aem ch9a stu

Upload: shfnth

Post on 03-Jun-2018

236 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/11/2019 AEM Ch9a Stu

    1/38

    AEM 2, 9, JJEONGRF Design Lab. 1

  • 8/11/2019 AEM Ch9a Stu

    2/38

    AEM 2, 9, JJEONGRF Design Lab. 2

  • 8/11/2019 AEM Ch9a Stu

    3/38

    AEM 2, 9, JJEONGRF Design Lab. 3

    A scalar is a quantity that is determined by its magnitude.

    Examples : time, temperature, length, distance, speed, density, energy, and voltage.

    A vector is a quantity that has both magnitude and direction.

    Examples : displacement, velocity, and force.We denote vectors by lowercase boldface letters a, b, v, etc.

    In handwriting you may use arrows, for instance, (in place of a), , etc.

    A vector (arrow) has a tail, called its initial point, and a tip, called its terminal point.

    The length (or magnitude) of the vector a is denoted by |a|.

    Another name for length is norm (or Euclidean norm).

    A vector of length 1 is called a unit vector.

  • 8/11/2019 AEM Ch9a Stu

    4/38

    AEM 2, 9, JJEONGRF Design Lab.

    Two vectors a and b are equal, written a = b, if they have the same length and the same

    direction.

    4

  • 8/11/2019 AEM Ch9a Stu

    5/38

    AEM 2, 9, JJEONGRF Design Lab.

    We choose anxyz Cartesian coordinate system in space. Let abe a given vector with

    initial pointP: (x1,y1,z1) and terminal point Q: (x2,y2,z2). Then the three coordinatedifferences

    a1 =x2 -x1, a2 = y2 - y1, a3 = z2 - z1

    are called the components of the vector a with respect to that coordinate system, and we

    write simply a = [a1, a2, a3].

    The length |a| can be expressed in terms of components, we have

    Position vector r of a pointA:(x, y, z) is the vector with the origin (0,0,0) as the initial point

    andA as the terminal point. In components, r = [x, y, z]

    5

  • 8/11/2019 AEM Ch9a Stu

    6/38

    AEM 2, 9, JJEONGRF Design Lab. 6

  • 8/11/2019 AEM Ch9a Stu

    7/38

    AEM 2, 9, JJEONGRF Design Lab. 7

  • 8/11/2019 AEM Ch9a Stu

    8/38

    AEM 2, 9, JJEONGRF Design Lab. 8

  • 8/11/2019 AEM Ch9a Stu

    9/38

    AEM 2, 9, JJEONGRF Design Lab. 9

    a3k

  • 8/11/2019 AEM Ch9a Stu

    10/38

    AEM 2, 9, JJEONGRF Design Lab. 10

  • 8/11/2019 AEM Ch9a Stu

    11/38

    AEM 2, 9, JJEONGRF Design Lab. 11

  • 8/11/2019 AEM Ch9a Stu

    12/38

    AEM 2, 9, JJEONGRF Design Lab. 12

  • 8/11/2019 AEM Ch9a Stu

    13/38

    AEM 2, 9, JJEONGRF Design Lab. 13

  • 8/11/2019 AEM Ch9a Stu

    14/38

    AEM 2, 9, JJEONGRF Design Lab. 14

  • 8/11/2019 AEM Ch9a Stu

    15/38

    AEM 2, 9, JJEONGRF Design Lab. 15

  • 8/11/2019 AEM Ch9a Stu

    16/38

    AEM 2, 9, JJEONGRF Design Lab. 16

  • 8/11/2019 AEM Ch9a Stu

    17/38

    AEM 2, 9, JJEONGRF Design Lab. 17

  • 8/11/2019 AEM Ch9a Stu

    18/38

    AEM 2, 9, JJEONGRF Design Lab. 18

    (skip)

  • 8/11/2019 AEM Ch9a Stu

    19/38

    AEM 2, 9, JJEONGRF Design Lab. 19

  • 8/11/2019 AEM Ch9a Stu

    20/38

    AEM 2, 9, JJEONGRF Design Lab. 20

  • 8/11/2019 AEM Ch9a Stu

    21/38

    AEM 2, 9, JJEONGRF Design Lab. 21

  • 8/11/2019 AEM Ch9a Stu

    22/38

    AEM 2, 9, JJEONGRF Design Lab. 22

  • 8/11/2019 AEM Ch9a Stu

    23/38

    AEM 2, 9, JJEONGRF Design Lab. 23

  • 8/11/2019 AEM Ch9a Stu

    24/38

    AEM 2, 9, JJEONGRF Design Lab. 24

    Consider a force F acting on a rigid body at a point given by a position vector r.

    Torque :

    Tendency of the body to rotate about the origin

    Cross product of the position and force vectors

    Direction : the axis of rotation

  • 8/11/2019 AEM Ch9a Stu

    25/38

    AEM 2, 9, JJEONGRF Design Lab. 25

  • 8/11/2019 AEM Ch9a Stu

    26/38

    AEM 2, 9, JJEONGRF Design Lab. 26

  • 8/11/2019 AEM Ch9a Stu

    27/38

    AEM 2, 9, JJEONGRF Design Lab. 27

  • 8/11/2019 AEM Ch9a Stu

    28/38

    AEM 2, 9, JJEONGRF Design Lab. 28

  • 8/11/2019 AEM Ch9a Stu

    29/38

    AEM 2, 9, JJEONGRF Design Lab. 29

    (skip)

  • 8/11/2019 AEM Ch9a Stu

    30/38

    AEM 2, 9, JJEONGRF Design Lab. 30

  • 8/11/2019 AEM Ch9a Stu

    31/38

    AEM 2, 9, JJEONGRF Design Lab. 31

  • 8/11/2019 AEM Ch9a Stu

    32/38

    AEM 2, 9, JJEONGRF Design Lab. 32

  • 8/11/2019 AEM Ch9a Stu

    33/38

  • 8/11/2019 AEM Ch9a Stu

    34/38

    AEM 2, 9, JJEONGRF Design Lab. 34

  • 8/11/2019 AEM Ch9a Stu

    35/38

    AEM 2, 9, JJEONGRF Design Lab.

    We define a vector function v, whose values are vectors, that is,

    v = v(P) = [v1(P), v2(P), v3(P)] that depends on pointsP in space.

    We say that a vector function defines a vector field.

    Example of vector fields : gravitation field (Ex3).

    Similarly, we define a scalar functionf, whose values are scalars, that is,f = f (P)

    that depends onP. We say that a scalar function defines a scalar field.

    Example of scalar fields : temperature field in space.

    35

  • 8/11/2019 AEM Ch9a Stu

    36/38

  • 8/11/2019 AEM Ch9a Stu

    37/38

    AEM 2, 9, JJEONGRF Design Lab. 37

  • 8/11/2019 AEM Ch9a Stu

    38/38

    AEM 2, 9, JJEONGRF Design Lab. 38