116 problems

21
1 116 Problems in Algebra Author: Mohammad Jafari [email protected] Copyright Β©2011 by Mobtakeran Publications. All rights reserved.

Upload: kousik-sett

Post on 22-Oct-2014

54 views

Category:

Documents


9 download

TRANSCRIPT

Page 1: 116 Problems

1

116 Problems in Algebra

Author: Mohammad Jafari

[email protected]

Copyright Β©2011 by Mobtakeran Publications. All rights reserved.

Page 2: 116 Problems

2

Contents

Function Equation Problems……………………………………………………………………3

Inequality Problems……………………………………………………………………………….10

Polynomial Problems………………………………………………………………………………16

Other Problems………………………………………………………………………………………19

Solution to the Problems………………………………………………………………………..22

Page 3: 116 Problems

3

Function Equation Problems

1) Find all functions 𝑓:𝑁 β†’ 𝑁 such that:

𝑓(2010𝑓(𝑛) + 1389) = 1 + 1389 + β‹―+ 13892010 + 𝑛 (βˆ€π‘› ∈ β„•).

(Proposed by Mohammad Jafari)

2) Find all functions 𝑓:ℝ β†’ ℝ such that for all real numbers π‘₯,𝑦:

𝑓(π‘₯ + 𝑦) = 𝑓(π‘₯). 𝑓(𝑦) + π‘₯𝑦

(Proposed by Mohammad Jafari)

3) Find all functions 𝑓:𝑅 βˆ’ {1} β†’ 𝑅 such that:

𝑓(π‘₯𝑦) = 𝑓(π‘₯)𝑓(π‘Œ) + π‘₯𝑦 (βˆ€π‘₯,𝑦 ∈ ℝ βˆ’ {1})

(Proposed by Mohammad Jafari)

4) Find all functions 𝑓:𝑍 β†’ 𝑍 such that:

𝑓(π‘₯) = 2𝑓�𝑓(π‘₯)οΏ½ (βˆ€π‘₯ ∈ β„€)

(Proposed by Mohammad Jafari)

5) Find all functions 𝑓,𝑔:β„€ β†’ β„€ such that:

𝑓(π‘₯) = 3𝑓�𝑔(π‘₯)οΏ½ (βˆ€π‘₯ ∈ β„€)

(Proposed by Mohammad Jafari)

6) Find all functions 𝑓:β„€ β†’ β„€ such that:

7𝑓(π‘₯) = 3𝑓�𝑓(π‘₯)οΏ½ + 2π‘₯ (βˆ€π‘₯ ∈ β„€)

(Proposed by Mohammad Jafari)

7) Find all functions 𝑓:β„š β†’ β„š such that:

𝑓�π‘₯ + 𝑦 + 𝑓(π‘₯ + 𝑦)οΏ½ = 2𝑓(π‘₯) + 2𝑓(𝑦) (βˆ€π‘₯,𝑦 ∈ β„š)

(Proposed by Mohammad Jafari)

Page 4: 116 Problems

4

8) For all functions 𝑓:ℝ β†’ ℝ such that:

𝑓(π‘₯ + 𝑓(π‘₯) + 𝑦) = π‘₯ + 𝑓(π‘₯) + 2𝑓(𝑦) (βˆ€π‘₯,𝑦 ∈ ℝ) Prove that 𝑓(π‘₯) is a bijective function.

(Proposed by Mohammad Jafari)

9) Find all functions 𝑓:ℝ β†’ ℝ such that:

𝑓(π‘₯ + 𝑓(π‘₯) + 2𝑦) = π‘₯ + 𝑓�𝑓(π‘₯)οΏ½ + 2𝑓(𝑦) (βˆ€π‘₯,𝑦 ∈ ℝ)

(Proposed by Mohammad Jafari)

10) Find all functions 𝑓:ℝ β†’ ℝ such that:

𝑓(π‘₯ + 𝑓(π‘₯) + 2𝑦) = π‘₯ + 𝑓(π‘₯) + 2𝑓(𝑦) (βˆ€π‘₯,𝑦 ∈ ℝ)

(Proposed by Mohammad Jafari)

11) For all 𝑓:ℝ β†’ ℝ such that : 𝑓(π‘₯ + 𝑓(π‘₯) + 2𝑦) = π‘₯ + 𝑓(π‘₯) + 2𝑓(𝑦) (βˆ€π‘₯,𝑦 ∈ ℝ)

Prove that 𝑓(0) = 0.

(Proposed by Mohammad Jafari)

12) Find all functions 𝑓:ℝ+ β†’ ℝ+ such that, for all real numbers π‘₯ > 𝑦 > 0 :

𝑓(π‘₯ βˆ’ 𝑦) = 𝑓(π‘₯) βˆ’ 𝑓(π‘₯). 𝑓 οΏ½1π‘₯οΏ½ .𝑦

(Proposed by Mohammad Jafari)

13) Find all functions 𝑓:ℝ β†’ ℝ such that:

𝑓 �𝑓�π‘₯ + 𝑓(𝑦)οΏ½οΏ½ = π‘₯ + 𝑓(𝑦) + 𝑓(π‘₯ + 𝑦) (βˆ€π‘₯,𝑦 ∈ ℝ)

(Proposed by Mohammad Jafari)

14) Find all functions 𝑓:ℝ+⋃{0} β†’ ℝ+⋃{0} such that:

𝑓(𝑓�π‘₯ + 𝑓(𝑦)οΏ½) = 2π‘₯ + 𝑓(π‘₯ + 𝑦) (βˆ€π‘₯,𝑦 ∈ ℝ+ βˆͺ {0})

(Proposed by Mohammad Jafari)

Page 5: 116 Problems

5

15) Find all functions 𝑓:ℝ β†’ ℝ such that:

𝑓(π‘₯ + 𝑓(π‘₯) + 2𝑓(𝑦)) = π‘₯ + 𝑓(π‘₯) + 𝑦 + 𝑓(𝑦) (βˆ€π‘₯, 𝑦 ∈ ℝ)

(Proposed by Mohammad Jafari)

16) Find all functions 𝑓:ℝ β†’ ℝ such that:

𝑓�2π‘₯ + 2𝑓(𝑦)οΏ½ = π‘₯ + 𝑓(π‘₯) + 𝑦 + 𝑓(𝑦) (βˆ€π‘₯,𝑦 ∈ ℝ)

(Proposed by Mohammad Jafari)

17) Find all functions 𝑓:ℝ β†’ ℝ such that:

𝑓�𝑓(π‘₯) + 2𝑓(𝑦)οΏ½ = 𝑓(π‘₯) + 𝑦 + 𝑓(𝑦) (βˆ€π‘₯, 𝑦 ∈ ℝ)

(Proposed by Mohammad Jafari)

18) Find all functions 𝑓:ℝ β†’ ℝ such that: i) 𝑓�π‘₯2 + 𝑓(𝑦)οΏ½ = 𝑓(π‘₯)2 + 𝑓(𝑦) (βˆ€π‘₯, 𝑦 ∈ ℝ) ii) 𝑓(π‘₯) + 𝑓(βˆ’π‘₯) = 0 (βˆ€π‘₯ ∈ ℝ+) iii) The number of the elements of the set { π‘₯ ∣∣ 𝑓(π‘₯) = 0, π‘₯ ∈ ℝ } is finite.

(Proposed by Mohammad Jafari)

19) For all injective functions 𝑓:ℝ β†’ ℝ such that: 𝑓�π‘₯ + 𝑓(π‘₯)οΏ½ = 2π‘₯ (βˆ€π‘₯ ∈ ℝ) Prove that 𝑓(π‘₯) + π‘₯ is bijective.

(Proposed by Mohammad Jafari)

20) Find all functions 𝑓:ℝ β†’ ℝ such that:

𝑓�π‘₯ + 𝑓(π‘₯) + 2𝑓(𝑦)οΏ½ = 2π‘₯ + 𝑦 + 𝑓(𝑦) (βˆ€π‘₯, 𝑦 ∈ ℝ)

(Proposed by Mohammad Jafari)

21) For all functions 𝑓,𝑔, β„Ž:ℝ β†’ ℝ such that 𝑓 is injective and β„Ž is bijective satisfying 𝑓�𝑔(π‘₯)οΏ½ =

β„Ž(π‘₯) (βˆ€π‘₯ ∈ ℝ) , prove that 𝑔(π‘₯) is bijective function.

(Proposed by Mohammad Jafari)

Page 6: 116 Problems

6

22) Find all functions 𝑓:ℝ β†’ ℝ such that:

𝑓(2π‘₯ + 2𝑓(𝑦)) = π‘₯ + 𝑓(π‘₯) + 2𝑦 (βˆ€π‘₯, 𝑦 ∈ ℝ)

(Proposed by Mohammad Jafari)

23) Find all functions 𝑓:ℝ+ βˆͺ {0} β†’ ℝ+ such that:

𝑓 οΏ½π‘₯+𝑓(π‘₯)2

+ 𝑦� = 𝑓(π‘₯) + 𝑦 (βˆ€π‘₯, 𝑦 ∈ ℝ+ βˆͺ {0})

(Proposed by Mohammad Jafari)

24) Find all functions 𝑓:ℝ+ βˆͺ {0} β†’ ℝ+ βˆͺ {0} such that:

𝑓 οΏ½π‘₯+𝑓(π‘₯)2

+ 𝑓(𝑦)οΏ½ = 𝑓(π‘₯) + 𝑦 (βˆ€π‘₯, 𝑦 ∈ ℝ+ βˆͺ {0})

(Proposed by Mohammad Jafari)

25) For all functions 𝑓:ℝ+ βˆͺ {0} β†’ ℝ such that : i) 𝑓(π‘₯ + 𝑦) = 𝑓(π‘₯) + 𝑓(𝑦) (βˆ€π‘₯, 𝑦 ∈ ℝ+ βˆͺ {0}) ii) The number of the elements of the set οΏ½ π‘₯ ∣∣ 𝑓(π‘₯) = 0, π‘₯ ∈ ℝ+ βˆͺ {0} οΏ½ is finite.

Prove that 𝑓 is injective function.

(Proposed by Mohammad Jafari)

26) Find all functions 𝑓:ℝ+ βˆͺ {0} β†’ ℝ such that:

i) 𝑓(π‘₯ + 𝑓(π‘₯) + 2𝑦) = 𝑓(2π‘₯) + 2𝑓(𝑦) (βˆ€π‘₯, 𝑦 ∈ ℝ+ βˆͺ {0}) ii) The number of the elements of the set οΏ½ π‘₯ ∣∣ 𝑓(π‘₯) = 0, π‘₯ ∈ ℝ+ βˆͺ {0} οΏ½ is finite.

(Proposed by Mohammad Jafari)

27) Find all functions 𝑓:ℝ β†’ ℝsuch that:

i) 𝑓(𝑓(π‘₯) + 𝑦) = π‘₯ + 𝑓(𝑦) (βˆ€π‘₯, 𝑦 ∈ ℝ) ii) βˆ€π‘₯ ∈ ℝ+; βˆƒπ‘¦ ∈ ℝ+π‘ π‘’π‘β„Ž π‘‘β„Žπ‘Žπ‘‘ 𝑓(𝑦) = π‘₯

(Proposed by Mohammad Jafari)

Page 7: 116 Problems

7

28) Find all functions 𝑓:ℝ{0} β†’ ℝ such that: i) 𝑓(𝑓(π‘₯) + 𝑦) = π‘₯ + 𝑓(𝑦) (βˆ€π‘₯, 𝑦 ∈ ℝ) ii) The set {π‘₯ ∣ 𝑓(π‘₯) = βˆ’π‘₯, π‘₯ ∈ ℝ} has a finite number of elements.

(Proposed by Mohammad Jafari)

29) Find all functions 𝑓:ℝ β†’ ℝ such that:

𝑓�𝑓�𝑓(π‘₯)οΏ½ + 𝑓(𝑦) + 𝑧� = π‘₯ + 𝑓(𝑦) + 𝑓�𝑓(𝑧)οΏ½ (βˆ€π‘₯, 𝑦, 𝑧 ∈ ℝ)

(Proposed by Mohammad Jafari)

30) Find all functions 𝑓:ℝ β†’ ℝ such that:

𝑓 οΏ½π‘₯+𝑓(π‘₯)2

+ 𝑦 + 𝑓(2𝑧)οΏ½ = 2π‘₯ βˆ’ 𝑓(π‘₯) + 𝑓(𝑦) + 2𝑓(𝑧) (βˆ€π‘₯, 𝑦, 𝑧 ∈ ℝ)

(Proposed by Mohammad Jafari)

31) Find all functions 𝑓:ℝ+ βˆͺ {0} β†’ ℝ+ βˆͺ {0} such that:

𝑓 οΏ½π‘₯+𝑓(π‘₯)2

+ 𝑦 + 𝑓(2𝑧)οΏ½ = 2π‘₯ βˆ’ 𝑓(π‘₯) + 𝑓(𝑦) + 2𝑓(𝑧) (βˆ€π‘₯, 𝑦, 𝑧 ∈ ℝ+⋃{0})

(Proposed by Mohammad Jafari)

32) (IRAN TST 2010) Find all non-decreasing functions 𝑓:ℝ+ βˆͺ {0} β†’ ℝ+ βˆͺ {0} such that:

𝑓 οΏ½π‘₯+𝑓(π‘₯)2

+ 𝑦� = 2π‘₯ βˆ’ 𝑓(π‘₯) + 𝑓(𝑓(𝑦)) (βˆ€π‘₯, 𝑦 ∈ ℝ+ βˆͺ {0})

(Proposed by Mohammad Jafari)

33) Find all functions 𝑓:ℝ+ βˆͺ {0} β†’ ℝ+ βˆͺ {0} such that:

𝑓(π‘₯ + 𝑓(π‘₯) + 2𝑦) = 2π‘₯ + 𝑓(2𝑓(𝑦)) (βˆ€π‘₯, 𝑦 ∈ ℝ+ βˆͺ {0})

(Proposed by Mohammad Jafari)

34) Find all functions 𝑓:β„š β†’ β„š such that:

𝑓(π‘₯ + 𝑓(π‘₯) + 2𝑦) = 2π‘₯ + 2𝑓(𝑓(𝑦)) (βˆ€π‘₯, 𝑦 ∈ β„š)

(Proposed by Mohammad Jafari)

Page 8: 116 Problems

8

35) Find all functions 𝑓:ℝ+ βˆͺ {0} β†’ ℝ+ βˆͺ {0} such that:

𝑓 οΏ½π‘₯+𝑓(π‘₯)2

+ 𝑦 + 𝑓(2𝑧)οΏ½ = 2π‘₯ βˆ’ 𝑓(π‘₯) + 𝐹(𝑓(𝑦)) + 2𝑓(𝑧) (βˆ€π‘₯, 𝑦, 𝑧 ∈ ℝ+ βˆͺ {0})

(Proposed by Mohammad Jafari)

36) Find all functions 𝑓:ℝ β†’ ℝ such that:

𝑓�π‘₯ βˆ’ 𝑓(𝑦)οΏ½ = 𝑓(𝑦)2 βˆ’ 2π‘₯𝑓(𝑦) + 𝑓(π‘₯) (βˆ€π‘₯, 𝑦 ∈ ℝ)

(Proposed by Mohammad Jafari)

37) Find all functions 𝑓:ℝ β†’ ℝ such that:

(π‘₯ βˆ’ 𝑦)�𝑓(π‘₯) + 𝑓(𝑦)οΏ½ = (π‘₯ + 𝑦)�𝑓(π‘₯) βˆ’ 𝑓(𝑦)οΏ½ (βˆ€π‘₯, 𝑦 ∈ ℝ)

(Proposed by Mohammad Jafari)

38) Find all functions 𝑓:ℝ β†’ ℝ such that:

𝑓(π‘₯ βˆ’ 𝑦)(π‘₯ + 𝑦) = (π‘₯ βˆ’ 𝑦)(𝑓(π‘₯) + 𝑓(𝑦)) (βˆ€π‘₯, 𝑦 ∈ ℝ)

(Proposed by Mohammad Jafari)

39) Find all functions 𝑓:ℝ β†’ ℝ such that:

𝑓(π‘₯ βˆ’ 𝑦)(π‘₯ + 𝑦) = 𝑓(π‘₯ + 𝑦)(π‘₯ βˆ’ 𝑦) (βˆ€π‘₯,𝑦 ∈ ℝ)

(Proposed by Mohammad Jafari)

40) Find all non-decreasing functions 𝑓,𝑔:ℝ+ βˆͺ {0} β†’ ℝ+ βˆͺ {0} such that: 𝑔(π‘₯) = 2π‘₯ βˆ’ 𝑓(π‘₯) prove that 𝑓 and 𝑔 are continues functions.

(Proposed by Mohammad Jafari)

41) Find all functions 𝑓: { π‘₯ ∣ π‘₯ ∈ β„š , π‘₯ > 1 } β†’ β„š such that :

𝑓(π‘₯)2. 𝑓(π‘₯2)2 + 𝑓(2π‘₯). 𝑓 οΏ½π‘₯2

2οΏ½ = 1 βˆ€π‘₯ ∈ {π‘₯ ∣ π‘₯ ∈ β„š, π‘₯ > 1}

(Proposed by Mohammad Jafari)

Page 9: 116 Problems

9

42) (IRAN TST 2011) Find all bijective functions 𝑓:ℝ β†’ ℝ such that:

𝑓�π‘₯ + 𝑓(π‘₯) + 2𝑓(𝑦)οΏ½ = 𝑓(2π‘₯) + 𝑓(2𝑦) (βˆ€π‘₯, 𝑦 ∈ ℝ)

(Proposed by Mohammad Jafari)

43) Find all functions 𝑓:ℝ+ β†’ ℝ+ such that:

𝑓(π‘₯ + 𝑓(π‘₯) + 𝑦) = 𝑓(2π‘₯) + 𝑓(𝑦) (βˆ€π‘₯, 𝑦 ∈ ℝ+)

(Proposed by Mohammad Jafari)

44) Find all functions 𝑓:ℝ+ βˆͺ {0} β†’ ℝ+ βˆͺ {0} such that:

𝑓�π‘₯ + 𝑓(π‘₯) + 2𝑓(𝑦)οΏ½ = 2𝑓(𝑋) + 𝑦 + 𝑓(𝑦) (βˆ€π‘₯, 𝑦 ∈ ℝ+ βˆͺ {0})

(Proposed by Mohammad Jafari)

45) Find all functions 𝑓:ℝ+ βˆͺ {0} β†’ ℝ+ βˆͺ {0} such that: i) 𝑓�π‘₯ + 𝑓(π‘₯) + 𝑓(2𝑦)οΏ½ = 2𝑓(π‘₯) + 𝑦 + 𝑓(𝑦) (βˆ€π‘₯, 𝑦 ∈ ℝ+ βˆͺ {0}) ii) 𝑓(0) = 0

(Proposed by Mohammad Jafari)

46) Find all functions 𝑓:ℝ+ β†’ ℝ+ such that: 𝑓(π‘₯ + 𝑦𝑛 + 𝑓(𝑦)) = 𝑓(π‘₯) (βˆ€π‘₯, 𝑦 ∈ ℝ+ , 𝑛 ∈ β„• , 𝑛 β‰₯ 2)

(Proposed by Mohammad Jafari)

47) Find all functions 𝑓:β„• β†’ β„• such that:

𝑓(𝑛 βˆ’ 1) + 𝑓(𝑛 + 1) < 2𝑓(𝑛) (βˆ€π‘› ∈ β„•, 𝑛 β‰₯ 2)

(Proposed by Mohammad Jafari)

48) Find all functions 𝑓: {𝐴 ∣ 𝐴 ∈ β„š,𝐴 β‰₯ 1} β†’ β„š such that:

𝑓(π‘₯𝑦2) = 𝑓(4π‘₯). 𝑓(𝑦) +𝑓(8π‘₯)𝑓(2𝑦)

(Proposed by Mohammad Jafari)

Page 10: 116 Problems

10

Inequality Problems:

49) For all positive real numbers π‘₯,𝑦, 𝑧 such that π‘₯ + 𝑦 + 𝑧 = 2 prove that : π‘₯

π‘₯4 + 𝑦 + 𝑧 + 1+

𝑦𝑦4 + 𝑧 + π‘₯ + 1

+𝑧

𝑧4 + π‘₯ + 𝑦 + 1≀ 1

(Proposed by Mohammad Jafari)

50) For all positive real numbers π‘Ž, 𝑏, 𝑐 such that π‘Ž + 𝑏 + 𝑐 = 6 prove that :

οΏ½ οΏ½π‘Ž

(π‘Ž + 𝑏)(π‘Ž + 𝑐)𝑛

≦3

βˆšπ‘Žπ‘π‘π‘› ,𝑛 ∈ β„•, 𝑛 β‰₯ 3

(Proposed by Mohammad Jafari)

51) For all real numbers π‘Ž, 𝑏, 𝑐 ∈ (2,4) prove that: 2

π‘Ž + 𝑏2 + 𝑐3+

2𝑏 + 𝑐2 + π‘Ž3

+2

𝑐 + π‘Ž2 + 𝑏3<

3π‘Ž + 𝑏 + 𝑐

(Proposed by Mohammad Jafari)

52) For all positive real numbers π‘Ž, 𝑏, 𝑐 prove that: π‘Ž

π‘Ž4 + π‘Ž2 + 1+

𝑏𝑏4 + 𝑏2 + 1

+𝑐

𝑐4 + 𝑐2 + 1<

43

(Proposed by Mohammad Jafari)

53) For all real positive numbers π‘Ž, 𝑏, 𝑐 such that1 + 1π‘Ž+𝑏+𝑐

< 1βˆšπ‘Ž2+𝑏2+𝑐2

+ 1βˆšπ‘Žπ‘+𝑏𝑐+π‘Žπ‘

prove that:

π‘Žπ‘ + 𝑏𝑐 + π‘π‘Ž < π‘Ž + 𝑏 + 𝑐

(Proposed by Mohammad Jafari)

54) For all real numbers π‘Ž, 𝑏, 𝑐 such that π‘Ž β‰₯ 𝑏 β‰₯ 0 β‰₯ 𝑐 and π‘Ž + 𝑏 + 𝑐 < 0 prove that : π‘Ž3 + 𝑏3 + 𝑐3 + π‘Žπ‘2 + 𝑏𝑐2 + π‘π‘Ž2 ≀ 2π‘Ž2𝑏 + 2𝑏2𝑐 + 2𝑐2π‘Ž

(Proposed by Mohammad Jafari)

55) For all real numbers 0 < π‘₯1 < π‘₯2 < β‹― < π‘₯1390 < πœ‹2 prove that :

𝑠𝑖𝑛3π‘₯1 + π‘π‘œπ‘ 3π‘₯2+…+𝑠𝑖𝑛3π‘₯1389 + π‘π‘œπ‘ 3π‘₯1390 < 695

(Proposed by Mohammad Jafari)

Page 11: 116 Problems

11

56) For all 𝛼𝑖 ∈ οΏ½0, πœ‹2οΏ½ (𝑖 = 1,2, … ,𝑛) prove that :

𝑛2β‰₯ min {�𝑠𝑖𝑛3𝛼𝑖 . π‘π‘œπ‘ 3𝛼𝑖+1,�𝑠𝑖𝑛3𝛼𝑖+1. π‘π‘œπ‘ 3𝛼𝑖

𝑛

𝑖=1

}𝑛

𝑖=1

(𝛼𝑛+1 = 𝛼1)

(Proposed by Mohammad Jafari)

57) For all real numbers π‘Ž, 𝑏, 𝑐 ∈ [2,3] prove that: 1

π‘Žπ‘(2π‘Ž βˆ’ 𝑏) +1

𝑏𝑐(2𝑏 βˆ’ 𝑐) +1

π‘π‘Ž(2𝑐 βˆ’ π‘Ž) β‰₯19

(Proposed by Mohammad Jafari)

58) For all real numbers π‘Ž, 𝑏, 𝑐 ∈ [1,2] prove that: 2

π‘Žπ‘(3π‘Ž βˆ’ 𝑏)+

2𝑏𝑐(3𝑏 βˆ’ 𝑐)

+2

π‘π‘Ž(3𝑐 βˆ’ π‘Ž)≀ 3

(Proposed by Mohammad Jafari)

59) For all real positive numbers π‘Ž, 𝑏, 𝑐 prove that: π‘Ž

3π‘Ž + 𝑏 + 𝑐+

𝑏3𝑏 + 𝑐 + π‘Ž

+𝑐

3𝑐 + π‘Ž + 𝑏≀

35

(Proposed by Mohammad Jafari)

60) For all positive real numbers such that π‘Žπ‘π‘ = 1 prove that: π‘Ž

βˆšπ‘2 + 3+

π‘βˆšπ‘2 + 3

+𝑐

βˆšπ‘Ž2 + 3β‰₯

32

(Proposed by Mohammad Jafari)

61) For all positive real numbers π‘Ž, 𝑏, 𝑐 such that π‘Ž + 𝑏 + 𝑐 = 1 prove that:

(π‘Žπ‘

βˆšπ‘Ž + 𝑏+

π‘π‘Žβˆšπ‘ + 𝑐

+𝑐𝑏

βˆšπ‘ + π‘Ž)2 + (

π‘π‘βˆšπ‘Ž + 𝑏

+π‘π‘Ž

βˆšπ‘ + 𝑏+

π‘Žπ‘βˆšπ‘ + π‘Ž

)2 ≀13

(Proposed by Mohammad Jafari)

62) For all positive real numbers π‘Ž, 𝑏, 𝑐 such that π‘Ž + 𝑏 + 𝑐 = 1 prove that: 1

βˆšπ‘Ž + 𝑏+

1βˆšπ‘ + 𝑐

+1

βˆšπ‘ + π‘Žβ‰€

1√2π‘Žπ‘π‘

(Proposed by Mohammad Jafari)

Page 12: 116 Problems

12

63) For all positive real numbers π‘Ž, 𝑏, 𝑐 such that π‘Žπ‘ + 𝑏𝑐 + π‘π‘Ž = 23 prove that:

1βˆšπ‘Ž + 𝑏

+1

βˆšπ‘ + 𝑐+

1βˆšπ‘ + π‘Ž

≀1

βˆšπ‘Žπ‘π‘

(Proposed by Mohammad Jafari)

64) For all positive real numbers π‘Ž, 𝑏, 𝑐 such that π‘Ž + 𝑏 + 𝑐 = 3prove that: 1

π‘Ž + 𝑏 + 𝑐2+

1𝑏 + 𝑐 + π‘Ž2

+1

𝑐 + π‘Ž + 𝑏2≀ 1

(Proposed by Mohammad Jafari)

65) For all positive real numbers π‘Ž, 𝑏, 𝑐 prove that: π‘Ž4 + π‘Ž2 + 1π‘Ž6 + π‘Ž3 + 1

+𝑏4 + 𝑏2 + 1𝑏6 + 𝑏3 + 1

+𝑐4 + 𝑐2 + 1𝑐6 + 𝑐3 + 1

≀3

π‘Ž2 + π‘Ž + 1+

3𝑏2 + 𝑏 + 1

+3

𝑐2 + 𝑐 + 1

(Proposed by Mohammad Jafari)

66) For all positive real numbers π‘Ž, 𝑏, 𝑐 prove that: π‘Ž4 + π‘Ž2 + 1π‘Ž6 + π‘Ž3 + 1

+𝑏4 + 𝑏2 + 1𝑏6 + 𝑏3 + 1

+𝑐4 + 𝑐2 + 1𝑐6 + 𝑐3 + 1

≀ 4

(Proposed by Mohammad Jafari)

67) For all positive real numbers π‘Ž, 𝑏, 𝑐 prove that: 1 + 𝑏2 + 𝑐4

π‘Ž + 𝑏2 + 𝑐3+

1 + 𝑐2 + π‘Ž4

𝑏 + 𝑐2 + π‘Ž3+

1 + π‘Ž2 + 𝑏4

𝑐 + π‘Ž2 + 𝑏3β‰₯ 3

(Proposed by Mohammad Jafari)

68) For all real numbers π‘Ž, 𝑏, 𝑐 ∈ (1,2) prove that: 4

π‘Ž + 𝑏 + 𝑐β‰₯

11 + π‘Ž + 𝑏2

+1

1 + 𝑏 + 𝑐2+

11 + 𝑐 + π‘Ž2

(Proposed by Mohammad Jafari)

69) For all positive real numbers π‘₯,𝑦, 𝑧 such that π‘₯ + 𝑦 + 𝑧 + 1π‘₯

+ 1𝑦

+ 1𝑧

= 10 prove that:

(π‘₯2 + 1)2

4π‘₯+

(𝑦2 + 1)2

4𝑦+

(𝑧2 + 1)2

4𝑧β‰₯ π‘₯ + 𝑦 + 𝑧

(Proposed by Mohammad Jafari)

Page 13: 116 Problems

13

70) For all positive real numbers π‘₯,𝑦, 𝑧 such that π‘₯ + 𝑦 + 𝑧 + 1π‘₯

+ 1𝑦

+ 1𝑧

= 10 prove that:

4οΏ½π‘₯ + 𝑦 + 𝑧 β‰₯ π‘₯ + 𝑦 + 𝑧 + 3

(Proposed by Mohammad Jafari)

71) For all positive real numbers π‘Ž, 𝑏, 𝑐 prove that:

(οΏ½π‘Ž2

𝑏 + 𝑐)(οΏ½

π‘Ž(𝑏 + 𝑐)2

) β‰₯98

(Proposed by Mohammad Jafari)

72) For all positive real numbers π‘Ž, 𝑏, 𝑐 prove that:

(οΏ½π‘Ž

(𝑏 + 𝑐)2)(οΏ½

(𝑏 + 𝑐)2

π‘Ž) β‰₯ (οΏ½

2π‘Žπ‘ + 𝑐

)2

(Proposed by Mohammad Jafari)

73) For all positive real numbers π‘Ž, 𝑏, 𝑐 prove that:

(οΏ½1

π‘Ž2 + 𝑏2)(

π‘Ž3

𝑏2 + 𝑐2) β‰₯ (οΏ½

π‘Žπ‘2 + 𝑐2

)(οΏ½π‘Ž2

𝑏2 + 𝑐2)

(Proposed by Mohammad Jafari)

74) For all positive numbers π‘Ž, 𝑏, 𝑐 prove that :

2(οΏ½π‘Ž

𝑏 + 𝑐)(οΏ½π‘Žπ‘2) β‰₯ (οΏ½π‘Ž) (οΏ½π‘Žπ‘)

(Proposed by Mohammad Jafari)

75) For all π‘₯𝑖 ∈ β„• (𝑖 = 1,2, … ,𝑛) such that π‘₯𝑖 β‰  π‘₯𝑗 ,prove that: 1π‘₯112

+2

π‘₯112 + π‘₯2

22+ β‹―+

𝑛π‘₯112 + β‹―+ π‘₯𝑛

𝑛2≀𝑛(𝑛 + 3)

2

(Proposed by Mohammad Jafari)

76) For all 𝑛 ∈ β„• (𝑛 β‰₯ 3) prove that :

𝑛�(π‘›βˆ’1)!οΏ½1

π‘›βˆ’1 + 𝑛�(π‘›βˆ’2)!οΏ½1

π‘›βˆ’2 + β‹―+ 𝑛(1)11 < 𝑛

𝑛2 + 𝑛

π‘›βˆ’12 + β‹―+ 𝑛1

(Proposed by Mohammad Jafari)

Page 14: 116 Problems

14

77) For all positive real numbers π‘Ž, 𝑏, 𝑐 such that π‘Ž + 𝑏 + 𝑐 = 1 prove that:

οΏ½1

(π‘Ž + 2𝑏)(𝑏 + 2𝑐)β‰₯ 3

(Proposed by Mohammad Jafari)

78) For all positive real numbers π‘Ž, 𝑏, 𝑐such that π‘Ž + 𝑏 + 𝑐 = 2 prove that:

οΏ½1

(π‘Ž3 + 𝑏 + 1)(1 + 𝑏 + 𝑐3)≀ 1

(Proposed by Mohammad Jafari)

79) For all positive real numbers π‘Ž, 𝑏, 𝑐 such that βˆšπ‘Ž + βˆšπ‘ + βˆšπ‘ = 1π‘Ž

+ 1𝑏

+ 1𝑐 prove that:

min {π‘Ž

1 + 𝑏2,

𝑏1 + 𝑐2

,𝑐

1 + π‘Ž2} ≀

12

(Proposed by Mohammad Jafari)

80) For all positive real numbers π‘Ž, 𝑏, 𝑐 such that 1π‘Žπ‘š

+ 1π‘π‘š

+ 1π‘π‘š

= 3π‘Žπ‘›π‘π‘›π‘π‘› (π‘š,𝑛 ∈ β„•) prove

that:

min οΏ½π‘Žπ‘˜

1 + 𝑏𝑙,π‘π‘˜

1 + 𝑐𝑙,π‘π‘˜

1 + π‘Žπ‘™οΏ½ ≀

12

(π‘˜, 𝑙 ∈ β„•)

(Proposed by Mohammad Jafari)

81) For all positive real numbers π‘₯,𝑦 prove that:

οΏ½π‘₯𝑛

π‘₯π‘›βˆ’1 + π‘₯π‘›βˆ’2𝑦 + β‹―+ π‘¦π‘›βˆ’1β‰₯π‘₯ + 𝑦 + 𝑧

𝑛 (𝑛 ∈ β„•)

(Proposed by Mohammad Jafari)

82) For all positive real numbers π‘₯,𝑦, 𝑧 prove that:

οΏ½π‘₯2𝑛

οΏ½π‘₯20 + 𝑦20οΏ½οΏ½π‘₯21 + 𝑦21�… (π‘₯2π‘›βˆ’1 + 𝑦2π‘›βˆ’1)β‰₯π‘₯ + 𝑦 + 𝑧

2𝑛

(Proposed by Mohammad Jafari)

83) For all positive real numbers π‘₯,𝑦, 𝑧 such that π‘₯π‘₯2+4

+ 𝑦𝑦2+4

+ 𝑧𝑧2+4

= 15 prove that:

π‘₯π‘₯ + 6

+𝑦

𝑦 + 6+

𝑧𝑧 + 6

< 2.4

(Proposed by Mohammad Jafari)

Page 15: 116 Problems

15

84) Find minimum real number π‘˜ such that for all real numbers π‘Ž, 𝑏, 𝑐 :

οΏ½οΏ½2(π‘Ž2 + 1)(𝑏2 + 1) + π‘˜ β‰₯ 2οΏ½π‘Ž + οΏ½π‘Žπ‘

(Proposed by Mohammad Jafari)

85) (IRAN TST 2011) Find minimum real number π‘˜ such that for all real numbers π‘Ž, 𝑏, 𝑐,𝑑 :

οΏ½οΏ½(π‘Ž2 + 1)(𝑏2 + 1)(𝑐2 + 1) + π‘˜ β‰₯ 2(π‘Žπ‘ + 𝑏𝑐 + 𝑐𝑑 + π‘‘π‘Ž + π‘Žπ‘ + 𝑏𝑑)

(Proposed by Dr.Amir Jafari and Mohammad Jafari)

86) For all positive real numbers π‘Ž, 𝑏, 𝑐 prove that:

1 +βˆ‘π‘Žπ‘βˆ‘π‘Ž2

≀�(π‘Ž + 𝑏)2 + 𝑐2

2π‘Ž2 + 2𝑏2 + 𝑐2≀ 2 +

βˆ‘π‘Žπ‘βˆ‘π‘Ž2

(Proposed by Mohammad Jafari)

87) For all real numbers 1 ≀ π‘Ž, 𝑏, 𝑐 prove that:

οΏ½(π‘Ž + 𝑏)2 + 𝑐2π‘Ž + 2𝑏 + 𝑐

β‰€οΏ½π‘Ž

(Proposed by Mohammad Jafari)

Page 16: 116 Problems

16

Polynomial Problems:

88) Find all polynomials 𝑝(π‘₯) and π‘ž(π‘₯) with real coefficients such that:

οΏ½ [𝑝(π‘₯ βˆ’ 𝑖).𝑝(π‘₯ βˆ’ 𝑖 βˆ’ 1). (π‘₯ βˆ’ 𝑖 βˆ’ 3)]2010

𝑖=0

β‰₯ π‘ž(π‘₯). π‘ž(π‘₯ βˆ’ 2010) ( βˆ€π‘₯ ∈ ℝ)

(Proposed by Mohammad Jafari)

89) Find all polynomials 𝑝(π‘₯) and π‘ž(π‘₯) such that: i) π‘οΏ½π‘ž(π‘₯)οΏ½ = π‘žοΏ½π‘(π‘₯)οΏ½ (βˆ€π‘₯ ∈ ℝ) ii) 𝑝(π‘₯) β‰₯ βˆ’π‘₯ , π‘ž(π‘₯) ≀ βˆ’π‘₯ (βˆ€π‘₯ ∈ ℝ)

(Proposed by Mohammad Jafari)

90) Find all polynomials 𝑝(π‘₯) and π‘ž(π‘₯) such that: i) βˆ€π‘₯ ∈ ℝ ∢ 𝑝(π‘₯) > π‘ž(π‘₯) ii) βˆ€π‘₯ ∈ ℝ ∢ 𝑝(π‘₯). π‘ž(π‘₯ βˆ’ 1) = 𝑝(π‘₯ βˆ’ 1). π‘ž(π‘₯)

(Proposed by Mohammad Jafari)

91) Find all polynomials 𝑝(π‘₯) and π‘ž(π‘₯) such that: 𝑝2(π‘₯) + π‘ž2(π‘₯) = (3π‘₯ βˆ’ π‘₯3). 𝑝(π‘₯). π‘ž(π‘₯) βˆ€π‘₯ ∈ (0,√3)

(Proposed by Mohammad Jafari)

92) The polynomial 𝑝(π‘₯) is preserved with real and positive coefficients. If the sum of its coefficient's inverse equals 1, prove that :

𝑝(1).𝑝(π‘₯) β‰₯ (οΏ½οΏ½π‘₯𝑖44

𝑖=0

)4

(Proposed by Mohammad Jafari)

93) The polynomial 𝑝(π‘₯) is preserved with real and positive coefficients and with degrees of 𝑛. If the sum of its coefficient's inverse equals 1 prove that :

�𝑝(4) + 1 β‰₯ 2𝑛+1

(Proposed by Mohammad Jafari)

94) The polynomial 𝑝(π‘₯) is increasing and the polynomial π‘ž(π‘₯)is decreasing such that: 2π‘οΏ½π‘ž(π‘₯)οΏ½ = 𝑝�𝑝(π‘₯)οΏ½ + π‘ž(π‘₯) βˆ€π‘₯ ∈ ℝ Show that there is π‘₯0 ∈ ℝ such that:

𝑝(π‘₯0) = π‘ž(π‘₯0) = π‘₯0

Page 17: 116 Problems

17

(Proposed by Mohammad Jafari)

95) Find all polynomials 𝑝(π‘₯) such that for the increasing function 𝑓:ℝ+ βˆͺ {0} β†’ ℝ+ 2𝑝�𝑓(π‘₯)οΏ½ = 𝑓�𝑝(π‘₯)οΏ½ + 𝑓(π‘₯) ,𝑝(0) = 0

(Proposed by Mohammad Jafari)

96) Find all polynomials 𝑝(π‘₯) such that, for all non zero real numbers x,y,z that 1π‘₯

+ 1𝑦

=1𝑧

𝑀𝑒 β„Žπ‘Žπ‘£π‘’: 1

𝑝(π‘₯) +1

𝑝(𝑦)=

1𝑝(𝑧)

(Proposed by Mohammad Jafari)

97) 𝑝(π‘₯) is an even polynomial (𝑝(π‘₯) = 𝑝(βˆ’π‘₯)) such that 𝑝(0) β‰  0 .If we can write 𝑝(π‘₯) as a multiplication of two polynomials with nonnegative coefficients, prove that those two polynomials would be even too.

(Proposed by Mohammad Jafari)

98) Find all polynomials 𝑝(π‘₯) such that: 𝑝(π‘₯ + 2)(π‘₯ βˆ’ 2) + 𝑝(π‘₯ βˆ’ 2)(π‘₯ + 2) = 2π‘₯𝑝(π‘₯) ( βˆ€π‘₯ ∈ ℝ)

(Proposed by Mohammad Jafari)

99) If for polynomials 𝑝(π‘₯) and π‘ž(π‘₯) that all their roots are real: 𝑠𝑖𝑔𝑛�𝑝(π‘₯)οΏ½ = 𝑠𝑖𝑔𝑛(π‘ž(π‘₯))

Prove that there is polynomial 𝐻(π‘₯) such that𝑝(π‘₯)π‘ž(π‘₯) = 𝐻(π‘₯)2.

(Proposed by Mohammad Jafari)

100) For polynomials 𝑝(π‘₯) and π‘ž(π‘₯) : [𝑝(π‘₯2 + 1)] = [π‘ž(π‘₯2 + 1)] Prove that: 𝑃(π‘₯) = π‘ž(π‘₯).

(Proposed by Mohammad Jafari)

101) For polynomials 𝑃(π‘₯) and π‘ž(π‘₯) with the degree of more than the degree of the polynomial 𝑙(π‘₯), we have :

�𝑝(π‘₯)𝑙(π‘₯)οΏ½

= οΏ½π‘ž(π‘₯)𝑙(π‘₯)οΏ½

(βˆ€π‘₯ ∈ { π‘₯ ∣∣ 𝑙(π‘₯) β‰  0, π‘₯ ∈ ℝ+ })

Prove that: 𝑝(π‘₯) = π‘ž(π‘₯).

(Proposed by Mohammad Jafari)

Page 18: 116 Problems

18

102) The plain and desert which compete for breathing play the following game : The desert choses 3 arbitrary numbers and the plain choses them as he wants as the coefficients of the polynomial ((… π‘₯2 + β‹―π‘₯ + β‹― )).If the two roots of this polynomial are irrational, then the desert would be the winner, else the plain is the winner. Which one has the win strategy?

(Proposed by Mohammad Jafari)

103) The two polynomials 𝑝(π‘₯) and π‘ž(π‘₯) have an amount in the interval [𝑛 βˆ’ 1,𝑛] (𝑛 ∈ β„•) forπ‘₯ ∈ [0,1].If 𝑝 is non-increasing such that:π‘οΏ½π‘ž(𝑛π‘₯)οΏ½ = π‘›π‘ž(𝑝(π‘₯)) ,prove that there is π‘₯0 ∈ [0,1] such that π‘ž(𝑝(π‘₯0) = π‘₯0.

(Proposed by Mohammad Jafari)

Page 19: 116 Problems

19

Other Problems

104) Solve the following system in real numbers :

οΏ½π‘Ž2 + 𝑏2 = 2𝑐1 + π‘Ž2 = 2π‘Žπ‘π‘2 = π‘Žπ‘

(Proposed by Mohammad Jafari)

105) Solve the following system in real numbers :

⎩βŽͺβŽͺ⎨

βŽͺβŽͺβŽ§π‘Žπ‘ =

𝑐2

1 + 𝑐2

𝑏𝑐 =π‘Ž2

1 + π‘Ž2

π‘π‘Ž =𝑏2

1 + 𝑏2

(Proposed by Mohammad Jafari)

106) Solve the following system in positive real numbers : (π‘š,𝑛 ∈ β„•)

οΏ½(2 + π‘Žπ‘›)(2 + π‘π‘š) = 9(2 + π‘Žπ‘š)(2 βˆ’ 𝑏𝑛) = 3

(Proposed by Mohammad Jafari)

107) Solve the following system in real numbers :

οΏ½π‘₯𝑦2 = 𝑦4 βˆ’ 𝑦 + 1𝑦𝑧2 = 𝑧4 βˆ’ 𝑧 + 1𝑧π‘₯2 = π‘₯4 βˆ’ π‘₯ + 1

(Proposed by Mohammad Jafari)

108) Solve the following system in real numbers :

οΏ½π‘₯𝑦 = 𝑦6 + 𝑦4 + 𝑦2 + 1𝑦𝑧3 = 𝑧6 + 𝑧4 + 𝑧2 + 1𝑧π‘₯5 = π‘₯ 6 + π‘₯4 + π‘₯2 + 1

(Proposed by Mohammad Jafari)

Page 20: 116 Problems

20

109) Solve the following system in real numbers :

οΏ½π‘₯2. 𝑠𝑖𝑛2𝑦 + π‘₯2 = 𝑠𝑖𝑛𝑦. 𝑠𝑖𝑛𝑧𝑦2. 𝑠𝑖𝑛2𝑧 + 𝑦2 = 𝑠𝑖𝑛𝑧. 𝑠𝑖𝑛π‘₯𝑧2. 𝑠𝑖𝑛2π‘₯ + 𝑧2 = 𝑠𝑖𝑛π‘₯. 𝑠𝑖𝑛𝑦

(Proposed by Mohammad Jafari)

110) Solve the following system in real numbers :

οΏ½(π‘Ž2 + 1). (𝑏2 + 1). (𝑐2 + 1) =

818

(π‘Ž4 + π‘Ž2 + 1). (𝑏4 + 𝑏2 + 1). (𝑐4 + 𝑐2 + 1) =818

(π‘Žπ‘π‘)32

(Proposed by Mohammad Jafari)

111) Solve the following system in real numbers :

οΏ½π‘Ž2 + 𝑏𝑐 = 𝑏2 + π‘π‘Žπ‘2 + π‘π‘Ž = 𝑐2 + π‘Žπ‘π‘2 + π‘Žπ‘ = π‘Ž2 + 𝑏𝑐

(Proposed by Mohammad Jafari)

112) Solve the following system in positive real numbers :

⎩βŽͺ⎨

βŽͺβŽ§οΏ½π‘Ž +

1π‘ŽοΏ½ οΏ½

𝑏 +1𝑏�

= 2(𝑐 +1𝑐

)

�𝑏 +1𝑏� οΏ½

𝑐 +1𝑐�

= 2(π‘Ž +1π‘Ž

)

�𝑐 +1𝑐� οΏ½

π‘Ž +1π‘ŽοΏ½

= 2(𝑏 +1𝑏

)

(Proposed by Mohammad Jafari)

113) Solve the following equation for π‘₯ ∈ (0, πœ‹2

): 2√π‘₯πœ‹

+βˆšπ‘ π‘–π‘›π‘₯ + βˆšπ‘‘π‘Žπ‘›π‘₯ = 12√π‘₯

+ βˆšπ‘π‘œπ‘‘π‘₯ + βˆšπ‘π‘œπ‘ π‘₯

(Proposed by Mohammad Jafari)

114) Find all functions 𝑓,𝑔: ℝ+ β†’ ℝ+ in the following system :

οΏ½(𝑓(π‘₯) + 𝑦 βˆ’ 1)(𝑔(𝑦) + π‘₯ βˆ’ 1) = (π‘₯ + 𝑦)2 βˆ€π‘₯, 𝑦, 𝑧 ∈ ℝ+

(βˆ’π‘“(π‘₯) + 𝑦)(𝑔(𝑦) + π‘₯) = (π‘₯ + 𝑦 + 1)(𝑦 βˆ’ π‘₯ βˆ’ 1) βˆ€π‘₯, 𝑦, 𝑧 ∈ ℝ+

(Proposed by Mohammad Jafari)

Page 21: 116 Problems

21

115) Solve the following system in real positive numbers :

οΏ½βˆ’π‘Ž4 + π‘Ž3 + π‘Ž2 = 𝑏 + 𝑐 + π‘‘βˆ’π‘4 + 𝑏3 + 𝑏2 = 𝑐 + 𝑑 + π‘Žβˆ’π‘4 + 𝑐3 + 𝑐2 = 𝑑 + π‘Ž + π‘βˆ’π‘‘4 + 𝑑3 + 𝑑2 = π‘Ž + 𝑏 + 𝑐

(Proposed by Mohammad Jafari)

116) Solve the following equation in real numbers : π‘₯𝑦

2π‘₯𝑦 + 𝑧2+

𝑦𝑧2𝑦𝑧 + π‘₯2

+𝑧π‘₯

2𝑧π‘₯ + 𝑦2= 1

(Proposed by Mohammad Jafari)