2016.06.21 mano ucm nanofrontmag

17
J. L. Vicent Departamento Fisica de Materiales Facultad Ciencias Físicas Universidad Complutense 28040 Madrid (Spain) IMDEA-Nanociencia 28049 Madrid (Spain) Grupo de Magnetismo y Nanolitografía-UCM 4. Mejora de las propiedades magnéticas y eléctricas de los superconductores mediante la fabricación de nanoestructuras híbridas

Upload: nanofrontmag-cm

Post on 12-Apr-2017

30 views

Category:

Science


0 download

TRANSCRIPT

Page 1: 2016.06.21 mano ucm NanoFrontMag

J. L. Vicent Departamento Fisica de Materiales

Facultad Ciencias Físicas Universidad Complutense

28040 Madrid (Spain) IMDEA-Nanociencia

28049 Madrid (Spain)

Grupo de Magnetismo y Nanolitografía-UCM 4. Mejora de las propiedades magnéticas y eléctricas de los

superconductores mediante la fabricación de nanoestructuras híbridas

Page 2: 2016.06.21 mano ucm NanoFrontMag

Type II Supercondutors

Vortices

Mixed State

Tc

Mixed

State

Normal

State

Meissner

State

Hc2

Hc1

NbSe2

Hess et al. PRL62,214 (1989)

Abrikosov Lattice

Hc1<H<Hc2

Mixed State

Vortices on the move ?

Page 3: 2016.06.21 mano ucm NanoFrontMag

vBE

Magnetic Field

VDC

R(H)

B

B

0

Current Density

J

oL JF

v

J

E

FL ,v

Vortices move J

Bc1<B<Bc2

Mixed State

Vortex motion causes energy dissipation:

Resistance ≠ 0

&

Page 4: 2016.06.21 mano ucm NanoFrontMag

Magnetic pinning

Local depression of the

superconductivity

Core pinning

r 2

Js

ns(r)

H

0=h/2e=2.067×10-15 Wb Superconducting energy is

minimized by locating vortices in defects

PINNING MECHANISMS Vortex structure

sketch

Page 5: 2016.06.21 mano ucm NanoFrontMag

Pinning center

Minimum of potential

Pinning Force Fp

Decrease vortex velocity

Minimum in Resistance

0 FL Fp

V(x)

R

-4 -3

-2

-1 1

2

3

4

5 -5

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.610

-5

10-4

10-3

10-2

10-1

100

R(

)

H(kOe)

Superconductor Defect

Película de Nb

Array dots Si

100 nm

Page 6: 2016.06.21 mano ucm NanoFrontMag

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.610

-5

10-4

10-3

10-2

10-1

100

R(

)

H(kOe)Rectangular lattice a=400nm b=600nm

ΔH = 85.3 Oe

a

b

S

0

0

0

0

axb

nHn

0

Minima in Resistance Vortex density =n· Pinning center density

-4 -3

-2

-1 1

2

3

4

5 -5

0nS

nB Matching Fields

Vortex lattice u.c. area S

n = Vortices per u.c.

0.99Tc 100 mA

100 nm Nb + 40 nm Ni dots

Page 7: 2016.06.21 mano ucm NanoFrontMag

Superconductor Nb Defectos: Cu, Si, Ni, Co, Py, a-NdCo5, Co/Pd (multicapas)

Page 8: 2016.06.21 mano ucm NanoFrontMag

Magnetism enhances superconductivity Field induced superconductivity

V AV

Lange, van Bael, Bruynseraede,Moshchalkov PRL 90 (2003)

H=0

H0

SC SC

Superconductor

Superconductor

Magnets with out of plane Mz

Magnets with out of plane Mz

Page 9: 2016.06.21 mano ucm NanoFrontMag

Dot Co/Pd

Nb

-0.4 -0.2 0.0 0.2 0.410

-3

10-2

10-1

100

10 mA

20 mA

50 mA

100 mA

R (

)H (kOe)

-2 -1 0 1 210

-4

10-3

10-2

10-1

100

Desimanado

Imanado

R/R

N

H/Hmatching

Dot Si

Nb

Page 10: 2016.06.21 mano ucm NanoFrontMag

-0,4 -0,3 -0,2 -0,1 0,0 0,1 0,2 0,3 0,4

10-5

10-4

10-3

10-2

10-1

100

+Msat

-Msat

R(

)

H(kOe)

Pinning en N= -1 para distintas

memorias magneticas de los dots

2.5 mA

T=0.99Tc

Tc=8.385 K

Array of Ni dots (400 nm x 400 nm) /Nb film

+1 -1

Dot Ni

Nb Nb Nb

Page 11: 2016.06.21 mano ucm NanoFrontMag

-0.15 -0.10 -0.05 0.00 0.05 0.10 0.15

0.0

1.0x10-3

2.0x10-3

3.0x10-3

Desde -3 kOe

Desde -1 kOe

Desde -0.4 kOe

Desde -0.3 kOe

Desde -0.25 kOe

Desde 2 kOe

Desde 0.8 kOe

Desde 0.5 kOe

Desde 0.35 kOe

Desde 0.25 kOe

R(

)

H(kOe)

Pinning en N= -1 para distintas

memorias magneticas de los dots

2.5 mA

T=0.99Tc

Tc=8.385 K

Dot Ni

Nb Nb Nb

-0,4 -0,3 -0,2 -0,1 0,0 0,1 0,2 0,3 0,4

10-5

10-4

10-3

10-2

10-1

100

+Msat

-Msat

R

()

H(kOe)

Pinning en N= -1 para distintas

memorias magneticas de los dots

2.5 mA

T=0.99Tc

Tc=8.385 K

Page 12: 2016.06.21 mano ucm NanoFrontMag

Three-state memory nanodevice: +1 (M =+Mz); 0 (M = 0); -1 (M =-Mz);

Reading nanodevice: Zero output signal (VDC = 0) for specific value of Happl which depends on how the

device is built.

Happl.= 0

Happl.≠ 0

Input signals: ac currents Output signals: dc voltages

Nb/(Co/Pd)

Page 13: 2016.06.21 mano ucm NanoFrontMag

-1,0 -0,5 0,0 0,5 1,0

-20

-10

0

10

20

Vd

c, m

ax (mV)

MR / MS

1 2 3 4 5 6-20

-10

0

10

20

Vd

c(m

V)

Iac

(mA)

MR/MS = 0.65

- Vdc, max

+Vdc, max

del Valle et al. Sci. Rep. (2015)

+1

0

-1

T = 0.99Tc

Remanent magnetic states control ratchet effects

Page 14: 2016.06.21 mano ucm NanoFrontMag

8.40 8.42 8.44 8.46 8.48 8.50 8.52

0

100

200

300

400

500

T(K)

H(O

e)

R / RN

0.0 0.5 1.0

Hcompensation = 240 Oe

Hmatching= 36 Oe

A

C

B

C

B

A

Hcompensation and Hmatching depend on the sample design.

Happl

Page 15: 2016.06.21 mano ucm NanoFrontMag

R / RN

0.0 0.5 1.0

8,42 8,44 8,46 8,48 8,50 8,520

100

200

300

400

500

T(K)

H(O

e)

0 100 200 300 400

-20

-10

0

10

20

Vd

c, m

ax (mV)

H (Oe)-1,0 -0,5 0,0 0,5 1,0

-20

-10

0

10

20

Vd

c, m

ax (mV)

MR / MS

+1

0

-1

Happl = 0

Closing….

Page 16: 2016.06.21 mano ucm NanoFrontMag

A Alicia Gomez Javier del V

Javier del Valle JaviEer del V Elvira Gonzalez

Page 17: 2016.06.21 mano ucm NanoFrontMag

The

END