沈彩万

30
沈沈沈 沈沈沈沈沈沈 8 沈 11 沈 ▪ 沈沈沈沈 沈沈沈沈沈沈沈沈沈沈沈沈沈沈沈 沈沈沈Y. Abe, D. Boilley, 沈沈沈

Upload: odysseus-marks

Post on 02-Jan-2016

24 views

Category:

Documents


0 download

DESCRIPTION

准裂变与融合过程的两步模型描述. 沈彩万. 湖州师范学院. 8 月 11 日 ▪ 兰州大学. 合作者: Y. Abe, D. Boilley , 沈军 杰. Content. Introduction of the model Quasi-fission stage Fusion stage Summary. Sketch map of the process. n. C. N. Reseparation (Quasi-Fission). Binary Processes (DIC). Spontaneous decays - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: 沈彩万

沈彩万湖州师范学院

8 月 11 日 ▪ 兰州大学

准裂变与融合过程的两步模型描述

合作者: Y. Abe, D. Boilley, 沈军杰

Page 2: 沈彩万

p.2

Content

Introduction of the model Quasi-fission stage Fusion stage Summary

Page 3: 沈彩万

p.3

Binary Processes(DIC)

Reseparation(Quasi-Fission)

C. N.

SHESpontaneous decays(a, fission)

n

Sketch map of the process

Page 4: 沈彩万

p.4

Theories to describe the fusion stage

Fluctuation-Dissipation theory

DNS (di-nuclear system) model

ImQMD model

Page 5: 沈彩万

p.5

Two-step Model

(1) Coulomb barrier; (2) Liquid drop barrier

48Ca+238URCB = 14.14fmRC = 11.86fmRLB = 9.5fm

R

VCoulombEnergy

Liquid-dropEnergy

RLB

RC

RCB

including two-consecutive steps overcoming the barriers

Pfusion = Psticking* Pform

Page 6: 沈彩万

p.6

(1) Sticking probability Psticking

(a) Surface friction model

(b) Empirical formula by Swiatecki

[Swiatecki et al., PRC 71, 014602(2005)]

(c) Quantum tunneling

(d) …

Page 7: 沈彩万

p.7

(2) Formation Probability: Pform

Using liquid drop model

R

V

VB

Rc

Contact Point = Rp + Rt

Ec.m.

Coulomb Potential

Liquid Drop Potential

PStickingPform

Page 8: 沈彩万

p.8

Parameters for the description of formation

A1A2

q1 = R/R0 q2 = ap1 = pR/R0 p2 = pa

R12

12

AA

AA

a: asymmetric parameter ,R0: spherical radius of the compound nucleus

Page 9: 沈彩万

p.9

Average value of the neck parameter

]/)([Exp0 TVww

1.01

0

1

0

dw

dw

Page 10: 沈彩万

p.10

Criteria for fusion hindrancein radial evolution

1.0

2.0 3.04.0

5.0

6.0

7.0

8.0

9.0

10

11

12

13

14

15

16

17

18

19

20

21

22

23

8.0

7.0

24

6.0

4.0

3.0

2.0

251.0

0

-2.0

-3.0

-5.0

26

-10

-11

-13

-16

-18

-19

-20

-21

-25

-26

27

-32

-33

-38

-39

-40

27

-42

28

29

-49-50

31

-54

-58

34

-59

28

29

30

31

0.0 0.5 1.0 1.5 2.00.0

0.2

0.4

0.6

0.8

= 9.2028x10-4 MeV2J

c

2

Vq = 27.4 MeV

+

= 1.0, L = 0

48Ca+238U

R/R0

If system evolves to spherical case: without fusion hindrance.

If system evolves to two fragments: with fusion hindrance.

(F.H)(no F.H.)

Page 11: 沈彩万

p.11

Equation of motion for R and a

Langevin equaiton:

jiji

jijkjkijkjjkii

i

pmdt

dq

tRgpmppmqq

V

dt

dp

)(

)()()(2

1

1

11

Page 12: 沈彩万

p.12

Tracks of motion with random force

1.0 3.0

5.0

7.0

9.0

11

13

15 17

19

2123

25

27

5.0

3.0

27

1.0

-1.0

29

31

-7.0

-11

-13

29

31

0.0 0.5 1.0 1.5

0.0

0.2

0.4

0.6

0.8

R/R0

+

48Ca+238U

with random force

Ek=50MeV

Page 13: 沈彩万

p.13

Formation and fragment mass-distribution

NNpP k /')(

1.0 3.0

5.0

7.0

9.0

11

13

15 17

19

2123

25

27

5.0

3.0

27

1.0

-1.0

29

31

-7.0

-11

-13

29

31

0.0 0.5 1.0 1.5

0.0

0.2

0.4

0.6

0.8

R/R0

+

48Ca+238U

with random force

Ek=50MeV

formation

quasi-fission

initial point with pk

N

NpP k

''),(

Page 14: 沈彩万

p.14

According to the friction model , the relative momentums are distributed in Gaussian form :

mT

pp

mTpf k

k 2

)(exp

2

1)(

2

For the fusion of heavy systems, 0p

1.0

2.0 3.04.0

5.0

6.0

7.0

8.0

9.0

10

11

12

13

14

15

16

17

18

19

20

21

22

23

8.0

7.0

24

6.0

4.0

3.0

2.0

251.0

0

-2.0

-3.0

-5.0

26

-10

-11

-13

-16

-18

-19

-20

-21

-25

-26

27

-32

-33

-38

-39

-40

27

-42

28

29

-49-50

31

-54

-58

34

-59

28

29

30

31

0.0 0.5 1.0 1.5 2.00.0

0.2

0.4

0.6

0.8

= 9.2028x10-4 MeV2J

c

2

Vq = 27.4 MeV

+

= 1.0, L = 0

48Ca+238U

R/R0

Initial radial momentum distribution at contact point

Page 15: 沈彩万

p.15

(A)

Fragment mass distribution of Quasi-fission

Page 16: 沈彩万

p.16k

kkkkk

Jqf dp

N

pNpfdppPpfP

)(''

)(),()()(

Probability distribution of fragment after sticking:

N

NpP k

''),(

1.0 3.0

5.0

7.0

9.0

11

13

15 17

19

2123

25

27

5.0

3.0

27

1.0

-1.0

29

31

-7.0

-11

-13

29

31

0.0 0.5 1.0 1.5

0.0

0.2

0.4

0.6

0.8

R/R0

+

48Ca+238U

with random force

Ek=50MeV

quasi-fission

Page 17: 沈彩万

p.17

The cross section for mass distribution of quasi-fission

2

)()()( TJqf

Jqf

Jqf

APPAP

dAA

dA

AA

AA

AA

TT

T 2 ,

2

2

2

11:

Page 18: 沈彩万

p.18

Mass-distribution probability in the formation stage

)()12(2 APPJ Jqf

Jstick

)(AP Jqf

238U + 26Mg

Page 19: 沈彩万

p.19

Exp: W.Q. Shen, PRC (1987)

238U+16O 238U+26Mg 238U+32S

Page 20: 沈彩万

p.20

238U+35Cl 238U+40Ca 238U+65Zn

Properties: the larger Elab and heavier target, the wider fragment mass-distribution of quasi-fission.

Page 21: 沈彩万

p.21

Heavier target, wider mass distribution

Difference in the formation stage Difference in the sticking stage

Page 22: 沈彩万

p.22

Larger Elab, wider mass distribution

Lighter target Heavier target

Page 23: 沈彩万

p.2323

(B) Fusion process

Page 24: 沈彩万

p.24

(1) Formation probability

Then we get formation probability :

NNpP k /')( 1.0 3.0

5.0

7.0

9.0

11

13

15 17

19

2123

25

27

5.0

3.0

27

1.0

-1.0

29

31

-7.0

-11

-13

29

31

0.0 0.5 1.0 1.5

0.0

0.2

0.4

0.6

0.8

R/R0

+

48Ca+238U

with random force

Ek=50MeV

formation

Page 25: 沈彩万

p.25

Survival Probability (statistical evaporation model) [HIVAP program]

J

JMC

J EPEPJ *)()()12( surv..fusion2

res

(2) Fusion cross section

Residue cross section

Page 26: 沈彩万

p.26

Key parameters:

(i) re-adjust the parameters in Swiatecki’s formula in the calculation of Psticking (DB, C)

(ii) Shell correction factor fshell = 0.48

Application to the 50Ti induced reaction to synthesize SHN

Page 27: 沈彩万

p.27

Adjusting DB and C to fit experimental data

The two reactions are not hindered[Gaggerler et al., Z. Phys. A 316, 291(1984)]

and

thus the fusion cross sections are used to adjust the parameter DB and C.

Page 28: 沈彩万

p.28

Z = 120

: ~fb

Comparison with others:

(a) Feng, Adamin, Nasirov, Liu, Nan Wang, Zagrebaev: ~0.1pb

(b) Ning Wang et al.: ~20 fb

Page 29: 沈彩万

p.29

1. The experimental data of quasi-fission is reproduced by two-step model. However more detailed aspects still should still be considered.

2. The residue cross section for 50Ti+250Cf is calculated.

The predicted cross section is still far away from the

current facilities.

3. Different method to calculate the capture cross section

should be considered in near future.

Summary

Page 30: 沈彩万

p.30

Thank you !