an overview on mathematical methods in tomography · siam 2001 straßburg, 25.05.2004 Œ p.2/21...

Post on 11-Sep-2020

0 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

An Overview on Mathematical Methods in Tomography

Andreas Rieder

UNIVERSITAT KARLSRUHE (TH)

Institut fur Wissenschaftliches Rechnenund Mathematische Modellbildung

und

Institut fur Praktische Mathematik

Straßburg, 25.05.2004 – p.1/21

Preface

Focus: 2D X-ray computerized tomography

CT variants not addressed here:3D CT

SPECT

Doppler CT

Diffusive (optical) CT

MR imaging

Impedance CT

Ultrasound CT

F. Natterer, F. Wübbeling: Mathematical Methods in Image Reconstruction,SIAM 2001

Straßburg, 25.05.2004 – p.2/21

Contents

Mathematical model for CT: the Radon transform

Inversion formula: global and local tomography

Non-uniqueness for discrete data

Approximate inversion

Filtered backprojection algorithm

Computational examples

Straßburg, 25.05.2004 – p.3/21

Principle of CT scanning device

Straßburg, 25.05.2004 – p.4/21

The mathematical model

I0 I1L

x + ∆xX-ray detector

f

sourcex

physical assump.: I(x + ∆x) − I(x) = −f(x) ‖∆x‖ I(x)

I(x + ∆x) − I(x)

‖∆x‖= −f(x) I(x)

∆x → 0 =⇒ ∂L ln I(x) = −f(x)

L

f(x) dσ(x) = ln(I0/I1

)

Straßburg, 25.05.2004 – p.5/21

CT scanning geometries

Straßburg, 25.05.2004 – p.6/21

2D-Radon-Transform (parallel scanning geometry)

Rf(s, ϑ) :=

l(s,ϑ)∩Ω

f(x) dσ(x)ϑ

s ϑ( )s ,l

tomographic inversion: Rf(s, ϑ) = g(s, ϑ)

R : L2(Ω) → L2(Z), Z = [−1, 1] × [0, π]

Johann Radon 1917, A. M. Cormack 1963, G. N. Houndsfield 1967

Straßburg, 25.05.2004 – p.7/21

Inversion formula

Riesz potential Λα : Ht(Rd) → Ht−α(Rd), α > −d

Λαf(ξ) := ‖ξ‖α f(ξ), Λα = (−∆)α/2

backprojection R∗ : L2(Z) → L2(Ω)

R∗g(x) =

∫ π

0

g(xt ω(ϑ), ϑ) dϑ

Λαf =1

2πR

∗Λ1+αs Rf, f ∈ L2(Ω)

α = 0: Radon 1917, general result: Smith, Solomon and Wagner 1977

Straßburg, 25.05.2004 – p.8/21

Global and local tomography

Λαf =1

2πR

∗Λ1+αs Rf

α = 0: Λs = Hd

ds, H Hilbert transform

inversion formula for f is global

α = 1: Λ2s = −

d2

ds2, sing supp Λf ⊂ sing supp f

inversion formula for Λf is local

Straßburg, 25.05.2004 – p.9/21

Local tomography

f Λf

Straßburg, 25.05.2004 – p.10/21

Non-Uniqueness for discrete data

Smith et al. 1977: si, i = 1, . . . , q, ϑj , j = 1, . . . , p

∃f 6= 0 : Rf(si, ϑj) = 0 ∀ i, j

Natterer 1980: (si, ϑj) rectangular grid with h = 2/q = π/p

f ghost =⇒ ‖f‖L2 . hβ ‖f‖Hβ0

, β > 1/2

Louis 1984: 0 < τ < 1

f ghost =⇒

|ξ|≤τ(p−1)

|f(ξ)| dξ . e−λ(τ) p ‖f‖L1

Further analytical aspects: stability, sampling and resolution

Straßburg, 25.05.2004 – p.11/21

Non-Uniqueness for discrete data

Smith et al. 1977: si, i = 1, . . . , q, ϑj , j = 1, . . . , p

∃f 6= 0 : Rf(si, ϑj) = 0 ∀ i, j

Natterer 1980: (si, ϑj) rectangular grid with h = 2/q = π/p

f ghost =⇒ ‖f‖L2 . hβ ‖f‖Hβ0

, β > 1/2

Louis 1984: 0 < τ < 1

f ghost =⇒

|ξ|≤τ(p−1)

|f(ξ)| dξ . e−λ(τ) p ‖f‖L1

Further analytical aspects: stability, sampling and resolution

Straßburg, 25.05.2004 – p.11/21

Non-Uniqueness for discrete data

Smith et al. 1977: si, i = 1, . . . , q, ϑj , j = 1, . . . , p

∃f 6= 0 : Rf(si, ϑj) = 0 ∀ i, j

Natterer 1980: (si, ϑj) rectangular grid with h = 2/q = π/p

f ghost =⇒ ‖f‖L2 . hβ ‖f‖Hβ0

, β > 1/2

Louis 1984: 0 < τ < 1

f ghost =⇒

|ξ|≤τ(p−1)

|f(ξ)| dξ . e−λ(τ) p ‖f‖L1

Further analytical aspects: stability, sampling and resolution

Straßburg, 25.05.2004 – p.11/21

Non-Uniqueness for discrete data

Smith et al. 1977: si, i = 1, . . . , q, ϑj , j = 1, . . . , p

∃f 6= 0 : Rf(si, ϑj) = 0 ∀ i, j

Natterer 1980: (si, ϑj) rectangular grid with h = 2/q = π/p

f ghost =⇒ ‖f‖L2 . hβ ‖f‖Hβ0

, β > 1/2

Louis 1984: 0 < τ < 1

f ghost =⇒

|ξ|≤τ(p−1)

|f(ξ)| dξ . e−λ(τ) p ‖f‖L1

Further analytical aspects: stability, sampling and resolution

Straßburg, 25.05.2004 – p.11/21

CT ghost

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

s

ϑ

−1 −0.5 0 0.5 1

0

1

2

3

4

5

6

Straßburg, 25.05.2004 – p.12/21

Approximate inversion I

inversion formula: f =1

2πR

∗ Λs g g = Rf

approx. inversion: f ? e = R∗ (υ ?s Rf), e = R

∗υ

e mollifier (e ≈ δ, centered about 0 with mean value 1)υ reconstruction filter/kernel

υ = (2π)−1 ΛsRe =⇒ e = R∗υ

eγ(x) = γ−2 e(x/γ), υγ(s) = γ−2 υ(s/γ), γ > 0

f ? eγ → f as γ → 0

Straßburg, 25.05.2004 – p.13/21

Approximate inversion II

0 0.2 0.4 0.6 0.8 10

0.5

1

1.5

2

Mollifier

e3

e6

0 0.5 1 1.5

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7Rekonstruktionskerne zur Radon−Transformation

υ3

υ6

Straßburg, 25.05.2004 – p.14/21

Reconstruction algorithm I

approx. inversion: f ? eγ = R∗ (υγ ?s g)

discrete data: g`,j = Rf(`/q, j π/p), ` = −q, . . . , q, j = 0, . . . , p − 1

filtered backprojection: fR(x) = R∗p

(υγ ?h g

)(x)

(υγ ?h g)k,j = h

q∑

` =−q

υγ

(h(k − `)

)g`,j , h = 1/q

How to choose γ in relation to h?

Straßburg, 25.05.2004 – p.15/21

Reconstruction algorithm II

R. 2000: f essentially b-band-limited and h ≤ π/b

fR = f ? eγ + m(γ, h) Λ−1f + discr. error

Strategy: Determine γ = γh as a zero of m(·, h), that is,m(γh, h) = 0

Straßburg, 25.05.2004 – p.16/21

Reconstruction algorithm III

0 0.2 0.4 0.6 0.8 10

0.5

1

1.5

2

Mollifier

e3

e6

h = 0.01

0.018 0.022 0.026 0.03

-10

-5

5

10

0.028 0.032 0.036

-3

-2

-1

1

2

Straßburg, 25.05.2004 – p.17/21

Shepp-Logan head phantom

1.005

1.01

1.015

1.02

1.025

1.03

1.035

1.04

1.045

1.05

Tomographic Data1.8

0.2

1.0

−1.0 1.0

π

0

Straßburg, 25.05.2004 – p.18/21

Reconstructions I

e(x) =

(1 − ‖x‖2)6 : ‖x‖ ≤ 1

0 : otherwise, h = 0.01

original γ = 0.01765299..

(sm. zero of m),rel. `2-error: 0.0816

Straßburg, 25.05.2004 – p.19/21

Reconstructions II

original γ = 0.02357177..

(2nd sm. zero of m),rel. `2-error: 0.1001

Straßburg, 25.05.2004 – p.20/21

Violating the zero condition

γ = 0.01765299..

rel. `2-error: 0.0816

0.8

0.9

0.85

γ = 0.0177..

rel. `2-error: 0.1730

0.028 0.032 0.036

-3

-2

-1

1

2

fR = f ? eγ + m(γ, h) Λ−1f + discr. error

Straßburg, 25.05.2004 – p.21/21

Violating the zero condition

γ = 0.01765299..

rel. `2-error: 0.0816

0.8

0.9

0.85

γ = 0.0177..

rel. `2-error: 0.1730

0.028 0.032 0.036

-3

-2

-1

1

2

fR = f ? eγ + m(γ, h) Λ−1f + discr. error

Straßburg, 25.05.2004 – p.21/21

top related