  628  

minutes,  or  6.6  ·∙10-­‐6  

26  

Outages  

Page 14: 1. Introduction to Telephony & VoIP

12/15/11  

14  

27  

The  phone  works  –  why  bother  with  VoIP  

user perspective carrier perspective

variable compression: tin can to broadcast quality à no need for dedicated lines

better codecs + silence suppression – packet header overhead = maybe reduced bandwidth

security through encryption shared facilities simplify management, redundancy

caller & talker identification advanced services

better user interface (more than 12 keys, visual feedback, semantic rather than stimulus)

cheaper bit switching

no local access fees (but dropping to 1c/min for PSTN)

fax as data rather than voiceband data (14.4 kb/s)

adding video, application sharing is easy

Old  vs.  new  

28  

old reality new idea new reality

service provider

ILEC, CLEC email-like, run by enterprise, homes

E.164-driven; MSOs, some ILECs, Skype, European SIP providers, Vonage, SunRocket

media 4 kHz audio wideband audio, video, IM, shared apps, …

4 kHz audio

services CLASS (CLID, call forwarding, 3-way calling, ...)

user-created services (web model) presence

still CLASS

user IDs E.164 email-like E.164 IM handles

Page 15: 1. Introduction to Telephony & VoIP

12/15/11  

15  

29  

Evolution  of  VoIP  

“amazing – the phone rings”

“does it do call transfer?”

“How can I make it stop ringing?”

1996-2000 2000-2003 2004-2005

catching up with the digital PBX

long-distance calling, ca. 1930

going beyond the black phone

2006-

“Can it really replace the phone system?”

replacing the global phone system

VoIP  Signaling  Protocols  

30  

*  H.323  *  ITU  standard,  ISDN-­‐based,  distributed  

topology  *  early  on,  used  to  be  90%+  of  all  Service  

Provider  VoIP  networks  *  video  conferencing  (Microsoft  

NetMeeting,  room  units  [Polycom,  Tandberg,  …])  

*  Skinny  *  Centralized  call  control  architecture  *  CallManager  controls  all  features  *  over  1  mio.  IP  Phones  deployed  –  

probably  most  popular  corporate  IP-­‐PBX  

*  MGCP  *  IETF  RFC  2705  *  Centralized  call  control  architecture  *  Call-­‐Agents  (MGC)  &  Gateways  (MG)  

*  SIP  *  IETF  RFC  2543  and  RFC  3261  *  Distributed  call  control  *  Used  for  more  than  VoIP…SIMPLE:  

Instant  Messaging  /  Presence  

Brian Gracely, Cisco, 2001 (mod.)

Page 16: 1. Introduction to Telephony & VoIP

12/15/11  

16  

IETF  VoIP  &  presence  efforts  

31  

SIPCORE  (protocol)   DISPATCH  

(spin  off  mini-­‐WGs)  

ECRIT  (emergency  calling)  

AVT  (RTP,  SRTP,  media)  

ENUM  (E.164  translation)  

SIMPLE  (presence)  

GEOPRIV  (geo  +  privacy)  

uses  may  use  

uses  

usually  used  with  

IETF  RAI  area  

MMUSIC  (SDP,  RTSP,  ICE)  

XCON (conf.  control)  

SPEERMINT  (peering)  

uses  

SPEECHSC  (speech  services)  

uses  

BLISS  (services)   DRINKS  

(registry)  

MEDIACTRL  (media  servers)  

P2PSIP  (DHT  protocol)  

XMPP  (presence)  

32  

PBX  features  call waiting/multiple calls RFC 3261

hold RFC 3264

transfer RFC 3515/Replaces

conference RFC 3261/callee caps

message waiting message summary package

call forward RFC 3261

call park RFC 3515/Replaces

call pickup Replaces

do not disturb RFC 3261

call coverage RFC 3261

from Rohan Mahy’s VON Fall 2003 talk

simultaneous ringing RFC 3261

basic shared lines dialog/reg. package

barge-in Join

“Take” Replaces

Shared-line “privacy” dialog package

divert to admin RFC 3261

intercom URI convention

auto attendant RFC 3261/2833

attendant console dialog package

night service RFC 3261

cent

rex-

styl

e fe

atur

es

boss/admin features

attendant features

Page 17: 1. Introduction to Telephony & VoIP

12/15/11  

17  

RTP  

33  

RTP  stack  

34  

RTCP

RFC 3550 (RTP, RTCP) pair

Page 18: 1. Introduction to Telephony & VoIP

12/15/11  

18  

*  Real-­‐Time  Transport  Protocol  (RTP)  =  data  +  control  *  data  (media):  *  timing  *  loss  detection  *  content  labeling  *  talkspurts  &  video  frames  *  encryption  

*  control  (RTCP):  *  ➠  periodic  with  T  ∼  population  *  QoS  feedback  *  membership  estimation  in  multicast  *  loop  detection  

35  

RTP  

36  

RTP  Packet  Header  

ver 2 # contributor

padding (for fixed size block), last

byte of pkt is the pad count

static  or  dynamic  

granularity determined by payload type

if this RTP stream is mixed

RFC 3551 audio-video profile

1 = first pkt of a talkspurt, after a silence period

Page 19: 1. Introduction to Telephony & VoIP

12/15/11  

19  

*  +1  per  sample  (e.g.,  160  for  20  ms  packets  @  8000  Hz)  *  random  starting  value  *  time  per  packet  may  vary  *  different  fixed  rate  for  each  audio  PT  *  typically,  20  –  100  ms  /  packet  *  90  kHz  for  video  *  several  video  frames  may  have  same  timestamp  *   ➠  gaps  ≡  silence  *  split  video  frame  (carefully.  .  .  )  across  packets  

37  

RTP  timestamp  

*  mixer:  *  several  media  stream  ➠  one  new  stream  (new  encoding)  *  e.g.,  audio/video  conferencing  

*  appears  as  new  source,  with  own  identifier  

*  translator:  *  single  media  stream  *  may  convert  encoding  *  e.g.,  protocol  translation  (IPv4  à  IPv6)  *  all  packets:  source  address  =  translator  address  

38  

RTP  mixer  &  translator  

Page 20: 1. Introduction to Telephony & VoIP

12/15/11  

20  

RTP  mixer  &  translator  

39  

stackable  packets,  similar  to  data  packets  

*  sender  report  (SR)  *  bytes  send  ➠  estimate  rate  *  timestamp  ➠  synchronization  

*  reception  reports  (RR):  *  number  of  packets  sent  and  expected  ➠  loss,  interarrival  jitter,  round-­‐trip  delay  

*  source  description  (SDES):  *  name,  email,  location,…  

*  canonical  name  (CNAME)  =  user@host  *  identifies  user  across  media  

*  explicit  leave  (BYE):  in  addition  to  time-­‐out  

*  extensions  (APP):  application-­‐specific  (none  yet)  

40  

RTCP  

Page 21: 1. Introduction to Telephony & VoIP

12/15/11  

21  

41  

RTCP  

Value   Abbreviation   Name   Document  

194   SMPTETC   SMPTE  time-­‐code  mapping   RFC  5484  

195   IJ   Network  interarrival  jitter   RFC  5450  

200   SR   Sender  report   RFC  3550  

201   RR   Receiver  report   RFC  3550  

202   SDES   Source  description   RFC  3550  

203   BYE   Good  bye   RFC  3550  

204   APP   Application-­‐defined   RFC  3550  

205   RTPFB   Generic  RTP  feedback  (loss)   RFC  4585  

206   PSFB   Payload-­‐specific  feedback   RFC  4585  

207   XR   Extended  report  (RLE,  delay,  R  factor)   RFC  3611  

208   AVB   Audio-­‐video  bridging   IEEE  1733  

209   RSI   Receiver  summary  information   ietf-­‐avt-­‐rtcpssm  

42  

RTCP  (detail)  

Page 22: 1. Introduction to Telephony & VoIP

12/15/11  

22  

RTCP  SR  packet  example  

43  

*   next  packet  =  last  packet  +  max(5  s,  T  )  ·∙  random(0.5.  .  .  1.5)  *  randomization  prevents  “bunching”  *  to  reduce  RTCP  bandwidth,  alternate  between  SDES  components  

44  

RTCP  bandwidth  scaling  

Page 23: 1. Introduction to Telephony & VoIP

12/15/11  

23  

*  =  sync  different  streams  (audio,  video,  slides,  .  .  .)  

*  timestamps  are  offset  with  random  intervals  

*  may  not  tick  at  nominal  rate  

*  SRs  correlate  “real”  time  (wallclock  time)  with  RTP  timestamp  

45  

RTCP  intermedia  synchronization  

Round-­‐trip  time  estimation  

46  

compute  round-­‐trip  time  between  sender  and  receiver    

Page 24: 1. Introduction to Telephony & VoIP

12/15/11  

24  

Internet  services  –  the  missing  entry  

Service/delivery synchronous asynchronous

push instant  messaging  presence  event  notification  session  setup  media-­‐on-­‐demand

messaging

pull data  retrieval  file  download  remote  procedure  call

peer-­‐to-­‐peer  file  sharing

47  

48  

Filling  in  the  protocol  gap  

Service/delivery synchronous asynchronous

push SIP  RTSP,  RTP

SMTP

pull HTTP  ftp  SunRPC,  Corba,  SOAP

(not  yet  standardized)

Page 25: 1. Introduction to Telephony & VoIP

12/15/11  

25  

SIP  as  service  enabler  

49  

*  Rendezvous  protocol  *  lets  users  find  each  other  by  only  

knowing  a  permanent  identifier  *  Mobility  enabler:  *  personal  mobility  *  one  person,  multiple  terminals  

*  terminal  mobility  *  one  terminal,  multiple  IP  addresses  

*  session  mobility  *  one  user,  multiple  terminals  in  

sequence  or  in  parallel  *  service  mobility  *  services  move  with  user  

50  

What  is  SIP?  n  Session  Initiation  Protocol  à  protocol  that  

establishes,  manages  (multimedia)  sessions  n  also  used  for  IM,  presence  &  event  notification  n  uses  SDP  to  describe  multimedia  sessions  

n  Developed  at  Columbia  U.  (with  others)  n  Standardized  by    

n  IETF  (RFC  3261-­‐3265  et  al)  n  3GPP  (for  3G  wireless)  n  PacketCable  

n  About  100  companies  produce  SIP  products  n  Microsoft’s  Windows  Messenger  (≥4.7)  includes  

SIP  

Page 26: 1. Introduction to Telephony & VoIP

12/15/11  

26  

*  Session  establishment  &  event  notification  *  Any  session  type,  from  audio  to  circuit  emulation  *  Provides  application-­‐layer  anycast  service  *  Provides  terminal  and  session  mobility  *  Based  on  HTTP  in  syntax,  but  different  in  protocol  

operation  *  Peer-­‐to-­‐peer  system,  with  optional  support  by  proxies  *  even  stateful  proxies  only  keep  transaction  state,  not  call  

(session,  dialogue)  state  *  transaction:  single  request  +  retransmissions  *  proxies  can  be  completely  stateless  

51  

Philosophy  

52  

Basic  SIP  message  flow  

Page 27: 1. Introduction to Telephony & VoIP

12/15/11  

27  

53  

SIP  trapezoid  

SIP  trapezoid  

outbound  proxy  

[email protected]:  128.59.16.1  

registrar  

1st  request  

2nd,  3rd,  …  request  

voice  traffic  RTP  

destination  proxy  (identified  by  SIP  URI  domain)  

SIP  message  format  

54  

SDP  

INVITE  sip:[email protected]  SIP/2.0  

Via:  SIP/2.0/UDP  here.com:5060  From:  Alice  <sip:[email protected]>  To:  Bob  <sip:[email protected]>  Call-­‐ID:  [email protected]  CSeq:  1  INVITE  Subject:  just  testing  Contact:  sip:[email protected]  Content-­‐Type:  application/sdp  Content-­‐Length:  147  

v=0  o=alice  2890844526  2890844526  IN  IP4  here.com  s=Session  SDP  c=IN  IP4  100.101.102.103  t=0  0  m=audio  49172  RTP/AVP  0  a=rtpmap:0  PCMU/8000  

SIP/2.0  200  OK  

Via:  SIP/2.0/UDP  here.com:5060  From:  Alice  <sip:[email protected]>  To:  Bob  <sip:[email protected]>  Call-­‐ID:  [email protected]  CSeq:  1  INVITE  Subject:  just  testing  Contact:  sip:[email protected]  Content-­‐Type:  application/sdp  Content-­‐Length:  134  

v=0  o=bob  2890844527  2890844527  IN  IP4  there.com  s=Session  SDP  c=IN  IP4  110.111.112.113  t=0  0  m=audio  3456  RTP/AVP  0  a=rtpmap:0  PCMU/8000  m

essage

 bod

y  he

ader  fields

 requ

est  line  

request   response  

Page 28: 1. Introduction to Telephony & VoIP

12/15/11  

28  

*  Format  description  (payload),  not  a  protocol  *  Used  in  MGCP  and  SIP  to  describe  media  characteristics  *  Type  of  stream  (audio,  video,  real-­‐time  text,  …)  *  Codec  type  *  IP  address  &  port  

*  Sent  within  a  SIP  message  as  a  message  body  *  Content-Type: application/sdp

*  Originally  designed  for  multicast  sessions  (SAP)  *  limited  extensibility  *  capability  (“can”)  vs.  request  (“want”)  *  media  alignment  problems  

55  

SDP  RFC  2327  4566  

SDP  example  

56  

v=0  o=jdoe  2890844526  2890842807  IN  IP4  10.47.16.5  s=SDP  Seminar  i=A  Seminar  on  the  session  description  protocol  u=http://www.example.com/seminars/sdp.pdf  [email protected]  (Jane  Doe)  c=IN  IP4  224.2.17.12/127  a=recvonly  m=audio  49170  RTP/AVP  0  m=video  51372  RTP/AVP  99  a=rtpmap:99  h263-­‐1998/90000  

send  data  to  

RTP  audio  with  PT  0  (µ-­‐law)  on  port  49170    

RTP  video  with  PT  99,  defined  in  

a=    

session  description  (mainly  for  multicast)  

RTP  timestamp  frequency  =  

90  kHz  

Page 29: 1. Introduction to Telephony & VoIP

12/15/11  

29  

*  =  the  process  of  negotiating  codecs  using  SDP  *  SDP  can  be  sent  in  SIP  INVITE,  18x/200  responses,  and  ACK  *  The  first  SDP  sent  in  either  direction  is  considered  to  be  an  offer  *  An  SDP  consequently  sent  in  the  reverse  direction  is  an  answer  

57  

Offer/Answer   RFC  3264  

58  

SDP  offer/answer  INVITE(sdp)  

180  

200(sdp)  

ACK  

INVITE(sdp  +  video)  

200(sdp)  

ACK  

Let  me  see  you  !  

Caller   Callee  

Page 30: 1. Introduction to Telephony & VoIP

12/15/11  

30  

59  

PSTN  vs.  Internet  Telephony  

Signaling & Media Signaling & Media

Signaling Signaling

Media

PSTN:

Internet telephony:

China  

Belgian  customer,  currently  visiting  US  

Australia  

*  Users  identified  by  SIP  or  tel  URIs  *  sip:[email protected]

*  tel:  URIs  describe  E.164  number,  not  dialed  digits  (RFC  2806bis)  

*  tel  URIs  à  SIP  URIs  by  outbound  proxy  

*  A  person  can  have  any  number  of  SIP  URIs  

*  The  same  SIP  URI  can  reach  many  different  phones,  in  different  networks  *  sequential  &  parallel  forking  

*  SIP  URIs  can  be  created  dynamically:  *  GRUUs  *  conferences  *  device  identifiers  (sip:[email protected])  

*  Registration  binds  SIP  URIs  (e.g.,  device  addresses)  to  SIP  “address-­‐of-­‐record”  (AOR)  

60  

SIP  addressing  

tel:110   sip:sos@domain  

domain  à  128.59.16.17  via  NAPTR  +  SRV  

Page 31: 1. Introduction to Telephony & VoIP

12/15/11  

31  

61  

3G  Architecture  (Registration)  

visited IM domain  

home IM domain  

serving  CSCF   interrogating  proxy  

interrogating  

mobility  management  signaling  

registration  signaling  (SIP)_  

*  notify  (small)  group  of  users  when  something  of  interest  happens  *  presence  =  change  of  

communications  state  *  email,  voicemail  alerts  *  environmental  conditions  *  vehicle  status  *  emergency  alerts  

*  kludges  *  HTTP  with  pending  response  *  inverse  HTTP  -­‐-­‐>  doesn’t  work  with  

NATs  

*  Lots  of  research  (e.g.,  SIENA)  *  IETF  efforts  starting  *  SIP-­‐based  *  XMPP    

62  

Event  notification  

Page 32: 1. Introduction to Telephony & VoIP

12/15/11  

32  

*  context  =  “the  interrelated  conditions  in  which  something  exists  or  occurs”  

*  anything  known  about  the  participants  in  the  (potential)  communication  relationship  

*  both  at  caller  and  callee  

63  

Context-­‐aware  communication  

time CPL capabilities caller preferences

location location-based call routing location events

activity/availability presence

sensor data (mood, bio) privacy issues similar to location data

The  role  of  presence  

64  

*  Guess-­‐and-­‐ring  *  high  probability  of  failure:  *  “telephone  tag”  *  inappropriate  time  (call  during  

meeting)  *  inappropriate  media  (audio  in  public  

place)  *  current  solutions:  *  voice  mail  à  tedious,  doesn’t  scale,  

hard  to  search  and  catalogue,  no  indication  of  when  call  might  be  returned  

*  automated  call  back  à  rarely  used,  too  inflexible  

*  à  most  successful  calls  are  now  scheduled  by  email  

*  Presence-­‐based  *  facilitates  unscheduled  

communications  *  provide  recipient-­‐specific  

information  *  only  contact  in  real-­‐time  if  

destination  is  willing  and  able  *  appropriately  use  synchronous  

vs.  asynchronous  communication  *  guide  media  use  (text  vs.  audio)  *  predict  availability  in  the  near  

future  (timed  presence)  

Prediction: almost all (professional) communication will be presence-initiated or pre-scheduled

Page 33: 1. Introduction to Telephony & VoIP

12/15/11  

33  

GEOPRIV  and  SIMPLE  architectures  

65  

target location server

location recipient

rule maker

presentity

caller

presence agent watcher

callee

GEOPRIV

SIP presence

SIP call

PUBLISH NOTIFY

SUBSCRIBE

INVITE

publication interface

notification interface

XCAP (rules)

INVITE

DHCP  

66  

Presentity  and  Watchers  

Bob’s  status,  location  

Watchers    

Available,  Busy,  Somewhat  available,  Invisible  

wife  

son  

external  world  

PUBLISH    SUBSCRIBE  

NOTIFY  

Bob’s  Presentity   Watchers Watchers  

Bob’s  Presence  User  Agents  (PUA)  

PC-­‐IM  Client  

R u there ?

Bob’s  play  station  

Cell  

Phone  

BUZZ

PUBLISH  

Bob’s  Filters  (Rules),  PIDF  *)  

Presence  Server  (PS)  

 *)  -­‐  PIDF  =  Presence  Information  Data  Format  

friend  

Page 34: 1. Introduction to Telephony & VoIP

12/15/11  

34  

*  Role  of  presence  *  initially:  “can  I  send  an  instant  message  and  expect  a  response?”  *  now:  “should  I  use  voice  or  IM?  is  my  call  going  to  interrupt  a  meeting?  

is  the  callee  awake?”  *  Yahoo,  MSN,  Skype  presence  services:  *  on-­‐line  &  off-­‐line  *  useful  in  modem  days  –  but  many  people  are  (technically)  on-­‐line  24x7  *  thus,  need  to  provide  more  context  *  +  simple  status  (“not  at  my  desk”)  

*  entered  manually  à  rarely  correct  *  does  not  provide  enough  context  for  directing  interactive  communications  

67  

Basic  presence  

Presence  data  architecture  

68  

raw presence document

create view (compose)

privacy filtering

draft-ietf-simple-presence-data-model

composition policy

privacy policy

presence sources

XCAP XCAP

(not defined yet)

depends on watcher select best source resolve contradictions

PUBLISH

Page 35: 1. Introduction to Telephony & VoIP

12/15/11  

35  

Presence  data  architecture  

69  

candidate presence document

watcher filter

raw presence document

post-processing composition (merging)

final presence document

difference to previous notification

SUBSCRIBE

NOTIFY

remove data not of interest

watcher

*  Provide  watchers  with  better  information  about  the  what,  where,  how  of  presentities  *  facilitate  appropriate  communications:  *  “wait  until  end  of  meeting”  *  “use  text  messaging  instead  of  phone  call”  *  “make  quick  call  before  flight  takes  off”  

*  designed  to  be  derivable  from  calendar  information  *  or  provided  by  sensors  in  the  environment  

*  allow  filtering  by  “sphere”  –  the  parts  of  our  life  *  don’t  show  recreation  details  to  colleagues  

70  

Rich  presence  

Page 36: 1. Introduction to Telephony & VoIP

12/15/11  

36  

*  automatically  derived  from  *  sensors:  physical  presence,  movement  *  electronic  activity:  calendars  

*  Contains:  *  multiple  contacts  per  presentity  *  device  (cell,  PDA,  phone,  …)  *  service  (“audio”)  

*  activities,  current  and  planned  *  surroundings  (noise,  privacy,  vehicle,  …)  *  contact  information  *  composing  (typing,  recording  audio/video  IM,  …)  

71  

Rich  presence  

*  Two  modes:  *  watcher  uses  presence  

information  to  select  suitable  contacts  *  advisory  –  caller  may  not  adhere  

to  suggestions  and  still  call  when  you’re  in  a  meeting  

*  user  call  routing  policy  informed  by  presence  *  likely  less  flexible  –  machine  

intelligence  *  “if  activities  indicate  meeting,  

route  to  tuple  indicating  assistant”  

*  “try  most-­‐recently-­‐active  contact  first”  (seq.  forking)  

72  

The  role  of  presence  for  call  routing  

LESS

translate RPID

CPL

PA

PUBLISH

NOTIFY

INVITE

Page 37: 1. Introduction to Telephony & VoIP

12/15/11  

37  

*  All  presence  data,  particularly  location,  is  highly  sensitive  *  Basic  location  object  (PIDF-­‐LO)  describes  *  distribution  (binary)  *  retention  duration  *  Policy  rules  for  more  detailed  access  control  *  who  can  subscribe  to  

my  presence  *  who  can  see  what  

when  

73  

Presence  and  privacy  

<tuple id="sg89ae"> <status> <gp:geopriv> <gp:location-info>

<gml:location> <gml:Point gml:id="point1“

srsName="epsg:4326"> <gml:coordinates>37:46:30N 122:25:10W

</gml:coordinates>

</gml:Point> </gml:location>

</gp:location-info> <gp:usage-rules> <gp:retransmission-allowed>no

</gp:retransmission-allowed> <gp:retention-expiry>2003-06-23T04:57:29Z

</gp:retention-expiry>

</gp:usage-rules> </gp:geopriv>

</status> <timestamp>2003-06-22T20:57:29Z</timestamp> </tuple>

Privacy  rules  

74  

*  Conditions  *  identity,  sphere  *  time  of  day  *  current  location  *  identity  as  <uri>  or  <domain>  +  

<except>  *  Actions  *  watcher  confirmation  

*  Transformations  *  include  information  *  reduced  accuracy  

*  User  gets  maximum  of  permissions  across  all  matching  rules  *  privacy-­‐safe  composition:  

removal  of  a  rule  can  only  reduce  privileges  

*  Extendable  to  new  presence  data  *  rich  presence  *  biological  sensors  *  mood  sensors    

Page 38: 1. Introduction to Telephony & VoIP

12/15/11  

38  

Example  rules  document  

75  

<identity><id>[email protected]</id></identity>

<sub-handling>allow</sub-handling>

<provide-services> <service-uri-scheme>sip</service-uri-scheme> <service-uri-scheme>mailto</service-uri-scheme> </provide-services> <provide-person>true</provide-person> <provide-activities>true</provide-activities> <provide-user-input>bare</provide-user-input>

<ru

lese

t>

<rule id=1> <

cond

ition

s>

<tr

ansf

orm

atio

ns>

<

actio

ns>

Location-­‐based  services  

Page 39: 1. Introduction to Telephony & VoIP

12/15/11  

39  

77  

Location-­‐based  services  

Finding  services  based  on  location  

physical  services  (stores,  

restaurants,  ATMs,  …)  

electronic  services  (media  I/O,  printer,  display,  

…)  

Using  location  to  improve  (network)  services  

communication  

incoming  communications  changes  based  on  

where  I  am  

configuration  

devices  in  room  adapt  to  their  current  users  

awareness  

others  are  (selectively)  made  

aware  of  my  location  

security  

proximity  grants  temporary  access  to  local  resources  

*  Location-­‐aware  inbound  routing  *  do  not  forward  call  if  time  at  callee  location  is  [11  pm,  8  am]  *  only  forward  time-­‐for-­‐lunch  if  destination  is  on  campus  *  do  not  ring  phone  if  I’m  in  a  theater  

*  outbound  call  routing  *  contact  nearest  emergency  call  center  *  send  [email protected]  to  nearest  branch  

*  location-­‐based  events  *  subscribe  to  locations,  not  people  *  Alice  has  entered  the  meeting  room  *  subscriber  may  be  device  in  room  à  our  lab  stereo  changes  

CDs  for  each  person  that  enters  the  room  

78  

Location-­‐based  SIP  services  

Page 40: 1. Introduction to Telephony & VoIP

12/15/11  

40  

Location  delivery  

79  

DHCP  

HTTP  

GPS  

HELD  

LLDP-­‐MED  

wire  map  

Location  determination  options  

80

Method CDP or LLDP-MED

DHCP HELD GPS manual entry

Layer L2 L3 L7 (HTTP) - user

advantages •  simple to implement

•  built into switch •  direct port/room

mapping

•  simple to implement

•  network locality

•  traverses NATs

•  can be operated by L2 provider

•  accurate • mobile

devices •  no carrier

cooperation

•  no infrastructure changes

•  no carrier cooperation

problems may be hard to automate for large enterprises

mapping MAC address to location?

mapping IP address to switch port?

•  indoor coverage

•  acquisition time

•  fails for mobile devices

•  unreliable for nomadic

Use Ethernet LANs Enterprise LANs Some ISPs

DSL, cable mobile devices fall back

Page 41: 1. Introduction to Telephony & VoIP

12/15/11  

41  

81  

Program  location-­‐based  services  

82  

Page 42: 1. Introduction to Telephony & VoIP

12/15/11  

42  

P2P  

Each  peer  must  act  as  both  a  client  and  a  server.  

Peers  provide  computational  or  storage  resources  for  other  peers.  

Self-­‐organizing  and  scaling.  

84  

Defining  peer-­‐to-­‐peer  systems  

1  &  2  are  not  sufficient:  DNS  resolvers  provide  services  to  others    Web  proxies  are  both  clients  and  servers    SIP  B2BUAs  are  both  clients  and  servers  

 

Page 43: 1. Introduction to Telephony & VoIP

12/15/11  

43  

NETWORK  ENGINEER’S  WARNING  P2P  systems  may  be  *  inefficient  *  slow  *  unreliable  *  based  on  faulty  and  short-­‐term  economics  *  mainly  used  to  route  around  copyright  laws  

85  

P2P  systems  are  …  P2P

vs.  

*  Saves  money  for  those  offering  services  *  addresses  market  failures  

*  Scales  up  automatically  with  service  demand  *  More  reliable  than  client-­‐

server  (no  single  point  of  failure)  *  No  central  point  of  control  

*  mostly  plausible  deniability  *  Networks  without  

infrastructure  (or  system  manager)  *  New  services  that  can’t  be  

deployed  in  the  ossified  Internet  *  e.g.,  RON,  ALM  

86  

Motivation  for  peer-­‐to-­‐peer  systems  

Page 44: 1. Introduction to Telephony & VoIP

12/15/11  

44  

HTTP  web,  33%  

HTTP  audio/video,  33%  

P2P,  20%  

Other,  14%  

AT&T  backbone  

87  

P2P  traffic  is  not  devouring  the  Internet…  

steady  percentage

88  

Energy  consumption  

http://www.legitreviews.com/article/682/  

Monthly cost = $37

@ $0.20/kWh

Page 45: 1. Introduction to Telephony & VoIP

12/15/11  

45  

*  Transit  bandwidth:  $40  Mb/s/month  ~  $0.125/GB  *  US  colocation  providers  charge  $0.30  to  $1.75/GB  *  e.g.,  Amazon  EC2  $0.17/GB  (outbound)  *  CDNs:  $0.08  to  $0.19/GB  

89  

Bandwidth  costs  

*  Service  provider  view  *  save  $150/month  for  single  rented  server  in  

colo,  with  2  TB  bandwidth  *  but  can  handle  100,000  VoIP  users  *  But  ignores  externalities  *  home  PCs  can’t  hibernate  à  energy  usage  *  about  $37/month  

*  less  efficient  network  usage  *  bandwidth  caps  and  charges  for  consumers  *  common  in  the  UK  *  Australia:  US$3.20/GB  

*  Home  PCs  may  become  rare  *  see  Japan  &  Korea  

90  

Economics  of  P2P  

bandwidth  

charge

 ($)  

Page 46: 1. Introduction to Telephony & VoIP

12/15/11  

46  

*  Typically,  P2P  hosts  only  lightly  used  *  energy  efficiency/computation  highest  at  full  load  *  à  dynamic  server  pool  most  efficient  *  better  for  distributed  computation  (SETI@home)  

*  But:  *  CPU  heat  in  home  may  lower  heating  bill  in  winter  *  but  much  less  efficient  than  natural  gas  (<  60%)  

*  Data  center  CPUs  always  consume  cooling  energy  *  AC  energy  ≈  server  electricity  consumption  

*  Thus,  *  deploy  P2P  systems  in  Scandinavia  and  Alaska  

91  

Which  is  greener  –  P2P  vs.  server?  

*  CW:  “P2P  systems  are  more  reliable”  *  Catastrophic  failure  vs.  partial  failure  *  single  data  item  vs.  whole  system  *  assumption  of  uncorrelated  failures  wrong  *  Node  reliability  *  correlated  failures  of  servers  (power,  

access,  DOS)  *  lots  of  very  unreliable  servers  (95%?)  *  Natural  vs.  induced  replication  of  data  items  

92  

Reliability  

Some  of  you  may  be  having  problems  logging  into  Skype.  Our  engineering  team  has  determined  that  it’s  a  software  issue.  We  expect  this  to  be  resolved  within  12  to  24  hours.  (Skype,  8/12/07)

Page 47: 1. Introduction to Telephony & VoIP

12/15/11  

47  

*  Security  much  harder  *  user  authentication  and  credentialing  *  usually  now  centralized  

*  sybil  attacks  *  byzantine  failures  

*  Privacy  *  storing  user  data  on  somebody  else’s  machine  

*  Distributed  nature  doesn’t  help  much  *   same  software  à  one  attack  likely  to  work  everywhere  

*  CALEA?  

93  

Security  &  privacy  

*  P2P  systems  are  hard  to  debug  *  No  real  peer-­‐to-­‐peer  management  systems  *  system  loading  (CPU,  bandwidth)  *  automatic  splitting  of  hot  spots  

*  user  experience  (signaling  delay,  data  path)  *  call  failures  

*  Later:  P2PP  &  RELOAD  add  mechanisms  to  query  nodes  for  characteristics  *  Who  gathers  and  evaluates  the  overall  system  health?  

94  

OA&M  

Page 48: 1. Introduction to Telephony & VoIP

12/15/11  

48  

P2P  for  VoIP  

95  

96  

The  role  of  SIP  proxies  

sip:[email protected]  

tel:1-­‐212-­‐555-­‐1234  

sip:[email protected]  

sip:[email protected]  

Translation may depend on caller, time of day, busy

status, …

REGISTER  

Page 49: 1. Introduction to Telephony & VoIP

12/15/11  

49  

*  Why?  *  no  infrastructure  available:  emergency  

coordination  *  don’t  want  to  set  up  infrastructure:  small  

companies  *  Skype  envy  :-­‐)  

*  P2P  technology  for  *  user  location  *  only  modest  impact  on  expenses  *  but  makes  signaling  encryption  cheap  

*  NAT  traversal  *  matters  for  relaying  

*  services  (conferencing,  transcoding,  …)  *  how  prevalent?  

*  New  IETF  working  group  formed  *  multiple  DHTs  *  common  control  and  look-­‐up  protocol?  

97  

P2P  SIP  

LAN  

P2P  provider  A  

P2P  provider  B  

p2p  network  

traditional  provider  

DNS  

zeroconf  

generic  DHT  service  

XOR  

Finger  table  

Parallel  requests  Recursive  routing  

Successor  

Modulo  addition  Prefix-­‐match  

Leaf-­‐set  

Routing-­‐table  stabilization  Lookup  correctness  

Lookup  performance  

Proximity  neighbor  selection  

Proximity  route  selection  

Routing-­‐table  size  

Strict  vs.  surrogate  routing  

Bootstrapping  

Updating  routing-­‐table  from  lookup  requests  

Tree  

Hybrid  

Reactive  recovery  

Periodic  recovery  

Routing-­‐table  exploration  98  

More  than  a  DHT  algorithm  

Page 50: 1. Introduction to Telephony & VoIP

12/15/11  

50  

*  Multicast-­‐DNS  (zeroconf)  SIP  enhancements  for  LAN  *  announce  UAs  and  their  

capabilities      *  Client-­‐P2P  protocol  *  GET,  PUT  mappings  *  mapping:  proxy  or  UA  *  P2P  protocol  *  get  routing  table,  join,  leave,  …  *  independent  of  DHT  *  replaces  DNS  for  SIP  and  basic  

proxy  

99  

P2P  SIP  -­‐-­‐  components  

Bootstrap  &  authentication  server  

100  

P2PSIP  architecture  

SIP  

P2P   STUN  

TLS  /  SSL  

peer  in  P2PSIP  

NAT  

NAT  

client  

[email protected]  

[email protected]   Overlay  1  

Overlay  2  

[email protected]  à  128.59.16.1  

INVITE  [email protected]  

Page 51: 1. Introduction to Telephony & VoIP

12/15/11  

51  

*  Originally,  effort  to  perform  SIP  lookups  in  p2p  network  *  Initial  proposals  based  on  SIP  itself  *  use  SIP  messages  to  query  and  update  entries  *  required  minor  header  additions  

*  P2PSIP  working  group  formed  *  now  SIP  just  one  usage  

*  Several  protocol  proposals  (ASP,  RELOAD,  P2PP)  merged  *  still  in  “squishy”  stage  –  most  details  can  change  

101  

IETF  peer-­‐to-­‐peer  efforts  

*  Generic  overlay  lookup  (store  &  fetch)  mechanism  *  any  DHT  +  unstructured  

*  Routed  based  on  node  identifiers,  not  IP  addresses  *  Multiple  instances  of  one  DHT,  identified  by  DNS  name  *  Multiple  overlays  on  one  node  *  Structured  data  in  each  node  *  without  prior  definition  of  data  types  *  PHP-­‐like:  scalar,  array,  dictionary  *  protected  by  creator  public  key  *  with  policy  limits  (size,  count,  privileges)  

*  Maybe:  tunneling  other  protocol  messages  

102  

RELOAD  

Page 52: 1. Introduction to Telephony & VoIP

12/15/11  

52  

103  

Typical  residential  access  

10.0.0.2

10.0.0.3

130.233.240.9

Home Network ISP NetworkInternet

192.168.0.1

Sasu  Tarkoma,  Oct.  2007  

104  

NAT  traversal  

STUN / TURN server

SIP server

peer

media  

P2P  

get  public  IP  address  

Page 53: 1. Introduction to Telephony & VoIP

12/15/11  

53  

gather   prioritize   encode   offer  &  answer   check   complete  

105  

ICE  (Interactive  Connectivity  Establishment)  

106  

OpenVoIP  snapshots  

call  through  a  relay  call  through  a  NAT  direct  

Page 54: 1. Introduction to Telephony & VoIP

12/15/11  

54  

*  Google  Map  interface  

107  

OpenVoIP  snapshots  

*  Tracing  lookup  request  on  Google  Maps  

108  

OpenVoIP  snapshots  

Page 55: 1. Introduction to Telephony & VoIP

12/15/11  

55  

Emergency  calling  

Modes  of  emergency  communications  

110

emergency call

civic coordination

emergency alert (“inverse 911”)

dispatch

information “I-am-alive”

Page 56: 1. Introduction to Telephony & VoIP

12/15/11  

56  

*  Established  in  Feb.  1968  *  1970s:  selective  call  routing  *  late  1990s:  93%  of  population/96%  of  area  covered  by  9-­‐1-­‐1  *  95%  of  9-­‐1-­‐1  is  Enhanced  9-­‐1-­‐1  *  US  and  Canada  

*  Roughly  200  mio.  calls  a  year  (6  calls/second)  *  1/3  wireless  

*  6146  PSAPs  in  3135  counties  *  most  are  small  (2-­‐6  call  takers)  *  83.1%  of  population  have  some  Phase  II  (April  2007)  

*  “12-­‐15  million  households  will  be  using  VoIP  as  either  primary  or  secondary  line  by  end  of  2008”  (NENA)  

111

Background  on  9-­‐1-­‐1  

http://www.nena.org/  

112

Local  Switch  

Automatic    Number    Identification  

Automatic    Location    Identification   Collaboration  between    

local  phone  providers  and    local  public  safety  agencies  

Page 57: 1. Introduction to Telephony & VoIP

12/15/11  

57  

E9-1-1 Tandem w/SRDB

PSAP

End office

Loop Access Control ie DLC System

Update Links

The Local Loop

EM Trunks ES Trunks Public Safety Answering Point

PSAP ALI Data Links

Recent Change Links

DBMS

Service Providers ALI Database Elements

SCP GATEWAY (Firewall)

E9-­‐1-­‐1  Call  flow  elements  -­‐  wireline  

113  

ALI

Wireless  911  Phase  II  -­‐  TDOA  

114  BellSouth

Page 58: 1. Introduction to Telephony & VoIP

12/15/11  

58  

Wireless  911  Phase  II  accuracy  

115  

Accuracy 67% 95%

Handset-based 50m 150m

Network-based 100m 300m

ALI/SR DBASE

PSAP

Public Safety Answering Point

MSC

MPC PDE

E2

E9-1-1 Tandem w/SRDB

1

2

3 4

5 6

7

8

E9-1-1 CALL FLOW ELEMENTS - WIRELESS

TDL’s 9

#9 is only applicable in a CAS-Hybrid architecture, such as BellSouth’s WLS911 Solution

116  

Page 59: 1. Introduction to Telephony & VoIP

12/15/11  

59  

What  makes  VoIP  112/911  hard?  

117

POTS PSTN-­‐emulation  VoIP end-­‐to-­‐end  VoIP

(landline)  phone  number  limited  to  limited  area

landline  phone  number  anywhere  in  US  (cf.  German  180)

no  phone  number  or  phone  number  anywhere  around  the  world

regional  carrier national  or  continent-­‐wide  carrier

enterprise  “carrier”  or  anybody  with  a  peer-­‐to-­‐peer  device

voice  provider  =  line  provider  (~  business  relationship)

voice  provider  ≠  ISP voice  provider  ≠  ISP

national  protocols  and  call  routing

probably  North  America  +  EU

international  protocols  and  routing

location  =  line  location mostly  residential  or  small  business

stationary,  nomadic,  wireless

*  Each  country  and  region  has  their  own  *  subject  to  change  

*  Want  to  enable  *  traveler  to  use  familiar  home  

number  *  good  samaritan  to  pick  up  cell  

phone  *  Some  3/4-­‐digit  numbers  are  used  

for  non-­‐emergency  purposes  (e.g.,  directory  assistance)  

118

Emergency  numbers  

Emergency  number  

Page 60: 1. Introduction to Telephony & VoIP

12/15/11  

60  

*  Idea:  Identifiers  to  denote  emergency  calls  *  and  other  generic  (communication)  services  

*  Described  in  IETF  ECRIT  RFC  5031  *  Emergency  service  identifiers:  

     sos                                                General  emergency  services        sos.animal-­‐control      Animal  control        sos.fire                                      Fire  service        sos.gas                                        Gas  leaks  and  gas  emergencies        sos.marine  Maritime  search  and  rescue        sos.mountain  Mountain  rescue        sos.physician  Physician  referral  service        sos.poison  Poison  control  center        sos.police  Police,  law  enforcement  

119

Service  URN  

LoST:  Location-­‐to-­‐URL  Mapping  

120

cluster serves VSP2

NY US

NJ US

Bergen County NJ US

123 Broad Ave Leonia Bergen County NJ US

cluster serving VSP1 replicate root information

search referral

root nodes

Leonia NJ US

sip:[email protected]

VSP1

LoST  

Page 61: 1. Introduction to Telephony & VoIP

12/15/11  

61  

Emergency Services Network (ESN)

Emergency Services Routing Proxy (ESRP) Call Distributor

SIP Back-to-back User Agent

PSAP A

PSAP SIP Proxy

.

.

.

Location-to-Service Translation (LoST)

Server

.

.

.

Call Takers

PSAP Z

PSAP SIP Proxy

.

.

.

Call TakersCall DistributorSIP Back-to-back

User Agent

Public Safety Answering Points (PSAP)

Conference Server

RTP  

LoST  

Cellular  

Access  Network  

SIP  

9-­‐  9-­‐1-­‐1  9-­‐1-­‐  9-­‐1-­‐1  

121  

122  

The  POC  system  is  deployed  in  5  real  PSAPs  and  3  labs  across  the  USA.  PSAP:  Public  Safety  Answering  Point  (=Emergency  call  center)  

Fort  Wayne,  IN  

Rochester,  NY  

Bozeman,  MT  

King  County,  WA  

St.  Paul,  MN  

BAH  Lab  

Columbia  Univ.  Lab  

TAMU  Lab