주례발표(20101019)spectralclusteringforclass

Upload: huhyong

Post on 10-Apr-2018

220 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/8/2019 (20101019)SpectralClusteringforClass

    1/18

    Weekly Seminar

    10/14 :

    - Co-clustering many-to-many corresponding

    block instances using bipartite spectral graphpartitioning

    - Graph partitioning with Fiedler vector

    - Graph partitioning with graph spectrum

    - Co-clustering with SVD( singular valuedecomposition)

    - Simple implementation for ideal data set withSVD method

  • 8/8/2019 (20101019)SpectralClusteringforClass

    2/18

    Graph partitioning with Fiedler vector

    Minimise weight of connections between groups

    Graph cut theory :

    Maximise weight of within-group connections Minimise weight of between-group connections

    min cut(A,B)

    Optimal cut

  • 8/8/2019 (20101019)SpectralClusteringforClass

    3/18

    Graph partitioning with Fiedler vector

    a

    b

    c

    d

    1

    3

    4

    3

    0

    3

    4

    3

    343

    000

    001

    010

    d

    c

    b

    a

    A

    dcba

    !

    10

    0

    0

    0

    000

    300

    050

    004

    d

    cb

    a

    D

    dcba

    !

    D: degree matrix; A: adjacency matrix; D-A: Laplacian matrix

    Eigenvectors of Q(=D-A) form the Laplacian spectrum

  • 8/8/2019 (20101019)SpectralClusteringforClass

    4/18

    Graph partitioning with Fiedler vector

    !

    !

    !

    !

    !

    Eji

    ji

    Eji

    jiii

    jiijii

    TT

    jiij

    T

    xx

    xaij xxd

    xxAxd

    AxxDxx

    xxQQxx

    ),(

    2

    ),(

    2

    2

    )(

    2

    = 4 * C(X, X)

    Given a bisection ( X, X ), define a partitioning vector

    clearly, x B 1, x { 0 ( 1 = (1, 1, , 1 ), 0 =(0, 0, , 0)), thus

    '1

    1.s.t),,,( 21

    Xi

    Xixxxxx in

    !! 0

    C(X, X)

    -Number of edges between

    between-group connections-Therefore, we want tominimize

    TQxx

  • 8/8/2019 (20101019)SpectralClusteringforClass

    5/18

    Graph partitioning with Fiedler vector

    Property of

    - Q is symmetric and semi-definite, i.e.

    (i)

    (ii) all eigenvalues of Q are u 0- The smallest eigenvalue of Q is 0

    - According toCourant-Fischerminimax principle:

    the 2nd smallest eigenvalue satisfies:

    - Fiedlersmethod with relaxation of x as continuous form

    TQ xx

    0u! jiijT xxQQxx

  • 8/8/2019 (20101019)SpectralClusteringforClass

    6/18

    Graph partitioning with Fiedler vector

    OriginalGraph

    Sortingaccordingtothe

    secondeigenvectords components

    Graph Diagonalization

    andpartitioning

  • 8/8/2019 (20101019)SpectralClusteringforClass

    7/18

    Co-clustering is to group two types of objects

    into their own clusters simultaneously.

    Bipartite graph partitioning (Dhillon and Zha) Use bipartite graph to model the inter-relationship between the t

    wo types of objects: the edges are of the same type in the bipartite graph so the graph cut is still easy to define.

    It can be proven that the solutions are the singular vectors associ

    ated with the second smallest singular value of the normalized inter-relationship matrix 2/1

    2

    2/1

    1

    ! ADDA

    Co-clustering with singular value decomposition

  • 8/8/2019 (20101019)SpectralClusteringforClass

    8/18

    Co-clustering with non-symmetry matrix A

    Simple matrix manipulation for Laplacian matrix

    Thus may be written as2/12

    2/1

    1

    ! ADDA

    Co-clustering with singular value decomposition

  • 8/8/2019 (20101019)SpectralClusteringforClass

    9/18

    Rewrite the above equations as

    Rewrite , as

    These are precisely the equations that define thesingular value decomposition (SVD) of thenormalized matrix An

    2/1

    2

    2/1

    1

    ! ADDA

    Co-clustering with singular value decomposition

  • 8/8/2019 (20101019)SpectralClusteringforClass

    10/18

    Computation of the left and right singular vectorscorresponding to the second (largest) singular valueof An,

    Just as the second singular vectors contain bimodalinformation, singular vectors u2,u3, . . . uk and v2,v3, . . . vk often contain k-modal information aboutthe data set

    Co-clustering with singular value decomposition

  • 8/8/2019 (20101019)SpectralClusteringforClass

    11/18

    Co-clustering with singular value decomposition

  • 8/8/2019 (20101019)SpectralClusteringforClass

    12/18

    Simple implementation

    P11

    P12

    P13

    P14

    P15

    P16

    P17

    P21

    P22

    P23

    P24P25

    P26

    P27 P28 P29

    1:1corresponding :

    1:ncorresponding :

    m:ncorresponding :

    Ideal dataset

  • 8/8/2019 (20101019)SpectralClusteringforClass

    13/18

    Simple implementation

    P11

    P12

    P13

    P14

    P15

    P16

    P17

    P21

    P22

    P23

    P24

    P25

    P26

    P27 P28 P29

    P11 P12 P13 P14 P15 P16 P17

    P21 1 0 0 0 0 0 0

    P22 0 1 1 0 0 0 0P23 0 0 1 1 0 0 0

    P24 0 0 0 0 1 0 0

    P25 0 0 0 0 1 0 1

    P26 0 0 0 0 0 0 1

    P27 0 0 0 0 0 1 0

    P28 0 0 0 0 0 1 0

    P29 0 0 0 0 0 0 1

    Adjacency Matrix

  • 8/8/2019 (20101019)SpectralClusteringforClass

    14/18

    Simple implementation

    P11

    P12

    P13

    P14

    P15

    P16

    P17

    P21

    P22

    P23

    P24

    P25

    P26

    P27 P28 P29

    D1 1 0 0 0 0 0 0 0 00 2 0 0 0 0 0 0 0

    0 0 2 0 0 0 0 0 0

    0 0 0 1 0 0 0 0 0

    0 0 0 0 2 0 0 0 0

    0 0 0 0 0 1 0 0 00 0 0 0 0 0 1 0 0

    0 0 0 0 0 0 0 1 0

    0 0 0 0 0 0 0 0 1

    D2 1 0 0 0 0 0 00 1 0 0 0 0 0

    0 0 2 0 0 0 0

    0 0 0 1 0 0 0

    0 0 0 0 2 0 0

    0 0 0 0 0 2 0

    0 0 0 0 0 0 3

  • 8/8/2019 (20101019)SpectralClusteringforClass

    15/18

    Simple implementation

    P11

    P12

    P13

    P14

    P15

    P16

    P17

    P21

    P22

    P23

    P24

    P25

    P26

    P27 P28 P29

    An = (D1^-0.5)*A*(D2^-0.5)

    1 0 0 0 0 0 00 0.707 0.5 0 0 0 0

    0 0 0.5 0.707 0 0 0

    0 0 0 0 0.707 0 0

    0 0 0 0 0.5 0 0.408

    0 0 0 0 0 0 0.577

    0 0 0 0 0 0.707 0

    0 0 0 0 0 0.707 00 0 0 0 0 0 0.577

  • 8/8/2019 (20101019)SpectralClusteringforClass

    16/18

    Simple implementation

    P11

    P12

    P13

    P14

    P15

    P16

    P17

    P21

    P22

    P23

    P24

    P25

    P26

    P27 P28 P29

    P21 0 0 0

    P

    22 0 0 0.5P23 0 0 0.5

    P24 0 -0.447 0

    P25 0 -0.447 0

    P26 0 -0.447 0

    P27 -0.707 0 0

    P28 -0.707 0 0

    P29 0 -0.447 0P11 0 0 0

    P12 0 0 0.5

    P13 0 0 0.5

    P14 0 0 0.5

    P15 0 -0.447 0

    P16 -0.707 0 0

    P17 0 -0.447 0

    Simple Clusteringmethodfor Z with L = 2

  • 8/8/2019 (20101019)SpectralClusteringforClass

    17/18

    Future works

    Weighted adjacency matrix not binary

    The similarity function for weighted adjacency

    Directed Hausdorff distance Overlapping ratio

    Construction of graph itself

    Determination of L for clustering data

  • 8/8/2019 (20101019)SpectralClusteringforClass

    18/18

    Far future works

    Conflation for feature class level

    How to measure similarities between classes consideri

    ng location discrepancy and different representationJiMok_01 JiMok_02 JiMok_03JiMok_04 a

    A001 A002 a B001 B002 a E001E002 a