7_elastodynamfluids-handout2

Upload: ascanio-barbosa

Post on 14-Apr-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/28/2019 7_elastodynamfluids-handout2

    1/6

    Continuum mechanicsVII. Typical problems of elasto-dynamics and

    fluid dynamics

    Ales Janka

    office Math [email protected]

    http://perso.unifr.ch/ales.janka/mechanics

    Apr 13, 2011, Universite de Fribourg

    Ales Janka VII. Problems of elasto-dynamics and fluid dynamics

    0. Force equilibria for elasto-dynamicsMass conservation:

    t+

    yj( vj) =

    t+ div(v) = 0 in

    Force equilibria (statics) momentum conservation (dynamics)

    Analogy for

    jFj =

    ddt

    i

    mivi

    :

    fidy +

    ij nj dS =d

    dt

    vidy

    Time derivative of an integral in Euler formulation (cf. III. sect.1)

    d

    dt

    vidy

    =

    (vi)

    t+ vj

    (vi)

    yj+ vi

    vj

    yj

    dy

    =

    vi

    t+vi

    t+vi vj

    yj+ vi

    vj

    yj vi( t+div(v))=0

    + vjvi

    yj

    dy

    Ales Janka VII. Problems of elasto-dynamics and fluid dynamics

  • 7/28/2019 7_elastodynamfluids-handout2

    2/6

    0. Force equilibria for elasto-dynamics

    Mass conservation:

    t+

    yj( vj) =

    t+ div(v) = 0 in

    Force equilibria (statics) momentum conservation (dynamics)

    fidy +

    yjij dy =

    vi

    t+ vj

    vi

    yj

    dy =

    Dvi

    Dtdy

    Hence, for || 0 we get

    Dv

    Dt div = f

    F

    in

    Ales Janka VII. Problems of elasto-dynamics and fluid dynamics

    1. Elasto-dynamics in small deformations, linear materialMomentum conservation:

    D2u

    Dt2j

    ij = Fi ie. 2u

    t2 div = F in

    Constitutive law: Hookes law, ij = Eijkek, e.g.

    = 2e + tr(e) Id where = K2

    3Kinematic equation: Cauchy strain tensor e:

    ek =1

    2[ku +uk] ie. e =

    1

    2

    u + (u)T

    in

    Boundary conditions: for time t [0,):

    u = u(t) on D (Dirichlet-type),

    n = g(t) on N = \ D (Neumann-type).Initial condition: for all x :

    u(x, 0) = u0(x) andu

    t(x, 0) = v0

    Ales Janka VII. Problems of elasto-dynamics and fluid dynamics

  • 7/28/2019 7_elastodynamfluids-handout2

    3/6

    2. Fluid dynamics (constitutive law for Newtons fluid)

    Elastic solid: material reversibly deformed under applied stressHookes law: hydrostatic pressure p = s:

    im = 2 eim

    p = s = K e = (3 + 2 ) e =

    E

    1 2 e

    Cauchy stress: ij = ij + sij = ij pij

    Fluid: continually deforming (in time) under applied shear stressNewtons fluid: modification of Hookes law for fluids:

    ij = 2 eij = 2 eij + e ij

    p = s = (3 + 2 ) e = 3 Ke

    Dynamic viscosity and second viscosity = 23Note: we have replaced eij and e by their time-derivatives

    Ales Janka VII. Problems of elasto-dynamics and fluid dynamics

    3. Viscosity and visco-elasticity

    Distinction solid vs. fluid is not obvious:

    Some materials behave both like a solid and like a fluiddepending on the observation period (asphalt, glass, some plastics)

    Example: University of Queensland pitch-drop experiment:(set up in 1927, won the Ig-Nobel Price in October 2005)

    Dec 1938 1st drop fellFeb 1947 2nd drop fellApr 1954 3rd drop fell

    May 1962 4th drop fellAug 1970 5th drop fellApr 1979 6th drop fell

    Jul 1988 7th drop fellNov 28, 2000 8th drop fell

    Ales Janka VII. Problems of elasto-dynamics and fluid dynamics

  • 7/28/2019 7_elastodynamfluids-handout2

    4/6

    Digression: General visco-elastic materials

    Generalization of constitutive laws for viscoelastic materials:

    M

    k=1

    kks

    tk=

    N

    =1

    e

    t

    Mk=1

    kkij

    tk=

    N=1

    eij

    t

    Maxwell material:(t)

    E+

    (t)

    = e(t)

    Kelvin-Voigt material: = E e(t) + e(t)

    Ales Janka VII. Problems of elasto-dynamics and fluid dynamics

    4. Fluids: Newtons fluidForce equilibrium:

    Dvi

    Dt

    yjij = fi in

    Mass conservation / continuity equation:

    t+ div(v) = 0 in

    Kinematic equation:

    eij =1

    2

    vi

    yj+

    vj

    yi

    Constitutive law:

    ij = 2 eij + e ij pij

    Ales Janka VII. Problems of elasto-dynamics and fluid dynamics

  • 7/28/2019 7_elastodynamfluids-handout2

    5/6

    4. Fluids: incompressible Newtons fluidForce equilibrium:

    Dvi

    Dt

    yjij = fi in

    Mass conservation / continuity equation: particle density is

    const. in time:

    D

    Dt=0

    +div(v) = 0 ie. div(v) = 0 in

    Kinematic equation:

    eij = 12

    viyj

    + vj

    yi

    Constitutive law:ij = 2 eij pij

    Ales Janka VII. Problems of elasto-dynamics and fluid dynamics

    2. Fluids: Navier-Stokes equation

    Force equilibria: assembling all to Navier-Stokes equation:

    yj vi

    yj+

    vj

    yi pij = fi

    Dvi

    Dt

    Mass conservation / continuity equation:

    vj

    yj= 0

    Ales Janka VII. Problems of elasto-dynamics and fluid dynamics

  • 7/28/2019 7_elastodynamfluids-handout2

    6/6

    2. Fluids: Navier-Stokes equation

    Force equilibria: assembling all to Navier-Stokes equation:

    2viyjyj

    + 2vjyjyi

    + p

    yi= fi Dvi

    Dt

    Mass conservation / continuity equation:

    vj

    yj= 0

    Ales Janka VII. Problems of elasto-dynamics and fluid dynamics

    2. Fluids: Navier-Stokes equation

    Force equilibria: assembling all to Navier-Stokes equation:

    vi

    t

    + vi

    yjvj

    2vi

    yjyj +p

    yi= fi

    Mass conservation / continuity equation:

    vj

    yj= 0