2016.06.21 lasuam nanofrontmag

25
Tailoring graphene for spintronics Rodolfo Miranda Dpt. Física de la Materia Condensada, Universidad Autónoma de Madrid & Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nano). Spain.

Upload: nanofrontmag-cm

Post on 12-Apr-2017

60 views

Category:

Science


0 download

TRANSCRIPT

Page 1: 2016.06.21 lasuam NanoFrontMag

Tailoring graphene for spintronics

Rodolfo Miranda

Dpt. Física de la Materia Condensada, Universidad Autónoma de Madrid &

Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nano). Spain.

Page 2: 2016.06.21 lasuam NanoFrontMag

Spintronics with graphene

Spin (“conserver”) transport: Long spin diffusion length (1-100 µm), Spin filter: Spin polarized bands Spin manipulation: Large Spin-Orbit coupling

Topological edge states without dissipation ?

Tunnel barriers for injection

Page 3: 2016.06.21 lasuam NanoFrontMag

Epitaxial Graphene on Ir(111)

P-doped ED= +100 meV

Page 4: 2016.06.21 lasuam NanoFrontMag

a) HOMO at -2eV c) LUMO at +1.5 eV

Neutral TCNQ /gr/Ir(111)

Self organization via H bonds Intermolecular bands BUT.. No charge transfer No SOMO No magnetic moment

D. Maccariello et al, Chem. Mat. 26, 2883 (2014)

XPS

b) at +0.7eV

Topographic images

Page 5: 2016.06.21 lasuam NanoFrontMag

HCP top FCC top atop 4.6 K

Periodically Rippled Graphene/ Ru(0001)

Moiré pattern Periodicity: 29.3 ± 0.8 Å

5 pm corrugation of the C atoms

, PRL 101, 099704 (2008) A.L. Vázquez de Parga et al, PRL 100, 056807 (2008)

Page 6: 2016.06.21 lasuam NanoFrontMag

Graphene/ Ru(0001) n-doped ED= -900 meV

Graphene/ Ir(111) p-doped ED= +100 meV

F. Calleja et al. Nature Physics 11, 43 (2015)

Page 7: 2016.06.21 lasuam NanoFrontMag

Charged TCNQ and F4-TCNQ / gr/Ru(0001)

Page 8: 2016.06.21 lasuam NanoFrontMag

The Kondo Effect Screening of a magnetic moment (below TK) by the formation of a many-body singlet with the conduction band electron bath

Kondo “cloud”

Appearance of a sharp resonance at

the Fermi level

M. Garnica et al, Nature Physics 9, 368 (2013)

FWHM= 10 meV TK=60K

Page 9: 2016.06.21 lasuam NanoFrontMag

Mapping spin distributions by imaging the Kondo effect

TCNQ on graphene/Ru(0001

TCNQ TK= 58K F4-TCNQ TK=70 K

M. Garnica et al, Nano Lett 14, 4560 (2014)

Page 10: 2016.06.21 lasuam NanoFrontMag

Mapping spin distributions by imaging the Kondo effect

M. Garnica et al, Surface Sci. (2014)

F4- TCNQ on graphene/Ru(0001

Unpaired electron concentrated in

the C-CN2 terminations

Page 11: 2016.06.21 lasuam NanoFrontMag

4.2 nm x 5.3 nm STM topograph taken with V=-0.1V , I=30pA;

dI/dV(x,y) at 2 meV: Kondo signal Topography

4.6 K

M. Garnica et al, Nature Physics 9, 368 (2013)

Page 12: 2016.06.21 lasuam NanoFrontMag

Kondo Effect: Rows of TCNQ on gr/Ru(0001)

The intensity of the Kondo resonance changes along the rows

HCP Blue TCNQ TK= 63K Br. Green TCNQ TK=111 K

Page 13: 2016.06.21 lasuam NanoFrontMag

a)

b) c) c)

Kondo resonance on 1 ML of TCNQ on graphene/Ru(0001): Only on low sites

D. Maccariello et al, Chem. Mat. 26, 2883 (2014)

7 nm x 7 nm

1 ML TCNQ TK= 140K

Page 14: 2016.06.21 lasuam NanoFrontMag

14 V = 0 mV V = -50 mV V = 50 mV

dI/dV maps

A Kondo Lattice: F4-TCNQ on gr/Ru(0001) 4.6 K

1 ML F4-TCNQ TK= 81 K

Page 15: 2016.06.21 lasuam NanoFrontMag

Calculated magnetic moment per unit cell (containing 8 molecules) : 1.3μB

A system with a half filled (nearly) flat band is predicted to have a ferromagnetic ground state.

Spin Density distribution for a TCNQ monolayer on graphene/Ru(0001)

Y. Nagaoka Phys. Rev. 147 392 (1966)

Page 16: 2016.06.21 lasuam NanoFrontMag

Spin polarized bands for a (charged) flat, free-standing TCNQ ML

M. Garnica et al, Nature Physics 9, 368 (2013)

on gr/Pb/Ir(111)

on gr/Ir(111)

Electronic density at Γ of the first empty band Antisymmetric combination of LUMOs

Page 17: 2016.06.21 lasuam NanoFrontMag

Andrés Black, Manuel Rodríguez, Daniel Granados

M. Garnica et al, Nature Physics 9, 368 (2013)

Adsorbed molecules induce Long Range Magnetic Order

in epitaxial graphene

Page 18: 2016.06.21 lasuam NanoFrontMag

Pb-intercalated Graphene/Ir(111) Gr/ Pb/Ir(111) islands Gr/Ir(111) terraces

n-doped ED = -110 meV

p-doped ED= 100 meV

4.6 K

Page 19: 2016.06.21 lasuam NanoFrontMag
Page 20: 2016.06.21 lasuam NanoFrontMag

Graphene/Pb/Ir(111): Pseudo- Landau Levels?

ED EF

4.6 K

Page 21: 2016.06.21 lasuam NanoFrontMag

F. Calleja et al, Nature Physics 11, 43 (2015)

Page 22: 2016.06.21 lasuam NanoFrontMag

Graphene/Pb/Ir(111): Landau Levels without magnetic field ?

F. Calleja et al, Nature Physics 11, 43 (2015)

Page 23: 2016.06.21 lasuam NanoFrontMag

Graphene/Pb/Ir(111) vs gr/Ir(111)

Large Spin-Orbit coupling

Small Spin-Orbit coupling

δISO/δx

p n

F. Calleja et al, Nature Physics 11, 43 (2015)

Page 24: 2016.06.21 lasuam NanoFrontMag

Spin-split Graphene bands by a Giant Spin Orbit interaction induced by Pb atoms

DFT band structure

ΔSO > 50 meV

Tight Binding band structure

Page 25: 2016.06.21 lasuam NanoFrontMag

Zero longitudinal resistance Quantized transverse resistance

2D Topological Insulator

Graphene + Giant Spin Orbit Coupling: Quantum Spin Hall insulator or 2D Topological Insulator