4.3 ito’s integral for general intrgrands 徐健勳. review construction of the integral

22
4.3 Ito’s Integral for General Intrgrands 徐徐徐

Upload: may-baldwin

Post on 01-Jan-2016

215 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 4.3 Ito’s Integral for General Intrgrands 徐健勳. Review Construction of the Integral

4.3Ito’s Integral for General

Intrgrands徐健勳

Page 2: 4.3 Ito’s Integral for General Intrgrands 徐健勳. Review Construction of the Integral

Review

• Construction of the IntegralT

0 (t) dW(t)

1

Assume that ( ) is constant in t on each

subinterval ,

Such a process ( ) is a simple process

j j

t

t t

t

Tttt n 100

Page 3: 4.3 Ito’s Integral for General Intrgrands 徐健勳. Review Construction of the Integral
Page 4: 4.3 Ito’s Integral for General Intrgrands 徐健勳. Review Construction of the Integral

tudWutI

0)()()(

1

1

10

In general, if , then

( ) ( ) ( ) ( ) ( ) ( ) ( )

k k

k

j j j k kj

t t t

I t t W t W t t W t W t

Ttt n

• Martingale

• Ito Isometry

• Quadratic Variation

2

2

0.

tEI t E u du

2

0,

tI I t u du

Page 5: 4.3 Ito’s Integral for General Intrgrands 徐健勳. Review Construction of the Integral

4.3 Ito Integral for General Integrands

• In this section, the Ito Integral

for integrands that allowed to vary

continuously with time and jump• Assume

• is adapted to the filtration

• Also assume

T

0 (t) dW(t)

)(t

)(t

0 ),( ttF

T

0

2 )(E dtt

)(t

Page 6: 4.3 Ito’s Integral for General Intrgrands 徐健勳. Review Construction of the Integral

• In order to define , we approximate

by simple process.

• it is possible to choose a sequence of simple

processes such that as these processes

converge to the continuously varying .

• By “converge”, we mean that

)(tT

0 (t) dW(t)

)(tn

n

)(t

2

0lim 0

T

nn

E t t dt

Page 7: 4.3 Ito’s Integral for General Intrgrands 徐健勳. Review Construction of the Integral
Page 8: 4.3 Ito’s Integral for General Intrgrands 徐健勳. Review Construction of the Integral

Theorem 4.3.1 Let T be a positive constant and let

be adapted to the filtration F(t) and be an adapted

stochastic process that satisfies Then

has the following properties.

(1)(Continuity) As a function of the upper limit of integration t,

the paths of I(t) are continuous.

(2)(Adaptivity)For each t, I(t) is F(t)-measurable.

,0 ,t t T

2

0.

TE t dt

0 0

lim ,0t t

nn

I t u dW u u dW u t T

Page 9: 4.3 Ito’s Integral for General Intrgrands 徐健勳. Review Construction of the Integral

(3)(Linearity) If and

then

furthermore, for every constant c,

(4)(Martingale) I(t) is a martingale.

(5)(Ito isometry)

(6)(Quadratic variation)

0

tI t u dW u

0

,t

J t u dW u

0;

tI t J t u u dW u

0

tcI t c u dW u

2

2

0.

tEI t E u du

2

0,

tI I t u du

Page 10: 4.3 Ito’s Integral for General Intrgrands 徐健勳. Review Construction of the Integral

• Example 4.3.2 Computing We choose a large

integer n and approximate the integrand by the

simple process

0( ) ( ).

TW t dW t

t W t

0 0 0

2

1 1

n

TW if t

nT T T

W if tn n nt

n T n TW if t T

n n

Page 11: 4.3 Ito’s Integral for General Intrgrands 徐健勳. Review Construction of the Integral
Page 12: 4.3 Ito’s Integral for General Intrgrands 徐健勳. Review Construction of the Integral

• As shown in Figure 4.3.2. Then

• By definition,

• To simplify notation, we denote

0|)()(|lim 2

0

dttWtET

nn

0 0

1

0

lim

1 lim

T T

nn

n

nj

W t dW t t dW t

j TjT jTW W W

n n n

Wj

jTW

n

Page 13: 4.3 Ito’s Integral for General Intrgrands 徐健勳. Review Construction of the Integral

21 1 1 1

2 21 1 1

0 0 0 0

1 12 2

11 0 0

1 1 12 2 2

10 0 0

1 1 1

2 2 2

1 1

2 2

1 1 1

2 2 2

n n n n

j j j j j jj j j j

n n n

k j j jk j j

n n n

n k j j jk j j

W W W W W W

W W W W

W W W W W

1 12 2

10 0

12

10

1

2

1

2

n n

n j j jj j

n

n j j jj

W W W W

W W W W

Page 14: 4.3 Ito’s Integral for General Intrgrands 徐健勳. Review Construction of the Integral

• We conclude that

• In the original notation, this is

21 1

21 1

0 0

1 1

2 2

n n

j J j n j jj j

W W W W W W

1

0

21

2

0

1

11 1

2 2

n

jj

n

j

j TjT jTW W W

n n n

j T jTW T W W

n n

Page 15: 4.3 Ito’s Integral for General Intrgrands 徐健勳. Review Construction of the Integral

• As , we get

• Compare with ordinary calculus. If g is a differentiable

function with g(0)=0, then

n

2

0

2

1 1,

2 21 1

2 2

TW t dW t W T W W T

W T T

T Tt

tTgtgtdgtg

0

2

0

2 )(2

1)(

2

1)()( |

Page 16: 4.3 Ito’s Integral for General Intrgrands 徐健勳. Review Construction of the Integral

• If we evaluated

then we would not have gotten ,this term.

In other words,

1

0

112

limn

nj

j Tj T jT

W W Wn n n

T2

1

2

0

1

2

TW t dW t W T

Page 17: 4.3 Ito’s Integral for General Intrgrands 徐健勳. Review Construction of the Integral

n

jTW

n

TjW

n

TjW

n

jn

)1(21

lim1

0

To simplify notation, we denote

and

21

21

jWn

TjW

jWn

jTW

Page 18: 4.3 Ito’s Integral for General Intrgrands 徐健勳. Review Construction of the Integral

1

0

21

0 2

1

1

0

2

2

1

1

0

2

2

1 2

1

2

1)(

2

1 n

jj

n

jj

j

n

jj

n

jj

jWWWWWW

1

0

2

2

1

1

0 2

11

1

0

21

1

0

2

2

11 2

1

2

1)(

2

1 n

jj

n

jj

j

n

jj

n

jj

j WWWWWW

---①

---②

Then, ①-②

1

0

1

0 2

1

1

0 2

112

1

1

0

2

2

1

2

1 n

jj

n

jj

n

jj

jj

n

jj WWWWWW

1

0

1

01

1

0 2

1222

2

1

2

1

2

1 n

j

n

jjj

n

jj

njj WWWWWW

We conclude that

1

0

1

0

22

2

112

2

1

1

01

2

1 2

1)(

2

1lim)(

2

1limlim

n

j

n

jn

jj

nj

jn

n

jjj

jnWWWWWWWW

Page 19: 4.3 Ito’s Integral for General Intrgrands 徐健勳. Review Construction of the Integral

22)(

1

0

1

0 2

1

1

0

2

2

1

T

n

TWWVarWWE

n

j

n

jj

j

n

jj

j

02

44

2

4

3

4243

4)()(

2)()(

2

222

21

0

1

02

2

1

02

21

0

2

2

1

1

0

4

2

1

1

0

2

2

2

1

1

0

2

2

1

nasn

T

n

T

n

T

n

T

n

T

n

T

n

T

n

T

n

TWWE

n

TWWE

n

TWWEWWVar

n

j

n

j

n

j

n

jj

j

n

jj

j

n

jj

j

n

jj

j

Page 20: 4.3 Ito’s Integral for General Intrgrands 徐健勳. Review Construction of the Integral

We conclude that and

1

0

2

2

1 4

1)(lim

2

1 n

jj

jnTWW

1

0

2

2

11 4

1)(lim

2

1 n

jj

jn

TWW

1

0

1

0

22

2

112

2

1

1

01

2

1 2

1)(

2

1lim)(

2

1limlim

n

j

n

jn

jj

nj

jn

n

jjj

jnWWWWWWWW

)(2

1)(

2

1

4

1

4

1)1(21

lim 221

0

TWTWTTn

jTW

n

TjW

n

TjW

n

jn

, So

2

0

1

2

TW t dW t W T We have

Page 21: 4.3 Ito’s Integral for General Intrgrands 徐健勳. Review Construction of the Integral

• is called the

Stratonovich integral.

• Stratonovich integral is inappropriate for finance.

• In finance, the integrand represents a position in an

asset and the integrator represents the price of that

asset.

2

0

1

2

TW t dW t W T

Page 22: 4.3 Ito’s Integral for General Intrgrands 徐健勳. Review Construction of the Integral

• The upper limit of integrand T is arbitrary, then

• By Theorem4.3.1

• At t = 0, this martingale is 0 and its expectation is 0.

• At t > 0, if the term is not present and EW2(t) = t, it is

not martingale.

2

0

1 1, 0

2 2

TW u dW u W T t t

1

2t