13 buckling

30
1 ! Critical Load ! Ideal Column with Pin Supports ! Columns Having Various Supports BUCKLING OF COLUMNS

Upload: mary-marasigan

Post on 26-Nov-2015

36 views

Category:

Documents


4 download

DESCRIPTION

Columns

TRANSCRIPT

  • 1! Critical Load! Ideal Column with Pin Supports! Columns Having Various Supports

    BUCKLING OF COLUMNS

  • 2Critical Load

    Pcr

    Pcr

    P > Pcr

    P > Pcr

  • 3L/2

    L/2

    P

    Ak

    L/2

    L/2

    P

    Ak=(L/2)

    F

    P

    P

    P tan

    P tan

    A

    Fx = 0:+ FP =tan2

    = kP tan2

    )2

    (2 LkP =

    4kLPcr =

    For small ,

  • 4Unstableequilibrium

    P

    Neutralequilibrium

    Bifurcation point

    Stable equilibrium

    O

    4kLPcr =

  • 5Ideal Column with Pin Supports

    L

    P Pcr

  • 6x

    L

    P

    P

    x x

    + Mx = 0 ;

    0=+ MP

    PM =

    Moment-curvature

    PdxdEIM == 2

    2

    022

    =+ PdxdEI

    0)(22

    =+ EIP

    dxd

    *0)( 222

    =+ EIP

    dxd

    0'' 2 =+ c

    )cos()sin( 21 xEIPCx

    EIPC +=

    P

    P

    M

    N = 0

    x

  • 7 Boundary condition

    0, == Lx

    )sin(0)sin( nLEIP

    ==

    0),1()0(0 221 =+= CCC

    0,0 == x

    )cos()sin( 21 xEIPCx

    EIPC +=

    0,0)sin( 11 = CLEIPC

    ,...3,2,1: == nnLEIP

    x

    L

    P

    P

    x x

    P

    P

    M

    N = 0

    x

  • 8x

    v

    L

    P

    P

    x

    P

    P

    M

    0

    x

    x

    Critical Load Pcr

    nLEIP

    =

    222 nLEIP

    =

    ,...3,2,1: == nnLEIP

    *222

    =L

    EInP

    *22

    =LEIPcr

  • 9x

    max

    L/2L

    P

    P

    xn = 1

    P

    P

    L/2

    L/2

    n = 2

    ,...3,2,1,222

    == nL

    EInPcr

    2

    221L

    EIPcr

    = 2222

    LEIPcr

    =

  • 10

    Neutralequilibrium

    Bifurcation point

    Stable equilibrium

    O

    Pcr = L22EI

    Unstableequilibrium

    P

    x

    L

    Pcr

    Pcr

    x

  • 11

    Critical Stress

    2

    2

    )(KLEIPcr

    =

    ratiosslenderneseffectiverLK =

    2

    22

    )()(

    KLArE

    =

    2

    2

    )(rLK

    EA

    Pcr =

    r = radius of gyration

    2

    2

    )(r

    KLE

    cr =

    K = effective-length factor, for pin-pin column K = 1

  • 12

    KL/r

    89100125150175200225

    cr (MPa)

    25019712688644939

    Structural steel A 36E = 200 GPa y = 250 MPa

    Structural steelA 36R 40 (4000 kg/cm2)

    400

    200

    0 KL/r

    cr , MPa

    100 200

    100

    50 150

    300

    2

    32

    2

    2

    )(

    )10200(

    )(r

    KLMPa

    rKL

    Ecr

    ==

    197 MPa

    88 MPa49 MPa

    2

    2

    )(r

    KLE

    cr =

    89

    y = 250

  • 13

    2

    2

    )(r

    KLE

    cr =

    Aluminum E = 70 GPa y = 215 MPa

    KL/r

    5775100125150175200

    cr (MPa)

    215122.869.144.230.722.617.3

    200

    100

    0 KL/r

    cr , MPa

    100 200

    50

    50 150

    150

    2

    32

    2

    2

    )(

    )1070(

    )(r

    KLMPa

    rKL

    Ecr

    ==

    57

    215 MPa

    69 MPa

    30 MPa17 MPa

  • 14

    Example 1

    A 7 m long A-36 steel tube having the cross section shown is to be used as apin-ended column. Determine the maximum allowable axial load the column cansupport so that it does not buckle or yield. Take the yield stress of 250 MPa

    70 mm75 mm

    Pcr

    Pcr

    7 m

  • 15

    Using Eq. 5 to obtain the critical load with Est = 200 GPa,

    Pcr

    Pcr

    7 m

    70 mm

    75 mm

    2

    2

    LEIPcr

    =

    2

    4462

    7

    )07.04

    075.04

    )(10200[( =

    = 241.4 kN

    This force creates an average compressive stress in the column of

    22 )070.0()075.0(43.241

    ==A

    Pcrcr

    = 106 MPa < Y = 250 MPa O.K

    The maximum allowable axial load the column can support is 241.73 kN

  • 16

    Pcr

    Pcr

    7 m

    70 mm

    75 mm

    = 106 MPa < Y = 250 MPa O.K

    Pcr = cr A = (106 x 106) (.0752-.0702)

    2

    2

    )(r

    KLE

    cr =

    222

    442 002631.

    )070.075(.4/)070.075(. m

    AIr =

    ==

    5.136)00795.0(

    )7)(1(==

    rKL

    2

    32

    2

    2

    )5.136()10200(

    )(

    MPa

    rKL

    Ecr

    ==

    Alternate method:

    = 241.7 kN

    mmr 5.79=

  • 17

    Structural steelA 36R 40 (4000 kg/cm2)

    400

    200

    0 KL/r

    cr , MPa

    100 200

    100

    50 150

    300

    197 MPa

    88 MPa49 MPa

    2

    2

    )(r

    KLE

    cr =

    89

    y = 250

    136.5

    cr = 106

  • 18

    Example 2

    The A-36 steel W200x46 member show is to be used as a pin-connected column.Determine the largest axial load it can support before it either begins to buckle orthe steel yields.

    x

    x

    y y4 m

  • 19

    Pinned - Pinned Column

    2

    2

    LEIPcr

    =

    = 1887. 6 kN

    APcr

    cr =

    AAP yallow ==

    A-36 steel W200x46 A = 5890 mm2 , Ix = 45.5x106 mm4, and Iy = 15.3x106 mm4

    x

    x

    y y

    = 320.5 MPa > Y = 250 MPa

    2

    662

    4)103.15)(10200(

    =

    610589056.1887

    =

    )105890)(10250( 266 mPa =

    kN1472=

    4 m

  • 20

    Columns Having Various Type of Supports

    P

    P

    ML

    P

    x

    u

    ( ) = PdxdEI 2

    2

    EIP

    EIP

    dxd

    =+22

    -----(7)

    This equation is non-homogeneous because of thenonzero term on the right side. The solution consists of botha complementary and particular solution, namely,

    ++= )cos()sin( 21 xEIPCx

    EIPC

    The constants are determined from the boundary conditions. At x =0, = 0, so that C2 = -. Also,

    )sin()cos( 21 xEIP

    EIPCx

    EIP

    EIPC

    dxd

    =

    At x = 0, d/dx = 0, so that C1 = 0. The deflection curve is therefore

    )]cos(1[ xEIP

    = -----(8)

  • 21

    Since the deflection at the top of the column is , that is, at x = L, = , we require

    )2

    cos()cos(0)cos( nLEIPorL

    EIP

    ==

    The smallest critical load occurs when n = 1, so that

    2

    2

    4LEIPcr

    = -----(9)

    )]cos(1[ xEIP

    = 0)cos( =LEIP-->

    ,0Since

  • 22

    L

    P

    Fixed - Pinned ends

    L

    P

    Fixed fixed ends

    K = 0.7

    Le = L

    K = 1

    Le = 0.5L

    K = 0.5

    Le = 0.7L

    Pinned -pinned ends

    P

    Note : K = effective-length factor

    Effective Length (Le)

    2

    2

    2

    2

    )/()( rKLEor

    KLEIP crcr

    ==

    K = 2

    Fixed - free ends

    L

    P

    Le = 2L

  • 23

    Example 3

    A W 150x24 (A=3060 mm2, Ix = 13.4x106 mm4, Iy = 1.83x106 mm4) steel columnis 8 m long and is fixed at its ends as shown. Its load-carrying capacity isincreased by bracing it about the y-y (weak) axis using struts that are assumed tobe pin-connected to its mid-height. Determine the load it can support so that thecolumn does not buckle nor the material exceed the yield stress. Take E = 200GPa and y = 250 MPa

    yy

    x

    x

    3 m

    5 m

    P

  • 24

    W 150x24 A = 3060 mm2

    rx = 66.2 mm

    Fixed (top)Fixed (bottom)Kx = 0.5

    Ix = 13.4x106 mm4Iy = 1.83x106 mm4

    Pinned (top)Fixed (bottom)Ky = 0.7ry = 24.5 mm

    Bucking x-x axis

    kNmPaAP yY 765)103060)(10250(266 ===

    kNm

    mkPaKL

    EIPx

    xxcr 1653)85.0(

    )104.13)(10200()(

    )( 24662

    2

    2

    =

    ==

    Yield Stress (y)

    kNm

    mkPaKL

    EIP

    y

    yycr 9.294)57.0(

    )1083.1)(10200()(

    )( 24662

    2

    2

    =

    ==

    Bucking y-y axis

    E = 200 GPa , y = 414 MPa

    yy

    x

    x

    3 m

    5 m

    P

    y-y axis buckling

    5m

    3 m

    x-x axis buckling

    8 m

  • 25

    NOTE

    2

    32

    2

    2

    )(

    )10200(

    )(r

    KLMPa

    rKL

    Ecr

    ==

    KL/r

    89100125150175200225

    cr (MPa)

    25019712688644939

    Structural steel A 36E = 200 GPa

    400

    200

    0 KL/r

    , MPa

    100 200

    100

    197 MPa

    50 150

    300

    88 MPa49 MPa

    89

    y = 250

    2

    2

    )(rLK

    Ecr

    =

    42.602.66

    )108)(5.0()(3

    =

    =xrKL

    179

    61.9 MPa

    6.1785.24

    )105)(7.0()(3

    =

    =yrKL

  • 26

    Example 4

    The aluminum column is fixed at its bottom and is braced at its top by two rodsso as to prevent movement at the top along the x axis, If it is assumed to be fixedat its base, determine the largest allowable load P that can be applied. Use afactor of safety for buckling of F.S. = 3.0. Take Eal = 70 GPa, y = 215 MPa, A =7.5(10-3) m2, Ix = 61.3(10-6) m4, Iy = 23.2(10-6) m4.

    x

    z

    y

    5 m

    P

    Rod

  • 27

    5 m

    y-y axis bucklingx-x axis buckling

    5 m

    Eal = 70 GPa, y = 215 MPa, A = 7.5(10-3) m2

    rx = 90 mm

    Free (top)Fixed (bottom)Kx = 2

    Ix = 61.3(10-6) m4 Iy = 23.2(10-6) m4

    Pinned (top)Fixed (bottom)Ky = 0.7ry = 50 mm

    Bucking x-x axis

    kNmPaAP yY 1612)105.7)(10215(236 ===

    kNkNSF

    PP crallow 43631308

    .===

    Yield Stress (y)

    kNm

    mkPaKL

    EIP

    y

    yycr 1308)57.0(

    )102.23)(1070()(

    )( 24662

    2

    2

    =

    ==

    Bucking y-y axis

    kNm

    mkPaKL

    EIPx

    xxcr 425)52(

    )103.61)(1070()(

    )( 24662

    2

    2

    =

    ==

    kNkNSF

    PP crallow 1413425

    .===

    x

    z

    y

    5 m

    P

    Rod

  • 28

    NOTE

    Aluminum E = 70 Gpa y = 215 MPa

    2

    32

    2

    2

    )(

    )1070(

    )(r

    KLMPa

    rKL

    Ecr

    ==

    KL/r

    5775100125150175200

    cr (MPa)

    215122.869.144.230.722.617.3

    1.11190

    1052)(3

    =

    =mm

    mmr

    KLx

    7050

    1057.0)(3

    =

    =mm

    mmr

    KLy

  • 29

    Example 5

    Determine the maximum load P the column can support before it either begins tobuckle or the steel yields. Assume that member BC is pinned at its end for the x-xaxis and fixed for y-y axis buckling. Take E = 200 GPa, y = 250 MPa.

    2 m

    P

    4 m

    1 m35 mm

    4

    53

    x

    y35 mm

    25 mm

    AC

    B

  • 30

    2 m

    P

    4 m

    1 m35 mm

    4

    53

    x

    y35 mm

    25 mm

    AC

    B

    F

    + MA = 0: 0)2()4)(53( =+ PF

    *65

    = PF

    )035.0)(025.0()495(

    )10200(65

    2

    92 =

    P

    495]

    )035.0)(025.0()035.0)(025.0(

    121[

    )5(1)(2/1

    3 == xrKL

    346]

    )025.0)(035.0()025.0)(035.0(

    121[

    )5(5.0)(2/1

    3 == yrKL

    A

    rKL

    EAF cr2

    2

    )(

    ==

    P = 8.46 kN < 262.5 kN

    Ax

    Ay

    kNP

    kNAPF

    Y

    YYY

    5.262

    8.218)035.025)(.10250(65 3

    =

    ====