2011.08 summer school...• optical lattice clock proposal at fsm 2001 1 prospects: “magic...

40
FIRST-QIPP / DYCE 夏期研修会2011~関西・関東学生チャプター合同研究会~ 京都大学 時計台記念館 2F 国際交流ホールⅠ 2011年8月12日(金)~8月17日(水) 光格子時計の高精度周波数比較 東京大学大学院工学系研究科 ERATO 創造時空間プロジェクト 科学技術振興機構 ERATO 創造時空間プロジェクト科学技術振興機構 理化学研究所、量子計測研究室 1 香取秀俊

Upload: others

Post on 30-Jul-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 2011.08 summer school...• Optical lattice clock proposal at FSM 2001 1 Prospects: “magic lattice” and sideband cooling down to quantum ... Testing LPI 10-19 10-18 a l freq Gravitational

FIRST-QIPP / DYCE 夏期研修会2011~関西・関東学生チャプター合同研究会~京都大学 時計台記念館 2F 国際交流ホールⅠ2011年8月12日(金)~8月17日(水)

光格子時計の高精度周波数比較

東京大学大学院工学系研究科ERATO 創造時空間プロジェクト 科学技術振興機構ERATO 創造時空間プロジェクト、科学技術振興機構

理化学研究所、量子計測研究室

1香取秀俊

Page 2: 2011.08 summer school...• Optical lattice clock proposal at FSM 2001 1 Prospects: “magic lattice” and sideband cooling down to quantum ... Testing LPI 10-19 10-18 a l freq Gravitational

Personal research background• Finish D. thesis in ‘94 in Tokyo (Prof. Fujio Shimizu)

– Ultracold neutral rare‐gas atoms (Ar*,Kr*), atomic interactions…P t d i W lth ’ i MPQ G hi (94 9 97 3)• Post doc. in Walther’s group in MPQ, Garching (94.9‐97.3)– Prof,. Shimizu’s suggestion: Do not join ion clock group.– Precise manipulation of a single ion in a linear (ring) trap– Excitement of the Cirac‐Zoller gate; a step toward QC, as later realized 

in Wineland’s group and Blatt’s group– Spent nearly 2 years for terrible micro‐motion compensation, QC 

d fseemed far away, …• Fruitful Gifts from Garching

– Huge amount of time to read Dr. Wineland’s papers and his strategies– Never win the game as long as I follow his track– Glancing at In+ clock poster every day – We should work faster with many atoms to recover 20 years’ delay! We should work faster with many atoms to recover 20 years  delay! 

• Simulating ion experiments with neutral atoms (97.4‐present)– Narrowline cooling down to μK (1999) and “magic wavelength” optical 

trap (1999)trap (1999)• Optical lattice clock proposal at FSM 2001

Page 3: 2011.08 summer school...• Optical lattice clock proposal at FSM 2001 1 Prospects: “magic lattice” and sideband cooling down to quantum ... Testing LPI 10-19 10-18 a l freq Gravitational

1

Prospects: “magic lattice” and sideband cooling down to quantum g q

degeneracy

2 essential2 essential experimental tools for transferring Paul traptransferring Paul trap tech. into neutrals.

Page 4: 2011.08 summer school...• Optical lattice clock proposal at FSM 2001 1 Prospects: “magic lattice” and sideband cooling down to quantum ... Testing LPI 10-19 10-18 a l freq Gravitational

Quantum MetrologyQuantum Metrology

Study of measurement at quantum limited performance

Time / FrequencyCurrently, NOT on

NOT limited by technical noises:Currently, NOT on 

temperature, weight, (voltage),… lack of quantum

noises: Noise from electronics 

circuit, detectors, …(voltage),… lack of quantum references

circuit, detectors, … Thermal noise

Time/frequency measurement is NOT limited by frequency counters but is limited by the quantum systemfrequency counters but is limited by the quantum system itself (and their design).

Page 5: 2011.08 summer school...• Optical lattice clock proposal at FSM 2001 1 Prospects: “magic lattice” and sideband cooling down to quantum ... Testing LPI 10-19 10-18 a l freq Gravitational

精密計測の鉄則:「測定値を時間・周波数の測定に置き換えること」測定値を時間 周波数 測定 置き換 る 」

時間・周波数は物理計測の中で最も正確に計測時間・周波数は物理計測の中で最も正確に計測可能な物理量 1秒の定義の精度 15桁 国際原子時 1秒の定義の精度:15桁、国際原子時 長さ計測;光速度一定、時間計測へ 電圧計測 ジョセフソン効果 周波数計測へ 電圧計測;ジョセフソン効果、周波数計測へー KJ = 2e / h=483597.9(GHz/V);ジョセフソン定数

光格子時計のアイディア摂動を与えるプロトコルを周波数で定義するー 摂動を与えるプロトコルを周波数で定義する

Page 6: 2011.08 summer school...• Optical lattice clock proposal at FSM 2001 1 Prospects: “magic lattice” and sideband cooling down to quantum ... Testing LPI 10-19 10-18 a l freq Gravitational

内容内容

• 原子時計の実現:2状態間のエネルギー差を正確に測る方法確 測 方法– デーコヒーレンスの少ないqbitの実現

• 原子時計の安定度は量子射影ノイズで原理的原子時計の安定度は量子射影ノイズで原理的に制限さえる

• 光格子時計の発明 「魔法波長」の発見• 光格子時計の発明、「魔法波長」の発見

• 量子限界で動作する光格子時計の実現

(原子時計の)時間比較でわかる と• (原子時計の)時間比較でわかること

7

Page 7: 2011.08 summer school...• Optical lattice clock proposal at FSM 2001 1 Prospects: “magic lattice” and sideband cooling down to quantum ... Testing LPI 10-19 10-18 a l freq Gravitational

Definition of “a second”— Limit of the frequency accuracy of spectroscopy — NewLimit of the frequency accuracy of spectroscopy 

ν 0 International freq. comparison ith 15 di it (TAI)

New definition?

10 16

10‐17

ty Δν/ν

10‐1410‐15

with 15 digits (TAI) GPS with atomic clock ensemble: 

10‐16

ertaint

The earth’s orbital10 12

10‐1310‐14

Optical frequency comb (1999‐) Hänsch, Hall, allows 19 digits frequency comparison

Essen’s Cs clock (NPL,1955)

al unce The earth’s orbital 

period 1 year = 31,556,925.9747 s(1956‐1967)

H fi t iti f 133C

10‐11

10‐12q y p

actio

na

( )Hyperfine transition of 133Cs1 s = 9,192,631,770 cycle (GCPM:1967) Defined as the proper time on the rotating geoid Cs atom at rest at an abs. temperature of 0 K

10‐910‐10

10‐7

Fra

The earth’s rotation period 1 day = 86,400 s (‐1956)

p10‐8 (GCPM: Conférence générale des poids et mesures)

1930 1940 1950 1960 1970 1980 1990 2000 2010 2020Year

8

Page 8: 2011.08 summer school...• Optical lattice clock proposal at FSM 2001 1 Prospects: “magic lattice” and sideband cooling down to quantum ... Testing LPI 10-19 10-18 a l freq Gravitational

Building Atomic Clocks• Believe in the constancy of fundamental constant (Is this true?)• Believe in the constancy of fundamental constant. (Is this true?)• Measure local oscillator frequency referencing the atomic transition

– Excitation linewidth γ ≈ 1/T (Fourier limit for T interaction) – Data averaging for better statistics with N atoms– Uncertainty in frequency estimation (QPN):

• Servo control of flywheel oscillator (laser)

1/ d( ) / dBN NpT N

y ( )

T H h/

Servo

T. Haensch/J. Hall (1998‐)

N‐atoms/ions

Counter

Microwave or laser oscillator

CounterOptical frequency comb 

Detector ν Hz divide by ν0

ergy hν0=EB‐EA

EB: excited state

signal

γ=1/Tti

T γ/√N

Ene 0 B A

EA: ground state ν0 frequencys γ 1/T

0

time

9

Page 9: 2011.08 summer school...• Optical lattice clock proposal at FSM 2001 1 Prospects: “magic lattice” and sideband cooling down to quantum ... Testing LPI 10-19 10-18 a l freq Gravitational

量子揺らぎとの戦い

δ / (f fl )

原子によるレーザー周波数の最善の測定Excitation 50:50 beam splitterδνc/γ (freq. fluct.)

≈ δκ≈ 1/√N (QPN)

Energy

uency

Excitation probability

0 0.5 1 N

50:50 beam splitter

ΔNB=√N/2N/2 ≈ 1/√N (QPN)

EBhν0=EB‐EA

ν0freq

uγ=1/T

/2

Frequency sensitivity ≈1/γ=T

ΔNA=√N/2

N/2EB ν0‐γ/2

νL=ν0‐γ/2

N/2 

12a b a状態かb状態か確率半々の二項分布

(ベルヌーイ試行)

The best evaluation of the laser frequency is done by setting νL=ν0‐γ/2, where the excitation probability is ½.

( ルヌ イ試行)→分散は½(1-½)N→偏差√N/2

EAsett g L 0 γ/ , e e t e e c tat o p obab ty s ½

Atomic state can be projected on either A or B. For Natoms, ΔNA(or B)=√N/2, the same as photons through a beam splitter, causing quantum noise ΔNA/N=2/√N.

10

p , g q A/ /

Shot (Projection) noise limit uncertainty: ∆ν=γ/√N,    large N helps!

W. M. Itano et al., Phys. Rev. A 47, 3554 (1993).

Page 10: 2011.08 summer school...• Optical lattice clock proposal at FSM 2001 1 Prospects: “magic lattice” and sideband cooling down to quantum ... Testing LPI 10-19 10-18 a l freq Gravitational

Strategies for making better clocksg gIndicator: fractional uncertainty ∆ν/ν0→With a given measurement uncertainty ∆ν≈10‐3 10‐5Hz higher→ With a given measurement uncertainty ∆ν≈10 3‐10 5 Hz, higher ν0 wins, i.e., optical clocks (ν0≈1015 Hz) surpass Cs clock at MW (ν0≈1010 Hz) that provides SI‐second/International atomic time.

AccuracyStability( 0 ) p /

• How small is perturbation ∆ν(EM field, Doppler, collisions,…) 

t b d t iti

• How fast can one achieve projected accuracy? 

on unperturbed transition frequency?

• Projection/Shot noise limited stability given by Allan deviationdeviation

In view of accuracy, an ion in a Paul trap would be a perfect clock however there iswould be a perfect clock, however, there is still a good reason to have better stability. 11

Page 11: 2011.08 summer school...• Optical lattice clock proposal at FSM 2001 1 Prospects: “magic lattice” and sideband cooling down to quantum ... Testing LPI 10-19 10-18 a l freq Gravitational

In view of the accuracy aspects of the clock…Single atoms/ions held in field‐free space would be ideal

For decades, singly trapped‐ions (atoms) in Paul traps (“50‐) have 

Single atoms/ions held in field‐free space would be ideal

g y pp ( ) p ( )been considered to be the prime candidate for future optical atomic clocks as proposed by Dehmelt and others (“82)

Paul traps confine charged particle near the zero of the trapping electric‐field; therefore the minimized perturbation promises l k Δ / 10 18 h h bili i li i dclock accuracy Δν/ν0 ≈ 10‐18, however the stability is limited.

Al+ ion optical clock with uncertainty of 7.0 × 10−18 (NIST group 2009.12)12

Page 12: 2011.08 summer school...• Optical lattice clock proposal at FSM 2001 1 Prospects: “magic lattice” and sideband cooling down to quantum ... Testing LPI 10-19 10-18 a l freq Gravitational

Stability of a clock: It takes some time to achieve good statistics

Occurrenceγ=1/T; freq. uncertainty is limited 

z) 5∙10140

1by measurement time T

ncy (Hz 0

‐1

eque

n

0 200 400 600 800 1000

1 1

Fr Fractional uncertainty: 0 0 0

1 1 ( )N n

Total Allan

0Time (s)

Total measurements

Measurements per unit time

Allan deviation

( )per unit time

Significant speed up of the measurement can be achieved by increasing atom # measured in a unit time 

13

Page 13: 2011.08 summer school...• Optical lattice clock proposal at FSM 2001 1 Prospects: “magic lattice” and sideband cooling down to quantum ... Testing LPI 10-19 10-18 a l freq Gravitational

Stability of a clock: It takes some time to achieve good statistics

Occurrence

f l

z) 5∙10140

1 If one prepares N samples instead of one, the 

b

ncy (Hz 0

‐1

measurement can be N times faster!

eque

n

0 200 400 600 800 1000

1 1

Fr Fractional uncertainty:

Total Allan

0 0 0

1 1 ( )N n

0Time (s)

Total measurements

Measurements per unit time

Allan deviation

( )per unit time

Significant speed up of the measurement can be achieved by increasing atom # measured in a unit time 

14

Page 14: 2011.08 summer school...• Optical lattice clock proposal at FSM 2001 1 Prospects: “magic lattice” and sideband cooling down to quantum ... Testing LPI 10-19 10-18 a l freq Gravitational

見えなかった新たな時間領域に光をあてる!

, : 1 1( )

Clock stability Allan variance TC:      Cycle timen/TC: Observed atoms/cycle

10-13

nty

ayh th yr.

0 0 0( )

/ CN n T

n/TC:  Observed atoms/cycle

τ:         Averaging time

10-15

10-14

ncer

tain

1 d1 

1 mon 1 y

Temp Atomic I t ti l

10-17

10-16

uenc

y u International

Moon tidalSun tidal

Testing LPI

10-19

10-18

10

al fr

equ

Gravitational red shift @1cm 

Testing LPI

Blackbody shift

inaccessible time domain

10-21

10-20

10

ract

iona Blackbody shift 

uncertainty for Hg

10-2 10-1 100 101 102 103 104 105 106 107 10810Fr

Averaging time (s)

Page 15: 2011.08 summer school...• Optical lattice clock proposal at FSM 2001 1 Prospects: “magic lattice” and sideband cooling down to quantum ... Testing LPI 10-19 10-18 a l freq Gravitational

Our approach for novel atomic clock― Engineering of the perturba on―― Engineering of the perturba on ― 

• Traditional approach: ultimate removal of the ppelectromagnetic field from interrogated atoms– Quantum mechanical stability limit achieved for single‐ion 

clocksclocks• Is application of well‐engineered perturbation improve 

clocks?– Freeze atomic motion (within optical wavelength) to suppress 

Doppler shift similar to an ion in a Paul trap– Can one control perturbation with 18 digits?p g– Concept of “Optical lattice clock”

(Proposal: Katori @Freq. Metr. Symp. 2001 )

Whether one can make atomic clocks in presence of t t b ti i h ll t t diti fstrong perturbation is a challenge to a tradition of atomic clocks over 50 yrs. 16

Page 16: 2011.08 summer school...• Optical lattice clock proposal at FSM 2001 1 Prospects: “magic lattice” and sideband cooling down to quantum ... Testing LPI 10-19 10-18 a l freq Gravitational

Manipulation of atomic motion by lasers(Chu C h T dji Phillips 1997 Nobel Prize)

1) Laser Cooling:

(Chu, Cohen‐Tannoudji, Phillips, 1997 Nobel Prize)

pphoton =h/λpatom =mvgAtom’s momentum is controlled by photons’ momenta

→ cool atoms down to ~μK and below) l d l

pphoton /patom

2) Optical dipole trap:Applying  electric field, atoms are polarized. Induced dipole moment: ( ) ( )E

+Ze nuclear

―Induced dipole moment:

―Light shi  (depends on light frequency):

( ) ( )E

21 ( ) ( )

E

21 ( ) ( )2

U E E I

d d lU( )I(r):Intensity

‐Ze electrons

mantinodeα depends on laser 

frequency ω. For ω < ω0 α>0, atoms are confined

rU(r)I(r):Intensity

mirror

atom α>0, atoms are confined near the intensity maxima. r

In standing wave, cold atoms are trapped in anti‐nodes, where the light intensity is maximum: OPTICAL LATTICE  “array of atoms” 

atom

17

Page 17: 2011.08 summer school...• Optical lattice clock proposal at FSM 2001 1 Prospects: “magic lattice” and sideband cooling down to quantum ... Testing LPI 10-19 10-18 a l freq Gravitational

Elimination of light field perturbation in optical dipole traps (1999)optical dipole traps (1999)

Katori, Ido, & Gonokami, J. Phys. Soc. Jpn. 68, 2479 (1999)FORT for Rb C‐QED experiment: J McKeever( )E

the same electric field

( )E

the same electric field

e 21 ( ) ( )L L LE E E r

FORT for Rb C‐QED experiment: J. McKeeveret al., Phys. Rev. Lett. 90, 133602 (2003).

( )L LE ( )L LE

( ) ( , )2e e e L L LE E E r

( )L LE

gthe same depth

21 ( ) ( , )2g g g L L LE E E r

p2 4

atom{ ( ) ( )}

( ) ( ) ( )2

e L g Le g L Lh E E E O E

Light field perturbation can be eliminated, if the “differential polarizability” is ZERO:Proposal of “Optical Lattice Clock” on the 1S0‐3P0 transition of 87Sr (I=9/2): Katori FSM (Scotland 2001) use of (quasi‐) scalar state that does not couple to

18

Katori, FSM (Scotland,2001), use of (quasi‐) scalar state that does not couple to light polarization. Controlling of perturbation solely by “magic” frequency ωL

Page 18: 2011.08 summer school...• Optical lattice clock proposal at FSM 2001 1 Prospects: “magic lattice” and sideband cooling down to quantum ... Testing LPI 10-19 10-18 a l freq Gravitational

Controlling light shift on the 1S0‐3P0 transition

100 z) Freq. dependence

-120

-100

)

Magic wavelengthλL=813.42 nmift

 (kH

z

-9d 1 10dac

L

160

-140

t Shi

ft (k

Hz)

1S0 state

light sh – 18‐digits uncertainty 

can be guaranteed by 

L

-180

-160

Ligh

t

P =10 kW/cm2

3P0 state

rential l sharing the “magic 

wavelength λ=c/νL” by 9 di it

320 340 360 380 400 420-200

Trap Laser Frequency (THz)

P =10 kW/cm

Lattice laser frequency (THz)

Diffe

r 9 digits  

Lattice laser frequency (THz)

◎ Possibility of 18‐digits accuracy clock by engineered perturbation

19(Theory) Katori, Takamoto, Pal’chikov & Ovisannikov, Phys. Rev. Lett. 91,173005(2003).

(Experiment) M. Takamoto & H. Katori, Phys. Rev. Lett. 91, 223001(2003).

clock by engineered perturbation

Page 19: 2011.08 summer school...• Optical lattice clock proposal at FSM 2001 1 Prospects: “magic lattice” and sideband cooling down to quantum ... Testing LPI 10-19 10-18 a l freq Gravitational

Controlling light shift on the 1S0‐3P0 transition“Optical lattice clock”

Freq. dependencepo

tential

-9d 1 10dac

L

Lattice p

– 18‐digits uncertainty can be guaranteed by 

L

sharing the “magic wavelength λ=c/νL” by 9 di it

al ene

rgy

Clock 

transitio

n 9 digits  

Tota

◎ Possibility of 18‐digits accuracy clock by engineered perturbation

L2λ(Theory) Katori, Takamoto, Pal’chikov & Ovisannikov, Phys. Rev. Lett. 91,173005(2003).

(Experiment) M. Takamoto & H. Katori, Phys. Rev. Lett. 91, 223001(2003).

clock by engineered perturbation

Page 20: 2011.08 summer school...• Optical lattice clock proposal at FSM 2001 1 Prospects: “magic lattice” and sideband cooling down to quantum ... Testing LPI 10-19 10-18 a l freq Gravitational

Realization of Sr lattice clocks in the world and adoption as “the secondary representation as a second” in 2006.10

NIST(171Yb)SI limited measurement d 2009

NPL(Sr)

PTB(Sr)SYRTE(Sr,Hg)

KRISS(Yb)

y p

JILA(Sr)done 2009

NICT(Sr)

PTB(Sr)AIST(Yb)Tokyo(Sr,Yb,Hg)

KRISS(Yb)

LENS(Sr)HHU(Yb)

ECNU(Yb)

NIM(Sr)

INRIM(Yb) NICT(Sr)INRIM(Yb)

The most recent measurents on Sr:X. Baillard et al., Eur. Phys. J. D 48, 11 (2008).G. K. Campbell et al., Metrologia 45, 539 (2008).F L Hong et al Opt Lett 34 692 (2009)

YbSrRECOMMENDATION CIPM (2009.10)

F. L. Hong et al., Opt. Lett. 34, 692 (2009).St. Falke, et al., arXiv:1104.4850v(2011).

Ybf87Sr = 429 228 004 229 873.7 with relative standard uncertainty of 1 x 10‐15E i l t t th t i t f th SI d! ( li it d b SI)

21

JILA: Ludlow, et al., PRL 96, 033003 (2006)Tokyo‐NMIJ: Takamoto, et al., J. Phys. Soc. Jpn. 75, 104302 (2006). SYRTE: Targat, et al., PRL 97, 130801 (2006).

Equivalent to the uncertainty of the SI second! (or limited by SI)Optical‐optical comparison necessary for further evaluation.CIPM: Comité International des Poids et Mesures

Page 21: 2011.08 summer school...• Optical lattice clock proposal at FSM 2001 1 Prospects: “magic lattice” and sideband cooling down to quantum ... Testing LPI 10-19 10-18 a l freq Gravitational

Essence of the lattice clock scheme:Create accurate time/freq. using less‐accurate time/freq. by sharing “magic wavelength” protocol, which relies on the fact that freq. is the most accurately controllable parameter in physics.

However, in reality, atoms are more complicated…• Nuclear spin• Nuclear spin• Coupling of atomic spin to light polarization• Atom‐atom interactions (collisions)Atom atom interactions (collisions)• Higher order atom‐field effects• Multipolar atom‐field interactions …There provide interesting (many body) physics to work with…

22

Page 22: 2011.08 summer school...• Optical lattice clock proposal at FSM 2001 1 Prospects: “magic lattice” and sideband cooling down to quantum ... Testing LPI 10-19 10-18 a l freq Gravitational

Designing optical lattice clocks: many body physics—“Lattice Geometry (polarization)” & “Quantum Statistics” —Note:  Optical lattice clocks use J=0→ J=0 transition to be insensitive to εL

Fermions have half integer spin (F≠0)→ sensi ve to εL

y (p ) Q

Bosons (may) have zero spin (J=0)→ insensitive to εL

LatticeProbe

Lattice Q t t ti tiLattice Lattice Quantum statistics

Fermion (F≠0) Boson (J=0)

1D(2D)

◎Pauli blocking of collisions(Spatially uniform polarization, vector light shift cancellation)

×Cold collisions unavoidableC Lisdat, et al., PRL 103, 090801 (2009)

ometry

vector light shift cancellation)

3D△vector shifts?(Local and non‐uniform 

◎Single occupancy ◎Better S/N? (Larger # of tt

ice geo

23

(elliptical polarization)

/ ( gatoms)La

t

Vector light shift cancellation: Takamoto et al., JPSJ (2006)  T. Akatsuka, M. Takamoto, & H.K., Nature Physics 2008

Page 23: 2011.08 summer school...• Optical lattice clock proposal at FSM 2001 1 Prospects: “magic lattice” and sideband cooling down to quantum ... Testing LPI 10-19 10-18 a l freq Gravitational

Frequency comparison between optical lattice clocks with “non‐interacting” bosons and fermionsclocks with  non interacting  bosons and fermions

ff88 f87 = ( f+ + f-) / 2f = f88 ‐ f87Spin‐polarized 

87Sr in 1D Lattice

Probef87

mirror

To Doppler cancellation

1st order Zeeman and vector light shift canceled out

Probe laser(698 nm) AOM

ULE cavity

y

f87

Servo

B0: bias

shift canceled out1P1

/Ep

Lattice

gravityPMT

DDSMixer Servo f88

PC M. Takamoto et al., JPSJ 2006

3P0 mF = ‐9/2

mF = +9/2

F=9/2

87f

pν=f88‐f87

AOM f88PMT

To Doppler cancellation

mF = ‐9/2

88f f f

87f

Lattice

B0: bias

T. Akatsuka, M. Takamoto, & H.K., Nature Physics 2008

1S0mF = +9/2

F=9/2

88Sr (I=0) – 87Sr (I=9/2)24

LatticeEL88Sr in 3D Lattice

Page 24: 2011.08 summer school...• Optical lattice clock proposal at FSM 2001 1 Prospects: “magic lattice” and sideband cooling down to quantum ... Testing LPI 10-19 10-18 a l freq Gravitational

104 lt ld S tapprox. 104 ultracold Sr atoms

25

Page 25: 2011.08 summer school...• Optical lattice clock proposal at FSM 2001 1 Prospects: “magic lattice” and sideband cooling down to quantum ... Testing LPI 10-19 10-18 a l freq Gravitational

ディック(Dick) 効果・その除去 光時計:原子の共鳴周波数を基準にして レーザー周波数を制御したい 光時計:原子の共鳴周波数を基準にして、レーザー周波数を制御したい。

ところが、レーザーの周波数変動の一部しかサンプルしていない。速いレーザーノイズ成分がダウンコンバートされて、制御信号にノイズが加わる(Dick効果) 励起確率κ に δκ 分のノイズが加わる果)。励起確率κ に δκDick  分のノイズが加わる。

光格子時計で、量子ノイズを δκQPN ≈1/√N に改善したのに、今度はレーザーノイズ由来のディック効果に道を阻まれた。 G. J. Dick, et al., in 22nd PTTI Meeting 1990.

Detector

Excitatiprobabi

δfC (t)

Ti TC

Energy

eque

ncy

on lity

0 0.5 1Eccg (t)

tn=nTCti

tn+1=(n+1)TC

Eb

fre γ=1/T

ν0‐γ/2ν0

ULE cavityServo

Ser

vobtime

Frequencysensitivity ≈1/γ=T

νC=ν0‐γ/2Clock laser

(Local oscillator)

y

AOM

EaClock outaLocal oscillator Atoms

Page 26: 2011.08 summer school...• Optical lattice clock proposal at FSM 2001 1 Prospects: “magic lattice” and sideband cooling down to quantum ... Testing LPI 10-19 10-18 a l freq Gravitational

Synchronous interrogations of atoms to reduce the noise of a probe laser and the Dick effectthe noise of a probe laser and the Dick effect

δω(t): frequency fluctuation of probe laser g(t): sensitivity (to frequency fluctuation

Sequential interrogation

g(t): sensitivity (to frequency fluctuation of probe laser) function of atoms

Population fluctuation δκ after interrogation :

tδω(t)

t tt

2つの原子の遷移を(ノイズをもつレーザーで)同相でプローブする

1D 1

c

DT

g t t dt

d

gg1D(t)

(t)

レーザーノイズの効果δκDickは、2つの

原子の周波数差の測定では同相除去 3D 3

c

DT

g t t t dt g3D(t)tΔtTc

されδκQPNだけ残る

Synchronous interrogation:Both atoms observe laser noise as a common mode noise

δω(t)t

If g1D(t)=g3D(t), the frequency fluctuation of probe laser would be rejected between two clocks.

g1D(t)

S. Bize, et al., IEEE Trans. Ultrason., Ferroelectr., Freq. Contr. 47, 5 (2000)J. Lodewyck, et al., New Jour. Phys. 12, 065026 (2010).cf. C. W. Chou et al., Phys. Rev. Lett. 106, 160801 (2011).

g3D(t)

TcTc 27

Page 27: 2011.08 summer school...• Optical lattice clock proposal at FSM 2001 1 Prospects: “magic lattice” and sideband cooling down to quantum ... Testing LPI 10-19 10-18 a l freq Gravitational

2台(88Sr/87Sr)の時計の同期比較2台(88Sr/87Sr)の時計の同期比較1.0

1DaΔ)

87Sr in 1D lattice88

0.6

0.8

on ra

te

3Da

κ(‐γ/2) κ(γ/2)bability κ(Δ 88Sr in 3D lattice

88 8788 88 88

f f 0 2

0.4

Excitatio

γ = 2 Hz

κ( γ/2) κ(γ/2)

tatio

n prob

88 88 88Dick QPN

87 87 87Dick QPN 0

( )

( )

-6 -4 -2 0 2 4 60.0

0.2

‐γ/2 +γ/2

Exci

Dick QPN 0

88 87 88 87QPN QPN 0

( )

( ) ( )

Frequency (Hz)

βは、射影測定から得られた励起確率κ(揺らぎδκ)を周波数変化へ変換する係数。ν0は同位体シフト。

28

を周波数変 変換する係数。 0 同位体シ 。Δκ=κ88-κ87→0となるように、 ν0にサーボをかける

Page 28: 2011.08 summer school...• Optical lattice clock proposal at FSM 2001 1 Prospects: “magic lattice” and sideband cooling down to quantum ... Testing LPI 10-19 10-18 a l freq Gravitational

87Sr‐88Sr comparison near the “Quantum Limit”Common mode rejection of laser noise by synchronous operation

Shouldersof theSlowly drifting environmental f ld d

1D(f87)

f+9/2 f‐9/2 f+9/2f87=(f9/2+f‐9/2)/2

b d h l

Shoulders of the Rabi spectrumB field is removed.

3Asynchronous

f+B f‐B f+9/2f88=(f+B+f‐B)/23D(f88)

time0 4T

probed synchronously

T 2T

0.2

0.4

Hz) 5x10‐16

1

2y

Synchronous (Ti=400ms)

Hz)

0 4TcTc 2Tc

0 200 400 600 800 1000 1200 1400 1600‐0.4

‐0.2

0.0

 f 88‐f

87 (

‐5x10‐1660 sec averaging

Time (s)

a-1

0

f 88-f 87

(H

Time (s)

A fractional frequency difference of a few times 10‐16 is visible within tens of seconds0 200 400 600 800 1000 1200 1400 1600

-3

-2

Time (s)

29

Time (s)

Page 29: 2011.08 summer school...• Optical lattice clock proposal at FSM 2001 1 Prospects: “magic lattice” and sideband cooling down to quantum ... Testing LPI 10-19 10-18 a l freq Gravitational

87Sr‐88Sr comparison near the “Quantum Limit”Common mode rejection of laser noise by synchronous operation

Shouldersof the

10-15

AsynchronousTi = 100 ms

on

1D(f87)

f+9/2 f‐9/2 f+9/2f87=(f9/2+f‐9/2)/2

b d h l

Shoulders of the Rabi spectrum

10 15

iation

Ti = 200 msTi = 400 ms

rd deviatio

f+B f‐B f+9/2f88=(f+B+f‐B)/23D(f88)

time0 4T

probed synchronously

T 2T10-16

Alla

n d

evi

an standar

Moon tidalSun tidal

0 4TcTc 2Tc

10-17 b  

All

Black body radiation shift (ΔT<0.3K)Gravitational red shift for 10 cm height dif

Sun tidal

100 101 102 103

Averaging time (s)Averaging time (s)

for 10 cm height dif.M. Takamoto, T. Takano, and H. Katori, Nature Photon. 5, 288 (2011).

First demonstration of the N ≈1,000 shot noise limit in optical clocks.

M. Takamoto, T. Takano, and H. Katori, Nature Photon. 5, 288 (2011).

Page 30: 2011.08 summer school...• Optical lattice clock proposal at FSM 2001 1 Prospects: “magic lattice” and sideband cooling down to quantum ... Testing LPI 10-19 10-18 a l freq Gravitational

33 cm

重力があると時計は 17f g h 重力があると時計はゆっくり進む

172

01.1 10 /10 cmf g h

f c

光子の「質量」をhν/c2と仮定すると、重力ポテンシャルで、

1 6×10‐17 uncertainty for 40 000 s (≈ 11 hours) averaging time

光子の「質量」をhν/c と仮定すると、重力ポテンシャルで、光子がエネルギーを失うことに相当

31

1.6×10 uncertainty for 40,000 s (≈ 11 hours) averaging timeOptical lattice clock can do it in 15 min!

Page 31: 2011.08 summer school...• Optical lattice clock proposal at FSM 2001 1 Prospects: “magic lattice” and sideband cooling down to quantum ... Testing LPI 10-19 10-18 a l freq Gravitational

Physical effects that may contribute to a flicker floor @1×10‐17

Contributor  Parameter to be controlled 

87Sr atoms in 1D lattice 

88Sr atoms in 3D lattice 

Lattice scalar Lattice laser Δf = 4 MHz Δf = 6 MHzLattice scalar light shift 

Lattice laser frequency  

Δf  4 MHz        ( I = 13 kW/cm2 ) 

Δf  6 MHz        ( I = 7.9 kW/cm2 )

Probe light shift  Laser intensity  Negligible         ( I 0 7 W/ 2 )

ΔI/I = 0.3%        (I 74 W/ 2)( I = 0.7μW/cm2 ) (I = 74 mW/cm2)

Blackbody shift at 300 K  

Environmental temperature 

ΔT = 0.1 K         (T ≈ 296 K) 

ΔT = 0.1 K         (T ≈ 294 K) 

Cryogenic environment 

!Second‐order Zeeman shift 

Environmental magnetic field 

ΔB0 = 371 nT       (B0 = 0.23 mT) 

ΔBm = 103 nT      (Bm = 0.83 mT) 

necessary!

1×10−17 for T = 400 ms

First‐order Doppler shift 

Relative motion of lattice and lasers 

v =3 nm/s v =3 nm/s

32

1×10 for Ti = 400 ms

Page 32: 2011.08 summer school...• Optical lattice clock proposal at FSM 2001 1 Prospects: “magic lattice” and sideband cooling down to quantum ... Testing LPI 10-19 10-18 a l freq Gravitational

Networking optical clocks finds new physics 

—Clocks & Gravity Constancy of constants?

f[Hg(Z2α(t)2)]/f[Sr(Z2α(t)2)]Sr Any coupling between 

fundamental constants and gravity?

f[Hg(α(Ug))]/f[Sr(α(Ug))]

Yb L.O. Geoid search

How does synchronousYb

H

How does synchronous scheme benefit to these endeavors?

33

Hg endeavors?

Page 33: 2011.08 summer school...• Optical lattice clock proposal at FSM 2001 1 Prospects: “magic lattice” and sideband cooling down to quantum ... Testing LPI 10-19 10-18 a l freq Gravitational

Optical frequency links in the world

USA, BoulderUSA, Boulder

F. L. Hong et al., Opt. Lett. 34, 692 (2009).AIST‐U. of Tokyo: 120 km

H Jiang et al J Opt Soc Am B 25 2029 (2008)Europe

H. Jiang et al., J. Opt. Soc. Am. B 25, 2029 (2008).SYRTE‐LPL: 86x2 kmA. Pape et al., Opt. Express 18, 21477 (2010).PTB‐IQ(LUH): 73 km

34

PTB‐IQ(LUH): 73 kmO. Lopez et al., Opt. Express 18, 16849 (2010).Use of Internet fiber H Schnatz et al IEEE Trans Ultrason FerroelectrH. Schnatz et al., IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57, 175 (2010).MPQ‐PTB: 900 km as presented by Predehl on Monday

Japan

Page 34: 2011.08 summer school...• Optical lattice clock proposal at FSM 2001 1 Prospects: “magic lattice” and sideband cooling down to quantum ... Testing LPI 10-19 10-18 a l freq Gravitational

Relativistic geodesy with optical lattice clock & fiber 

Gravitational red shift as a tool to explore geodesyp

network in Tokyo areaAIST

p g yGeoid: equipotential surface of gravity (Average sea level of Tokyo b i f J )

Yb clockYasuda/Hong et al.

bay in case of Japan)

Δf/f=gΔh/c2 G id h i h d i h

Univ. of Tokyo 50kmNICT

g Geoid heights are mapped with 

30‐50 cm, or 3‐5x10‐17.  Frequency link between two sites NICT

Sr clockIdo et al.

60 kmdetermine differential geoid height. 

The earth is too soft to share ground height lowered by 10‐20 cm due to liquefaction

accurate time over long distance!

時計レーザーClock laser

liquefaction

時計レーザー

コヒーレント光ファイバネットワークOptical fiber linkClock laser

Freq. comp

35h1 h2

f= fLC2 – fLC1 = ‐4.67×10‐2×(h2  ‐ h1)

周波数比較

LC1LC2

Freq. comp

Page 35: 2011.08 summer school...• Optical lattice clock proposal at FSM 2001 1 Prospects: “magic lattice” and sideband cooling down to quantum ... Testing LPI 10-19 10-18 a l freq Gravitational

Frequency comparison of two optical lattice clocks of 24 km apart with 60 km fiber

45 kmNICT Sr clock

UT Sr clock

15 k

Otemachi

15 km

Musashino-eminence

Page 36: 2011.08 summer school...• Optical lattice clock proposal at FSM 2001 1 Prospects: “magic lattice” and sideband cooling down to quantum ... Testing LPI 10-19 10-18 a l freq Gravitational

Frequency difference and stability between UT NICT optical lattice clocksUT‐NICT optical lattice clocks 

The frequency difference is mainly attributed to the gravitational red shift of 2 6 Hz Sr(NICT) Sr(UT) = 3 66 ± 0 31Hzgravitational red shift of 2.6 Hz

5x10‐16@1000s achieved Real time probing of the gravitational red shift

Sr(NICT) ‐ Sr(UT) = 3.66 ± 0.31Hz

p g g After correcting systematic shifts, 16NICT UT

00.9(7.3) 10

By reducing clock uncertainty down to 1x10-17, the geoid height can be the major uncertainty

Page 37: 2011.08 summer school...• Optical lattice clock proposal at FSM 2001 1 Prospects: “magic lattice” and sideband cooling down to quantum ... Testing LPI 10-19 10-18 a l freq Gravitational

α=e2/hc

fSr=F[α(U/c2)],Are fundamental constants constant? or coupled to the Gravity? Compare diff l k

17Al+/Hg+ : / ( 1.6 2.3) 10 / yr.

Use of elliptical orbit of the earth as a 

fCs=G[α(U/c2)]fSr/fCs=H[α(δUsun/c2)]?

different clocks.

modulator of sun’s gravitational potential. Testing LPI through measuring fSr/fCs for 3yrs → No coupling observed within→ No coupling observed within measurement uncertainty; This work can be further improved by measuring fSr/fHg,Yb

Page 38: 2011.08 summer school...• Optical lattice clock proposal at FSM 2001 1 Prospects: “magic lattice” and sideband cooling down to quantum ... Testing LPI 10-19 10-18 a l freq Gravitational

Do fundamental constants vary in time? Compare clocks.

Optical Lattice Clock

HgHg

YbYb

SrSr candidates to be developed

Exploring the constancy of physical constant, α=e2/hc, at the limit:– Dirac theory for H‐like atom:

YbYb

ac eo y o e a o2 2 2

4 4, 2 2

41 3 ( )1/ 24n j

Z Ry Z nE O Zjn n

– Relativistic correction ~2Z2; larger for heavier atoms– Any atomic transition can be expressed as: rel ( )A Ry F

( ) (X) (X)( )rel rel( ) ( ( ))( ) XX A Ry F F tt : Frequency ratio of two atomic clocks

– Astrophysical (5‐11Gyr): QSO spectrum (Murphy 2001)l l ( ) kl

rel rel(0) (0) (0) (0)

rel rel

( ) ( ( ))( )( ) ( ) ( ( ))

ytt A Ry F F t

: Frequency ratio of two atomic clocks may vary.

16/ (7.2 1.8) 10 / yr.

– Terrestrial limit (2Gyr): Oklo reactor– Laboratory searches (1‐2yr):Al+/Hg+ (NIST2008)– Sr/Yb/Hg lattice clocks at 10‐18 will reveal:

18

17

18

/ 1 10 / yr.

/ ( 1.6 2.3) 10 / yr.

/ 10 / yr.

39

Page 39: 2011.08 summer school...• Optical lattice clock proposal at FSM 2001 1 Prospects: “magic lattice” and sideband cooling down to quantum ... Testing LPI 10-19 10-18 a l freq Gravitational

The group University of Tokyo

Univ. of Tokyo/ERATO(10‐16) H Katori M Takamoto(RA) TH. Katori, M. Takamoto(RA), T. Takano(RA), D. Yu(PD), K. Hashiguchi(D), I. Ushijima(D), O. Nonaka(M), K. Yamanaka(M), H. Kubo(M), N.Yamanaka(M), H. Kubo(M), N. Ohtani(M), T. Oita, M. Ohya

NICT group: Frequency comparisong p q y pA. Yamaguchi, M. Fujieda, M. Kumagai, H. Hachisu, S. Nagano, Y. Li, T. Ido 40

Page 40: 2011.08 summer school...• Optical lattice clock proposal at FSM 2001 1 Prospects: “magic lattice” and sideband cooling down to quantum ... Testing LPI 10-19 10-18 a l freq Gravitational

Posdoc position availableContact: [email protected]‐tokyo.ac.jp

S d tl kSummary and outlook• Optical lattice clocks project 10‐18 accuracy & stability@ 1s

•Synchronous clock comparison near QPN limit 1x10‐17Synchronous clock comparison near QPN limit, 1x10•Optical fiber link of UT‐NICT clocks of 24 km apart @5x10‐16@1000s

•Applications of synchronous interrogation scheme

Increasing difficulty in sharing the same “space time” for two clocksIncreasing difficulty in sharing the same  space‐time  for two clocks• A new probe/window for science: clock comparison

•Testing LPI, constancy of fundamental constant

41The Persistence of Memory, 1931 :Salvador Dalí

•Relativistic geodesy: importance of geoid