advanced design and fabrication techniques of fiber ... · advanced design and fabrication...

33
Advanced Design and Fabrication Techniques of Fiber Grating Devices Yinchieh Lai Institute of Electro-Optical Engineering National Chiao Tung University Hsinchu, Taiwan, R.O.C. [Outline] 1. Introduction 2. Overlap-Step-Scan Exposure Fabrication of Fiber Bragg Gratings 3. True Apodization Achieved by the Polarization Control of UV Beam 4. Evolutionary Programming Design of Optimal Fiber Gratings 5. Conclusions

Upload: others

Post on 26-Jan-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

  • Advanced Design and Fabrication Techniquesof Fiber Grating Devices

    Yinchieh Lai (賴暎杰 )Institute of Electro-Optical Engineering

    National Chiao Tung UniversityHsinchu, Taiwan, R.O.C.

    [Outline]1. Introduction2. Overlap-Step-Scan Exposure Fabrication of Fiber Bragg Gratings3. True Apodization Achieved by the Polarization Control of UV Beam4. Evolutionary Programming Design of Optimal Fiber Gratings5. Conclusions

  • What are Fiber Gratings ?

    Fiber grating: index grating (induced by UV) on the fiber core.

    Slanted FBG

    ReflectionFilter Transmission Filter

    Fiber Bragg Grating(FBG)

    Long Period Grating(LPG)

  • Standard Fiber Gratings and Applications

    λ1, λ2 … λn λ1, λ2 … λnFBG at λi

    Drop λi Add λi

    Circulator Circulator

    diode laser

    Non-AR coatingPump laser

    3% reflectivityEDFA

    LPGSlanted FBGChirped FBG

    (1) DWDM OADM

    (2) Dispersion Compensation

    (3) EDFA gain flattening

    (4) Fiber sensor

    ASEsource

    wavelengthmeasurement

    FBG FBG FBG

    (5) Pump laser stabilization

  • Advantages of FBG OADM

    Data source: Southampton Photonics

  • -35

    -30

    -25

    -20

    -15

    -10

    -5

    0

    5

    (a)

    Ref

    lect

    ion

    (dB)

    -100

    -50

    0

    50

    100

    150

    200

    250

    300

    Time delay (ps)

    1547.2 1547.6 1548.0 1548.4 1548.8 1549.2-35

    -30

    -25

    -20

    -15

    -10

    -5

    0

    5

    (b)

    W avelength (nm)

    Ref

    lect

    ion

    (dB)

    -100

    -50

    0

    50

    100

    150

    200

    250

    300

    Time delay (ps)

    15 20 25 30 35

    DLP method LS fitting

    ng Position (mm)

    Dispersionless FBG

    Gaussian Apodization

    0.2 0.4 0.6 0.8 1Position

    0.2

    0.4

    0.6

    0.8

    1

    Index Difference

    DispersionlessFBG by LP

    Require: 1. Constant dc-index (True Apodization). 2. Special ac-index apodization. 3. Multiple phase-shifts

    0.0

    0.5

    1.0

    Phas

    e (x

    ra

    d)π

    0 5 10

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    Grati

    Nor

    mal

    ized

    Ref

    ract

    ive

    Inde

    x Pr

    ofile

    Index envelope

  • Fiber Bragg Grating (FBG) as 1-D photonic crystalExposureMethods (a)

    (d)

    (e)

    (b)

    (c)

    (f)

    (g)

    1549.6 1550.0 1550.4 1550.8 1551.2Wavelength (nm)

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    Ref

    lect

    ivity

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    λΒ = 2neffΛ

    ΛReflectionFilter

    Photonicbandgap

    FBG

    Tran

    smis

    sion

    LPG

  • Double exposure method for achieving true apodization

    phase mask

    Optical SpectrumAnalyzer

    ASE lightsource

    UV laserbeam

    Cylindrical lens

    2x2 couplerExcimer laser(248 or 193nmwavelength) Optical

    SpectrumAnalyzer

    Multiple exposureby moving the

    phase mask

    0.2 0.4 0.6 0.8 1Position

    0.2

    0.4

    0.6

    0.8

    1

    index difference

    0.2 0.4 0.6 0.8 1Position

    0.2

    0.4

    0.6

    0.8

    1

    Index Difference

    Ordinary Apodization True Apodization

    1552.0 1552.4 1552.8 1553.2 1553.6 1554.0 1554.4

    -70

    -60

    -50

    -40

    -30

    Raised GaussianApodization

    Gaussian Apodization

    20dB

    Ref

    lect

    ion(

    dBm

    )

    Wavelength(nm)

    1551 1552 1553 1554 1555 1556

    -60

    -55

    -50

    -45

    -40

    -35

    -30

    Tran

    smis

    sion

    (dB

    m)

    Wavelength(nm)

    1. C. Yang and Y. Lai, Journal of Optics A 2, 422(2000).2. C. Yang and Y. Lai, Electronics Letters, 665(2000)3. C. Yang and Y. Lai, Optics & Laser Technology, 32, 307(2000).

  • Step-Scan Exposure System

    Movable Linear StagePZT

    Fiber

    ReflectorArgon Ion Laser ( λ=244nm)

    RotatableReflector

    Reflector

    Reflector

    Beamsplitter

    Cylindrical Lens

    Cylindrical Lens

    OSA

    ASESource

    Translation Stage

    Laser Interferometer

    Linear Stage and PZT Stage Controllers

    Mask Mask orInterfer-ometer

    Require nm accuracy!!

  • Lab Picture with Visitors from Duke University

  • Overlap-Step-Scan Exposure

    +

    Λ⋅−=∆

    mmmm

    zzzSAzn )(cos)()( 2 φπη

    0.2 0.4 0.6 0.8 1Position

    0.2

    0.4

    0.6

    0.8

    1

    indexdifference

    Typical parameters:Grating period = 535 nm,UV Gaussion beam diameter = 1 - 5 mm Scan step size = beam diameter/10,grating length = 2 - 10 cm Not True

    Apodization!

  • New method for true apodization and phase-shift

    He-Ne LaserInterferometer

    Translation Stage

    Fiber

    244nm UV Laser

    Rotatable Mirror

    Beam Splitter

    Mirror

    half-wave plate

    θ s

    fMirror

    Shutter

    1 5 5 1 .0 1 5 5 1 .5 1 5 5 2 .0 1 5 5 2 .5 1 5 5 3 .0-4 0

    -3 5

    -3 0

    -2 5

    -2 0

    -1 5

    -1 0

    -5

    0

    5

    W a v e le n g th (n m )

    Ref

    lect

    ivity

    (dB)

    -4 0

    -3 5

    -3 0

    -2 5

    -2 0

    -1 5

    -1 0

    -5

    0

    5

    (b )

    Transmission (dB)

    1 5 4 4 .0 1 5 4 4 .5 1 5 4 5 .0 1 5 4 5 .5 1 5 4 6 .0-3 0

    -2 5

    -2 0

    -1 5

    -1 0

    -5

    0

    5 P u re a p o d iz e d F B G C o s 2 a p o d iz e d F B G

    W a v e le n g th (n m )

    Ref

    lect

    ivity

    (dB)

    (a )

    To be publishedOn Optics Letters∑

    +

    Λ⋅+⋅−=∆

    mmmm

    zzzSzn )2cos()2(cos1)()( 2 φπθη

  • Another new method for true apodization

    244nm UV Laserp

    s

    Rotatable λ/2 waveplatePolarization Beam Splitter

    Reflection Mirror

    Reflection Mirror

    Reflection Mirror

    Translation StageFiber

    Phase Mask

    Z

    I

    Z

    I

    s

    p

    Z

    I

    Can be used with phase mask or two beam inter-Ferometer.

    To be published on PTL.

  • Fabricated Dispersionless FBG

    -35

    -30

    -25

    -20

    -15

    -10

    -5

    0

    5

    (a)

    Ref

    lect

    ion

    (dB)

    -100

    -50

    0

    50

    100

    150

    200

    250

    300

    Time delay (ps)

    1547.2 1547.6 1548.0 1548.4 1548.8 1549.2-35

    -30

    -25

    -20

    -15

    -10

    -5

    0

    5

    (b)

    W avelength (nm)

    Ref

    lect

    ion

    (dB)

    -100

    -50

    0

    50

    100

    150

    200

    250

    300

    Time delay (ps)

    0.0

    0.5

    1.0

    Phas

    e (x

    ra

    d)π

    0 5 10 15 20 25 30 35

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0 DLP method LS fitting

    Grating Position (mm)

    Nor

    mal

    ized

    Ref

    ract

    ive

    Inde

    x Pr

    ofile

  • An interferometric side-diffraction monitoring technique for UV writing of advanced Bragg gratings

    He-Ne Laser

    θ1

    3θCCD

    Fiber Translation

    SLSL

    SL

    SL

    M

    M

    M

    BS

    BC

    Grating

    UV beams

    A

    1548.0 1548.5 1549.0 1549.5-40

    -35

    -30

    -25

    -20

    -15

    -10

    -5

    0

    5

    W avelength (nm )

    Ref

    lect

    ion

    (dB)

    -40

    -35

    -30

    -25

    -20

    -15

    -10

    -5

    0

    5

    Transmission (dB)

    Iinter Fourier Transform

    Filter Inverse Fourier Transform

    Take The Phase δ

    (a)

    0 50 100 150 200

    -1

    0

    1

    2 Exp. interference fitted interference Phase of interference

    CCD position (pixel)

    Nor

    mal

    ized

    am

    plitu

    de (%

    )

    -4

    -2

    0

    2

    4

    Phase (rad)

    (b)

    5cm FBG

    To be presented in CLEO 2004

  • Final Fabrication Goal

    Fabrication of FBGs with Arbitrary Profile, Phase-Shifts, and Long Length

    Movable Linear StagePZT

    Fiber

    ReflectorArgon Ion Laser (λ=244nm)

    RotatableReflector

    Reflector

    Reflector

    Beamsplitter

    Cylindrical Lens

    Cylindrical Lens

    OSA

    ASESource

    Translation Stage

    Laser Interferometer

    Linear Stage and PZT Stage Controllers

    Mask Mask orInterfer-ometer

  • Final Design Goal: Optimal Inverse DesignSynthesis of fiber gratings based on the optimization approach

    for arbitrary reflection or transmission properties

    Reflection orTransmission

    Spectrum(Amplitude and Phase)

    Garting Index profile∆n(z)

    [or equivalently κ(z)]

    Analysis based on CME

    ( ) ( ) ( ) ( ) 4exp 0

    ′′∆−

    ∆= ∫

    z

    dcac zdznzjznjz

    λπηθ

    ληπκ

  • Coupled Mode Equation Analysis

    azikzbidzdb

    bzikzaidzda

    g

    g

    ]exp[)(

    ]exp[)(*

    −+−=

    +=

    κβ

    κβ

    −=

    =

    −=

    +−=

    += ∗

    zk

    iBb

    zk

    iAa

    k

    AzBidzdB

    BzAidzdA

    g

    g

    g

    2exp

    2exp

    2

    )(

    )(

    βδ

    κδ

    κδ

    ββ

    gk

    0)(

    )()(2 2

    =

    −+−=

    =

    Lr

    rzzridzdr

    ABr

    κκδ

    Coupled modeequations

    ∫=

    −=L

    z

    zi dzezr0

    2)()( δκδ

    ∫∞

    −∞=

    −−=δ

    δ δδπ

    κ derz zi 2)(1)(

    r(δ) κ(z)FT

    ( ) ( ) ( ) ( ) 4exp 0

    ′′∆−

    ∆= ∫

    z

    dcac zdznzjznjz

    λπηθ

    ληπκ

    ac index (amplitude and phase)+ dc index

    Ricatti equationAnti-directional coupling(FBG)

    For |r|

  • Design Methodology of Advanced Fiber Gratings1. Inverse Methods

    (1) GLM inverse scattering method(E. Peral, et al., IEEE JQE, 32, 2078, 1996.)

    (2) Layer-Peeling method(R. Feced, ei al., IEEE JQE 35, 1105, 1999.)

    2. Optimization Methods(1) Genetic algorithm

    (J. Skaar and K. M. Risvik, J. Lightwave Tech. 16, 1928, 1998.) (2) Evolutionary Programming

    (C.-L. Lee and Y. Lai, IEEE Photon. Tech. Lett, November, 2002.)(C.-L. Lee and Y. Lai, CLEO 2003, USA; also to be published on OC

  • Layer Peeling Method

    τ=0

    ∆τ

    ∆z=∆τ/2)(2)(1)

    2( τδδ

    πτκ

    δ

    τδ ∆−=−=∆

    ∫∞

    −∞=

    ∆− hder i

    (1) FBG

    τ > 0

    (2) LPG

    τ=0

    τ=0∆ττ=0 τ > 0

    ∆z=∆τ

  • -35

    -30

    -25

    -20

    -15

    -10

    -5

    0

    5

    (a)

    Ref

    lect

    ion

    (dB)

    -100

    -50

    0

    50

    100

    150

    200

    250

    300

    Time delay (ps)

    1547.2 1547.6 1548.0 1548.4 1548.8 1549.2-35

    -30

    -25

    -20

    -15

    -10

    -5

    0

    5

    (b)

    W avelength (nm)

    Ref

    lect

    ion

    (dB)

    -100

    -50

    0

    50

    100

    150

    200

    250

    300

    Time delay (ps)

    5 10 15 20 25 30 35

    DLP method LS fitting

    Grating Position (mm)

    Dispersionless FBG by the LP Method

    Gaussian Apodization

    0.2 0.4 0.6 0.8 1Position

    0.2

    0.4

    0.6

    0.8

    1

    Index Difference

    DispersionlessFBG by LP

    Index envelope

    Require: 1. Constant dc-index (True Apodization). 2. Special ac-index apodization. 3. Multiple phase-shifts

    0.0

    0.5

    1.0

    Phas

    e (x

    ra

    d)π

    0

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    Nor

    mal

    ized

    Ref

    ract

    ive

    Inde

    x Pr

    ofile

  • The Least Square Fitting Method

    { }( ) ( )∫ ∑

    −= dzzAzAC

    mmidm

    2

    )(σ

    ( ) ( )exp smmm wzzCzA −−⋅= ( )22( )

    0)exp()()(A-2C

    2

    idm

    ∫ ∑ =−

    −⋅

    −=

    ∂∂ dz

    wzz

    zAzs

    m

    mm

    σ

    To determine the experimental exposure parameters.

  • Dispersion Compensation Fiber Bragg Grating by Single Period Overlap-Step-Scan Exposure

    Phase profile Reflection SpectrumProfile of κ(z)

    Phase error tolerancePhase-shifted approximation

    PTL 2003.

  • Advantages and Disadvantages of Layer Peeling Method

    1. Advantages:(1) Very fast.(2) Single solution.

    2. Disadvantages:(1) Complete spectra information (amplitude

    and phase) must be provided.(2) Reconstruction sometimes fails.(3) Can not impose additional constrains.(4) Not necessary optimal solution for

    applications.

  • Synthesis of advanced FGs using EP(Flow chart of the algorithm)

    STARTThe parent set with N individuals of

    Calculate the spectrum reponse for each using the coupled-mode equation .

    YESStop

    Find the error and the fitness values for each

    Check

    NO Selection: by probability algorithm

    Mutation: add a perturbation to one section of κ κ

    κ

    κ

    •the only operator in EP• with higher fitness value lower Perturbation factor (vice versa)

    A new set of N-offspring

    • will be discretized into m sections

    • with higher fitness has higher probability to be chosen

    κ

    κ

    κ

  • Design of Dispersionless Fiber Bragg Grating

    1549.9 1549.95 1550 1550.05 1550.1-6000

    -4000

    -2000

    0

    2000

    4000

    6000EP(4cm) LP(4cm) LP(20cm) Gaussian-apodized(4cm)

    Wave le ngth (nm)

    Dispersion (ps/nm)

    Dispersion Spectrum

    0 1 2 3 4-4

    0

    4

    8

    Grating Le ngth (cm)

    Coupling Coefficient (1/c

    m)

    EP

    LP

    Gauss ian-apodized

    λ1, λ2 … λn λ1, λ2 … λnFBG at λi

    Drop λi Add λi

    Circulator Circulator

    Reflection Spectrum

    To be published on Optics Communications

  • Convergence of the Stochastic Search

    0 1000 2000 3000 4000 5000 60000

    0.5

    1

    1.5

    2

    2.5x 10

    5

    Dispersion(in-band) Error (ps/nm)

    0 1000 2000 3000 4000 5000 60000

    2

    4

    6

    8

    10

    12

    Ge ne ration

    Reflectivity Error

    DE

    RE

  • Comparison of the Computation Time Matlab Programming

    3min 20secLP (20cm) with N=4000, M=8000

    12 sec

    1~4 hrs

    CPU timeDesigned Methods for the designed example

    EP (4cm) with 20 sections,

    LP (4cm) with N=800, M=1600

    Obviously the EP Optimization approach should compete with the LP methodon the designed flexibility and achieved performance, not on computation time.

  • Design of Gain Flattening Long Period Grating

    1510 1520 1530 1540 1550 1560 1570 1580-12

    -8

    -4

    0

    Wavelength (nm)

    Transmission (dB)

    Max. 50nm Exact

    1510 1520 1530 1540 1550 1560 1570 1580-0.2

    0

    0.2

    Error (dB)

    Error

    1510 1520 1530 1540 1550 1560 1570 1580-15

    -10

    -5

    0

    Wavelength(nm)

    Tran

    smis

    sion

    Los

    s(dB

    )

    Desired Synthesized

    (a)

    1515 1525 1535 1545 1555 1565 1575 15855

    10

    15

    20

    25

    30

    35

    40

    45

    Wavelength(nm)

    Gai

    n(dB

    )

    UnflattenFlatten

    (b)

    0 10 20 30 40 500

    0.1

    0.2

    0.3

    0.4

    Grating Length(mm)

    Am

    plitu

    de o

    f Cou

    plin

    g C

    oeffi

    cien

    t(1/m

    m)

    Amplitude

    0 10 20 30 40 50-1

    -0.5

    0

    0.5

    1

    Phas

    e of

    Cou

    plin

    g C

    oeffi

    cien

    t(rad

    )

    Phase

    (c)

    Filter Response Gain Flattening

    Index Profile Phase Error Tolerance

    Long Period Grating

    EDFALPG

    (C.-L. Lee and Y. Lai, IEEE Photon. Tech. Lett, November, 2002.)

  • Coupling of Modes

    Co-directional coupling:(LPG)

    +=

    +

    +=

    −−=

    −−=

    += ∗

    zk

    iziAa

    zk

    iziAa

    k

    AzAidz

    dA

    AzAidzdA

    g

    g

    g

    22exp

    22exp

    2

    )(

    )(

    2122

    2111

    21

    122

    211

    ββ

    ββ

    ββδ

    κδ

    κδ

    122

    211

    ]exp[)(

    ]exp[)(

    azikzaidzda

    azikzaidzda

    g

    g

    −−=

    += ∗

    κβ

    κβ

    2β gk

    Long Period GratingCoupling between the core and cladding modes

  • Comparison of the single- and multi-objective EP algorithms

    Adaptive with multiple actual error valuesAdaptive with single fitness valueMutation process

    Roulette wheel with elitism selection algorithm:1. Keep the best for the next generation2. The with higher F has higher probabilityto be chosen

    Roulette wheel selection algorithmSelection process

    Fitness functions

    Error functions

    1. In-band zero-dispersion2. Desired reflectivity spectrum

    1. Desired transmission spectrumTargets

    21Number of targets

    FBG Dispersionless Filters for DWDM OADM(Multi-objective optimization)

    LPG EDFA Gain Flattening Filters(Single-objective optimization)

    Examples

    ∑=

    −=n

    iiT TTE1

    ,,target)(κ [ ])()()( iDDiRRitot EWEWE κκκ ×+×=

    )(1)(

    itoti E κ

    κ =F)(

    1)(FiT

    i E κκ =

  • Quantum Effects of Fiber Bragg Grating Solitons

    Kerr nonlinearity

    Fiber GratingAmplitudeSqueezed

    R.-K. Lee and Y. Lai, To be published on Phys. Rev. A Rapid Communication.

  • Conclusions• Standard Fiber Gratings and Applications are

    mature technologies.• Advanced Fiber Gratings and Applications are

    under intense development and will find more and more important applications.

    • Precision Fiber Grating Design and Fabrication techniques are the keys for the development of advanced fiber gratings and applications.

    • At IEO/NCTU we have established a firm basis forthe design and fabrication of advanced fiber gratings.

  • AcknowledgementOur Lab Members

    Cheng-Ling Lee (李澄鈴)Kai-Ping Chuang(莊凱評)

    Dr. Lih-Gen Sheu (許立根﹐Van Nung Institute of Technology)………….