advanced solid sorbent based co2 capture process 2014 energy procedia

Post on 02-Feb-2016

218 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

DESCRIPTION

article

TRANSCRIPT

Energy Procedia 63 ( 2014 ) 2216 – 2229

Available online at www.sciencedirect.com

ScienceDirect

1876-6102 © 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).Peer-review under responsibility of the Organizing Committee of GHGT-12doi: 10.1016/j.egypro.2014.11.241

aRTI International, Post Office Box 12194, Research Triangle Park, NC 27709-2194, USA bThe Institute Center for Energy (iEnergy), Masdar Institute of Science and Technology, P.O.Box 54224, Masdar City, Abu Dhabi, UAE

Abstract

Keywords:

1. Introduction

E-mail address:

© 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).Peer-review under responsibility of the Organizing Committee of GHGT-12

Thomas O. Nelson et al. / Energy Procedia 63 ( 2014 ) 2216 – 2229 2217

2. RTI’s solid sorbent CO2 capture technology

2218 Thomas O. Nelson et al. / Energy Procedia 63 ( 2014 ) 2216 – 2229

ParticulateFilter

Particulatefilter

Cooler

Blower

Blower

CausticScrubber

Sta

ckSorbentTransfer

To Capture StreamDehydration and

Compression

AbsorberCyclone

DesorberCyclone

Steam

CO2 Absorber

CO2 Desorber

Process description

Thomas O. Nelson et al. / Energy Procedia 63 ( 2014 ) 2216 – 2229 2219

3. PEI-based solid sorbent improvement and optimization

2220 Thomas O. Nelson et al. / Energy Procedia 63 ( 2014 ) 2216 – 2229

3.1. Packed-bed reactor system

3.2. “Visual” fluidized-bed reactor system

A B

C

D

Saturator

Feed

PBRCondensor

Thomas O. Nelson et al. / Energy Procedia 63 ( 2014 ) 2216 – 2229 2221

3.3. Development of a fluidizable sorbent

2222 Thomas O. Nelson et al. / Energy Procedia 63 ( 2014 ) 2216 – 2229

3.4. Optimization of the fluidizable sorbent

CO

2 load

ing

(wt%

)

PEI concentration ( wt%)

Thomas O. Nelson et al. / Energy Procedia 63 ( 2014 ) 2216 – 2229 2223

Ads

orpt

ion

capa

city

(wt %

)

Solvent

CO

2 load

ing

(wt%

)

Temperature (oC)

a) b)

2224 Thomas O. Nelson et al. / Energy Procedia 63 ( 2014 ) 2216 – 2229

4. Sorbent scale-up

4.1. Sorbent scale-up procedure

4.2. Comparison to laboratory-prepared sorbents

Thomas O. Nelson et al. / Energy Procedia 63 ( 2014 ) 2216 – 2229 2225

5. Bench-scale prototype testing of RTI’s solid sorbent CO2 capture technology

5.1. Bench-scale system design and engineering

2226 Thomas O. Nelson et al. / Energy Procedia 63 ( 2014 ) 2216 – 2229

5.2. Bench-scale system testing with simulated flue gas

Thomas O. Nelson et al. / Energy Procedia 63 ( 2014 ) 2216 – 2229 2227

5.3. Bench-scale evaluation for NGCC application

0%

20%

40%

60%

80%

100%

120%

- 100 200 300 400 500 600

Perc

ent C

O2

Capt

ure

Minutes

Capture Ratio

upsets in flue gas delivery

> 90% CO2 capture

2228 Thomas O. Nelson et al. / Energy Procedia 63 ( 2014 ) 2216 – 2229

5.4. Next steps for bench-scale system testing

6. Conclusion

Thomas O. Nelson et al. / Energy Procedia 63 ( 2014 ) 2216 – 2229 2229

Acknowledgements

References

top related