2.29 numerical fluid mechanics fall 2011 – lecture 6 · 2.29 numerical fluid mechanics fall 2011...

12
2.29 Numerical Fluid Mechanics Fall 2011 – Lecture 6 REVIEW of Lecture 5 Continuum Hypothesis and conservation laws Macroscopic Properties Material covered in class: Differential forms of conservation laws Material Derivative (substantial/total derivative) Conservation of Mass – Differential Approach – Integral (volume) Approach Use of Gauss Theorem – Incompressibility Reynolds Transport Theorem Conservation of Momentum (Cauchy’s Momentum equations) The Navier-Stokes equations – Constitutive equations: Newtonian fluid – Navier-stokes, compressible and incompressible Numerical Fluid Mechanics PFJL Lecture 6, 2.29 1 1

Upload: trinhngoc

Post on 19-Aug-2018

230 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 2.29 Numerical Fluid Mechanics Fall 2011 – Lecture 6 · 2.29 Numerical Fluid Mechanics Fall 2011 ... – Chapter 4 of “I. M. Cohen and P. K. Kundu. Fluid Mechanics. ... 2.29 Numerical

2.29 Numerical Fluid Mechanics Fall 2011 – Lecture 6

REVIEW of Lecture 5 • Continuum Hypothesis and conservation laws • Macroscopic Properties

Material covered in class: Differential forms of conservation laws • Material Derivative (substantial/total derivative) • Conservation of Mass – Differential Approach – Integral (volume) Approach

• Use of Gauss Theorem – Incompressibility

• Reynolds Transport Theorem • Conservation of Momentum (Cauchy’s Momentum equations) • The Navier-Stokes equations – Constitutive equations: Newtonian fluid – Navier-stokes, compressible and incompressible

Numerical Fluid Mechanics PFJL Lecture 6, 2.29 1

1

Page 2: 2.29 Numerical Fluid Mechanics Fall 2011 – Lecture 6 · 2.29 Numerical Fluid Mechanics Fall 2011 ... – Chapter 4 of “I. M. Cohen and P. K. Kundu. Fluid Mechanics. ... 2.29 Numerical

Fluid flow modeling: the Navier-Stokes equations and their approximations – Cont’d

Today’s Lecture

• References : –Chapter 1 of “J. H. Ferziger and M. Peric, Computational Methods for Fluid Dynamics. Springer, New York, third edition, 2002.”

–Chapter 4 of “I. M. Cohen and P. K. Kundu. Fluid Mechanics. Academic Press, Fourth Edition, 2008”

–Chapter 4 in “F. M. White, Fluid Mechanics. McGraw-Hill Companies Inc., Sixth Edition”

• For today’s lecture, any of the chapters above suffice – Note each provide a somewhat different perspective

Numerical Fluid Mechanics PFJL Lecture 6, 2.29 2

2

Page 3: 2.29 Numerical Fluid Mechanics Fall 2011 – Lecture 6 · 2.29 Numerical Fluid Mechanics Fall 2011 ... – Chapter 4 of “I. M. Cohen and P. K. Kundu. Fluid Mechanics. ... 2.29 Numerical

Integral Conservation Law for a scalar

d dV dt CM fixed fixed

Advective fluxes Other transports (diffusion, etc) Sum of sources and ("convective" fluxes) sinks terms (reactions, et

( . ) . CV CS CS CV

d dV v n dA q n dA s dV dt

c)

CV, fixed sΦ

ρ,Φ v Applying the Gauss Theorem, for any arbitrary CV gives:

.(v) . q s

t

For a common diffusive flux model (Fick’s law, Fourier’s law): q k

. (v) . k( ) s

q

Conservative form of the PDE t

Numerical Fluid Mechanics PFJL Lecture 6, 2.29 3

3

Page 4: 2.29 Numerical Fluid Mechanics Fall 2011 – Lecture 6 · 2.29 Numerical Fluid Mechanics Fall 2011 ... – Chapter 4 of “I. M. Cohen and P. K. Kundu. Fluid Mechanics. ... 2.29 Numerical

ong conservative

Strong-Conservative formof the Navier-Stokes Equations ( v)

d Cons. of Momentum: vdV v v n dA ( . ) p ndA .ndA gdV CV CS CS CS CVdt

F

Applying the Gauss Theorem gives: p . g dVCV

v For any arbitrary CV gives: .( v v) . g p t

With Newtonian fluid + incompressible + constant μ:

CV, fixed sΦ

ρ,Φ v

v

Momentum: .(v v ) p 2v gtq Mass: .v 0

Numerical Fluid Mechanics PFJL Lecture 6, 42.29

Equations are said to be in “str form” if all terms have the form of the divergence of a vector or a tensor. For the i th Cartesian component, in the general Newtonian fluid case:

2.( ) . 3

j ji i i i j i i i i

j i j

u uv u v v p e e e g x e t x x x

With Newtonian fluid only:

4

Page 5: 2.29 Numerical Fluid Mechanics Fall 2011 – Lecture 6 · 2.29 Numerical Fluid Mechanics Fall 2011 ... – Chapter 4 of “I. M. Cohen and P. K. Kundu. Fluid Mechanics. ... 2.29 Numerical

Navier-Stokes Equations:For an Incompressible Fluid with constant viscosity

V(x,y,z) Fluid Velocity Field

Navier-Stokes Equation

Conservation of Mass

Dynamic Pressure P = Pactual -gz

Kinematic viscosity Density

Hydrostatic Pressure: -g z for z positive upward

Numerical Fluid Mechanics PFJL Lecture 6, 2.29 5

5

Page 6: 2.29 Numerical Fluid Mechanics Fall 2011 – Lecture 6 · 2.29 Numerical Fluid Mechanics Fall 2011 ... – Chapter 4 of “I. M. Cohen and P. K. Kundu. Fluid Mechanics. ... 2.29 Numerical

V=

Incompressible FluidPressure Equation

Navier-Stokes Equation

Conservation of Mass

Divergence of Navier-Stokes Equation

Dynamic Pressure Poisson Equation

V)= -

More general than Bernoulli – Valid for unsteady and rotational flow

Numerical Fluid Mechanics PFJL Lecture 6, 2.29 6

6

Page 7: 2.29 Numerical Fluid Mechanics Fall 2011 – Lecture 6 · 2.29 Numerical Fluid Mechanics Fall 2011 ... – Chapter 4 of “I. M. Cohen and P. K. Kundu. Fluid Mechanics. ... 2.29 Numerical

Navier-Stokes Equation

curl of Navier-Stokes Equation

Incompressive FluidVorticity Equation

Vorticity

Numerical Fluid Mechanics PFJL Lecture 6, 2.29 7

7

Page 8: 2.29 Numerical Fluid Mechanics Fall 2011 – Lecture 6 · 2.29 Numerical Fluid Mechanics Fall 2011 ... – Chapter 4 of “I. M. Cohen and P. K. Kundu. Fluid Mechanics. ... 2.29 Numerical

Inviscid Fluid MechanicsEuler’s Equation

Navier-Stokes Equation: incompressible, constant viscosity

If also inviscid fluid

Euler’s Equations

Numerical Fluid Mechanics PFJL Lecture 6, 2.29 8

8

Page 9: 2.29 Numerical Fluid Mechanics Fall 2011 – Lecture 6 · 2.29 Numerical Fluid Mechanics Fall 2011 ... – Chapter 4 of “I. M. Cohen and P. K. Kundu. Fluid Mechanics. ... 2.29 Numerical

Inviscid Fluid MechanicsBernoulli Theorems

Theorem 1 Theorem 2

Irrotational Flow, incompressible Steady, Incompressible, inviscid, no shaft work, no heat transfer

Flow Potential

Define

Introduce PT = Thermodynamic

Navier-Stokes Equation

pressure

X

Along stream lines and vortex lines

Numerical Fluid Mechanics PFJL Lecture 6, 2.29 9

9

Page 10: 2.29 Numerical Fluid Mechanics Fall 2011 – Lecture 6 · 2.29 Numerical Fluid Mechanics Fall 2011 ... – Chapter 4 of “I. M. Cohen and P. K. Kundu. Fluid Mechanics. ... 2.29 Numerical

Potential FlowsIntegral Equations

Irrotational Flow

Flow Potential

Conservation of Mass

Laplace Equation

“Mostly” Potential Flows: Only rotation occurs at

boundaries due to viscous terms

In 2D: Velocity potential : u , v x y

Stream function : u , v y x

• Since Laplace equation is linear, it can be solved by superposition of flows, called panel methods

• What distinguishes one flow from another are the boundary conditions and the geometry: there are no intrinsic parameters in the Laplace equation

Numerical Fluid Mechanics PFJL Lecture 6, 10

10

2.29

Page 11: 2.29 Numerical Fluid Mechanics Fall 2011 – Lecture 6 · 2.29 Numerical Fluid Mechanics Fall 2011 ... – Chapter 4 of “I. M. Cohen and P. K. Kundu. Fluid Mechanics. ... 2.29 Numerical

Potential FlowBoundary Integral Equations

Green’s Theorem

S

n

V

Green’s Function

Homogeneous Solution

Boundary Integral Equation

Discretized Integral Equation

Linear System of Equations

Panel Methods

Numerical Fluid Mechanics PFJL Lecture 6, 11

11

2.29

Page 12: 2.29 Numerical Fluid Mechanics Fall 2011 – Lecture 6 · 2.29 Numerical Fluid Mechanics Fall 2011 ... – Chapter 4 of “I. M. Cohen and P. K. Kundu. Fluid Mechanics. ... 2.29 Numerical

MIT OpenCourseWarehttp://ocw.mit.edu

2.29 Numerical Fluid Mechanics Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.