平成21年度 修 士 論 文 反応性スパッタ法による inon 薄膜の作製 … ·...

48
平成21年度 修 士 論 文 反応性スパッタ法による InON 薄膜の作製とその特性 指導教員 宮崎 卓幸 准教授 群馬大学大学院工学研究科 電気電子工学専攻 笹岡 敬

Upload: others

Post on 30-Aug-2019

1 views

Category:

Documents


0 download

TRANSCRIPT

  • InON

  • 1

    1 .......................................................................................................................................3 1.1 ..............................................................................................................................3 1.2 ..............................................................................................................................3 2 .......................................................................................4

    2.1 ......................................................................................................................4 2.1.1 ...........................................................................................................4 2.1.2 RF..................................................................................5 2.1.3 ...................................................................................6 2.1.4 ...............................................................................................7

    2.2 ..................................................................................................................................8 2.2.1 ...............................................................................................................................8 2.2.2 ...................................................................................................................9 2.2.3 Rapid Thermal Anneal (RTA) ...............................................................................10

    3 .................................................................................................................12 3.1 X (X-ray Diffraction:XRD)..................................................................................12 3.2 ............................................................................................................................13 3.3 Photoluminescence (PL) ..............................................................................................14 4 .................................................................................................................15

    4.1 ................................................................................................................................15 4.2 ................................................................................................................................16 5 InON...............................................................................................................17

    5.1 InON.............................................................................................17 5.1.1 XRD .......................................................................................................................17 5.1.2 .....................................................................................................................19 5.1.3 PL...........................................................................................................................20 5.1.4 .........................................................................................21

    5.2 300 InON...........................................................................................22 5.2.1 XRD .......................................................................................................................22 5.2.2 .............................................................................................................26 5.2.3 PL...........................................................................................................................27 5.2.4 .........................................................................................28

    6 .....................................................................................................................................29 ........................................................................................................................................30

  • 2

    InN:Zn ...............................................32 1 ...............................................................................................................................32 2 .......................................................................................................................33

    2.1 X (X-ray Photoelectron Spectroscopy:XPS) .......................................33 2.2 ................................................................................................................35

    3 .......................................................................................................................36 4 InN:Zn..................................................................................................................37

    4.1 InN:Zn ..............................................................................37 4.2 300 InN:Zn ............................................................................41

    5 ..........................................................................................................................................45 ........................................................................................................................................46 ....................................................................................................................................................47

  • 3

    1 1.1

    InN

    InN

    InN 1.9 eV[1-4]

    InNMetal Organic Chemical Vapor

    Deposition : MOCVDMolecular Beam Epitaxy : MBE

    0.7 eV 1.2 eV

    [5-12]

    InN MBE InN MBE

    [13]

    InN

    1.9 eV InN

    InN InN

    1.9 eV2.0 eV

    1.2 InN

    2.0 eV PL

  • 4

    2 2.1

    2.1.1 ()

    (sputtering)

    ( Ar)

    Fig. 2.1

  • 5

    2.1.2 RF[14]

    (Radio Frequency :RF)

    RF Fig. 2.1

    Fig. 2.2(13.56 MHz)

    Fig. 2.3 (DC )

    DC

    Fig. 2.2 Fig. 2.3

  • 6

    2.1.3 [15]

    Fig.

    2.4

    Fig. 2.4

  • 7

    2.1.4

    In N2N2 O2

  • 8

    2.2 RF

    2.2.1

    Fig. 2.5 500 (1/s)

    250 (1/s)

    Fig. 2.5

  • 9

    2.2.2 Fig. 2.6

    2

    Substrate heater

    Fig. 2.6

  • 10

    2.2.3 Rapid Thermal Anneal (RTA) MINI-LAMP-ANNEALER

    MILA-3000

    (100 V-1kW / )

    O

    O

    Fig. 2.7

  • 11

    PID PID

    Fig. 2.8

    )11()( DSIS

    pPID TTKsG

    2.1

    TI TD

    ProportionalIntegral

    DerivativePID

    PID

    Gc(s) Gp(s)C(s)R(s)

    +-

    GPID(s)

    Gc(s) Gp(s)C(s)R(s)

    +-

    GPID(s)

    Fig. 2.8

  • 12

    3 3.1 X (X-ray Diffraction:XRD)[16] Fig. 3.1 X

    X X

    X

    Bragg

    nd sin2 (3.1)

    d: : :Xn:

    X Bragg X

    X

    X 2 ()

    ()

    Table 3.1 X

    (X ) Cu (K:1.542)

    (kV) 32

    (mA) 20

    (deg/min)

    4

    (mm) 10

    (mm) 0.15

    (mm) 20 Fig. 3.1

    Table 3.1 X

  • 13

    3.2 [17]

    ( V-570)

    Table 3.2

    1001ln1

    Td (3.2)

    d (cm)T (%)

    Table 3.2

    T

    Fast

    (nm) 5.0

    (nm/min) 400

    (nm) 240 2500

  • 14

    3.3 Photoluminescence (PL) [18]

    Luminescence

    Photoluminescence

    PL Fig. 3.2He-Cd 325 nm

    U-340 2

    2

    He-Cd

    (CCD)

    PC

    Fig. 3.2 PL

  • 15

    4 4.1

    1. 10

    2. 10

    3. 10

    4.

    RF

    1.

    2.

    3. 4.0104 Pa

    4. N2

    O2 N2 O2

    5.

    6.

    []

    1. RTA InNInON

    2. N2 250 sccm 10

    3.

    4. 50

  • 16

    4.2 Table 4.1 RF InNInON

    Table 4.2

    0 1000013000 5 700010000 1030

    30005000

    Table 4.1

    In (2)

    N2 (2.6102 Pa)

    N2+O2 (N2 0%~30%)

    (Pa) 0.27

    (min) 60

    (W) 50

    7059p Si(100)

    300

    Table 4.2

    min 1030

    300600

    sccm 250

  • 17

    5 InON 5.1 InON 5.1.1 XRD Fig. 5.1 Si XRD

    0510202 2040

    0 InN(0002)5 0

    In2O3 (222)

    10 20 In2O3

    5.1.2 Fig. 5.310 In2O3

    0

    100

    200

    In2O

    3(2

    22)

    In2O

    3(2

    22)

    20 30 400

    100

    200

    10%

    20%

    In2O

    3(4

    00)

    In2O

    3(3

    21)

    0

    1

    2[ 105]0%

    InN

    (000

    2)

    0

    20005%

    Inte

    nsity

    (cou

    nts)

    2 (degree)

    Fig.5.1 XRD

  • 18

    Fig. 5.2 Si 600 30

    XRD 0 5 In2O3(222)

    InN In2O3[19-21]

    10(Fig. 5.1)

    Fig. 5.2 XRD ()

    0

    4000

    8000

    Inte

    nsity

    (cou

    nts)

    2 (deg)

    In2O

    3(2

    22)

    0

    500

    10005%

    0

    200

    40010%

    In2O

    3(3

    21)

    20 30 400

    500

    1000

    0%

    20%

    In2O

    3(4

    00)

  • 19

    5.1.2 Fig. 5.3 0

    (InN) 2.0 eV5 2.5 eV10 3.5 eV

    0 2.0 eV

    InN10 3.5 eV In2O3

    5.1.1

    10 In2O3

    2 3 40

    1

    2

    3

    4

    5

    6

    O2 0% O2 5% O2 10% O2 20% O2 30%

    Photon energy (eV)

    2

    (109

    cm

    -2 )

    Fig. 5.4 600 30

    0

    5 3.4 eV

    10 as-deposited In2O3

    Fig. 5.3

  • 20

    5.1.3 PL Fig. 5.5 Si 600 30

    PL 0 5

    2.0 eV PL 10

    30

    1.5 2 2.5 3Photon energy (eV)

    PL in

    tens

    ity (a

    rb. u

    nits)

    0% 5%

    2 3 40

    0.2

    0.4

    0.6

    0.8

    1

    0% 5% 10% 20% 30%

    2

    (101

    0 cm

    -2 )

    Photon energy (eV)Fig. 5.4 ()

    Fig. 5.5 PL ()

  • 21

    5.1.4 Fig. 5.6 0 Si 600 30

    0 5

    Fig. 5.6

  • 22

    5.2 300 InON 5.2.1 XRD Fig. 5.7 300 Si XRD 05

    InN(0002)1020 In2O3

    XRD(Fig. 5.1)

    300

    0

    500

    10000

    1

    2[ 105]

    20 30 400

    500

    1000

    0

    0.5

    1[ 105]In

    N(0

    002)

    In2O

    3(2

    22)

    In2O

    3(3

    21)

    In2O

    3(4

    00)

    In2O

    3(2

    11)

    InN

    (000

    2)

    In2O

    3(2

    22)

    In2O

    3(3

    21)

    In2O

    3(4

    00)

    Inte

    nsity

    (cou

    nts)

    2 (degree)

    0

    5

    10

    20

    Fig. 5.7 XRD

  • 23

    Fig. 5.8 300 Si 600 30

    XRD In2O3

    0 5 InN In2O31020

    0

    20

    40

    2 (degree)

    Inte

    nsity

    (103

    cou

    nts)

    0%

    In2O

    3(2

    22)

    0

    100

    200 5%

    In2O

    3(2

    22)

    In2O

    3(2

    22)

    In2O

    3(2

    11)

    In2O

    3(2

    11)

    In2O

    3(4

    00)

    In2O

    3(4

    00)

    0

    2

    4 10%In

    2O3

    (321

    )In

    2O3

    (321

    )

    20 25 30 35 400

    4

    8 20%

    In2O

    3(2

    22)

    In2O

    3(4

    11)

    Fig. 5.8 XRD ()

  • 24

    ()

    0300 Si 600 1030

    XRD Fig. 5.9

    0 (as-deposited)10 15 20 30In2O3(222)

    InN(0002) PDF 0(as-deposited)

    InN(0002)10 20 InN(0002) In2O3(222)

    30 In2O3

    30 31 32

    0 min

    10min

    15min

    20min

    30min

    2 (degree)

    Inte

    nsity

    (arb

    . uni

    ts)

    Fig. 5.9 XRD ()

    InN(0002) In2O3(222)

  • 25

    ()

    0300 Si 300600 30

    XRD Fig. 5.10

    (as-deposited)300400 InN(0002)

    500 InN(0002) In2O3(222)InN

    600In2O3

    30 31 32

    as-deposited

    300

    400

    500

    600

    Inte

    nsity

    (arb

    . uni

    ts)

    2 (degree)

    Fig. 5.9 Fig.5.10InN In2O3

    InN In2O3InON

    In2O3(222) InN(0002)

    Fig. 5.10 XRD ()

  • 26

    5.2.2 Fig. 5.11 300

    0

    1.5 eV

    InN5 1.7 eV

    10 2 eV

    2030 3.5 eVIn2O3

    1 2 3 40

    0.2

    0.4

    0.6

    0.8

    1

    Photon energy (eV)

    2

    (101

    0 cm

    -2 )

    0% 5% 10% 20% 30%

    Fig. 5.12 300 600 30

    0 1.5 eV

    2 eV 3 eV

    5 2 eV

    3 eV3 eV

    1030 3.5 eV

    1 2 3 40

    0.5

    1

    1.5

    Photon energy (eV)

    2

    (101

    0 cm

    -2 ) 0%

    5% 10% 20% 30%

    Fig. 5.11 (as-deposited)

    Fig. 5.12 ()

  • 27

    5.2.3 PL Fig. 5.13 300 Si 600 30

    PL 0 5

    2.0 eV 10

    1.5 2 2.5 3

    PL in

    tens

    ity (a

    rb. u

    nits

    )

    Photon energy (eV)

    0% 5%

    Fig. 5.14 0300 Si 600 30

    PL20 K 1.98 eV

    300 K 2.10 eV

    1.5 2 2.5 3

    20 K40 K60 K80 K100 K120 K140 K160 K180 K200 K220 K240 K260 K280 K300 K

    PL in

    tens

    ity (a

    rb. u

    nits

    )

    Photon energy (eV)

    Fig. 5.13 PL ()

    R.T.

    Fig. 5.14 PL ( 0 N2)

  • 28

    Fig. 5.15 30300 Si 600 30

    PL20K 1.85 eV

    200 K

    1.5 2 2.5 3

    20 K40 K60 K80 K100 K120 K140 K160 K180 K200 K220 K240 K260 K280 K300 K

    Photon energy (eV)

    PL in

    tens

    ity (a

    rb. u

    nits

    )

    5.2.4 Fig. 5.16 0300 Si 600 30

    300

    Fig. 5.15 PL ( 0 N2)

    Fig. 5.16

  • 29

    6 300

    InON

    XRD 300 0

    5 InN 1030 In2O3

    05 InN In2O3

    1030

    2.0 eV 3.6 eV

    300 1.5 eV 3.5 eV

    PL 0 5 2.0 eV

    0 PL

    1030

    PL30 PL200 K

    300

  • 30

    [1] T. L. Tansley and C. R. Foley, J. Appl. Phys. 59, (1986) 3241.

    [2] T. L. Tansley and C. R. Foley, J. Appl. Phys. 60, (1986) 2092.

    [3] T. Yodo, H. Ando, D. Nosei, and Y. Harada, Phys. Stat. Sol. B 228, (2001) 21.

    [4] T. Yodo, H. Yona, H. Ando, D.Nosei, and Y. Harada, Apll. Phys. Lett. 80, (2002) 968.

    [5] V. Y. Davydov, A. A. Klochikhim, R. P. Seishaan, V. V. Emtsev, S. V. Ivanov, F. Bechstedt, J.

    Furthmuller, H. Harima, A. V. Mudryi, J. Aderhold, O. Semchinova, and J. Graul, Phys. Stat. Sol.

    B 299, (2002) R1.

    [6] J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, and Y.

    Nanishi, Appl. Phys. Lett. 80, (2002) 3967.

    [7] T. Matuoka, H. Okamoto, M. Nakao, H. Harima, and E. Kurimoto, Appl. Phys. Lett. 81, (2002)

    1246.

    [8] S. Adachi: Properties of group-IV, III-V and II-VI semiconductors (Wiley, 2005).

    [9] O. Briot, B. Maleyre, S. Clur-Ruffenazch, B. Gil, C. Pinquier, F. DDemangeot and J. Frandon,

    Phys. Stat. Sol. C 1, (2004)1425.

    [10] Q. X. Guo, T. Tanaka, M. Nishino, H. Ogawa, X. D. Pu, and W. Z. Shen, Appl. Phys. Lett. 86,

    (2005) 231913.

    [11] M. Kuball, J. W. Pomeroy, M. Winterbert-Fouquet, K. S. A. Butcher, H. Lu, W.J. Schaff, T. V.

    Shubina, S. V. Ivanov, A. Vasson, and J. Leymarie, Phys. Stat. Sol. A 202, (2005) 763.

    [12] W. Z. Shen, X. D. Pu, J. Chen, H. Ogawa, and Q. X.Guo, Solid State Commun 137, (2006) 49.

    [13] Motlan, E. M. Glodys, and T. L. Tansley, J. Cryst. Growth, 241, (2004) 165.

  • 31

    [14] (1976).

    [15] (1990).

    [16] X

    (1982).

    [17] (1989).

    [18] (1983).

    [19] A. Sungthong, S. Porntheeraphat, A. Poyai, and J. Nukeaw, Appl. Surf. Sci. 254, (2008) 7950.

    [20] T. Yodo, Y. Kitayama, K. Miyaki, H. Yona, Y. Harada, K. E. Prince, K. Scott, and A. Butcher: J.

    Cryst. Growth, 269, (2004) 145.

    [21] T. Yodo, Y. Kitayama, K. Miyaki, H. Yona, and Y. Harada, Jpn. J. Appl. Phys. 43, (2004) 139.

  • 32

    InN:Zn

    1 In2O33.5 eVLED

    [1,2]

    InN 500 In2O3

    [3-5] p

    np In2O3In2O3

    InN Zn p

    In2O3

  • 33

    2 3

    2.1 X (X-ray Photoelectron Spectroscopy:XPS)

    UPS X

    XPS

    UPSXPS 1

    XPSXPS

    X

    Table 7.2.1 XPS

    XPS

    Mg 1253.6 eV

    Al 1486.6 eV

    X kE

    bE kb EhvE (7.2.1) kE bE bE

    XPS bE

    2

    1

    XPS iXPS iI i i iN K iiii KNiII 0 (7.2.2) I

  • 34

    jiij

    ijji

    j

    i

    KIKI

    NN

    (7.2.3)

    I

    XPS

    shake upshake off

    XPS 1970

    X

  • 35

    2.2 [6] pn

    Fig. 7.2.1 n

    Si

    p

    p n

    p n

    pn

    0.5~10 A

    200

    Fig. 7.2.1

  • 36

    3 ZnIn Zn 330

    Zn

    Fig. 7.3.1 300

    Table 7.3.1 Table 7.3.2

    In + Zn (Zn: 330)

    N2 (2.6102 Pa)

    (Pa) 0.27

    (min) 3060

    (W) 50

    7059n Si(100)(0001)

    300

    min 30

    600

    sccm 250

    (a) Zn 3 (b)Zn 30

    Fig. 7.3.1 In Zn

    Table 7.3.1

    Table 7.3.2

  • 37

    4 InN:Zn 4.1 InN:Zn 4.1.1 XPS Fig. 7.4.1 Zn2p3 XPSZn 3

    Zn2p3 Zn

    1.7%Zn 30 Zn2p3

    Zn 14.6

    Inte

    nsity

    (arb

    . uni

    ts)

    Zn2p3

    Binding Energy (eV)1020102510301035

    3%

    30%

    4.1.2 XRD Fig. 7.4.2 Si XRD In

    Zn 3 30 XRD

    Zn 3 InN(0002)Zn3N2(134)

    Zn 30 Zn3N2

    Zn3N2[7,8] InN(101-

    3)

    Fig. 7.4.1 XPS

  • 38

    0

    500

    1000

    Zn3N

    2(22

    2)

    Zn3N

    2(32

    1)

    Zn3N

    2(13

    4)Zn

    3N2(

    134)

    InN

    (101

    3)

    20 30 40 50 600

    500

    1000

    Inte

    nsity

    (cou

    nts)

    2 (degree)

    3%

    30%

    Zn3N

    2(40

    0)

    InN

    (101

    3)

    InN

    (000

    2)

    Fig. 7.4.3 Si 600 30

    XRDZn 3 In2O3

    Zn 30ZnO

    In2O3 Zn3N2

    In

    In2O3

    0

    500

    1000

    Inte

    nsity

    (cou

    nts)

    2 (degree)

    3%

    30%

    In2O

    3(22

    2)

    In2O

    3(32

    1)

    In2O

    3(40

    0)

    In2O

    3(33

    2)

    In2O

    3(44

    0)

    In2O

    3(43

    3)

    In2O

    3(61

    1)

    20 30 40 50 600

    1000

    In2O

    3(21

    1)

    x

    x

    x

    x

    xoo

    oo o

    x: In2O3o: ZnO

    Fig. 7.4.2 XRD

    Fig. 7.4.3 XRD ()

    - -

  • 39

    4.1.3 Fig. 7.4.4Zn 3

    2.0 eV InN

    Zn 30 1.4 eV

    1 2 30

    0.5

    1

    1.5

    Photon energy (eV)

    2

    (109

    cm

    -2)

    3%30%

    Fig. 7.4.5 600 30

    Zn 3

    Zn 30 1.5 eV

    3 eV

    1 2 3 40

    1

    2

    3

    4

    5

    3%30%

    Photon energy (eV)

    2

    (108

    cm

    -2)

    Fig. 7.4.4

    Fig. 7.4.5 ()

  • 40

    4.1.4 Zn 600 30

    Zn 3

    Zn 30

    n

    Table 7.4.1 ()

    Zn 3% Zn 30%

    Si n

    n

  • 41

    4.2 300 InN:Zn 4.2.1 XPS Fig. 7.4.6 300 SiZn2p3XPSZn 3

    30 Zn2p3

    Zn 3 1.3 ZnZn

    30 2.0 ZnZn 30

    Zn 300

    Zn

    Inte

    nsity

    (arb

    . uni

    ts)

    Zn2p3

    Binding Energy (eV)1020102510301035

    3%

    30%

    Fig. 7.4.6 XPS

  • 42

    4.2.2 XRD Fig. 7.4.7 300 Si XRDZn 3

    InN(0002)

    InN(101-

    1)InN(101-

    3)Zn 30 InN(0002)

    InN(101-

    1)InN(101-

    3)InN(101-

    2)Zn

    0

    500

    1000

    InN

    (101

    2)

    InN

    (000

    2)

    20 30 40 50 600

    500

    1000

    3%

    30%

    Inte

    nsity

    (cou

    nts)

    2 (degree)

    InN

    (101

    3)In

    N(1

    013)

    InN

    (101

    1)In

    N(1

    011)

    InN

    (000

    2)

    Fig. 7.4.8 300 Si 600 30

    XRD Zn 330 In2O3

    Zn

    Fig. 7.4.7 XRD

    0

    1000

    2000

    In2O

    3(40

    0)

    20 30 40 50 600

    1000

    2000

    2 (degree)

    Inte

    nsity

    (cou

    nts)

    In2O

    3(21

    1)

    In2O

    3(22

    2)

    In2O

    3(33

    2)

    In2O

    3(44

    0)In

    2O3(

    433)

    In2O

    3(43

    3)

    In2O

    3(33

    2)

    In2O

    3(32

    1)

    In2O

    3(22

    2)

    In2O

    3(21

    1)

    In2O

    3(43

    1)In

    2O3(

    431)

    3%

    30%

    Fig. 7.4.8 XRD ()

    - -

    - -

    -

  • 43

    4.2.3 Fig. 7.4.9 300Zn 3

    301.5 eVZn

    InN(Fig. 5.11)

    1 1.5 2 2.50

    2

    4

    6

    2

    (109

    cm

    -2)

    Photon energy (eV)

    3%30%

    Fig 7.4.10 300 600 30

    Zn 3

    2.0 eVZn 30 3.5 eV

    1 2 3 40

    0.5

    1

    3%30%

    Photon energy (eV)

    2

    (101

    0 cm

    -2)

    Fig. 7.4.9

    7.4.10 ()

  • 44

    4.2.4 Zn 300 600 30

    Si

    np

    (Table 7.4.2)

    Table 7.4.2

    Zn3% Zn30%

    Si n n n n

    n n n n

    n n n n

  • 45

    5 In Zn 330

    InN:Zn

    XPS Zn

    1.714.6300 1.32.0

    XRD Zn 30 Zn3N2

    600 30 ZnO In2O3

    300 ZnInN

    Zn

    Zn3%

    2.0 eV30 1.4 eV300

    Zn3Zn30% 1.5 eV

    pn

    np

  • 46

    [1] L. C. Chen, W. H. Lan, R. M. Lin, H. T. Shen, and H. C. Chen, Appl. Surf. Sci. 252, (2006) 8438.

    [2] L. C. Chen, and H. C. Chen, Jpn. J. Appl. Phys. 44, (2005) 2995.

    [3] K. P. Biju, and M. K. Jain, J. Cryst. Growth. 311, (2009) 2542.

    [4] T. B. Hur, I. J. Lee, H. L. Park, Y.H. Hwang, and H. K. Kim, Solid State Commun, 130, (2004)

    397.

    [5] I. J. Lee, J. Y. Kim, T. B. Hur, and H. K. Kim, Phys. Stat. Sol. A 201, (2004) 2777.

    [6] () (1984).

    [7] K. Kuriyama, Y. Takahashi, and F. Sunohara, Phys. Rev. B, 48, (1993) 2781.

    [8] K. Toyoura, H. Tsujimura, T. Goto, K. Hachiya, R.Hagiwara, and Y. Ito, Thin Solid Films, 492,

    (2005) 88.

  • 47

    3