acoust lect damping

22
 A C O U S T I C S    of   W O O D Lecture 3 , . , Jan Tippner Dep of Wood Science FFWT MU Brno . . jan tippner@mendelu cz

Upload: bitconcepts9781

Post on 27-Sep-2015

219 views

Category:

Documents


2 download

DESCRIPTION

Acoust Lect Damping

TRANSCRIPT

  • ACOUSTICSofWOOD Lecture3

    , . , Jan Tippner Dep of Wood Science FFWT MU Brno. .jan tippner@mendelu cz

  • ACOUSTICSofWOODLecture3

    Contentoflecture3:

    1.Damping

    2.Internalfrictioninthewood

  • ACOUSTICSofWOODLecture3

    Contentoflecture3:

    1.Damping

    2.Internalfrictioninthewood

  • ACOUSTICSofWOODLecture3

    Damping

    sinewaveisawaveformgeneratedbyasystemthatischaracterisedbysimpleharmonicmotion

    ideal system which exhibits simple harmonic motion is a system that loses no energy (or has its energyreplenishedfromoutsidethesystem)

    suchawaveformcanalsobecalledacontinuouswaveformasitcontinuesforeverwithouteventuallyreducingtozerointensity

  • ACOUSTICSofWOODLecture3

    Damping

    realsystemsareneverideal;allnaturallyoccuringsystemslooseenergy(eg.asheatduetofriction)

    systemlosesenergyasheat(bothinternallyasaconsequenceofheatlossduringphysicaldeformationandexternallyasaconsequenceoffrictionwithair)

    thislossofenergyinanoscillatingsystemisknowasdamping;adampedwaveformisalsoknowasanoncontinuouswaveform

  • ACOUSTICSofWOODLecture3

    Damping

    dampedwaveformcandieoutquicklyorslowly;waveformthatdiesoutquicklyissaidtobestronglydampedasitlosesenergyquickly;waveformthatdiesoutslowlyissaidtobeweaklydampedasitlosesenergyslowly

    dampingisnotjustacharacteristicofsystemsthatgeneratenoncontinuoussinewavelikepatterns,dampingisacharacteristicofsystemsthatproducesoundswithverycomplexspectralpatterns

    inphysics,damping isanyeffect that tends to reduce theamplitudeofoscillations inanoscillatorysystem,particularlytheharmonicoscillator

    inmechanics,frictionisonesuchdampingeffect.FormanypurposesthefrictionalforceFfcanbemodeledas

    beingproportionaltothevelocityvoftheobject:

    Ff=cv

    where:cistheviscousdampingcoefficient,giveninunitsofnewtonsecondspermeter

  • ACOUSTICSofWOODLecture3

    Damping

    dampedharmonicoscillatorssatisfythesecondorderdifferentialequation:

    where:0istheundampedangularfrequencyoftheoscillatorandisaconstantcalledthedampingratio

    foramassonaspringhavingaspringconstantkandadampingcoefficientc:

    0=(k/m)

    =c/2m 0.

  • ACOUSTICSofWOODLecture3

    Damping

    valueofthedampingratio determinesthebehaviorofthesystem.Adampedharmonicoscillatorcanbe:

    1.Overdamped(>1)systemreturns(exponentiallydecays) toequilibriumwithoutoscillating; largervaluesofthedampingratio returntoequilibriumslower

    2.Criticallydamped( =1)systemreturnstoequilibriumasquicklyaspossiblewithoutoscillating(oftendesired)

    3.Underdamped(

  • ACOUSTICSofWOODLecture3

    ExampleofSpringMassSystem

    Amassmattachedtoaspringanddamper.ThedampingcoefficientisrepresentedbyB,Fdenotesanexternalforce.

  • ACOUSTICSofWOODLecture3

    ExampleofSpringMassSystem

    idealmassspringdampersystemwithmassm(inkilograms),springconstantk(innewtonspermeter)andviscousdamperofdampingcoefficientc(innewtonsecondspermeterorkilogramspersecond)issubjectto

    anoscillatoryforce............................................andadampingforce...................................................................

    treatingthemassasafreebodyandapplyingNewton'ssecondlaw(F=ma),thetotalforceFtotonthebodyis

    where:aistheacceleration(inmeterspersecondsquared)ofthemassandxisthedisplacement(inmeters)ofthemassrelativetoafixedpointofreference

    Ftot=Fs+Fd >>>>>>

  • ACOUSTICSofWOODLecture3

    ExampleofSpringMassSystem

    rearr.to:

    where:(undamped)naturalfrequencyofthesystem: thedampingratio:

    thenaturalfrequencyrepresentsanangularfrequency,expressedinradianspersecondthedampingratioisadimensionlessquantity

  • ACOUSTICSofWOODLecture3

    ExampleofSpringMassSystem

    thedifferentialequationnowbecomes

    wecansolvetheequationbyassumingasolutionxsuchthat:

    where:theparameter(gamma)is,ingeneral,acomplexnumber.

    substitutingthisassumedsolutionbackintothedifferentialequationgiveswhichisthecharacteristicequation.

    solvingthecharacteristicequationwillgivetworoots, + and ; andthesolutiontothedifferentialequationis:

    where:AandBaredeterminedbytheinitialconditionsofthesystem:

  • ACOUSTICSofWOODLecture3

    ExampleofSpringMassSystem

    rearr.to:

    where:(undamped)naturalfrequencyofthesystem: thedampingratio:

    thenaturalfrequencyrepresentsanangularfrequency,expressedinradianspersecondthedampingratioisadimensionlessquantity

  • ACOUSTICSofWOODLecture3

    Aharmonicoscillatorcanbe:

    1.Overdamped(>1)systemreturns(exponentiallydecays)toequilibriumwithoutoscillating;largervaluesofthedampingratio returntoequilibriumslower2.Criticallydamped ( =1) system returns toequilibriumasquicklyaspossiblewithoutoscillating (oftendesired)3.Underdamped(

  • ACOUSTICSofWOODLecture3

    Dependenceofthesystembehavioronthevalueofthedampingratio ,forunderdamped,criticallydamped,overdamped,andundampedcases,forzerovelocityinitialcondition.

  • ACOUSTICSofWOODLecture3

    the behavior of the system depends on the relative values of the two fundamentalparameters, thenaturalfrequency0andthedampingratio

    inparticular,thequalitativebehaviorofthesystemdependscruciallyonwhetherthequadraticequationfor hasonerealsolution,tworealsolutions,ortwocomplexconjugatesolutions.

    1.Criticaldamping( =1) When =1,thereisadoubleroot (definedabove),whichisreal.Thesystemissaidtobecriticallydamped. Acriticallydampedsystemconvergestozerofasterthananyother,andwithoutoscillating.

    Inthiscase,withonlyoneroot ,thereisinadditiontothesolutionx(t)=e t asolutionx(t)=te t :

    whereAandBaredeterminedbytheinitialconditionsofthesystem(usuallytheinitialpositionandvelocityofthemass):

  • ACOUSTICSofWOODLecture3

    2.Overdamping( >1)When >1,thesystemisoverdampedandtherearetwodifferentrealroots.Thesolutiontothemotionequationis:

    whereAandBaredeterminedbytheinitialconditionsofthesystem:

  • ACOUSTICSofWOODLecture3

    3.Underdamping(0

  • ACOUSTICSofWOODLecture3

    LogarithmicDecrementofDamping

    Logarithmicdecrement,,isusedtofindthedampingratioofanunderdampedsysteminthetimedomain.Thelogarithmicdecrementisthenaturallogoftheamplitudesofanytwosuccessivepeaks:

    wherex0 isthegreaterofthetwoamplitudesandxn istheamplitudeofapeaknperiodsaway;thedampingratioisthenfoundfromthelogarithmicdecrement:

  • ACOUSTICSofWOODLecture3

    Qfactor

    thequalityfactororQfactorisadimensionlessparameterthatdescribeshowunderdampedanoscillatororresonatoris,orequivalently,characterizesaresonator'sbandwidthrelativetoitscenterfrequencyhigherQindicatesalowerrateofenergylossrelativetothestoredenergyoftheoscillator;theoscillationsdieoutmoreslowly (apendulumsuspended fromahighqualitybearing,oscillating inair,hasahighQ,whileapendulumimmersedinoilhasalowone)forasingledampedmassspringsystem,theQfactorrepresentstheeffectofsimplifiedviscousdampingordrag,wherethedampingforceordragforceisproportionaltovelocity.TheformulafortheQfactoris:

    where M is the mass, k is the spring constant, and D is the damping coefficient, defined by the equationFdamping=Dv,wherevisthevelocity

    bandwidth,f, of a damped oscillator is shown on a graph of energy versus frequency.The Q factor of thedampedoscillator,orfilter,isf0/f.ThehighertheQ,thenarrowerand'sharper'thepeakis.

  • ACOUSTICSofWOODLecture3

    Simulationbyfiniteelementmethod

    Ansyssoftware

    unsteady:fulltransientsolution

    1D(beam),2D(shell),ev.3D(solid)

    1Dsolution: http://homepages.strath.ac.uk/~clas16/~fyfe/ansys/dynamic/transient/transient.html

    http://www.mece.ualberta.ca/tutorials/ansys/IT/Transient/Transient.html

    preprocessing(geometry,physics),solution,postprocessing(timehistory)

    modalanalysis>>>>>fulltransientanalysis

    adaptationforwood(changesofmaterialmodel)

    http://homepages.strath.ac.uk/~clas16/~fyfe/ansys/dynamic/transient/transient.htmlhttp://www.mece.ualberta.ca/tutorials/ansys/IT/Transient/Transient.html
  • ACOUSTICSofWOODLecture3

    Contentoflecture3:

    1.Damping

    2.Internalfrictioninthewood